NASA Astrophysics Data System (ADS)
Alvesalo, T. A.; Haavasoja, T.; Manninen, M. T.; Soinne, A. T.
1980-04-01
The specific heat of liquid 3He has been measured from 1 to 10 mK between 0 and 32.5 bars. The values implied for the effective mass are considerably smaller than the currently accepted ones. Near zero pressure the specific-heat jump is close to the BCS value 1.43, and at 32.5 bars it has reached 1.90 in the B phase and 2.04 in the A phase. The temperature dependence of the specific heat in the B phase agrees with a model of Serene and Rainer. The latent heat at the A-B transition has been measured.
NASA Astrophysics Data System (ADS)
Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.
2015-03-01
In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.
Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A
2014-11-15
Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
Specific Heat Capacities of Martian Sedimentary Analogs at Low Temperatures
NASA Astrophysics Data System (ADS)
Vu, T. H.; Piqueux, S.; Choukroun, M.; Christensen, P. R.; Glotch, T. D.; Edwards, C. S.
2017-12-01
Data returned from Martian missions have revealed a wide diversity of surface mineralogies, especially in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (300-700 J.m-2.K-1.s-1/2, indicative of a combination of low thermal conductivity, specific heat, and density) that are difficult to reconcile with their bedrock morphologies (where hundreds of magmatic bedrock occurrences have been mapped with thermal inertia values >> 1200 J.m-2.K-1.s-1/2). While low thermal conductivity and density values are sometimes invoked to lower the thermal inertia of massive bedrock, both are not sufficient to lower values below 1200 J.m-2.K-1.s-1/2, far above the numbers reported in the literature for Martian sedimentary/altered rocks. In addition, our limited knowledge of the specific heat of geological materials and their temperature dependency, especially below room temperature, have prevented accurate thermal modeling and impeded interpretation of the thermal inertia data. In this work, we have addressed that knowledge gap by conducting experimental measurements of the specific heat capacities of geological materials relevant to Martian sedimentary rocks at temperatures between 100 and 350 K. The results show that variation of the specific heat with temperature, while appreciable to some extent, is rather small and is unlikely to contribute significantly in the lowering of thermal inertia values. Therefore, thermal conductivity is the parameter that has the most potential in explaining this phenomenon. Such scenario could be possible if the sedimentary rocks are finely layered with poor thermal contact between each internal bed. As the density of most geological materials is well-known, the obtained specific heat data can be used to uniquely constrain the thermal conductivity, thereby improving thermal prediction models for Martian surface temperatures. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the NASA Solar System Workings Program and government sponsorship are acknowledged.
A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.
A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.
NASA Astrophysics Data System (ADS)
Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro
2017-05-01
The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.
77 FR 12590 - Winchester Industries; Analysis of Proposed Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... homeowners can realize by replacing their windows, including the home's geographic location, size, insulation... insulation in a specific region). The performance standard imposed under this Part constitutes fencing-in... costs, heating and cooling costs, U-factor, solar heat gain coefficient, R-value, K-value, insulating...
77 FR 12586 - Serious Energy, Inc.; Analysis of Proposed Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... the home's geographic location, size, insulation package, and existing windows. Consumers who replace... insulation in a specific region). The performance standard imposed under this Part constitutes fencing-in... costs, heating and cooling costs, U-factor, solar heat gain coefficient, R-value, K-value, insulating...
NASA Astrophysics Data System (ADS)
Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.
2017-09-01
Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.
Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio
NASA Astrophysics Data System (ADS)
Zalom, Peter; Pokorný, Vladislav; Janiš, Václav
2018-05-01
We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.
Changes in erosional style on early Mars - External versus internal influences
NASA Technical Reports Server (NTRS)
Postawko, Susan E.; Fanale, Fraser P.
1993-01-01
A quantitative relationship is derived between the effectiveness of an atmospheric greenhouse and that of internal heat flow in producing the morphological differences between early and later Martian terrains. The derived relationship is used for two purposes: (1) to evaluate the relative importance of the atmospheric CO2 greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow (and conductivity values); and (2) to assess the absolute importance of each for specific values of the heat flow which are thought to be reasonable on independent geophysical grounds.
NASA Astrophysics Data System (ADS)
Andiarto, R.; Nuryadin, M. K.; Taufik, A.; Saleh, R.
2017-04-01
In our previous study, the addition of Magnetite (Fe3O4) into Stearic acid (Sa) as an organic phase change material (PCM) shows an enhancement in the latent heat for thermal energy storage applications. The latent heat of the PCM can also be increased by adding graphene material. Therefore, in this research, the thermal properties of Sa have been studied by the sonication method for several different concentrations of Fe3O4/Graphene nanocomposite additions. The structural properties of all of the samples were observed by X-Ray diffraction (XRD). Melting-solidifying behavior and specific heat value were measured by differential scanning calorimetry (DSC). The thermal degradation process of all samples was investigated by thermogravimetric analysis (TGA). Based on the DSC results, the presence of Fe3O4/Graphene in the Sa enhances the latent heat up to 20%. The specific heat value of the mixture was also found to be increased as the concentration of Fe3O4/Graphene to Sa increased. The TGA results show a lowered thermal degradation process of the Sa by the addition of the Fe3O4/Graphene which indicates a higher thermal stability of the mixture. In conclusion, the results demonstrate that the addition of Fe3O4/Graphene to Sa improves both the sensible heat and the latent heat of the mixture which are very important for thermal energy storage applications
Mohapatra, Jeotikanta; Zeng, Fanhao; Elkins, Kevin; Xing, Meiying; Ghimire, Madhav; Yoon, Sunghyun; Mishra, Sanjay R; Liu, J Ping
2018-05-09
An efficient heat activating mediator with an enhanced specific absorption rate (SAR) value is attained via control of the iron oxide (Fe3O4) nanoparticle size from 3 to 32 nm. Monodispersed Fe3O4 nanoparticles are synthesized via a seed-less thermolysis technique using oleylamine and oleic acid as the multifunctionalizing agents (surfactant, solvent and reducing agent). The inductive heating properties as a function of particle size reveal a strong increase in the SAR values with increasing particle size up to 28 nm. In particular, the SAR values of ferromagnetic nanoparticles (>16 nm) are strongly enhanced with the increase of ac magnetic field amplitude than that for the superparamagnetic (3-16 nm) nanoparticles. The enhanced SAR values in the ferromagnetic regime are attributed to the synergistic contribution from the hysteresis and susceptibility loss. Specifically, the 28 nm Fe3O4 nanoparticles exhibit an enhanced SAR value of 801 W g-1 which is nearly an order higher than that of the commercially available nanoparticles.
Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Lin, Chunjing; Xu, Sichuan; Li, Zhao; Li, Bin; Chang, Guofeng; Liu, Jinling
2015-10-01
Excellent design of a thermal management system requires good understanding of the thermal behaviors of power batteries. In this study, the electrochemical and heat performances of a prismatic 40 Ah C/LiFePO4 battery are investigated with a focus on the influence of temperature on cell capacity in a mixed charge-discharge cycle. In addition, the heat generation and energy efficiency of a battery are determined during charge and discharge at different current rates. The experimental results indicate that in certain temperature ranges, both the charging and discharging capacities increase significantly as the temperature increases. In addition, the energy efficiency reaches more than 95% when the battery runs at a current rate of 0.33 C-2 C and temperature of 25-45 °C. A thermal mathematical model based on experimentally obtained internal resistances and entropy coefficients is developed. Using this model, the increase in the battery temperature is simulated based on specific heat values that are measured experimentally and calculated theoretically. The results from the simulation indicate that the temperature increase agrees well with the experimental values, the measured specific heat provides better results than the calculated specific heat and the heat generated decreases as the temperature increases.
Laminar and turbulent heating predictions for mars entry vehicles
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei
2016-11-01
Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.
NASA Technical Reports Server (NTRS)
Raj, S. V.
2017-01-01
Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.
NASA Astrophysics Data System (ADS)
Raj, S. V.
2017-11-01
Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.
Anomalous electronic heat capacity of copper nanowires at sub-Kelvin temperatures
NASA Astrophysics Data System (ADS)
Viisanen, K. L.; Pekola, J. P.
2018-03-01
We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1-0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100-nm thickness agrees with the bulk value and the free-electron estimate, whereas that of similar Cu films exceeds the corresponding reference values by one order of magnitude. The origin of the anomalously high heat capacity of copper films remains unknown for the moment. Based on the small heat capacity at low temperatures and the possibility to devise a tunnel probe thermometer on it, metal films form a promising absorber material, e.g., for microwave photon calorimetry.
Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md
2017-12-01
The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.
Li, Khu Say; Ali, M Abbas; Muhammad, Ida Idayu; Othman, Noor Hidayu; Noor, Ahmadilfitri Md
2018-05-01
The impact of microwave roasting on the thermooxidative degradation of perah seed oil (PSO) was evaluated during heating at a frying temperature (170°C). The roasting resulted significantly lower increment of the values of oxidative indices such as free acidity, peroxide value, p-anisidine, total oxidation (TOTOX), specific extinctions and thiobarbituric acid in oils during heating. The colour L* (lightness) value dropped gradually as the heating time increased up to 12 h, whereas a*(redness) and b* (yellowness) tended to increase. The viscosity and total polar compound in roasted PSO was lower as compared to that in unroasted one at each heating times. The tocol retention was also high in roasted samples throughout the heating period. The relative contents of polyunsaturated fatty acids (PUFAs) were decreased to 94.42% and saturated fatty acids (SFAs) were increased to 110.20% in unroasted sample, after 12 h of heating. On the other hand, in 3 min roasted samples, the relative contents of PUFAs were decreased to 98.08% and of SFAs were increased to 103.41% after 12 h of heating. Outcome from analyses showed that microwave roasting reduced the oxidative deteriorations of PSO during heating.
Lunar ash flow with heat transfer.
NASA Technical Reports Server (NTRS)
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Calorimetry of 25 Ah lithium/thionyl chloride cells
NASA Technical Reports Server (NTRS)
Johnson, C. J.; Dawson, S.
1991-01-01
Heat flow measurements of 25-Ah lithium thionyl chloride cells provided a method to calculate an effective thermal potential, E(TP) of 3.907 V. The calculation is useful to determine specific heat generation of this cell chemistry and design. The E(TP) value includes heat generation by electrochemical cell reactions, competitive chemical reactions, and resistance heating at the tabs, connectors, and leads. Heat flow was measured while applying electrical loads to the cell in an isothermal calorimeter set at 0, 20, and 60 C.
NASA Astrophysics Data System (ADS)
Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.
2016-07-01
The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.
Specific heat of normal and superfluid3He
NASA Astrophysics Data System (ADS)
Alvesalo, T. A.; Haavasoja, T.; Manninen, M. T.
1981-11-01
Extensive measurements of the heat capacity of liquid 3 He in the normal and superfluid phases are reported. The experiments range from 0.8 to 10 mK and cover pressures from 0 to 32.5 bar in zero magnetic field. The phase diagram of 3 He, based on the platinum NMR temperature scale, is presented. In the normal liquid at low pressures and near the superfluid transition T c an excess specific heat is found. The effective mass m* of3He is at all pressures about 30% smaller than the values reported earlier. The calculated Fermi liquid parameters F0 and F1 are reduced as m*/m, while the spin alignment factor (1 + Z0/4)-1 is enhanced from 3.1 3.8 to 4.3 5.3, depending on pressure. The specific heat discontinuity ΔC/C at T c is for P = 0 close to the BCS value 1.43, whereas at 32.5 bar ΔC/C is 1.90±0.03 in the B phase and 2.04±0.03 in the A phase, revealing distinctly the pressure dependence of strong coupling effects. The temperature dependence of the specific heat in the B phase agrees with a model calculation of Serene and Rainer. The latent heat L at the AB transition is 1.14±0.02 µJ/mole for P = 32.5 bar and decreases quickly as the polycritical point is approached; at 23.0 bar, L = 0.03 ± 0.02 µJ/mole.
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2018-05-01
We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.
Determination of a transient heat transfer property of acrylic using thermochromic liquid crystals
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1994-01-01
An experiment was performed to determine a transient heat transfer property of acrylic. The experiment took advantage of the known analytical solution for heat conduction in a homogeneous semi-infinite solid with a constant surface heat flux. Thermochromic liquid crystals were used to measure the temperature nonintrusively. The relevant property in this experiment was the transient thermal conduction coefficient h(sub t), which is the square root of the product of density p, specific heat c(sub p), and thermal conductivity k (i.e., square root of pc(sub p)k). A value of 595.6 W square root of s/sq m K was obtained for h(sub t), with a standard deviation of 5.1 W square root of s/sq m K. Although there is no generally accepted value for h(sub t), a commonly used one is 580 W square root of s/sq m K, which is almost 3 percent less than the h(sub t) value obtained in this experiment. Since these results were highly repeatable and since there is no definitive value for h(sub t), the new value is recommended for future use.
NASA Astrophysics Data System (ADS)
Lugo, J. M.; Oliva, A. I.
2017-02-01
The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.
Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.
Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu
2013-01-01
Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P < 0.05). No significant difference in food oil sensor value was detected between CO and PC throughout the heating periods. Microwave heating caused formation of comparatively lower amounts of some degradative products in PC compared to CO indicating a lower extent of oxidative degradation of PC.
Low-temperature specific heat of uranium germanides
NASA Astrophysics Data System (ADS)
Pikul, A.; Troć, R.; Czopnik, A.; Noël, H.
2014-06-01
We report measurements of the specific heat down to the lowest temperature of 2 K for the paramagnetic binaries U5Ge4 (Ti5Ga4-type) and UGe (ThIn-type) as well as for the ferromagnetic binaries U3Ge5-x (x=0.2) and UGe2-x (x=0.3) (with TC=94 and 47 K) having defect crystal structures of the AlB2- and ThSi2-type, respectively. The obtained data were compared to those of other uranium germanides which have been earlier studied: UGe2 (ZrGa2) and UGe3 (Cu3Au). Among all these germanides, only UGe exhibits enhanced electronic specific heat coefficient, γ(0), equal to 137 mJ/molUK2. This value can be compared to that derived for the most known spin fluctuator, UAl2 (143 mJ/molUK2). The other uranium germanides have less enhanced γ(0) values (27-65 mJ/molUK2). The lowest value of about 20 mJ/molUK2 was reported earlier for the typical temperature independent paramagnet UGe3. For the ferromagnetic new phase UGe2-x the inferred magnetic entropy, Sm, reaches at the Curie temperature, TC, a value of R ln 2 which corresponds to a doublet ground state of the uranium ion in this deficit digermanide.
Third law of thermodynamics in the presence of a heat flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho, J.
1995-01-01
Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations.
Thermal transport properties of polycrystalline Pb2FeMoO6
NASA Astrophysics Data System (ADS)
Yuan, Xueping; Xu, Mingxiang
2018-06-01
Thermoelectric properties and specific heat of polycrystalline Pb2FeMoO6 have been systematically studied. The thermal conductivity increases monotonically with increasing of temperature, and reaches the maximum value 1.50 W m‑1 K‑1 at 350 K. The relatively low thermal conductivity is mainly attributed to the strong scattering effect of phonons at Fe/Mo sites. The negative Seebeck coefficient indicates the n-type conduction of the sample. The absolute value of S increases up to 20 μV K‑1 at 350 K. Due to the inhomogeneity resulting from Fe/Mo ions disorder, no distinct λ-type specific heat peak or anomaly typical for second-order transitions are observed.
Heat, chloride, and specific conductance as ground water tracers near streams
Cox, M.H.; Su, G.W.; Constantz, J.
2007-01-01
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.
Salgar, Avinash Ramchandra; Singh, Shishir H; Podar, Rajesh S; Kulkarni, Gaurav P; Babel, Shashank N
2017-01-01
Pulp sensitivity testing, even with its limitations and shortcomings, has been and still remains a very helpful aid in endodontic diagnosis. Pulp sensitivity tests extrapolate pulpal health from the sensory response. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values (NPVs) of thermal and electrical tests of pulp sensitivity. Pulp tests studied were two cold and heat tests respectively and electrical test. A total of 330 teeth were tested: 198 teeth with vital pulp and 132 teeth with necrotic pulps (disease prevalence of 40%). The ideal standard was established by observing bleeding within the pulp chamber. Sensitivity values of the diagnostic tests were 0.89 and 0.94 for cold test, 0.84 and 0.87 for the heat tests, and 0.75 for electrical pulp test and the specificity values of the diagnostic tests were 0.91 and 0.93 for the cold tests, 0.86 and 0.84 for the heat tests, and 0.90 for electrical pulp test. The NPVs were 0.91 and 0.96 for the cold tests, 0.89 and 0.91 for the heat tests, and 0.84 for electrical pulp test. The positive predictive values were 0.89 and 0.90 for the cold tests, 0.80 and 0.79 for the heat tests and 0.88 for electrical pulp test. The highest accuracy (0.9393) was observed with cold test (icy spray). The cold test done with icy spray was the most accurate method for sensitivity testing.
Calorimetric measurements on Li4C60 and Na4C60
NASA Astrophysics Data System (ADS)
Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.; Gracia-Espino, Eduardo; Sundqvist, Bertil; Wâgberg, Thomas
2015-04-01
We show specific heat data for Na4C60 and Li4C60 in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C60. At high temperatures, a difference in specific heat between the intercalated and undoped C60 polymers of 100 J K-1 mol-1 is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li4C60 and Na4C60 are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li4C60 affect these motions to a somewhat higher degree than the single intermolecular bonds in Na4C60. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with TE = 386 K for Li4C60 and TE = 120 K for Na4C60, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li4C60 and 3.1 meV for Na4C60, probably associated with jumps between closely spaced energy levels inside "octahedral-type" ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
NASA Astrophysics Data System (ADS)
Wang, H. P.; Wei, B.
2009-02-01
The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.
Specific heat of FeSe: Two gaps with different anisotropy in superconducting state
NASA Astrophysics Data System (ADS)
Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.
2018-05-01
We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
NASA Astrophysics Data System (ADS)
Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N. R.; Jorge, G. A.; Pedrazzini, Pablo; Correa, V. F.; Cornaglia, Pablo S.; Vildosola, V.; García, D. J.
2016-06-01
We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn5 (M=Co, Rh) and for the non-magnetic YMIn5 and LaMIn5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn5 is an excellent approximation to the one of GdCoIn5 in the full temperature range, for GdRhIn5 we find a better agreement with LaCoIn5, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong-Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.
NASA Astrophysics Data System (ADS)
Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas
2016-12-01
Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.
NASA Astrophysics Data System (ADS)
Khan, Masood; Ahmad, Latif; Gulzar, M. Mudassar
2018-03-01
The impact of temperature dependent thermal conductivity and convective surface conditions on unsteady 3D Sisko nanofluid flow over a stretching surface is studied in the presence of heat generation/absorption and magnetic field. The numerical solution of nonlinear coupled equations has been carried out to explore the properties of different physical profiles of the fluid flow with varying of parameters. Specifically, the application of generalized Biot numbers and heat generation/absorption parameter in the sketching of temperature and concentration profiles are explored. The effect of all three parameters is noticed in the increasing order for shear thinning (0 < n < 1) and for shear thickening (n > 1) fluids. Moreover, the influence of Biot number γ1 on heat and mass transfer rates, are found in the enhancement and diminishing conducts respectively, in both cases of shear thinning as well as shear thickening fluids and a reverse trend is observed with the variation of Biot number γ2 . Additionally, the present results are validated through skin friction, heat and mass transfer rate values with the comparable values in the existing previous values.
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system
NASA Astrophysics Data System (ADS)
Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.
1995-12-01
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.
Heat capacity and transport measurements in sputtered niobium-zirconium multilayers
NASA Astrophysics Data System (ADS)
Broussard, P. R.; Mael, D.
1989-08-01
We have studied the electrical resistivity and heat capacity for multilayers of niobium and zirconium prepared by magnetron sputtering for values of the bilayer period Λ varying from 4 to 950 Å. We find a transition in the thermal part of the resistivity that correlates with the coherent-to-incoherent transition seen in earlier work. The heat capacity data for the normal state show anomalous behavior for both the electronic coefficient γ and the Debye temperature. We also study the variation in Tc and the jump in the specific heat.
Analysis of the cooling of continuous flow helium cryostats
NASA Astrophysics Data System (ADS)
Pust, L.
A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.
CHNO Energetic Polymer Specific Heat Prediction From The Proposed Nominal/Generic (N/G) CP Concept
2007-02-01
HMX can exist in different solid polymorphic forms. At a certain temperature, TT, one form may change to another form if the heat energy of...more than 100 °K for TNT, HNS and HMX and over 200 °K for TETRYL, PETN, and RDX ). So based on the above remarks and similar remarks in References...are very close to (or equal to) the RDX CP values and TNT CP values near absolute zero. In Reference 7, two examples (TNT and HMX ) were selected for
Refining of Military Jet Fuels from Shale Oil. Part II. Volume II. (In Situ Shale Oil Process Data).
1982-03-01
SPEC Meeting Specifications OXY Test Series on In Situ Shale Oil z P Pressure (P + N) Paraffins and Naphthenes PRO Test Series on Above Ground Shale Oil...LV 6/ 12.0 Naphthenes , LV% (Aromatics, LV %/ 11.8 Gross Heating Value, Btu/lb 19,720 19,068 -73- TABLE 111-29. CRUDE SHALE: OIL HYDROTREATING SERIES M...Wt % - Ramabottomn Carbon -1.34 IParaffins (P-IN), LV % (71.1) -IOlef ins, LV % 9.4 i ~ Naphthenes , LV% - Aromatics, LV % 19.5 - Gross Heating Value
NASA Astrophysics Data System (ADS)
Komarov, I. I.; Rostova, D. M.; Vegera, A. N.
2017-11-01
This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.
NASA Astrophysics Data System (ADS)
Mukherjee, Krishnendu; Hossain, S. Minhaz
2008-12-01
We analyze the lattice equation of motion involving terms up to third order in lattice displacement. The phenomenological arguments suggest that the force constant D1 of the quadratic term must always be positive and the force constant B1 of the cubic term may take either positive or negative value. The criterion for stability of the lattice provides constraint on the relative magnitudes of the three force constants. We solve the equation of motion using root mean-square spatial fluctuation approximation and obtain the seminonperturbative dispersion relation both for positive and negative B1 . The nature of phonon density of states curves for positive B1 show some close resemblance with the experimental observations. At very low temperature, the specific heat of this system to leading order in large positive B1 varies as square root of temperature and it obeys Debye’s T law in one dimension for small negative B1 . At very high temperature, the specific heat may fall below or above its classical value depending on the relative magnitudes of B1 and D1 for B1>0 and it always falls above its classical value for B1<0 . The lattice model with positive B1 emerges as a good candidate for description of a monoatomic crystal.
A regenerative elastocaloric heat pump
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini
2016-10-01
A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
The Effect of Cathode Composition on the Thermal Characteristics of Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari; Rao, Gopalakrishna M.
1999-01-01
The specific thermal capacity and heat dissipation rate for lithium ion cells containing LiNiO2 and mixed oxide (75%LiCoO2+ 25%LiNiO2) as cathode materials are compared. The experimental measurements were made using a radiative calorimeter consisting of a copper chamber maintained at -168 C by circulating liquid nitrogen and enclosed in a vacuum bell jar. The specific thermal capacity was determined based on warm-up and cool-down transients. The heat dissipation rate was calculated from the values measured for heat radiated and stored, and the resulting values were corrected for conductive heat dissipation through the leads. The specific heat was 1.117 J/ C-g for the LiNiO2 cell and 0.946 J/ C-g for the 75%LiCoO2,25%LiNiO2 cell. Endothermic cooling at the beginning of charge was very apparent for the cell containing 75%LiCoO2,25%LiNiO2 as the cathode. Exothermic heating began at a higher state of charge for the cell with the 75%LiCoO2,25%LiNiO2 cathode compared to the LiNiO2 cathode cell. During discharge, the rate of heat dissipation increased with increase in the discharge current for both types of cells. The maximum heat dissipated at C/5 discharge was 0.065 W and 0.04 W for the LiNiO2 and 75%LiCoO2,25%LiNiO2 cells, respectively, The thermoneutral potential showed variability toward the end of discharge. The plateau region of the curves was used to calculate average thermoneutral potentials of 3.698 V and 3.837 V for the LiNiO2 cell and the 75%LiCoO2,25%LiNiO2 cell, respectively.
Magnetic transition in Y-site doped multiferroic YMnO3
NASA Astrophysics Data System (ADS)
Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.
2016-05-01
We have synthesized polycrystalline hexagonal Y1-xSrxMnO3 (x=0.02, 0.1) compounds by using conventional solid state reaction method. The detailed structural investigations are carried out by using XRD studies which reveals the single phase formation of the reported compounds with hexagonal structure and space group P63cm (JCPDS: 25-1079). Further the XRD data of reported compounds were analyzed by RIETVELD (FULLPROFF) method which shows the decrease in the lattice parameter with increasing concentration of divalent strontium to Y-site. The observed pointed kinks in the specific heat study are indicative of the probable coupling in between the electric and magnetic orders in this class of materials. The reported systematic specific heat studies shows that the antiferromagnetic (AFM) transition temperature (TN) shifts to higher value with increasing concentration of Sr2+ ion in the YMnO3 compound which is attributed to the enhanced lattice contribution to the specific heat in the this compound. The present compound shows the independence of specific heat and magnetic transition temperature with applied magnetic field of 8T and 12T.
q-deformed Einstein's model to describe specific heat of solid
NASA Astrophysics Data System (ADS)
Guha, Atanu; Das, Prasanta Kumar
2018-04-01
Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M
2010-01-15
To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.
NASA Astrophysics Data System (ADS)
Gerasimov, A.; Kirpichnikov, A.; Sabirova, F.; Gainullin, R.
2017-11-01
On the basis of theoretical analysis of distributions of the conductivity, current density and specific power of heat release in the high-frequency induction discharge, a law of crowding of maxima of these values has been established.
Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo
2016-01-01
In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization. © PDA, Inc. 2016.
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Periodic Heat Transfer at Small Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Pfriem, H.
1943-01-01
The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.
Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak
NASA Astrophysics Data System (ADS)
Brown, Michael Lee
1990-01-01
Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat removal rates of up to 400 W/cm^2 were attained at the water cooled surface, and conditions of CHF were experimentally identified. Heat transfer in a hemispherical limiter is discussed.
Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction
NASA Technical Reports Server (NTRS)
Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.
2006-01-01
The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.
NASA Astrophysics Data System (ADS)
Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.
2017-01-01
The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.
NASA Astrophysics Data System (ADS)
Goldobin, Denis S.; Pimenova, Anastasiya V.
2017-04-01
We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
NASA Astrophysics Data System (ADS)
Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2017-07-01
The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.
NASA Astrophysics Data System (ADS)
Nugroho, Tito Dwi; Purwadi, P. K.
2017-01-01
The function of the fin is to extend surfaces so that objects fitted with fin can remove the heat to the surrounding environment so that the cooling process can take place more quickly. The purpose of this study is to calculate and determine the effect of (a) the convective heat transfer coefficient of fluid on the value of the fin on the efficiency and effectiveness of non-steady state, and (b) the fin material to the value of the fins on the efficiency and effectiveness of non-steady state. The studied fins are in the form of straight fins with rhombus sectional area which is a function of position x with the short diagonal length of D1 and D2 as long diagonal length, L as fin's length and α as fin's tilt angle. Research solved numerical computation, using a finite difference method on the explicit way. At first, the fin has the same initial temperature with essentially temperature Ti = Tb, then abruptly fin conditioned on fluid temperature environment T∞. Fin's material is assumed with uniform properties, does not change with changes in temperature, and fin does not change the shape and volume during the process. The temperature of the fluid around the fins and the value of the convective heat transfer coefficient are permanently constant, and there is no energy generation in the fin. Fin's heat transfer conduction only take place in one direction, namely in the direction perpendicular to the fin base (or x-direction). The entire surface of the fin makes the process of heat transfer to a fluid environment around the fins. The results show that (a) the greater the value of heat transfer coefficient of convection h, the smaller the efficiency fin and effectiveness fins (b) In circumstances of unsteady state, the efficiency and effectivity influenced by the value of density, specific heat, heat transfer coefficient of conduction and thermal diffusivity fin material.
Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture
NASA Astrophysics Data System (ADS)
Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori
This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.
NASA Astrophysics Data System (ADS)
Karwi, Abbas Ali Mahmmod
2018-04-01
Laser has many attractive specifications which made it adaptable for material processing. Laser has been taken as a modern heat treatment source to prevent the formation of non-protective oxide layer with intensity equals to (1.31×105 w/cm2), lasing time equals to (300 µs), wave length equals to (1.063 µm), and the spot radius equals to (125 µm). Lithium is depleted through the conventional heat treatment processes. The main factors affected on lithium depletion are temperature and time. Lithium kept as a solid solution at casting method. Micro hardness of the affected zone reaches to acceptable values for various ageing times and hardening depths. The main conventional heat treatment processes are; homogenization, solution heat treatment, and ageing. Alloys prepared with the specific amounts of lithium concentration (2-2.5%). Oxides with different shapes are formed. Temperature distribution, heating, and cooling rates used externally and internally to see the effect of pulse generation by laser on bulk body.
Alin, Jonas; Hakkarainen, Minna
2011-05-25
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor
NASA Astrophysics Data System (ADS)
Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.
2018-05-01
The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.
Specific heat determination of plant barrier lipophilic components: biological implications.
Casado, C G; Heredia, A
2001-04-02
The specific heat of isolated plant cuticles and their corresponding cuticular waxes have been measured for the physiological temperature in the range of 273-318 K at regular intervals. C(p) values ranged from 1.5 up to 4 J K(-1) g(-1) indicating a high cohesion, at the molecular level, of the molecular lipophilic components that constitute the plant cuticle. Second order phase transitions around 293 K, assigned to the cuticular matrix mainly constituted of the biopolyester cutin, have been detected and measured. Ecophysiological and physical implications of these thermodynamic data are discussed.
Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N
2015-12-01
In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.
Magnetic transition in Y-site doped multiferroic YMnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in
2016-05-06
We have synthesized polycrystalline hexagonal Y{sub 1-x}Sr{sub x}MnO{sub 3} (x=0.02, 0.1) compounds by using conventional solid state reaction method. The detailed structural investigations are carried out by using XRD studies which reveals the single phase formation of the reported compounds with hexagonal structure and space group P6{sub 3}cm (JCPDS: 25-1079). Further the XRD data of reported compounds were analyzed by RIETVELD (FULLPROFF) method which shows the decrease in the lattice parameter with increasing concentration of divalent strontium to Y-site. The observed pointed kinks in the specific heat study are indicative of the probable coupling in between the electric and magneticmore » orders in this class of materials. The reported systematic specific heat studies shows that the antiferromagnetic (AFM) transition temperature (T{sub N}) shifts to higher value with increasing concentration of Sr{sup 2+} ion in the YMnO{sub 3} compound which is attributed to the enhanced lattice contribution to the specific heat in the this compound. The present compound shows the independence of specific heat and magnetic transition temperature with applied magnetic field of 8T and 12T.« less
NASA Astrophysics Data System (ADS)
Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.
2018-01-01
A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.
Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
Jin, Ke; Mu, Sai; An, Ke; ...
2016-12-27
For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g -1·K -1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exceptionmore » that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less
The determination of the energy values and the composition analysis of M-16 rifle black powders
NASA Astrophysics Data System (ADS)
Satee, R.; Dararutana, P.; Phutdhawong, W.
2017-09-01
The determination of the energy values, specifically the heat of combustion of various M-16 black powders was the important part of the bullet efficiency investigations. The calorimetric bomb is commonly used for these determinations. Four M-16 black powders from the different sources were used as samples for this research. It was found that, after using calorimetric bomb technique, the gross heating value in Joules/g of sample S1-S4 were 10,647, 10,416, 5,281 and 3,878 respectively. The chemical compositions of carbon (C), hydrogen (H), nitrogen (N) and sulfer (S) have also been determined. The results indicated that carbon and nitrogen compositions of sample S1 shown the highest values and provided little differences with sample S2 while sample S3 and S4 shown the lowest carbon and nitrogen percentage composition. The hydrogen composition of all samples was equally valued, however, only sample 3 and 4 displayed sulfur values while no sulfur values were detected from sample 1 and 2. From these results, the heat values and chemical composition of M-16 black powders were characterized their sources and the energy values might be estimated from the amount of carbon and nitrogen in the black powders. Thus, it would be possible to use this determination analysis in the forensic investigation.
Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.
Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo
2013-10-01
Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing thermotherapy is expected. 2013. Published by Elsevier Inc
Heat Capacity Anomaly Near the Lower Critical Consolute Point of Triethylamine-Water
NASA Technical Reports Server (NTRS)
Flewelling, Anne C.; DeFonseka, Rohan J.; Khaleeli, Nikfar; Partee, J.; Jacobs, D. T.
1996-01-01
The heat capacity of the binary liquid mixture triethylamine-water has been measured near its lower critical consolute point using a scanning, adiabatic calorimeter. Two data runs are analyzed to provide heat capacity and enthalpy data that are fitted by equations with background terms and a critical term that includes correction to scaling. The critical exponent a was determined to be 0.107 +/- 0.006, consistent with theoretical predictions. When alpha was fixed at 0.11 to determine various amplitudes consistently, our values of A(+) and A(-) agreed with a previous heat capacity measurement, but the value of A(-) was inconsistent with values determined by density or refractive index measurements. While our value for the amplitude ratio A(+)/ A(-) = 0.56 +/- 0.02 was consistent with other recent experimental determinations in binary liquid mixtures, it was slightly larger than either theoretical predictions or recent experimental values in liquid-vapor systems. The correction to scaling amplitude ratio D(+)/D(-) = 0.5 +/- 0.1 was half of that predicted. As a result of several more precise theoretical calculations and experimental determinations, the two-scale-factor universality ratio X, which we found to be 0.019 +/- 0.003, now is consistent among experiments and theories. A new 'universal' amplitude ratio R(sup +/-)(sub Bcr) involving the amplitudes for the specific heat was tested. Our determination of R(sup +/-)(sub Bcr) = -0.5 +/- 0.1 and R(sup -)(sub Bcr) = 1.1 +/- 0.1 is smaller in magnitude than predicted and is the first such determination in a binary fluid mixture.
Michael, M; Phebus, R K; Thippareddi, H; Subbiah, J; Birla, S L; Schmidt, K A
2014-12-01
Cronobacter sakazakii and Salmonella species have been associated with human illnesses from consumption of contaminated nonfat dry milk (NDM), a key ingredient in powdered infant formula and many other foods. Cronobacter sakazakii and Salmonella spp. can survive the spray-drying process if milk is contaminated after pasteurization, and the dried product can be contaminated from environmental sources. Compared with conventional heating, radio-frequency dielectric heating (RFDH) is a faster and more uniform process for heating low-moisture foods. The objective of this study was to design an RFDH process to achieve target destruction (log reductions) of C. sakazakii and Salmonella spp. The thermal destruction (decimal reduction time; D-value) of C. sakazakii and Salmonella spp. in NDM (high-heat, HH; and low-heat, LH) was determined at 75, 80, 85, or 90 °C using a thermal-death-time (TDT) disk method, and the z-values (the temperature increase required to obtain a decimal reduction of the D-value) were calculated. Time and temperature requirements to achieve specific destruction of the pathogens were calculated from the thermal destruction parameters, and the efficacy of the RFDH process was validated by heating NDM using RFDH to achieve the target temperatures and holding the product in a convection oven for the required period. Linear regression was used to determine the D-values and z-values. The D-values of C. sakazakii in HH- and LH-NDM were 24.86 and 23.0 min at 75 °C, 13.75 and 7.52 min at 80 °C, 8.0 and 6.03 min at 85 °C, and 5.57 and 5.37 min at 90 °C, respectively. The D-values of Salmonella spp. in HH- and LH-NDM were 23.02 and 24.94 min at 75 °C, 10.45 and 12.54 min at 80 °C, 8.63 and 8.68 min at 85 °C, and 5.82 and 4.55 min at 90 °C, respectively. The predicted and observed destruction of C. sakazakii and Salmonella spp. were in agreement, indicating that the behavior of the organisms was similar regardless of the heating system (conventional vs. RFDH). Radio-frequency dielectric heating can be used as a faster and more uniform heating method for NDM to achieve target temperatures for a postprocess lethality treatment of NDM before packaging. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Transport and thermodynamic properties of hydrous melts in the system An-Di.
NASA Astrophysics Data System (ADS)
Giordano, D.; Potuzak, M.; Romano, C.; Russell, J. K.; Nowak, M.; Dingwell, D. B.
2006-12-01
The thermodynamic and transport properties hydrous silicate melts are of fundamental importance for characterization of the dynamics and energetics associated with silicate melts in the Earth. The literature concerning the transport and calorimetric properties of hydrous silicate melts remains scarce. With few exceptions little has been effectively done in order to provide chemical models that bridge the gap between the description of both complex and simple systems. The An-Di system is of general interest to geochemists as well as petrologists because it serves as a simple analogue for basaltic compositions. It was chosen here due to the combination of its simple chemical description and the presence of an extensive database of published experimental data on both its transport and thermodynamic properties. We have measured the viscosity (η)), the glass transition temperatures (Tg) and the heat capacity (Cp) of silicate melts in the An-Di system containing up to 3 wt.% of dissolved H2O. Viscosity data were obtained by using the dilatometric method of micropenetration, whereas a differential scanning calorimeter (DSC) was employed to determine the glass transition temperatures and the heat capacities. In order to characterize the well-known cooling/heating rate dependence of the glass transition temperatures the calorimetric measurements were performed at heating/cooling rate of 5, 10, 15 and 20 K/min. These results together with those of previous experimental studies have been used to provide a compositional model capable of calculating the Newtonian viscosity of melts as well as the Tg and Cp values for the An- Di+H2O system. The non-Arrhenian T-dependence of viscosity is accounted for by the Vogel-Fulcher- Tammann (VFT) and the Adam Gibbs (AG) equations. Our optimizations assume a common, high-T limit (A) for silicate melt viscosity, consistent with values provided by both theoretical and experimental studies. In particular, we also show that glass transition temperatures taken at each single heating/cooling rate are associated to single viscosity values. The equivalence of the activation energy associated to viscous and enthalpic relaxation process at specific temperatures also allow us to calibrate a tool to predict the viscosity of silicate melts by using specific heat curves. The effect of water on the heat capacity of the glass (Cpglass), from dry to nearly 3 wt% H2O, ranges from almost absent up to 20% of the measured Cp,glass values.
Thermo physical Properties of Multiferroic Rare Earth Manganite GdMnO3
NASA Astrophysics Data System (ADS)
Choithrani, Renu; Gaur, N. K.
2008-04-01
We have investigated the thermophysical properties of multiferroic rare earth manganite GdMnO3 in the temperature range 15 K⩽T⩽300 K. We have applied interatomic potential to study the Specific heat (C) as a function of temperature. The calculated Specific heat values are closer to the available experimental data. At room temperature, the orthorhombic GdMnO3 phase is indicative of a strong Jahn-Teller distortion. In addition, we have reported the cohesive energy (φ), molecular force constant (f), compressibility (β), Restrahalen frequency (ν0), Debye temperature (ΘD) and Groneisen parameter (γ) at temperature 15 K⩽T⩽300 K.
Santos, M V; Zaritzky, N; Califano, A
2008-07-01
The presence of Escherichia coli is linked with sanitary deficiencies and undercooking of meat products. Recent studies have detected E. coli O157:H7 in black blood sausages. Minimum time-temperature specifications to kill the bacteria were obtained by numerical simulations of the microscopic heat conduction equation using the finite element method, and calculating the temperature profile of the sausage and the population of E. coli at the coldest point during heating. The model was validated by heating sausages in a water-bath. The effects of heat transfer coefficients and water temperatures on the required time to achieve an inactivation value (IV) of 12(log) are reported. Macroscopic heat balances were simultaneously solved to consider the temperature drop in the water batch as a function of the ratio between the mass of thermally treated sausage and the heat capacity of the system.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the results are compared using a lumped system thermal model. The various uncertainties involved in SAR estimation are categorized as material uncertainties, thermodynamic uncertainties and parametric uncertainties. The adiabatic reconstruction is found to decrease the uncertainties in SAR measurement by approximately three times. Additionally, a set of experimental guidelines for accurate SAR estimation using adiabatic reconstruction protocol is also recommended. These results warrant a universal experimental and data analysis protocol for SAR measurements during field induced heating of magnetic fluids under non-adiabatic conditions.
Calorimetric measurements on Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.
2015-04-28
We show specific heat data for Na{sub 4}C{sub 60} and Li{sub 4}C{sub 60} in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C{sub 60}. At high temperatures, a difference in specific heat between the intercalated and undoped C{sub 60} polymers of 100 J K{sup −1} mol{sup −1} is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heatmore » data for Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60} are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li{sub 4}C{sub 60} affect these motions to a somewhat higher degree than the single intermolecular bonds in Na{sub 4}C{sub 60}. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with T{sub E} = 386 K for Li{sub 4}C{sub 60} and T{sub E} = 120 K for Na{sub 4}C{sub 60}, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li{sub 4}C{sub 60} and 3.1 meV for Na{sub 4}C{sub 60}, probably associated with jumps between closely spaced energy levels inside “octahedral-type” ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.« less
Nutrient retention values and cooking yield factors for three South African lamb and mutton cuts.
van Heerden, Salomina M; Strydom, Phillip E
2017-11-01
Nutrient content of raw and cooked foods is important for formulation of healthy diets. The retention of nutrients during cooking can be influenced by various factors, including animal age, carcass characteristics and cooking method, and these factors are often unique to specific countries. Here the effects of animal age (lamb and mutton) and carcass cut (shoulder, loin and leg) combined with cooking method (moist heat and dry heat) on yield and nutrient retention of selected nutrients of South African sheep carcasses were studied. Cooking yields and moisture retention were lower for lamb loin but higher for lamb leg. Energy and fat retention were higher for all cuts of mutton compared with lamb, while higher retention values for cholesterol were recorded for lamb. Mutton retained more iron (P = 0.10) and zinc and also more vitamin B 2 , B 6 and B 12 than lamb. Shoulder cooked according to moist heat cooking method retained more magnesium, potassium and sodium. Incorporating these retention and yield values into the South African Medical Research Council's Food Composition Tables provides a reliable reference to all concerned with nutrient content of food. It will also guide practitioners and primary industry to adjust animal production aimed at optimum nutrient content to specific diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-07-06
The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less
General Population Knowledge about Extreme Heat: A Cross-Sectional Survey in Lisbon and Madrid.
Gil Cuesta, Julita; van Loenhout, Joris Adriaan Frank; Colaço, Maria da Conceição; Guha-Sapir, Debarati
2017-01-28
Extreme heat is associated with an increased mortality and morbidity. National heat plans have been implemented to minimize the effect of extreme heat. The population's awareness and knowledge of national heat plans and extreme heat is essential to improve the community's behavior and adaptation. A general population survey was conducted in Lisbon and in Madrid to assess this knowledge. We used a questionnaire to interview passers-by. Results were compared between Lisbon and Madrid and between locals and foreigners, using Pearson Chi-square tests and Fisher's exact test. We conducted 260 interviews in six locations of different socio-economic backgrounds in each city. The most frequently mentioned extreme heat-related risk groups were the elderly (79.2%), children (49.6%) and babies (21.5%). The most frequently reported protective measures were increased fluid intake (73.1%) and avoiding exposure to the sun (50.8%). Knowledge about the heat plan was higher in Lisbon (37.2%) than in Madrid (25.2%) ( p -value = 0.03). Foreigners had less knowledge of risk groups compared to locals. Heat plans were not widely known in Madrid and Lisbon. Nonetheless, knowledge of practical concepts to face extreme heat, such as certain risk groups and protective measures, was found. Our results were similar to comparable surveys where specific respondents' groups were identified as less knowledgeable. This highlighted the importance of addressing these groups when communicating public health messages on heat. Foreigners should be specifically targeted to increase their awareness.
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Nair, Harikrishnan S.; Christian, Reinke; Thamizhavel, A.; Strydom, André M.
2016-11-01
Single crystals of Frank-Kasper compounds RTM2Al20 (R = Eu, Gd and La; TM = V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group Fd\\bar{3}m . The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds’ full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value 0.95R\\ln 8 while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. ≤ft({{C}\\text{P}}-γ T\\right)/{{T}3} versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and ρ (T) due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in the paramagnetic region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D; Bottner, Harold
2013-01-01
For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA)more » group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.« less
Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2
NASA Astrophysics Data System (ADS)
Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud
2018-06-01
We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.
Improved Heat-Stress Algorithm
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Fehn, Steven
2007-01-01
NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.
Performance characterization and transient investigation of multipropellant resistojets
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.
1989-01-01
The multipropellant resistojet thruster design initially was characterized for performance in a vacuum tank using argon, carbon dioxide, nitrogen, and hydrogen, with gas inlet pressures ranging from 13.7 to 310 kPa (2 to 45 psia) over a heat exchanger temperature range of ambient to 1200 C (2200 F). Specific impulse, the measure of performance, had values ranging from 120 to 600 seconds for argon and hydrogen respectively, with a constant heat exchanger temperature of 1200 C (2200 F). When operated under ambient conditions typical specific impulse values obtained for argon and hydrogen ranged from 55 to 290 seconds, respectively. Performance measured with several mixtures of argon and nitrogen showed no significant deviation from predictions obtained by directly weighting the argon and nitrogen individual performance results. Another aspect of the program investigating transient behavior, showed responses depended heavily on the start-up scenario used. Steady state heater temperatures were achieved in 20 to 75 minutes for argon, and in 10 to 90 minutes for hydrogen. Steady state specific impulses were achieved in 25 to 60, and 20 to 60 minutes respectively.
Urquhart, Alexander; Bauer, Stephen
2015-05-19
The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivitymore » decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.« less
Enhanced heat transport during phase separation of liquid binary mixtures
NASA Astrophysics Data System (ADS)
Molin, Dafne; Mauri, Roberto
2007-07-01
We show that heat transfer in regular binary fluids is enhanced by induced convection during phase separation. The motion of binary mixtures is simulated using the diffuse interface model, where convection and diffusion are coupled via a nonequilibrium, reversible Korteweg body force. Assuming that the mixture is regular, i.e., its components are van der Waals fluids, we show that the two parameters that describe the mixture, namely the Margules constant and the interfacial thickness, depend on temperature as T-1 and T-1/2, respectively. Two quantities are used to measure heat transfer, namely the heat flux at the walls and the characteristic cooling time. Comparing these quantities with those of very viscous mixtures, where diffusion prevails over convection, we saw that the ratio between heat fluxes, which defines the Nusselt number, NNu, equals that between cooling times and remains almost constant in time. The Nusselt number depends on the following: the Peclet number, NPe, expressing the ratio between convective and diffusive mass fluxes; the Lewis number, NLe, expressing the ratio between thermal and mass diffusivities; the specific heat of the mixture, as it determines how the heat generated by mixing can be stored within the system; and the quenching depth, defined as the distance of the temperature at the wall from its critical value. In particular, the following results were obtained: (a) The Nusselt number grows monotonically with the Peclet number until it reaches an asymptotic value at NNu≈2 when NPe≈106; (b) the Nusselt number increases with NLe when NLe<1, remains constant at 1
Roberts, Michael F; Lightfoot, Edwin N; Porter, Warren P
2011-01-01
Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.
New Techniques for Thermo-electrochemical Analysis of Lithium-ion Batteries for Space Applications
NASA Technical Reports Server (NTRS)
Walker, William; Ardebili, H.
2013-01-01
The overall goal of this study was achieved: Replicated the numerical assessment performed by Chen et. al. (2005). Displayed the ability of Thermal Desktop to be coupled with thermo-electrochemical analysis techniques. such that the local heat generated on the cells is a function of the model itself using logic blocks and arrays. Differences in the TD temperature vs. depth of discharge profiles and Chen's was most likely due to differences in two primary areas: Contact regions and conductance values. Differences in density and specific heat values. center dot The model results are highly dependent on the accuracy of the material properties with respect to the multiple layers of an individual cell.
Xu, Zhi; Liu, Song; Lu, Xinyao; Rao, Shengqi; Kang, Zhen; Li, Jianghua; Wang, Miao; Chen, Jian
2014-07-01
Bacterial lipoxygenase (EC 1.13.11.12, LOX) is an important enzyme used as a brightener and strengthening agent during breadmaking. In this study, thermal inactivation of a recombinant LOX of Pseudomonas aeruginosa BBE was characterized by kinetic and thermodynamic analysis in the absence and presence of additives. As the heating temperature increased from 25 to 55 °C, the thermal inactivation rate (k) values for LOX without the additives ranged from 0.0407 to 0.2627 min(-1), while the half-life (t1/2) values were between 17.08 and 3.25 min. The activation energy (ΔE) values were increased with rise in heating temperatures from 13.26 to 108.9 kJ mol(-1) . Separate tests at 45 °C in the presence of additives (polyols, sugars and ions) at specific concentrations showed that xylitol (1 mol L(-1)) was the most effective stabilizer for recombinant LOX and increased the t1/2 value by 297%. Recombinant LOX was sensitive to heat treatment, and addition of polyols, sugars and ions could enhance its thermal stability. Our findings may provide useful information for stabilizing emerging bacterial LOXs. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Xi, T. Y.; Ding, J. H.; Lv, X. W.; Lei, Y. S.
2018-06-01
In order to create a comfortable building thermal environment, it is important to study the outdoor ground materials performance. In this article, we carried out a constant field experiment in Guangzhou, China, studying on the variations of the surface temperature of three common outdoor building materials: concrete, pavement and grass. We put the equipment on six experiment points respectively to measure the ground surface temperature constantly. The result shows that because of the specific heat capacity, both concrete and pavement have an obvious time delay during their temperature decrease when the grass ground has almost no time delay. And when in the same conditions (exposed to sunlight all day), the material with a low specific heat capacity has a more sensitive variation in temperature. The lower the specific capacity is, the steeper the variation trend of the surface temperature will be. So compared with concrete, the pavement brick ground with a low specific heat capacity has a higher surface temperature in daytime and a lower temperature in the late night time. When in different conditions (different time exposed to sunlight), the temperature value is proportional to the time exposed to the sunlight between the same materials. The concrete exposed to sunlight all day has the highest temperature when the shaded one has the lowest. This experiment reveals that both specific heat capacity and the exposed time to sunlight has a strong influence on the surface temperature of outdoor materials. In subtropical region, the materials with a higher specific heat capacity and a less time exposed to sunlight may be more beneficial to the building thermal environment.
Fluid thermodynamics control thermal weakening during earthquake rupture.
NASA Astrophysics Data System (ADS)
Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.
2017-12-01
Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault strengths. Further extrapolation of this simplified model to mid- and low- crustal depths shows that, large cpw rise during phase transitions makes TP the dominant weakening mechanism up to 5 km depth. Increasing depth allows somewhat larger shear stress and reduced cpw rise, and so substantial shear heating at low slip rates, favouring FH for fault weakening.
Santana, M L; Pereira, R J; Bignardi, A B; Filho, A E Vercesi; Menéndez-Buxadera, A; El Faro, L
2015-12-01
In an attempt to determine the possible detrimental effects of continuous selection for milk yield on the genetic tolerance of Zebu cattle to heat stress, genetic parameters and trends of the response to heat stress for 86,950 test-day (TD) milk yield records from 14,670 first lactations of purebred dairy Gir cows were estimated. A random regression model with regression on days in milk (DIM) and temperature-humidity index (THI) values was applied to the data. The most detrimental effect of THI on milk yield was observed in the stage of lactation with higher milk production, DIM 61 to 120 (-0.099kg/d per THI). Although modest variations were observed for the THI scale, a reduction in additive genetic variance as well as in permanent environmental and residual variance was observed with increasing THI values. The heritability estimates showed a slight increase with increasing THI values for any DIM. The correlations between additive genetic effects across the THI scale showed that, for most of the THI values, genotype by environment interactions due to heat stress were less important for the ranking of bulls. However, for extreme THI values, this type of genotype by environment interaction may lead to an important error in selection. As a result of the selection for milk yield practiced in the dairy Gir population for 3 decades, the genetic trend of cumulative milk yield was significantly positive for production in both high (51.81kg/yr) and low THI values (78.48kg/yr). However, the difference between the breeding values of animals at high and low THI may be considered alarming (355kg in 2011). The genetic trends observed for the regression coefficients related to general production level (intercept of the reaction norm) and specific ability to respond to heat stress (slope of the reaction norm) indicate that the dairy Gir population is heading toward a higher production level at the expense of lower tolerance to heat stress. These trends reflect the genetic antagonism between production and tolerance to heat stress demonstrated by the negative genetic correlation between these components (-0.23). Monitoring trends of the genetic component of heat stress would be a reasonable measure to avoid deterioration in one of the main traits of Zebu cattle (i.e., high tolerance to heat stress). On the basis of current genetic trends, the need for future genetic evaluation of dairy Zebu animals for tolerance to heat stress cannot be ruled out. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chum, H.L.; Evans, R.J.
1992-08-04
A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.
Chum, Helena L.; Evans, Robert J.
1992-01-01
A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.
Thermal Inactivation of Foot-and-Mouth Disease Viruses in Suspension▿
Kamolsiripichaiporn, Somjai; Subharat, Supatsak; Udon, Romphruke; Thongtha, Panithan; Nuanualsuwan, Suphachai
2007-01-01
The heat resistance of foot-and-mouth disease virus (FMDV) strains isolated from outbreaks in Thailand was investigated in phosphate-buffered saline (PBS) at 50, 60, 70, 80, 90, and 100°C. The first-order kinetic model fitted most of the observed linear inactivation curves. The ranges of decimal-reduction time (D value) of FMDV strains at 50, 60, 70, 80, 90, and 100°C were 732 to 1,275 s, 16.37 to 42.00 s, 6.06 to 10.87 s, 2.84 to 5.99 s, 1.65 to 3.18 s, and 1.90 to 2.94 s, respectively. The heat resistances of FMDV strains at lower temperature (50°C) were not serotype specific. The effective inactivating temperature is approximately 60°C. Heat resistances of FMDV strains at 90 and 100°C were not statistically different (P > 0.05), while the FMDV serotype O (OPN) appeared to be the most heat resistant at 60 to 80°C. The other observed inactivation curves were linear with shoulder or tailing (biphasic curves). The shoulder effect was mostly observed at 90 and 100°C, while the tailing effect was mostly observed at 50 to 80°C. The adjusted D values in the case of shoulder and tailing effects did not affect the overall estimated heat resistance of these FMDV strains, so even unadjusted D values of deviant inactivation curves were legitimate. The z values of FMDV serotypes O, A, and Asia 1 were 21.78 to 23.26, 20.75 to 22.79, and 19.87°C, respectively. The z values of FMDV strains studied were not statistically significantly different (P > 0.05). The results of this study indicated that the heat resistance in PBS of FMDV strains from Thailand was much less than had been reported for foreign epidemic FMDV strains. PMID:17660312
Thermal properties of an erythritol derivative
NASA Astrophysics Data System (ADS)
Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich
2016-06-01
Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.
Exploring the influence of texture and composition on the thermal transport properties of mudstones
NASA Astrophysics Data System (ADS)
Kenderes, S. M.; Hofmeister, A. M.; Merriman, J. D.; Whittington, A. G.
2017-12-01
The thermal history of sedimentary basins depends strongly on the thermal transport properties of the rocks within the basin. Mudstones are compositionally diverse, varying both chemically and with modal mineralogy, which are known to affect the thermal transport properties of earth materials. To explore the influence of composition and texture on the thermal transport properties of mudstones, we have measured the thermal diffusivity (D) and isobaric heat capacity (CP) of 12 mudstones using the contact-free laser flash analysis (LFA) and differential scanning calorimetry (DSC). At 20°C, D values of the shales range from 0.318 to 1.214 mm2·s-1 and CP values range from 799 to 918 J·kg-1·°C-1 and at 300°C, D values range from 0.227 to 0.582 mm2·s-1 and CP values range from 1095 to 1344 J·kg-1·°C-1. The mudstones with the highest D values, and lowest CP values are green micaceous or calcareous siltstones respectively, whereas the mudstones with the lowest D values, and highest CP values are black, claystones with 9% organic carbon. This suggests that organic carbon content and, to a lesser extent, the grainsize influence the thermal transport properties of these rocks. The lower D values and higher CP values cause organic rich claystones to absorb and transmit heat differently than other types of mudstones. This is especially true at lower temperatures, where the difference in D values is much greater than at higher temperatures. Additionally, when compared to other sedimentary rocks, shales generally have lower D values and higher CP values. These results also highlight the necessity of using rock type specific values in heat transport numerical models.
Tunneling of heat: Beyond linear response regime
NASA Astrophysics Data System (ADS)
Walczak, Kamil; Saroka, David
2018-02-01
We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.
Thermal Property Parameter Estimation of TPS Materials
NASA Technical Reports Server (NTRS)
Maddren, Jesse
1998-01-01
Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
NASA Technical Reports Server (NTRS)
Shoji, J. M.; Larson, V. R.
1976-01-01
The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.
Castillo, Eduardo; Pérez, María Dolores; Franco, Indira; Calvo, Miguel; Sánchez, Lourdes
2012-06-01
Heat denaturation of recombinant human lactoferrin (rhLf) from rice with 3 different iron-saturation degrees, holo rhLf (iron-saturated), AsIs rhLf (60% iron saturation), and apo rhLf (iron-depleted), was studied. The 3 forms of rhLf were subjected to heat treatment, and the kinetic and thermodynamic parameters of the denaturation process were determined. Thermal denaturation of rhLf was assessed by measuring the loss of reactivity against specific antibodies. D(t) values (time to reduce 90% of immunoreactivity) decreased with increasing temperature of treatment for apo and holo rhLf, those values being higher for the iron-saturated form, which indicates that iron confers thermal stability to rhLf. However, AsIs rhLf showed a different behaviour with an increase in resistance to heat between 79 °C and 84 °C, so that the kinetic parameters could not be calculated. The heat denaturation process for apo and holo rhLf was best described assuming a reaction order of 1.5. The activation energy of the denaturation process was 648.20 kJ/mol for holo rhLf and 406.94 kJ/mol for apo rhLf, confirming that iron-depleted rhLf is more sensitive to heat treatment than iron-saturated rhLf.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Colladay, R. S.
1978-01-01
A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.
Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.; Thomas, I.
1977-01-01
An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.
Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Huff, Vearl N
1953-01-01
Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.
Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Huff, Vearl N
1953-01-01
Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.
Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto
2012-08-01
Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample. Copyright © 2012 Elsevier Ltd. All rights reserved.
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities.
Yurchenko, Stanislav O; Komarov, Kirill A; Kryuchkov, Nikita P; Zaytsev, Kirill I; Brazhkin, Vadim V
2018-04-07
The heat capacity of classical crystals is determined by the Dulong-Petit value C V ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value C V ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.
NASA Astrophysics Data System (ADS)
Heredia, Cristian Alonso
The National Academy of Engineers named affordable solar energy as one of the grand challenges for the twenty-first century. Even in sunniest U.S. locations, without subsidies, home generation is still cost prohibitive. To address the cost of solar energy, we investigated intrinsic silicon as a low emissivity selective absorber. We wanted to determine the emissivity of intrinsic silicon at elevated temperatures. At elevated temperatures, a selective absorber coupled to a heat engine could efficiently generate electrical power. Photothermal efficiency depends on the absorber's emissivity. I analyzed total hemispherical emissivity for graphite and intrinsic silicon using a thermal decay method inside a thermal isolation chamber. The results show low emissivity values for intrinsic silicon. Consequently, for temperatures less than 300 °C, intrinsic silicon has a small emissivity (0.16). This small value is in agreement with doped silicon experiments. However, unlike doped silicon, at elevated temperatures of 600 °C, intrinsic silicon emissivity values remain low (0.33). Our analysis suggests intrinsic silicon could convert more solar power into heat than an ideal blackbody. Specifically, the harvested heat could drive a heat engine for efficient power generation. Thus, a cost-effective electrical generating system can operate with a small land footprint using earth abundant silicon.
Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities
NASA Astrophysics Data System (ADS)
Yurchenko, Stanislav O.; Komarov, Kirill A.; Kryuchkov, Nikita P.; Zaytsev, Kirill I.; Brazhkin, Vadim V.
2018-04-01
The heat capacity of classical crystals is determined by the Dulong-Petit value CV ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value CV ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.
Study of polytropic exponent based on high pressure switching expansion reduction
NASA Astrophysics Data System (ADS)
Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng
2011-10-01
Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).
Heat transfer and pressure measurements for the SSME fuel turbine
NASA Technical Reports Server (NTRS)
Dunn, Michael G.; Kim, Jungho
1991-01-01
A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.
van Noort, Paul C M
2009-06-01
Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Smith, Timothy D.; Pavli, Albert J.
1999-01-01
Experimental data were obtained on an optimally contoured nozzle with an area ratio of 1025:1 and on a truncated version of this nozzle with an area ratio of 440:1. The nozzles were tested with gaseous hydrogen and liquid oxygen propellants at combustion chamber pressures of 1800 to 2400 psia and mixture ratios of 3.89 to 6.15. This report compares the experimental performance, heat transfer, and boundary layer total pressure measurements with theoretical predictions of the current Joint Army, Navy, NASA, Air Force (JANNAF) developed methodology. This methodology makes use of the Two-Dimensional Kinetics (TDK) nozzle performance code. Comparisons of the TDK-predicted performance to experimentally attained thrust performance indicated that both the vacuum thrust coefficient and the vacuum specific impulse values were approximately 2.0-percent higher than the turbulent prediction for the 1025:1 configurations, and approximately 0.25-percent higher than the turbulent prediction for the 440:1 configuration. Nozzle wall temperatures were measured on the outside of a thin-walled heat sink nozzle during the test fittings. Nozzle heat fluxes were calculated front the time histories of these temperatures and compared with predictions made with the TDK code. The heat flux values were overpredicted for all cases. The results range from nearly 100 percent at an area ratio of 50 to only approximately 3 percent at an area ratio of 975. Values of the integral of the heat flux as a function of nozzle surface area were also calculated. Comparisons of the experiment with analyses of the heat flux and the heat rate per axial length also show that the experimental values were lower than the predicted value. Three boundary layer rakes mounted on the nozzle exit were used for boundary layer measurements. This arrangement allowed total pressure measurements to be obtained at 14 different distances from the nozzle wall. A comparison of boundary layer total pressure profiles and analytical predictions show good agreement for the first 0.5 in. from the nozzle wall; but the further into the core flow that measurements were taken, the more that TDK overpredicted the boundary layer thickness.
NASA Astrophysics Data System (ADS)
Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George
2012-03-01
Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.
Heat transfer and hydrodynamic analysis in an industrial circulating fluidized bed boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maggio, T.; Piedfer, O.; Jestin, L.
In order to scale-up Circulating Fluidized Bed boilers (up to 600 MWe), Electricite de France has initiated a Research and Development program including: laboratory work on mock-up, numerical modeling and on-site tests in the 125 MWe CFB Emile Huchet plant. This paper is devoted to on-site measurements analysis in two main components of this industrial unit: the external fluidized bed heat exchangers and the backpass. This study particularly concerns hydrodynamics and heat transfer with the final target of developing a physical model of a CFB unit. The first part of this paper describes the specific instrumentation set up on externalmore » fluidized bed heat exchangers. The comparison between experimental data collected on these heat exchangers and the theoretical heat transfer models mainly used, shows a great difference about the value of the overall heat transfer coefficient. To explain this discrepancy, the particle flow pattern initially used in the thermal balance calculation is modified and a solid bypass is introduced. The analysis of the by-pass behavior, connected to the geometrical and operating parameters of each exchanger, confirms the particle flow pattern suggested. The second part of this paper shows an analysis of the specific measurements set up on the backpass to study heat transfer. The physical model of heat transfer used to assess the importance of each convection, radiation and conduction components is presented. This model allows one to assess the influence of heat exchangers design on heat transfer. Moreover, the analysis of heat transfer variations during sweeping cycles gives the amount of dust that is removed from the heat exchanger tubes. These results are used to evaluate the amount of power that can be recovered by optimizing both design and sweeping of the backpass.« less
Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel
NASA Astrophysics Data System (ADS)
Moghadam, Ali Jabari
2015-10-01
A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.
Variation of thermophysical parameters of PCM CaCl2.6H2O with dopant from T-history data analysis
NASA Astrophysics Data System (ADS)
Sutjahja, I. M.; Silalahi, Alfriska O.; Sukmawati, Nissa; Kurnia, D.; Wonorahardjo, S.
2018-03-01
T-history is a powerful method for deriving the thermophysical parameters of a phase change material (PCM), which consists of solid and liquid specific heats as well as latent heat enthalpy. The performance of a PCM for thermal energy storage could be altered by chemical dopants added directly to the PCM in order to form a stable suspension. We described in this paper the role of chemical dopants in the variation of thermophysical parameters for CaCl2 · 6H2O inorganic PCM with 1 wt% and 2 wt% dopant concentration and BaSO4 (1 wt%) as a nucleator using the T-history method. The dopant consists graphite and CuO nanoparticles. The data analysis follows the original method proposed by (Zhang et al 1999 Meas. Sci. Technol. 10 201–205) and its modification by (Hong et al 2004 Int. J. Refrig. 27 360–366). In addition, the enthalpy-temperature curve is obtained by adopting a method proposed by (Marín et al 2003 Meas. Sci. Technol. 14 184–189). We found that the solid specific heat tends to increase non-linearly with increased dopant concentration for all dopants. The increased liquid specific heat, however, indicates the optimum value for 1 wt% graphite dopant. In contrast, the CuO dopant shows a smaller increase in dopant concentration. The specific heat data are analyzed based on the interacting mesolayer model for a nanofluid. The heat of fusion show strong variation with dopant type, in agreement with other experimental data for various PCMs and dopant particles.
High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2008-01-01
Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.
Magnetic properties of RFe2Zn20 and RCo2Zn20 (R=Y,Nd,Sm,Gd-Lu)
NASA Astrophysics Data System (ADS)
Jia, Shuang; Ni, Ni; Bud'Ko, S. L.; Canfield, P. C.
2009-09-01
Magnetization, resistivity, and specific heat measurements were performed on solution-grown single crystals of RFe2Zn20 and RCo2Zn20 (R=Y,Nd,Sm,Gd-Lu) . Whereas LuCo2Zn20 and YCo2Zn20 manifest unremarkable metallic behavior, LuFe2Zn20 and YFe2Zn20 display behaviors such as characteristic of nearly ferromagnetic Fermi liquids. When the well-defined 4f local moments (Gd3+-Tm3+) are embedded into this strongly polarizable host, they manifest enhanced ferromagnetic ordering and the values of TC for RFe2Zn20 (R=Gd-Tm) scale with the de Gennes factor. In addition, data on the RFe2Zn20 compounds indicate a small crystal electric field (CEF) effect compared with the interaction energy scale. On the other hand, the local moment bearing members of RCo2Zn20 (R=Nd,Sm,Gd-Tm) manifest weak magnetic interactions and the magnetic properties for R=Dy-Tm members are strongly influenced by the CEF effect on the R ions. The magnetic anisotropy and specific heat data for the Co series were used to determine the CEF coefficient of R ion with its cubic point symmetry. These CEF coefficients, determined for the Co series, are consistent with the magnetic anisotropy and specific heat data for the Fe series, which indicates similar CEF effects for the Fe and Co series. Such analysis, combined with specific heat and resistivity data, indicates that for R=Tb-Ho , the CEF splitting scale is smaller than their TC values, whereas for ErFe2Zn20 and TmFe2Zn20 the 4f electrons lose part of their full Hund’s rule ground state degeneracy above TC . YbFe2Zn20 and YbCo2Zn20 manifest typical but distinct heavy fermion behaviors associated with different Kondo temperatures.
New iron-oxide particles for magnetic nanoparticle hyperthermia: an in-vitro and in-vivo pilot study
NASA Astrophysics Data System (ADS)
Hedayati, Mohammad; Attaluri, Anilchandra; Bordelon, David; Goh, R.; Armour, Michael; Zhou, Haoming; Cornejo, Christine; Wabler, Michele; Zhang, Yonggang; DeWeese, Theodore; Ivkov, Robert
2013-02-01
Magnetic nanoparticle hyperthermia (mNHP) is regarded as a promising minimally invasive procedure. These nanoparticles generate heat when exposed to alternating magnetic fields (AMFs) and thus have shown a potential for selective delivery of heat to a target such as a cancer cell. Despite the great promise however, successful clinical translation has been limited in part by technical challenges of selectively delivering heat only to the target tissue. Interaction of AMF with tissues also deposits heat through Joule heating via eddy currents. Considerations of patient safety thus constrain the choice of AMF power and frequency to values that are insufficient to produce desirable heating from available nanoparticle formulations. Therefore, considerable effort must be directed to the design of particles and the AMF device to maximize the specific delivery of heat to the intended target while minimizing the unintended and non-specific heating. We have recently developed new iron-oxide nanoparticles (IONPs) having much higher heating capability at the clinically relevant amplitudes and frequencies than other formulations. Here, we utilize a new rectangular coil designed for treating multi well tissue culture plate and show that these particles are superior to two commercially available IONPs for hyperthermia of DU145 prostate cancer cells in culture. We report results of pilot in-vivo experiments using the DU145 human prostate xenograft model in nude male mouse. AMF treatment yielded an intratumor temperature rise > 10 °C in <10 min heating (AMF amplitude 29 kA/m @160 kHz) with ~4 mg nanoparticle /g tumor while maintaining rectal (core) temperature well within physiological range.
Saini, Rajesh; Kotian, Ravindra; Madhyastha, Prashanthi; Srikant, N
2016-01-01
The objective of this study was to compare the sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. One heat-cure acrylic resin (Trevalon) and one self-cure acrylic resin (Rapid Repair) were studied. Five groups of square-shaped specimens (20 mm × 20 mm × 2 mm) were prepared for each acrylic resin and then immersed in five solutions: distilled water, artificial saliva, denture cleansing solution, distilled water, and denture cleaning solution for 12 h alternatively, artificial saliva and denture cleaning solution for 12 h alternatively at 37 ± 2°C, and tested sorption and solubility by weight gain/loss method, respectively, after 1, 6, and 11 weeks. The data were analyzed by one-way analysis of variance followed by post hoc Tukey's test. Water sorption mean values varied from 17.5 ± 0.88 to 27.25 ± 1.04 μg/mm 3 for heat cure and from 12.75 ± 0.55 to 19.75 ± 1.04 μg/mm 3 for self-cure in the different solutions after different interval periods of 1, 6, and 11 weeks. These values were statistically significant (P< 0.001). Water solubility mean values varied from 0.25 ± 0.55 to 1.5 ± 0.55 μg/mm 3 for heat cure and from 1.5 ± 0.55 to 6.5 ± 0.55 μg/mm 3 for self-cure in the different solutions after different interval periods of 1, 6, and 11 weeks. These values were statistically not significant (P > 0.05). There was no linear correlation between sorption and solubility values. Overall, analysis of results showed the maximum sorption value in denture cleansing solution followed by alternative soaking in distilled water and artificial saliva. Least sorption was observed with artificial saliva followed by distilled water. Both heat-cure and self-cure acrylic resins showed varying water sorption and solubility. The results of both water sorption and solubility showed compliance with the International Standards Organization specification. No correlation was found between water sorption and solubility. Artificial saliva solution is a better storage medium than distilled water and denture cleansing solution for both heat-cure and self-cure acrylic resins.
NASA Technical Reports Server (NTRS)
Greene, Francis A.; Buck, Gregory M.; Wood, William A.
2001-01-01
Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.
On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.
Ogata, Fumihiko; Tanaka, Yuko; Tominaga, Hisato; Kangawa, Moe; Inoue, Kenji; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito
2013-01-01
This study investigated the regeneration of waste edible oil using a food additive (calcium silicate, CAS). Waste edible oil was prepared by combined heat and aeration treatment. Moreover, the deterioration of edible oil by combined heat and aeration treatment was greater than that by heat treatment alone. The acid value (AV) and carbonyl value (CV) increased with increasing deterioration; conversely, the tocopherol concentration decreased with increasing deterioration. The specific surface area, pore volume, and mean pore diameter of the 3 CAS formulations used (CAS30, CAS60, and CAS90) were evaluated, and scanning electron microscopic images were taken. The specific surface area increased in the order of CAS30 (115.54 m(2)/g) < CAS60 (163.93 m(2)/g) < CAS90 (187.47 m(2)/g). The mean pore diameter increased in the order of CAS90 (170.59 Å) < CAS60 (211.60 Å) < CAS30 (249.70 Å). The regeneration of waste edible oil was possible with CAS treatment. The AV reduced by 15.2%, 10.8%, and 23.1% by CAS30, CAS60, and CAS90 treatment, respectively, and the CV was reduced by 35.6%, 29.8%, and 31.3% by these 3 treatments, respectively. Moreover, the concentrations of tocopherol and free fatty acids did not change with CAS treatment. The characteristics of CAS were not related to the degree of change of AV and CV. However, the adsorption mechanism of polar and non-polar compounds generated in waste edible oil by CAS was related with the presence of silica gel molecules in CAS. The findings indicated that CAS was useful for the regeneration of waste edible oil.
NASA Technical Reports Server (NTRS)
Vukovich, F. M. (Principal Investigator)
1982-01-01
Infrared and visible HCMM data were used to examine the potential application of these data to define initial and boundary conditions for mesoscale numerical models. Various boundary layer models were used to calculate the distribution of the surface heat flux, specific humidity depression (the difference between the specific humidity in the air at approxmately the 10 m level and the specific humidity at the ground), and the eddy vicosity in a 72 km by 72 km area centered about St. Louis, Missouri. Various aspects of the implications of the results on the meteorology of St. Louis are discussed. Overall, the results indicated that a reasonable estimate of the surface heat flux, urban albedo, ground temperature, and specific humidity depression can be obtained using HCMM satellite data. Values of the ground-specific humidity can be obtained if the distribution of the air-specific humidity is available. More research is required in estimating the absolute magnitude of the specific humidity depression because calculations may be sensitive to model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechec, Maxwell; Baker, Brad; McNelley, Terry
In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode lasermore » power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.« less
The Evaluation of Water Sorption/Solubility on Various Acrylic Resins
Tuna, Suleyman Hakan; Keyf, Filiz; Gumus, Hasan Onder; Uzun, Cengiz
2008-01-01
Objectives The absorption of water by acrylic resins is a phenomenon of considerable importance since it is accompanied by dimensional changes, a further undesirable effect of absorbed water in acrylic resins to reduce the tensile strength of the material. Solubility is also an important property because it represents the mass of soluble materials from the polymers. Methods Ten acrylic resin-based materials were evaluated: two heat cure acrylic resins (De Trey QC-20, Meliodent Heat Cure) and eight self cure acrylic resins (Meliodent Cold, Akrileks, Akribel, Akribel Transparent, Vertex Trayplast, Formatray, Dentalon Plus, Palavit G). To evaluate water sorption and water solubility, thirty square-shaped specimens (20×20×1.5 mm) were fabricated from the wax specimens. One way ANOVA test, Tukey test and Pearson correlation coefficient performed for data. Results Water sorption mean values varied from 11.33±0.33 to 30.46±0.55 μg/mm3. Water solubility mean values varied from −0.05±0.23 to 3.69±0.12 μg/mm3. There was statistically significant difference between mean values of the materials (P<.05). There was no linear correlation between sorption and solubility values. Conclusions The results of the water sorption and water solubility values of both self-cured and heat-cured acrylic resins were in accordance with the ISO specification. No correlation found between water sorption and water solubility values. PMID:19212546
Karoui, Iness Jabri; Dhifi, Wissal; Jemia, Meriam Ben; Marzouk, Brahim
2011-03-30
The thermal stability of corn oil flavoured with thyme flowers was determined and compared with that of the original refined corn oil (control). The oxidative stability index (OSI) was measured and samples were exposed to heating (30 min at 150, 180 and 200 °C) and deep-frying (180 °C). Changes in peroxide value (PV), free fatty acid (FFA) content, specific absorptivity values (K(232) and K(270)), colour and chlorophyll, carotenoid and total phenol contents were monitored. The OSI and heating results showed that thyme incorporation was effective against thermal oxidation based on the increased induction time observed for the flavoured oil (6.48 vs 4.36 h), which was characterised by lower PV, FFA content, K(232) and K(270) than the control oil after heating from 25 to 200 °C, with higher red and yellow colour intensities and chlorophyll, carotenoid and total phenol contents. The deep-frying test showed the accelerated deterioration of both oils in the presence of French fries. Compared with the control oil, the thyme-flavoured oil showed improved thermal stability after heating. This could be attributed to the presence of thyme pigments and antioxidant compounds allowing extended oil thermal resistance. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz
2016-04-01
Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.
The Oral Provocation Test for Raw Egg in Patients with Hen Egg Allergy.
Kido, Jun; Nishi, Natsuko; Matsumoto, Tomoaki
2018-06-06
Many researchers have made efforts to develop diagnostic tools for predicting the outcome of oral food challenges (OFCs). The aim of this study was to assess the diagnostic value of the skin prick test (SPT) and blood-specific IgE concentrations based on the outcome of the OFCs for heated and raw hen egg. This study included 103 children with suspected hen egg allergy (HEA; median age 23 months, range 10-155; 72 boys, 31 girls). Forty-three patients were diagnosed with HEA by OFC. Of 60 patients who tolerated heated egg white (HEW), 22 underwent the OFC for raw hen egg and 7 developed adverse reactions after ingesting raw egg. Their wheal diameters and specific IgE levels for egg white and ovomucoid were determined. Wheal diameters as well as blood-specific IgE levels for egg white and ovomucoid were significantly larger in children with positive OFC results for HEW than in those with negative results. However, there were no significant differences between the positive and negative test results for raw hen egg white (REW) in wheal diameter or blood-specific IgE levels. The SPT and blood-specific IgE can be used to diagnose HEA. However, the provocation test for REW in children without HEW allergy is important because the values of SPT and specific IgE were not significantly different between children with and without raw egg allergy. © 2018 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Vaidyanathan, A.; Yip, F.
2017-12-01
Context: Studies that have explored the impacts of environmental exposure on human health have mostly relied on data from weather stations, which can be limited in geographic scope. For this assessment, we: (1) evaluated the performance of the meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS) model with measurements from weather stations for public health and specifically for CDC's Environmental Public Health Tracking Program, and (2) conducted a health assessment to explore the relationship between heat exposure and mortality, and examined region-specific differences in heat-mortality (H-M) relationships when using model-based estimates in place of measurements from weather stations.Methods: Meteorological data from the NLDAS Phase 2 model was evaluated against measurements from weather stations. A time-series analysis was conducted, using both station- and model-based data, to generate H-M relationships for counties in the U.S. The county-specific risk information was pooled to characterize regional relationships for both station- and model-based data, which were then compared to identify degrees of overlap and discrepancies between results generated using the two data sources. Results: NLDAS-based heat metrics were in agreement with those generated using weather station data. In general, the H-M relationship tended to be non-linear and varied by region, particularly the heat index value at which the health risks become positively significant. However, there was a high degree of overlap between region-specific H-M relationships generated from weather stations and the NLDAS model.Interpretation: Heat metrics from NLDAS model are available for all counties in the coterminous U.S. from 1979-2015. These data can facilitate health research and surveillance activities exploring health impacts associated with long-term heat exposures at finer geographic scales.Conclusion: High spatiotemporal coverage of environmental health data is an important attribute in understanding potential public health impacts. With the limited geographic scope of station-based measurements, adopting NLDAS-based modeled estimates in CDC's Tracking Network would provide a more comprehensive understanding of specific meteorological exposures on human health.
Predictive values of thermal and electrical dental pulp tests: a clinical study.
Villa-Chávez, Carlos E; Patiño-Marín, Nuria; Loyola-Rodríguez, Juan P; Zavala-Alonso, Norma V; Martínez-Castañón, Gabriel A; Medina-Solís, Carlo E
2013-08-01
For a diagnostic test to be useful, it is necessary to determine the probability that the test will provide the correct diagnosis. Therefore, it is necessary to calculate the predictive value of diagnostics. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values, accuracy, and reproducibility of thermal and electrical tests of pulp sensitivity. The thermal tests studied were the 1, 1, 1, 2-tetrafluoroethane (cold) and hot gutta-percha (hot) tests. For the electrical test, the Analytic Technology Pulp Tester (Analytic Technology, Redmond, WA) was used. A total of 110 teeth were tested: 60 teeth with vital pulp and 50 teeth with necrotic pulps (disease prevalence of 45%). The ideal standard was established by direct pulp inspection. The sensitivities of the diagnostic tests were 0.88 for the cold test, 0.86 for the heat test, and 0.76 for the electrical test, and the specificity was 1.0 for all 3 tests. The negative predictive value was 0.90 for the cold test, 0.89 for the heat test, and 0.83 for the electrical test, and the positive predictive value was 1.0 for all 3 tests. The highest accuracy (0.94) and reproducibility (0.88) were observed for the cold test. The cold test was the most accurate method for diagnostic testing. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.
Khachikian, Crist S; Harmon, Thomas C
2002-01-01
This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.
Thermodynamic data for biomass conversion and waste incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.
1986-09-01
The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less
NASA Astrophysics Data System (ADS)
Dupuis, Hélène; Weill, Alain; Katsaros, Kristina; Taylor, Peter K.
1995-10-01
Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.
Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.
Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya
2017-03-01
Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ 2 = 26.1258, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers' health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.
Magnetic ordering and crystal field effects in quasi-caged structure compound PrFe2Al8
NASA Astrophysics Data System (ADS)
Nair, Harikrishnan S.; Ghosh, Sarit K.; Ramesh Kumar, K.; Strydom, André M.
2016-04-01
The compound PrFe2Al8 possesses a three-dimensional network structure resulting from the packing of Al polyhedra centered at the transition metal element Fe and the rare earth Pr. Along the c-axis, Fe and Pr form chains which are separated from each other by the Al-network. In this paper, the magnetism and crystalline electric field effects in PrFe2Al8 are investigated through the analysis of magnetization and specific heat data. A magnetic phase transition in the Pr lattice is identified at TNPr ≈ 4 K in dc magnetization and ac susceptibility data. At 2 K, the magnetization isotherm presents a ferromagnetic saturation, however, failing to reach full spin-only ferromagnetic moment of Pr3+. Metamagnetic step-like low-field features are present in the magnetization curve at 2 K which is shown to shift upon field-cooling the material. Arrott plots centered around TPrN display "S"-like features suggestive of an inhomogeneous magnetic state. The magnetic entropy, Sm, estimated from specific heat outputs a value of R ln(2) at TN2 suggesting a doublet state for Pr3+. The magnetic specific heat is modeled by using a 9-level Schottky equation pertinent to the Pr3+ ion with J=4. Given the crystalline electric field situation of Pr3+, the inference of a doublet state from specific heat and consequent long-range magnetic order is an unexpected result.
Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser
NASA Astrophysics Data System (ADS)
Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae
2013-09-01
Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.
Peculiar phase diagram with isolated superconducting regions in ThFeAsN1‑x O x
NASA Astrophysics Data System (ADS)
Li, Bai-Zhuo; Wang, Zhi-Cheng; Wang, Jia-Lu; Zhang, Fu-Xiang; Wang, Dong-Ze; Zhang, Feng-Yuan; Sun, Yu-Ping; Jing, Qiang; Zhang, Hua-Fu; Tan, Shu-Gang; Li, Yu-Ke; Feng, Chun-Mu; Mei, Yu-Xue; Wang, Cao; Cao, Guang-Han
2018-06-01
ThFeAsN1‑x O x () system with heavy electron doping has been studied by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility and specific heat. The non-doped compound exhibits superconductivity at K, which is possibly due to an internal uniaxial chemical pressure that is manifested by the extremely small value of As height with respect to the Fe plane. With the oxygen substitution, the T c value decreases rapidly to below 2 K for , and surprisingly, superconductivity re-appears in the range of with a maximum of 17.5 K at x = 0.3. For the normal-state resistivity, while the samples in intermediate non-superconducting interval exhibit Fermi liquid behavior, those in other regions show a non-Fermi-liquid behavior. The specific heat jump for the superconducting sample of x = 0.4 is , which is discussed in terms of anisotropic superconducting gap. The peculiar phase diagram in ThFeAsN1‑x O x presents additional ingredients for understanding the superconducting mechanism in iron-based superconductors.
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
NASA Astrophysics Data System (ADS)
Cobianchi, M.; Guerrini, A.; Avolio, M.; Innocenti, C.; Corti, M.; Arosio, P.; Orsini, F.; Sangregorio, C.; Lascialfari, A.
2017-12-01
Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Power, SLP, of three biocompatible ferrofluid samples having a magnetic core of maghemite with different diameter d = 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of frequency f and intensity H of the applied alternating magnetic field, and it turned out to depend on the core diameter, as expected. The results allowed us to highlight experimentally that the physical mechanism responsible for the heating is size-dependent and to establish, at applied constant frequency, the phenomenological functional relationship SLP = c·Hx, with 2 ≤ x<3 for all samples. The x-value depends on sample size and field frequency, here chosen in the typical range of operating magnetic hyperthermia devices. For the smallest sample, the effective relaxation time τeff ≈ 19.5 ns obtained from SLP data is in agreement with the value estimated from magnetization data, thus confirming the validity of the Linear Response Theory model for this system at properly chosen field intensity and frequency.
Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A
1999-03-01
A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.
Magnetic Ordering of Antiferromagnetic Trimer System 2b·3CuCl2·2H2O
NASA Astrophysics Data System (ADS)
Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.
2012-12-01
In this paper, we present the magnetic properties of 2b·3CuCl2·2H2O (b = betaine, C5H11NO2). 2b·3CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.
Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application
NASA Technical Reports Server (NTRS)
Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)
2002-01-01
Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.
NASA Astrophysics Data System (ADS)
Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.
2018-03-01
In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.
Round robin test on the measurement of the specific heat of solar salt
NASA Astrophysics Data System (ADS)
Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; González-Aguilar, José; Julia, José Enrique; Navarrete, Nuria; Faik, Abdessamad; Bauer, Thomas; Bonk, Alexander; Navarro, María Elena; Ding, Yulong; Uranga, Nerea; Veca, Elisabetta; Sau, Salvatore; Giménez, Pau; García, Pierre; Burgaleta, Juan Ignacio
2017-06-01
Solar salt (SS), a well-known non-eutectic mixture of sodium nitrate (60% w/w) and potassium nitrate (40% w/w), is commonly used either as Thermal Energy Storage (TES) material (double tank technology) or Heat Transfer Fluid (HTF) (solar tower) in modern CSP plants worldwide. The specific heat (cp, kJ kg-1 °C-1) of SS is a very important property in order to support the design of new CSP Plants or develop novel materials based on SS. A high scientific effort has been dedicated to perform a suitable thermophysical characterization of this material. However, there is still a great discrepancy among the cp values reported by different authors1. These differences may be due to either experimental errors (random or systematic) or divergences in the starting material (grade of purity, presence of impurities and/or water). In order to avoid the second source of uncertainty (the starting material), a Round Robin Test (RRT) was proposed starting from a common material. In this way, the different methods from each laboratory could be compared. The study should lay the foundations for the establishment of a systematic procedure for the measurement of the specific heat of this kind of materials. Nine institutions, research centers and companies, accepted the proposal and are contributing with their results. The initiative was organized within the Workshop SolarPACES Task III - Material activity.
NASA Astrophysics Data System (ADS)
Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.
2018-03-01
As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.
Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B
2001-01-01
Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,P.
2007-01-01
The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behaviormore » and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.« less
Ballweg, Verena; Eibofner, Frank; Graf, Hansjorg
2011-10-01
State of the art to access radiofrequency (RF) heating near implants is computer modeling of the devices and solving Maxwell's equations for the specific setup. For a set of input parameters, a fixed result is obtained. This work presents a theoretical approach in the alternating current (ac) limit, which can potentially render closed formulas for the basic behavior of tissue heating near metallic structures. Dedicated experiments were performed to support the theory. For the ac calculations, the implant was modeled as an RLC parallel circuit, with L being the secondary of a transformer and the RF transmission coil being its primary. Parameters influencing coupling, power matching, and specific absorption rate (SAR) were determined and formula relations were established. Experiments on a copper ring with a radial gap as capacitor for inductive coupling (at 1.5 T) and on needles for capacitive coupling (at 3 T) were carried out. The temperature rise in the embedding dielectric was observed as a function of its specific resistance using an infrared (IR) camera. Closed formulas containing the parameters of the setup were obtained for the frequency dependence of the transmitted power at fixed load resistance, for the calculation of the resistance for optimum power transfer, and for the calculation of the transmitted power in dependence of the load resistance. Good qualitative agreement was found between the course of the experimentally obtained heating curves and the theoretically determined power curves. Power matching revealed as critical parameter especially if the sample was resonant close to the Larmor frequency. The presented ac approach to RF heating near an implant, which mimics specific values for R, L, and C, allows for closed formulas to estimate the potential of RF energy transfer. A first reference point for worst-case determination in MR testing procedures can be obtained. Numerical approaches, necessary to determine spatially resolved heating maps, can be supported.
Waste heat generation: A comprehensive review.
Yeşiller, Nazli; Hanson, James L; Yee, Emma H
2015-08-01
A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi
2017-10-01
Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.
Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.
Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim
2017-06-01
As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bordelon, David E.; Cornejo, Christine; Grüttner, Cordula; Westphal, Fritz; DeWeese, Theodore L.; Ivkov, Robert
2011-06-01
Magnetic nanoparticles can create heat that can be exploited to treat cancer when they are exposed to alternating magnetic fields (AMF). At a fixed frequency, the particle heating efficiency or specific power loss (SPL) depends upon the magnitude of the AMF. We characterized the amplitude-dependent SPL of three commercial dextran-iron oxide nanoparticle suspensions through saturation to 94 kA/m with a calorimeter comprising a solenoid coil that generates a uniform field to 100 kA/m at ˜150 kHz. We also describe a novel method to empirically determine the appropriate range of the heating curve from which the SPL is then calculated. These results agree with SPL values calculated from the phenomenological Box-Lucas equation. We note that the amplitude-dependent SPL among the samples was markedly different, indicating significant magneto-structural variation not anticipated by current models.
Heat resistance of Salmonella in various egg products.
Garibaldi, J A; Straka, R P; Ijichi, K
1969-04-01
The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.
Bagge, Laura E; Koopman, Heather N; Rommel, Sentiel A; McLellan, William A; Pabst, D A
2012-12-15
Blubber, the specialized hypodermis of cetaceans, provides thermal insulation through the quantity and quality of lipids it contains. Quality refers to percent lipid content; however, not all lipids are the same. Certain deep-diving cetacean groups possess blubber with lipids - wax esters (WE) - that are not typically found in mammals, and the insulative quality of 'waxy' blubber is unknown. Our study explored the influence of lipid storage class - specifically WE in pygmy sperm whales (Kogia breviceps; N=7) and typical mammalian triacylglycerols in short-finned pilot whales (Globicephala macrorhynchus; N=7) - on blubber's thermal properties. Although the blubber of both species had similar total lipid contents, the thermal conductivity of G. macrorhynchus blubber (0.20±0.01 W m(-1) °C(-1)) was significantly higher than that of K. breviceps (0.15±0.01 W m(-1) °C(-1); P=0.0006). These results suggest that lipid class significantly influences the ability of blubber to resist heat flow. In addition, because the lipid content of blubber is known to be stratified, we measured its depth-specific thermal conductivities. In K. breviceps blubber, the depth-specific conductivity values tended to vary inversely with lipid content. In contrast, G. macrorhynchus blubber displayed unexpected depth-specific relationships between lipid content and conductivity, which suggests that temperature-dependent effects, such as melting, may be occurring. Differences in heat flux measurements across the depth of the blubber samples provide evidence that both species are capable of storing heat in their blubber. The function of blubber as an insulator is complex and may rely upon its lipid class, stratified composition and dynamic heat storage capabilities.
Fluid property measurements study
NASA Technical Reports Server (NTRS)
Devaney, W. E.
1976-01-01
Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.
Steady bipartite coherence induced by non-equilibrium environment
NASA Astrophysics Data System (ADS)
Huangfu, Yong; Jing, Jun
2018-01-01
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.
Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
Ground Source Heat Pump Computational Results
James Menart
2013-07-31
This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.
Bousfiha, Amal; Lotfi, Aarab
2013-08-28
The aim of this study was to evaluate the sensitivity of the population of Fez and Casablanca in Morocco to dry white beans (Phaseolus Vulgaris) and to investigate the effect of food processing (heat and/or enzymatic hydrolysis by pepsin) on this sensitivity. Work was based on a bank consisting of 146 sera from patients with atopic hypersensitivity in order to evaluate specific immunoglobulin E (IgE) levels to native and processed white bean proteins by ELISA. Under the same conditions, we assessed the immunoreactivity of rabbit IgG obtained by immunization with native white bean proteins.Evaluation of specific IgE to the white bean proteins showed that 51% of children and 39% of adults had positive values. The heat treatment and pepsin hydrolysis of dry bean proteins showed a reduction of 68% of IgE binding recognition in more than 65% of all patients. After heating, all patients indicated a reduction greater than 36%. With rabbit IgG, we observed a decrease by 25% of binding under heat treatment while enzymatic digestion reduced IgG recognition by 46.6%.These findings suggest that epitopes recognized by IgE in the studied population were conformational sites whereas those recognized by rabbit IgG were probably sequential. In conclusion, these results demonstrate that the Moroccan population was very sensitive to white beans and this sensitivity could be reduced after heat treatment or enzymatic hydrolysis.
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; ...
2016-11-08
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less
Lee, Myeong Gi; Yoon, Won Byong; Park, Jae W
2017-06-01
Physical properties of Alaska pollock surimi paste were investigated as affected by pH (4.0 and 6.0-10.0) and heating conditions (slow and fast). The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. The effect of pH was strikingly high at pH 7.5 when gels were prepared using 2-step heating, indicating the pH dependence of endogenous transglutaminase. However, the highest gel strength was obtained at pH 8.0 when gels were prepared in fast heating. Whiteness value (L - 3b*) increased significantly (p < .05) as pH increased from 6.0 to 6.5, but thereafter decreased significantly (p < .05) as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance, probably due to the effect of reduced browning reaction. The uniqueness of this study was to measure the combined effect of pH and heating conditions on the gel texture and color. There were various studies dealing with pH or heating conditions independently. As the primary character for surimi seafood is gel texture and color. The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. Whiteness value (L - 3b*) increased significantly as pH increased from 6.0 to 6.5, but thereafter decreased significantly as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance. © 2016 Wiley Periodicals, Inc.
Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S
2014-03-01
In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p < 0.05), as well as the average SwR (0.17 +/- 0.03 L/m2/h). When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration state, decrease in the risk of heat illness, and extends the duration of soldiers' exposure to extreme conditions.
Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds
NASA Astrophysics Data System (ADS)
Xu, Lifang; Bu, Wei
2017-09-01
The Vickers hardness of various AlX (X = N, P, As) compound polymorphs were calculated with the bond resistance model. Thermodynamic properties, such as vibrational entropy, constant volume specific heat and Debye temperatures, were calculated using phonon dispersion relations and phonon density of states (DOS). The calculated values are in good agreement with the previous experimental and theoretical data. For the same structure of AlX (X = N, P, As) compounds, their hardness and Debye temperatures both decrease with the X atomic number. The wurtzite (wz) and zincblende (zb) structures of the same compounds AlX share an almost identical hardness, but have different Debye temperatures. The difference between wz and zb structures increases as the atomic number of X increases. The thermodynamic properties reveal that the constant volume specific heat approaches the Dulong-Petit rule at high temperatures.
Zn-site Substitution Effect in YbCo2Zn20
NASA Astrophysics Data System (ADS)
Kobayashi, Riki; Takamura, Haruki; Higa, Yasuyuki; Ikeda, Yoichi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yoshizawa, Hideki; Aso, Naofumi
2017-04-01
We have investigated the substitution effect of YbCo2(Zn1-xTx)20 (T = Cu, Ga, and Cd) systems by using the experiments of X-ray powder diffraction (XRPD), specific heat, magnetic susceptibility, magnetization, and electrical resistivity in order to find out a material that approaches a quantum critical point by chemical pressure. The XRPD and electrical resistivity measurements clarify that the Cu-substitution makes the lattice constants shrink and keeps the magnetic electrical resistivity high, while the Ga- and the Cd-substitution show opposite relation of the Cu-substitution. However, we could not detect clear substitution effect in the specific heat, magnetic susceptibility, and magnetization measurements of Cu-substitution system within our experiments. It is necessary that to study the Cu-substitution samples that have higher x value at lower temperature.
Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37
NASA Astrophysics Data System (ADS)
Wei, Wensen; Ge, Min; Wang, Shasha; Zhang, Lei; Han, Yuyan; Du, Haifeng; Tian, Mingliang; Zhang, Yuheng
2018-03-01
Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88kBTc, which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory.
Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Burke, Kenneth A.
2011-01-01
Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.
Magnetic and hydrogel composite materials for hyperthermia applications.
Lao, L L; Ramanujan, R V
2004-10-01
Micron-sized magnetic particles (Fe3O4) were dispersed in a polyvinyl alcohol hydrogel to study their potential for hyperthermia applications. Heating characteristics of this ferrogel in an alternating magnetic field (375 kHz) were investigated. The results indicate that the amount of heat generated depends on the Fe3O4 content and magnetic field amplitude. A stable maximum temperature ranging from 43 to 47 degrees C was successfully achieved within 5-6 min. The maximum temperature was a function of Fe3O4 concentration. A specific absorption rate of up to 8.7 W/g Fe3O4 was achieved; this value was found to depend on the magnetic field strength. Hysteresis loss is the main contribution to the heating effect experienced by the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolokotroni, Maria; Bhuiyan, Saiful; Davies, Michael
2010-12-15
This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found thatmore » site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)« less
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance
Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.
2016-01-01
ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the method of D value determination used. PMID:27474721
A Global Assessment of Oceanic Heat Loss: Conductive Cooling and Hydrothermal Redistribution of Heat
NASA Astrophysics Data System (ADS)
Hasterok, D. P.; Chapman, D. S.; Davis, E. E.
2011-12-01
A new dataset of ~15000 oceanic heat flow measurements is analyzed to determine the conductive heat loss through the seafloor. Many heat flow values in seafloor younger than 60 Ma are lower than predicted by models of conductively cooled lithosphere. This heat flow deficit is caused by ventilated hydrothermal circulation discharging at crustal outcrops or through thin sedimentary cover. Globally filtering of heat flow data to retain sites with sediment cover >400 m thick and located >60 km from the nearest seamount minimizes the effect of hydrothermal ventilation. Filtered heat flow exhibit a much higher correlation coefficient with seafloor age (up to 0.95 for filtered data in contrast to 0.5 for unfiltered data) and lower variability (reduction by 30%) within an age bin. A small heat flow deficit still persists at ages <25 Ma, possibly as a result of global filtering limitations and incomplete thermal rebound following sediment burial. Detailed heat flow surveys co-located with seismic data can identify environments favoring conductive heat flow; heat flow collected in these environments is higher than that determined by the global dataset, and is more consistent with conductive cooling of the lithosphere. The new filtered data analysis and a growing number of site specific surveys both support estimates of global heat loss in the range 40-47 TW. The estimated hydrothermal deficit is consistent with estimates from geochemical studies ~7 TW, but is a few TW lower than previous estimates derived from heat flow determinations.
Dropwise Condensation on Soft Hydrophobic Coatings.
Phadnis, Akshay; Rykaczewski, Konrad
2017-10-31
Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.
Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research
Bell, Michelle L.; Peng, Roger D.
2013-01-01
Background: Environmental health research employs a variety of metrics to measure heat exposure, both to directly study the health effects of outdoor temperature and to control for temperature in studies of other environmental exposures, including air pollution. To measure heat exposure, environmental health studies often use heat index, which incorporates both air temperature and moisture. However, the method of calculating heat index varies across environmental studies, which could mean that studies using different algorithms to calculate heat index may not be comparable. Objective and Methods: We investigated 21 separate heat index algorithms found in the literature to determine a) whether different algorithms generate heat index values that are consistent with the theoretical concepts of apparent temperature and b) whether different algorithms generate similar heat index values. Results: Although environmental studies differ in how they calculate heat index values, most studies’ heat index algorithms generate values consistent with apparent temperature. Additionally, most different algorithms generate closely correlated heat index values. However, a few algorithms are potentially problematic, especially in certain weather conditions (e.g., very low relative humidity, cold weather). To aid environmental health researchers, we have created open-source software in R to calculate the heat index using the U.S. National Weather Service’s algorithm. Conclusion: We identified 21 separate heat index algorithms used in environmental research. Our analysis demonstrated that methods to calculate heat index are inconsistent across studies. Careful choice of a heat index algorithm can help ensure reproducible and consistent environmental health research. Citation: Anderson GB, Bell ML, Peng RD. 2013. Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect 121:1111–1119; http://dx.doi.org/10.1289/ehp.1206273 PMID:23934704
Thermal properties of degraded lowland peat-moorsh soils
NASA Astrophysics Data System (ADS)
Gnatowski, Tomasz
2016-04-01
Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.
High Efficiency Heat Exchanger for High Temperature and High Pressure Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton
CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capitalmore » and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating channels so that each fluid is fully surrounded by the opposing fluid. As compared to similar existing compact heat exchangers, the new design converts most secondary surface area to primary surface area, eliminating fin inefficiencies. CompRex requests that all technical information about the heat exchanger designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less
Specific Heat and Thermal Diffusivity of YBCO Coated Conductors
NASA Astrophysics Data System (ADS)
Naito, Tomoyuki; Fujishiro, Hiroyuki; YasuhisaYamamura; Saito, Kazuya; Okamoto, Hiroshi; Hayashi, Hidemi; Gosho, Yoshihiro; Ohkuma, Takeshi; Shiohara, Yuh
We have measured the temperature dependence of specific heat,C(T), for Ag deposited YBCO coated conductor (YCC),YCC reinforced by a thin Cutape (YCC-Cu), andthe Hastelloy substrate with buffer layer. C(T) of HastelloyC-276 with buffer layer agrees well with the reported oneof HastelloyC-276, indicating that the contribution of the buffer layer to the measured C(T) is negligibly small. C(T)of both YCC and YCC-Cu tapes was successfully reproduced by the simple sum rule using the C(T) values reported for Hastelloy, Ag and Cu. The results demonstrate that C(T) of various YCC tapes can be estimated using the reported C(T)of constitutional materials. The estimated thermal diffusivity, a = K/C, at 300K of YCC, which was estimated using the thermal conductivity, K, did not agree with the reported a of Ag. This resultwas in consistent with the fact that the applied heat flew through the Aglayer, suggesting that a relation of a = K/Cfor homogeneous material cannot be applicable for the layered material such as YCC.
NASA Astrophysics Data System (ADS)
Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; MacFall, James; Dewhirst, Mark; Das, Shiva K.
2012-04-01
This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types may be used to construct customized phantoms that are tailored for different anatomical sites.
Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity.
Díaz, Milagros; de Haro, Virginia; Muñoz, Romualdo; Quiles, María José
2007-12-01
Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.
Network model for thermal conductivities of unidirectional fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Wang, Yang; Peng, Chaoyi; Zhang, Weihua
2014-12-01
An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).
Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel
NASA Astrophysics Data System (ADS)
Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri
2012-10-01
In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
Geometrical correction factors for heat flux meters
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Papell, S. S.
1974-01-01
General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.
Peculiar phase diagram with isolated superconducting regions in ThFeAsN1-x O x.
Li, Bai-Zhuo; Wang, Zhi-Cheng; Wang, Jia-Lu; Zhang, Fu-Xiang; Wang, Dong-Ze; Zhang, Feng-Yuan; Sun, Yu-Ping; Jing, Qiang; Zhang, Hua-Fu; Tan, Shu-Gang; Li, Yu-Ke; Feng, Chun-Mu; Mei, Yu-Xue; Wang, Cao; Cao, Guang-Han
2018-06-27
ThFeAsN 1-x O x ([Formula: see text]) system with heavy electron doping has been studied by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility and specific heat. The non-doped compound exhibits superconductivity at [Formula: see text] K, which is possibly due to an internal uniaxial chemical pressure that is manifested by the extremely small value of As height with respect to the Fe plane. With the oxygen substitution, the T c value decreases rapidly to below 2 K for [Formula: see text], and surprisingly, superconductivity re-appears in the range of [Formula: see text] with a maximum [Formula: see text] of 17.5 K at x = 0.3. For the normal-state resistivity, while the samples in intermediate non-superconducting interval exhibit Fermi liquid behavior, those in other regions show a non-Fermi-liquid behavior. The specific heat jump for the superconducting sample of x = 0.4 is [Formula: see text], which is discussed in terms of anisotropic superconducting gap. The peculiar phase diagram in ThFeAsN 1-x O x presents additional ingredients for understanding the superconducting mechanism in iron-based superconductors.
Inter-atomic potentials for radiation damage studies in CePO4 monazite
NASA Astrophysics Data System (ADS)
Jolley, Kenny; Asuvathraman, Rajaram; Smith, Roger
2017-02-01
An original empirical potential used for modelling phosphate glasses is adapted to be suitable for use with monazite (CePO4) so as to have a consistent formulation for radiation damage studies of phosphates. This is done by adding a parameterisation for the Ce-O interaction to the existing potential set. The thermal and structural properties of the resulting computer model are compared to experimental results. The parameter set gives a stable monazite structure where the volume of the unit cell is almost identical to that measured experimentally, but with some shrinkage in the a and b lengths and a small expansion in the c direction compared to experiment. The thermal expansion, specific heat capacity and estimates of the melting point are also determined. The estimate of the melting temperature of 2500 K is comparable to the experimental value of 2318 ± 20 K, but the simulated thermal expansion of 49 ×10-6 K-1 is larger than the usually reported value. The simulated specific heat capacity at constant pressure was found to be approximately constant at 657 J kg-1 K-1 in the range 300-1000 K, however, this is not observed experimentally or in more detailed ab initio calculations.
Magnetic and thermodynamic properties of Nd3NiGe2
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Hiraoka, Koichi
2018-05-01
We here report the magnetization, M, and specific heat, C, of Nd3NiGe2 , which crystallizes in the orthorhombic Gd3NiSi2 -type structure. Nd ions occupy three nonequivalent sites in a unit cell. Upon cooling, magnetization divided by magnetic field, M / B , increased sharply at the Curie temperature, TC, of 87 K and below 40 K. The former result indicates that the increase in M / B observed at TC is due to the long-range ferromagnetic order. The increase below 40 K is derived from a short-range correlation because of the absence of clear anomaly in C (T) . At 10 K and 2 K, the values of M undergo metamagnetic transitions. The value of magnetic specific heat divided by temperature shows a shoulder-like anomaly at around 20 K, which is attributed to antiferromagnetic behavior. Furthermore, two peaks in C (T) were observed at 4.5 K and 3.8 K, and these peaks occurred at lower temperatures in the presence of a magnetic field. This behavior is typical of materials with antiferromagnetic order. These observations are attributed to the competition between ferromagnetic and antiferromagnetic interactions, which is a result of the three nonequivalent Nd sites.
Teng, F; Xu, Z Y; Lyu, H; Wang, Y P; Wang, L J; Huang, T; Sun, J C; Zhu, H T; Ni, Y X; Cheng, X D
2018-02-23
Objective: To investigate the effect of triptolide, a specific inhibitor of heat shock protein 70 (HSP70), on apatinib resistance in gastric cancer cells line MKN45. Methods: The apatinib-resistant cells (MKN45/AR) and MKN45 parental cells were treated with apatinib, triptolide and apatinib combined with triptolide, respectively. CCK-8 assay was performed to determine the half maximal inhibitory concentration (IC(50)) of MKN45/AR and MKN45 cells in the presence of different treatment. The mRNA expression of heat shock protein gene (HSPA1A and HSPA1B) was detected by RT-PCR, while the protein expression of heat shock protein 70 was analyzed using Western blot in MKN45/AR and MKN45 cells. Results: The IC(50) values of apatinib-sensitive and apatinib-resistant MKN45 cells were 10.411 μmol/L and 70.527 μmol/L, respectively, showing a significant difference ( P <0.05). The mRNA expression of HSPA1A and HSPA1B in MKN45/AR cells was significantly higher than that in MKN45 cells ( P <0.001). The protein expression of heat shock protein 70 was significantly decreased after 0.25 μmol/L triptolide treatment in MKN45/AR cells ( P <0.01). When heat shock protein 70 was inhibited by triptolide, the IC(50) value of apatinib in MKN45/AR cells was reduced to 11.679 μmol/L, which was significantly lower than cells treated with apatinib alone ( P <0.05). Conclusions: The apatinib-resistant MKN45 cells have high levels of heat shock protein 70. Low doses of triptolide can significantly inhibit heat shock protein 70, leading to reverse the resistance phenotype of MKN45/AR cells. Therefore, inhibition of heat shock protein 70 provides a new therapy strategy for patients with apatinib resistance.
Microwave absorption in powders of small conducting particles for heating applications.
Porch, Adrian; Slocombe, Daniel; Edwards, Peter P
2013-02-28
In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.
Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven
Levine, Zachary H.
2018-01-01
A measurement of a thermophysical property of water is made using items found in the author’s home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the standard value of 5.5. The close agreement is not representative of the actual uncertainties in this simple experiment. Heating water in a microwave oven can let a student apply the techniques of quantitative science based on questions generated by his or her scientific curiosity. PMID:29542737
Superconducting gap evolution in overdoped BaFe₂(As 1-xP x)₂ single crystals through nanocalorimetry
Campanini, D.; Diao, Z.; Fang, L.; ...
2015-06-18
We report on specific heat measurements on clean overdoped BaFe₂(As 1-xP x)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T| T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/k BT c ~ 2.2. Increasing the phosphorus concentration x,more » the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γ r, all samples however show similar behavior [γ r(H) - γ r (H = 0)∝ H n, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less
NASA Astrophysics Data System (ADS)
Petryk, Alicia A.; Misra, Adwiteeya; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. J.
2015-03-01
The use of nanotechnology for the treatment of cancer affords the possibility of highly specific tumor targeting and improved treatment efficacy. Iron oxide magnetic nanoparticles (IONPs) have demonstrated success as an ablative mono-therapy and targetable adjuvant therapy. However, the relative therapeutic value of intracellular vs. extracellular IONPs remains unclear. Our research demonstrates that both extracellular and intracellular IONPs generate cytotoxicity when excited by an alternating magnetic field (AMF). While killing individual cells via intracellular IONP heating is an attractive goal, theoretical models and experimental results suggest that this may not be possible due to limitations of cell volume, applied AMF, IONP concentration and specific absorption rate (SAR). The goal of this study was to examine the importance of tumor size (cell number) with respect to IONP concentration. Mouse mammary adenocarcinoma cells were incubated with IONPs, washed, spun into different pellet sizes (0.1, 0.5 and 2 million cells) and exposed to AMF. The level of heating and associated cytotoxicity depended primarily on the number of IONPs /amount Fe per cell pellet volume and the relative volume of the cell pellet. Specifically, larger cell pellets achieved greater relative cytotoxicity due to greater iron amounts, close association and subsequently higher temperatures.
Yogurt made from milk heated at different pH values.
Ozcan, Tulay; Horne, David S; Lucey, John A
2015-10-01
Milk for yogurt manufacture is subjected to high heat treatment to denature whey proteins. Low milk pH values (≤ 6.5) at heating result in most denatured whey proteins becoming associated with casein micelles, whereas high milk pH values (≥ 7.0) at heating result in the formation of mostly soluble (nonmicellar) denatured whey protein complexes. There are conflicting reports on the relative importance of soluble and casein-bound whey protein aggregates on the properties of acid gels. Prior studies investigating the effect of pH of milk at heating used model gels in which milk was acidified by glucono-δ-lactone; in this study, we prepared yogurt gels using commercial starter cultures. Model acid gels can have very different texture and physical properties from those made by fermentation with starter cultures. In this study, we investigated the effects of different pH values of milk at heating on the rheological, light backscatter, and microstructural properties of yogurt gels. Reconstituted skim milk was adjusted to pH values 6.2, 6.7, and 7.2 and heated at 85°C for 30 min. A portion of the heated milk samples was readjusted back to pH 6.7 after heating. Milks were inoculated with 3% (wt/wt) yogurt starter culture and incubated at 40°C until pH 4.6. Gel formation was monitored using dynamic oscillatory rheology, and parameters measured included the storage modulus (G') and loss tangent (LT) values. Light-backscattering properties, such as the backscatter ratio (R) and the first derivative of light backscatter ratio (R'), were also monitored during fermentation. Fluorescence microscopy was used to observe gel microstructure. The G' values at pH 4.6 were highest in gels made from milk heated at pH 6.7 and lowest in milk heated at pH 6.2, with or without pH adjustment after heating. The G' values at pH 4.6 were lower in samples after adjustment back to pH 6.7 after heating. No maximum in the LT parameter was observed during gelation for yogurts made from milk heated at pH 6.2; a maximum in LT was observed at pH ~4.8 for samples heated at pH 6.7 or 7.2, with or without pH adjustment after heating. Higher R-values were observed with an increase in pH of heating, with or without pH adjustment after heating. The sample heated at pH 6.2 had only one major peak in its R' profile during acidification, whereas samples heated at pH 6.7 and 7.2 had 2 large peaks. The lack of a maximum in LT parameter and the presence of a single peak in the R' profile for the samples heated at pH 6.2 were likely due to the partial solubilization of insoluble calcium phosphate when milk was acidified to this lower pH value. No clear differences were observed in the microstructures of gels between the different treatments. This study indicates that heating milk at the natural pH (~6.7) created an optimum balance of casein-bound and soluble denatured whey proteins, which resulted in yogurt with the highest gel stiffness. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Heat Resistance of Salmonella in Various Egg Products
Garibaldi, J. A.; Straka, R. P.; Ijichi, K.
1969-01-01
The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae. Images PMID:4890741
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)
2000-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)
2001-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
Genetics of heat tolerance for milk yield and quality in Holsteins.
Santana, M L; Bignardi, A B; Pereira, R J; Stefani, G; El Faro, L
2017-01-01
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature-humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (-0.22 to -0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.
Design and testing of a liquid cooled garment for hot environments.
Guo, Tinghui; Shang, Bofeng; Duan, Bin; Luo, Xiaobing
2015-01-01
Liquid cooled garments (LCGs) are considered a viable method to protect individuals from hyperthermia and heat-related illness when working in thermally stressful environments. While the concept of LCGs was proposed over 50 years ago, the design and testing of these systems is undeveloped and stands in need of further study. In this study, a detailed heat transfer model of LCG in a hot environment was built to analyze the effects of different factors on the LCG performance, and to identify the main limitations to achieve maximum performance. An LCG prototype was designed and fabricated. Series of tests were done by a modified thermal manikin method to validate the heat transfer model and to evaluate the thermal properties. Both experimental and predicted results show that the heat flux components match the heat balance equation with an error of less than 10% at different flowrate. Thermal resistance analysis also manifests that the thermal resistance between the cooling water and the ambient (R2) is more sensitive to the flowrate than to the one between the skin surface and the cooling water (R1). When the flowrate increased from 225 to 544 mL/min, R2 decreased from 0.5 to 0.3 °C m(2)/W while R1 almost remained constant. A specific duration time was proposed to assess the durability and an optimized value of 1.68 h/kg was found according to the heat transfer model. The present heat transfer model and specific duration time concept could be used to optimize and evaluate this kind of LCG respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.
2013-09-01
An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.
Unusual single-ion non-fermi-liquid behavior in Ce(1-x)LaxNi9Ge4.
Killer, U; Scheidt, E-W; Eickerling, G; Michor, H; Sereni, J; Pruschke, Th; Kehrein, S
2004-11-19
We report on specific heat, magnetic susceptibility, and resistivity measurements on the compound Ce(1-x)LaxNi9Ge4 for various concentrations ranging from the stoichiometric system with x = 0 to the dilute limit x = 0.95. Our data reveal single-ion scaling with the Ce concentration and the largest ever recorded value of the electronic specific heat Deltac/T approximately 5.5 J K-2 mol(-1) at T = 0.08 K for the stoichiometric compound x = 0 without any trace of magnetic order. While in the doped samples Deltac/T increases logarithmically below 3 K down to 50 mK, their magnetic susceptibility behaves Fermi-liquid-like below 1 K. These properties make the compound Ce(1-x)LaxNi9Ge4 a unique system on the borderline between Fermi-liquid and non-Fermi-liquid physics.
NASA Astrophysics Data System (ADS)
Isikawa, Yosikazu; Somiya, Kazuya; Koyanagi, Huruto; Mizushima, Toshio; Kuwai, Tomohiko; Tayama, Takashi
2010-01-01
PrMg3 is supposed to be one of the strongly correlated electron systems originated from the hybridization between the Pr 4f and conduction electrons, because the gigantic electronic specific heat coefficient C/T was observed at low temperatures. However, a typical behaviour of - ln T dependence was not observed in the temperature dependence of the electrical resistivity. The thermoelectric power S is a powerful tool to investigate the density of states at the Fermi energy. We measured carefully the thermoelectric power of PrMg3 in the temperature range between 2 and 300 K. S is extremely small, ranged within ±1 μV/K over the whole temperature. The value of S/T at low temperature limit was also significantly smaller than expected from the specific heat results. We therefore conclude that the density of state at the Fermi level is not enhanced in PrMg3.
Superconducting properties of Rh 9 In 4 S 4 single crystals
Kaluarachchi, Udhara S.; Lin, Qisheng; Xie, Weiwei; ...
2016-03-28
The synthesis and crystallographic, thermodynamic, and transport properties of single crystalline Rh 9In 4S 4 were studied. The resistivity, magnetization, and specific heat measurements all clearly indicate bulk superconductivity with a critical temperature, T c~2.25 K. The Sommerfeld coefficient γ and the Debye temperature (ΘD) were found to be 34 mJ mol –1 K –2 and 217 K, respectively. The observed specific heat jump, ΔC/γT c=1.66, is larger than the expected BCS weak coupling value of 1.43. Ginzburg-Landau (GL) ratio of the low-temperature GL-penetration depth, λ GL≈5750 Å, to the GL-coherence length, ξ GL≈94 Å, is large: κ ~60. However,more » we observed a peak effect in the resistivity measurement as a function of both temperature and magnetic field.« less
Heat flow from the Liberian Precambrian Shield
NASA Astrophysics Data System (ADS)
Sass, J. H.; Behrendt, J. C.
1980-06-01
Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m-2. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m-2. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42±8 mW m-2) and Nigeria (38±2 mW m-2) but are somewhat higher than values from Niger (20 mW m-2) and neighboring Sierra Leone (26 mW m-2). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58±8 m W m-2), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 /μW m-3. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a `characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m-2 is consistent with that from other Precambrian shields.
The prediction of gross calorific value using infrared (IR) spectroscopy and multivariate analysis
Chi-Leung So; Thomas L. Eberhardt
2011-01-01
The gross calorific value (GCV) of a fuel, also known as the higher heating value (HHV) or gross heat of combustion, is the amount of heat released by a specified quantity (initially at 25°C) once it is com-busted and the products returned to that temperature. Fuwape (1989) noted that extractive-free wood from Gmelina arborea (Roxb), a hardwood, had a lower gross heat...
NASA Astrophysics Data System (ADS)
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2017-01-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Limitations and possibilities of AC calorimetry in diamond anvil cells
NASA Astrophysics Data System (ADS)
Geballe, Zachary; Colins, Gilbert; Jeanloz, Raymond
2013-06-01
Dynamic laser heating or internal resistive heating could allow for the determination of calorimetric properties of samples that are held statically at high pressure. However, the highly non-adiabatic environment of high-pressure cells presents several challenges. Here, we quantify the errors in AC calorimetry measurements using laser heating or internal resistive heating inside diamond anvil cells, summarize the equipment requirements of supplying sufficient power modulated at a high enough frequency to measure specific heats and latent heats of phase transitions, and propose two new experiments in internally-heated diamond anvil cells: an absolute measurement of specific heat (with ~10% uncertainty) of non-magnetic metals using resistive heating at ~10 MHz, and a relative measurement to detect changes in either the specific heat of metals or in the effusively (the product of specific heat, density and thermal conductivity) of an insulator.
Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.
2012-04-01
Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the values obtained are matched with the overall evaporation, estimated through the scale in terms of weight loss. A numerical model able to solve the coupled heat-moisture diffusive equations is used to interpolate the obtained measures in the second and third step.
NASA Astrophysics Data System (ADS)
Kim, Joon-Suk; Lee, Hae-Woo
2016-12-01
The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.
NASA Astrophysics Data System (ADS)
Sarkar, Amit; Kundu, Prabir Kumar
2017-12-01
This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.
Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf
2012-03-01
To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.
Hot springs, geochemistry, and regional heat flow of northcentral Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanberg, C.A.; Marvin, P.R.; Salazar S., L.
1981-10-01
To date we have found, sampled and performed chemical analyses on 21 hot springs (T > 30/sup 0/C), 4 hot wells (T > 30/sup 0/C) and 15 warm springs (T = 25 to 30/sup 0/C) from the states of Chihuahua, Coahuila and Sonora, Mexico. Also in order to establish background chemistry, an additional 250 cold wells and springs (T = 12 to 25/sup 0/C) were sampled and analyzed and several hundred water analyses from the several thousand provided by various Mexican agencies were included. The technique of silica geothermometry was used to estimate the regional heat flow of northcentral Mexico.more » Both the traditional heat flow and the silica heat flow values are generally high and show considerable scatter as is typical of areas having Tertiary and Quaternary volcanic and tectonic activity. Specific areas of high heat flow (> 2.5 HFU) include the Presidio and Los Muertos Bolsons, the Cuidad Chihuahua-Chuatemoc area, the Delicias area, and the area south of the San Bernardino Bolson of southeast Arizona. Areas of lower heat flow (2.0 to 2.5 HFU) include the Jimenez-Camargo region and the area between the Los Muertos and Presidio Bolsons.« less
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1989-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Kastner, Michael E
1958-01-01
Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.
Laboratory Evaluation of Novel Particulate Control Concepts for Jet Engine Test Cells.
1983-12-01
HHV = Fuel higher heating value, btu/lb. tH = Heat of reaction, btu/Ib. KE = Kinetic energy, btu/hr. LHV = Lower heating value, btu/lb. M = Mass flow...the fuel bond energy must be the lower heating value ( LHV = AH of combustion with water as a vapor product). Therefore, the HHV must be corrected by... fuel . .- 7 This component is negligible for jet engines operated on uncontaminated turbine fuels . C. ALTERNATIVES AVAILABLE Several alternatives have
Thermophysical Properties of Alloy 617 from 25°C to 1000°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. H. Rabin; R. N. Wright; W. D. Swank
2013-09-01
Key thermophysical properties needed for the successful design and use of Alloy 617 in steam generator and heat exchanger applications have been measured experimentally, and results are compared with literature values and results obtained from some other commercial Ni–Cr alloys and model materials. Specifically, the thermal diffusivity, thermal expansion coefficient, and specific heat capacity have been measured for Alloy 617 over a range of temperatures, allowing calculation of thermal conductivity up to 1000 degrees C. It has been found that the thermal conductivity of Alloy 617 exhibits significant deviation from monotonic behavior in the temperature range from 600 degrees Cmore » to 850 degrees C, the temperatures of interest for most heat transfer applications. The non-linear behavior appears to result primarily from short-range order/disorder phenomena known to occur in the Ni–Cr system. Similar deviation from monotonic behavior was observed in the solid solution Ni–Cr-W Alloy 230, and lesser deviations were observed in iron based Alloy 800H and an austenitic stainless steel. Measured thermophysical property data are provided for four different heats of Alloy 617, and it is shown that property variations between the four different heats are not significant. Measurements were also obtained from Alloy 617 that was aged for up to 2000 h at 750 degrees C, and it was found that this aging treatment does not significantly influence the thermophysical properties.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.113-08 Fuel economy calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... specific gravity, carbon weight fraction and net heating value of the test fuel must be determined. The FTP...
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; İpek, Osman
2017-02-01
In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.
Measurement of temperature-dependent specific heat of biological tissues.
Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M
2005-02-01
We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.
Measuring the effects of heat wave episodes on the human body's thermal balance
NASA Astrophysics Data System (ADS)
Katavoutas, George; Theoharatos, George; Flocas, Helena A.; Asimakopoulos, Dimosthenis N.
2009-03-01
During the peak of an extensive heat wave episode on 23-25 July 2007, simultaneous thermophysiological measurements were made in two non-acclimated healthy adults of different sex in a suburban area of Greater Athens, Greece. Based on experimental measurements of mean skin temperature and metabolic heat production, heat fluxes to and from the human body were calculated, and the biometeorological index heat load (HL) produced was determined according to the heat balance equation. Comparing experimental values with those derived from theoretical estimates revealed a great heat stress for both individuals, especially the male, while theoretical values underestimated heat stress. The study also revealed that thermophysiological factors, such as mean skin temperature and metabolic heat production, play an important role in determining heat fluxes patterns in the heat balance equation. The theoretical values of mean skin temperature as derived from an empirical equation may not be appropriate to describe the changes that take place in a non-acclimated individual. Furthermore, the changes in metabolic heat production were significant even for standard activity.
Study of performance degradation in Titanium microbolometer IR detectors due to elevated heating
NASA Astrophysics Data System (ADS)
Saxena, Raghvendra Sahai; Bhan, R. K.; Rana, Pratap Singh; Vishwakarma, A. K.; Aggarwal, Anita; Khurana, Kumkum; Gupta, Sudha
2011-07-01
Heating of thermal detectors is a major reliability concern because they are always subjected to heat whenever in operation and while absorbing excessive heat they may get degraded or damaged. In case of microbolometer Infrared (IR) detectors, heating can occur due to the absorbed radiations and also due to the bias current. In metal film microbolometers, wherein high bias current is supplied for improving responsivity, the bias heating is an issue. To study the effects of excessive heating of a Titanium microbolometer, we fabricated a linear array of such microbolometers and performed a destructive experiment of passing high bias current pulses through it and report here that even though the power supplied in pulse mode cannot damage the element physically, it may be sufficient for significant performance degradations. With this experiment we extracted that the maximum power that our Titanium microbolometer element can sustain without performance degradation is 2.25 mW. We have also reported a specific signature of temperature coefficient of resistance (TCR) that, up to the reported safe limit, remains almost constant and when that limit is crossed, reduces rapidly to a much lower value. If we keep increasing the power further it increases slightly and attains a kind of saturation.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
Determination of Thermal State of Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.
1996-01-01
The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.
Effect of aerated concrete blockwork joints on the heat transfer performance uniformity
NASA Astrophysics Data System (ADS)
Pukhkal, Viktor; Murgul, Vera
2018-03-01
Analysis of data on the effect of joints of the aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out. It was concluded, that the values of the heat transfer performance uniformity factor in the literature sources were obtained for the regular fragment of a wall construction by approximate addition of thermal conductivities. Heat flow patterns for the aerated concrete exterior walls amid different values of the thermal conductivity factors and design ambient air temperature of -26 °C were calculated with the use of "ELCUT" software for modelling of thermal patterns by finite element method. There were defined the values for the heat transfer performance uniformity factor, reduced total thermal resistance and heat-flux density for the exterior walls. The calculated values of the heat transfer performance uniformity factors, as a function of the coefficient of thermal conductivity of aerated concrete blocks, differ from the known data by a more rigorous thermal and physical substantiation.
Forming of film surface of very viscous liquid flowing with gas in pipes
NASA Astrophysics Data System (ADS)
Czernek, Krystian; Witczak, Stanisław
2017-10-01
The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.
Heat flow from the Liberian precambrian shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sass, J.H.; Behrendt, J.C.
1980-06-10
Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m/sup -2/. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m/sup -2/. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42 +- 8 mW m/sup -2/) and Nigeria (38 +- 2 mW /sup -2/) but are somewhat higher than values from Niger (20 mW m/sup -2/)more » and neighboring Sierra Leone (26 mW m/sup -2/). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58 +- 8 mW m/sup -2/), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 ..mu..W m/sup -3/. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a 'characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m/sup -2/ is consistent with that from other Precambrian shields.« less
A Novel Numerical Method for Fuzzy Boundary Value Problems
NASA Astrophysics Data System (ADS)
Can, E.; Bayrak, M. A.; Hicdurmaz
2016-05-01
In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.
Energy absorption by a magnetic nanoparticle suspension in a rotating field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raikher, Yu. L.; Stepanov, V. I., E-mail: stepanov@icmm.ru
Heat generation by viscous dissipation in a dilute suspension of single-domain ferromagnetic particles in a rotating magnetic field is analyzed by assuming that the suspended particles have a high magnetic rigidity. The problem is solved by using a kinetic approach based on a rotational diffusion equation. Behavior of specific loss power (SLP) as a function of field strength H and frequency {omega} is examined at constant temperature. SLP increases as either of these parameters squared when the other is constant, eventually approaching a saturation value. The function SLP(H, {omega}) can be used to determine optimal and admissible ranges of magneticallymore » induced heating.« less
Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2018-02-01
An attempt to calibrate a conventional oven led to making a measurement of a thermophysical property of water using items found in the author's home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the standard value of 5.5. The close agreement is not representative of the actual uncertainties in this simple experiment (Fig. 1). Heating water in a microwave oven can let a student apply the techniques of quantitative science based on questions generated by his or her scientific curiosity.
An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications
NASA Technical Reports Server (NTRS)
Beam, Benjamin H.
1960-01-01
A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.
Immunologic changes in children with egg allergy ingesting extensively heated egg.
Lemon-Mulé, Heather; Sampson, Hugh A; Sicherer, Scott H; Shreffler, Wayne G; Noone, Sally; Nowak-Wegrzyn, Anna
2008-11-01
Prior studies have suggested that heated egg might be tolerated by some children with egg allergy. We sought to confirm tolerance of heated egg in a subset of children with egg allergy, to evaluate clinical and immunologic predictors of heated egg tolerance, to characterize immunologic changes associated with continued ingestion of heated egg, and to determine whether a diet incorporating heated egg is well tolerated. Subjects with documented IgE-mediated egg allergy underwent physician-supervised oral food challenges to extensively heated egg (in the form of a muffin and a waffle), with tolerant subjects also undergoing regular egg challenges (in a form of scrambled egg or French toast). Heated egg-tolerant subjects incorporated heated egg into their diets. Skin prick test wheal diameters and egg white, ovalbumin, and ovomucoid IgE levels, as well as ovalbumin and ovomucoid IgG4 levels, were measured at baseline for all subjects and at 3, 6, and 12 months for those tolerant of heated egg. Sixty-four of 117 subjects tolerated heated egg, 23 tolerated regular egg, and 27 reacted to heated egg. Heated egg-reactive subjects had larger skin test wheals and greater egg white-specific, ovalbumin-specific, and ovomucoid-specific IgE levels compared with heated egg- and egg-tolerant subjects. Continued ingestion of heated egg was associated with decreased skin test wheal diameters and ovalbumin-specific IgE levels and increased ovalbumin-specific and ovomucoid-specific IgG4 levels. The majority of subjects with egg allergy were tolerant of heated egg. Continued ingestion of heated egg was well tolerated and associated with immunologic changes that paralleled the changes observed with the development of clinical tolerance to regular egg.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the case of droplets dispersed in water, which indicate a ∼40-50% drop in SAR due to abrogation of whole scale Brownian relaxation of the emulsion droplets. This suggests the need for improving the heating efficiency during actual therapy in tissues. The residual SAR of the immobilized sample correlates well with the SAR of the magnetic nanofluid, albeit under a lower external field amplitude due to demagnetization effect of the clusters of MNP loaded inside the droplets. The observed heating efficiency of larger sized magnetic nanoemulsion offer new possibilities for multimodal therapy due to availability of large volume for loading anti-cancer drug or photodynamic agents.
Climate change and heat-related mortality in six cities Part 1: model construction and validation
NASA Astrophysics Data System (ADS)
Gosling, Simon N.; McGregor, Glenn R.; Páldy, Anna
2007-08-01
Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature ( T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature-mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature-mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Heat transfer analysis of skin during thermal therapy using thermal wave equation.
Kashcooli, Meisam; Salimpour, Mohammad Reza; Shirani, Ebrahim
2017-02-01
Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Method to Estimate the Hydraulic Conductivity of the Ground by TRT Analysis.
Liuzzo Scorpo, Alberto; Nordell, Bo; Gehlin, Signhild
2017-01-01
The knowledge of hydraulic properties of aquifers is important in many engineering applications. Careful design of ground-coupled heat exchangers requires that the hydraulic characteristics and thermal properties of the aquifer must be well understood. Knowledge of groundwater flow rate and aquifer thermal properties is the basis for proper design of such plants. Different methods have been developed in order to estimate hydraulic conductivity by evaluating the transport of various tracers (chemical, heat etc.); thermal response testing (TRT) is a specific type of heat tracer that allows including the hydraulic properties in an effective thermal conductivity value. Starting from these considerations, an expeditious, graphical method was proposed to estimate the hydraulic conductivity of the aquifer, using TRT data and plausible assumption. Suggested method, which is not yet verified or proven to be reliable, should be encouraging further studies and development in this direction. © 2016, National Ground Water Association.
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya
2017-01-01
Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models.
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia
Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya
2017-01-01
Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models. PMID:28894366
The Heat Is on: An Inquiry-Based Investigation for Specific Heat
ERIC Educational Resources Information Center
Herrington, Deborah G.
2011-01-01
A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…
Bernard, Thomas E; Iheanacho, Ivory
2015-01-01
Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Improvement of stability of Nb 3 Sn superconductors by introducing high specific heat substances
Xu, X.; Li, P.; Zlobin, A. V.; ...
2018-01-24
High-J c Nb 3Sn conductors have low stability against perturbations, which accounts for the slow training rates of high-field Nb 3Sn magnets. While it is known that adding substances with high specific heat (C) into Nb 3Sn wires can increase their overall specific heat and thus improve their stability, there has not been a practical method that is compatible with the fabrication of long-length conductors. In this work, we put forward a scheme to introduce such substances to distributed-barrier Nb 3Sn wires, which adds minimum difficulty to the wire manufacturing process. Multifilamentary wires using a mixture of Cu and high-Cmore » Gd 2O 3 powders have been successfully fabricated along this line. Measurements showed that addition of Gd 2O 3 had no negative effects on residual resitivity ratio or non-Cu J c, and that flux jumps were remarkably reduced, and minimum quench energy values at 4.2 K, 14 T were increased by a factor of three, indicating that stability was significantly improved. We also discussed the influences of the positioning of high-C substances and their thermal diffusivity on their effectiveness in reducing the superconductor temperature rise against perturbations. Based on these results, we proposed an optimized conductor architecture to maximize the effectiveness of this approach.« less
Improvement of stability of Nb 3 Sn superconductors by introducing high specific heat substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X.; Li, P.; Zlobin, A. V.
High-J c Nb 3Sn conductors have low stability against perturbations, which accounts for the slow training rates of high-field Nb 3Sn magnets. While it is known that adding substances with high specific heat (C) into Nb 3Sn wires can increase their overall specific heat and thus improve their stability, there has not been a practical method that is compatible with the fabrication of long-length conductors. In this work, we put forward a scheme to introduce such substances to distributed-barrier Nb 3Sn wires, which adds minimum difficulty to the wire manufacturing process. Multifilamentary wires using a mixture of Cu and high-Cmore » Gd 2O 3 powders have been successfully fabricated along this line. Measurements showed that addition of Gd 2O 3 had no negative effects on residual resitivity ratio or non-Cu J c, and that flux jumps were remarkably reduced, and minimum quench energy values at 4.2 K, 14 T were increased by a factor of three, indicating that stability was significantly improved. We also discussed the influences of the positioning of high-C substances and their thermal diffusivity on their effectiveness in reducing the superconductor temperature rise against perturbations. Based on these results, we proposed an optimized conductor architecture to maximize the effectiveness of this approach.« less
Phase transition in lithium ammonium sulphate doped with cesium metal ions
NASA Astrophysics Data System (ADS)
Gaafar, M.; Kassem, M. E.; Kandil, S. H.
2000-07-01
Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.
Control of Heat and Charge Transport in Nanostructured Hybrid Materials
2015-07-21
measurements in our groups have yielded device ZT values of 0.4 on thermoelectric modules consisting of vertically oriented silicon nanowires . This is... nanowires with aspect ratio’s exceeding 10,000. Temperature differences as high as 800 °C are achievable for both types. The bulk nanostructured...thermal conductivity of the silicon nanostructures. Specifically, experiments on an array of 20 nm diameter vertically oriented silicon nanowires have
Self-association of plant wax components: a thermodynamic analysis.
Casado, C G; Heredia, A
2001-01-01
Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.
Determination of the thermal and physical properties of black tattoo ink using compound analysis.
Humphries, Alexander; Lister, Tom S; Wright, Philip A; Hughes, Michael P
2013-07-01
Despite the widespread use of laser therapy in the removal of tattoos, comparatively little is known about its mechanism of action. There is a need for an improved understanding of the composition and thermal properties of the tattoo ink in order that simulations of laser therapy may be better informed and treatment parameters optimised. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry identified that the relative proportions of the constituent compounds of the ink likely to exist in vivo are the following: carbon black pigment (89 %), carvacrol (5 %), eugenol (2 %), hexenol (3 %) and propylene glycol (1 %). Chemical compound property tables identify that changes in phase of these compounds lead to a considerable reduction in the density and thermal conductivity of the ink and an increase in its specific heat as temperature increases. These temperature-dependent values of density, thermal conductivity and specific heat are substantially different to the constant values, derived from water or graphite at a fixed temperature, which have been applied in the simulations of laser therapy as previously described in the literature. Accordingly, the thermal properties of black tattoo ink described in this study provide valuable information that may be used to improve simulations of tattoo laser therapy.
Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2
NASA Astrophysics Data System (ADS)
Bhamu, K. C.
2018-05-01
Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.
2015-01-01
In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.
Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Anand, Manish; Carrey, Julian; Banerjee, Varsha
2016-09-01
Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system size and long-range dipole-dipole interactions. Using the micromagnetic simulation software oommf, we study the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation. As oommf is not designed for such a study, we have incorporated a novel scaling protocol for this purpose. We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows: (i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between ground-state energy and heating properties on application of an oscillating magnetic field h (t ) =hocos2 π f t : the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell
2011-01-01
Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.
Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters
White, Donald E.
1969-01-01
Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.
Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows.
Rees, A; Fischer-Tenhagen, C; Heuwieser, W
2016-06-01
The negative impact of heat stress on health and productivity of dairy cows is well known. Heat stress can be quantified with the temperature-humidity index (THI) and is defined as a THI ≥ 72. Additionally, animal welfare is affected in cows living under heat stress conditions. Finding a way to quantify heat stress in dairy cows has been of increasing interest over the past decades. Therefore, the objective of this study was to evaluate concentrations of faecal glucocorticoid metabolites [i.e. 11,17-dioxoandrostanes (11,17-DOA)] as an indirect stress parameter in dairy cows without heat stress (DOA 0), with heat stress on a single day (acute heat stress, DOA 1) or with more than a single day of heat stress (chronic heat stress, DOA 2). Cows were housed in five farms under moderate European climates. Two statistical approaches (approach 1 and approach 2) were assessed. Using approach 1, concentrations of faecal 11,17-DOA were compared among DOA 0, DOA 1 and DOA 2 samples regardless of their origin (i.e. cow, unpaired comparison with a one-way anova). Using approach 2, a cow was considered as its own control; that is 11,17-DOA was treated as a cow-specific factor and only paired samples were included in the analysis for this approach (paired comparison with t-tests). In approach 1 (p = 0.006) and approach 2 (p = 0.038), 11,17-DOA values of cows under acute heat stress were higher compared to those of cows without heat stress. Our results also indicate that acute heat stress has to be considered as a confounder in studies measuring faecal glucocorticoid metabolites in cows to evaluate other stressful situations. © 2016 Blackwell Verlag GmbH.
Elements de conception d'un systeme geothermique hybride par optimisation financiere
NASA Astrophysics Data System (ADS)
Henault, Benjamin
The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.
Thin Film Heat Flux Sensors: Design and Methodology
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Wrbanek, John D.
2013-01-01
Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.
An evaluation of a zero-heat-flux cutaneous thermometer in cardiac surgical patients.
Eshraghi, Yashar; Nasr, Vivian; Parra-Sanchez, Ivan; Van Duren, Albert; Botham, Mark; Santoscoy, Thomas; Sessler, Daniel I
2014-09-01
Although core temperature can be measured invasively, there are currently no widely available, reliable, noninvasive thermometers for its measurement. We thus compared a prototype zero-heat-flux thermometer with simultaneous measurements from a pulmonary artery catheter. Specifically, we tested the hypothesis that zero-heat-flux temperatures are sufficiently accurate for routine clinical use. Core temperature was measured from the thermistor of a standard pulmonary artery catheter and with a prototype zero-heat-flux deep-tissue thermometer in 105 patients having nonemergent cardiac surgery. Zero-heat-flux probes were positioned on the lateral forehead and lateral neck. Skin surface temperature probes were attached to the forehead just adjacent to the zero-heat-flux probe. Temperatures were recorded at 1-minute intervals, excluding the period of cardiopulmonary bypass, and for the first 4 postoperative hours. Zero-heat-flux and pulmonary artery temperatures were compared with bias analysis; differences exceeding 0.5°C were considered to be potentially clinically important. The mean duration in the operating room was 279 ± 75 minutes, and the mean cross-clamp time was 118 ± 50 minutes. All subjects were monitored for an additional 4 hours in the intensive care unit. The average overall difference between forehead zero-heat-flux and pulmonary artery temperatures (i.e., forehead minus pulmonary artery) was -0.23°C (95% limits of agreement of ±0.82); 78% of the differences were ≤0.5°C. The average intraoperative temperature difference was -0.08°C (95% limits of agreement of ±0.88); 84% of the differences were ≤0.5°C. The average postoperative difference was -0.32°C (95% limits of agreement of ±0.75); 84% of the differences were ≤0.5°C. Bias and precision values for neck site were similar to the forehead values. Uncorrected forehead skin temperature showed an increasing negative bias as core temperature decreased. Core temperature can be noninvasively measured using the zero-heat-flux method. Bias was small, but precision was slightly worse than our designated 0.5°C limits compared with measurements from a pulmonary artery catheter.
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1977-01-01
A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN
Trend of heat flow in france: relation with deep structures
NASA Astrophysics Data System (ADS)
Vasseur, Guy; Nouri, Yamina; Groupe Fluxchaf
1980-06-01
The trend of heat flow over France is discussed using both direct measurements at equilibrium in boreholes and file data. The two types of data are found to be in agreement. They exhibit high heat flow values over the Massif Central and the Vosges. An E-W cross section across the Massif Central allows us to observe the relationship between the high heat flow values, the thinning of the crust and the uprising of the asthenosphere deduced from seismic and gravity measurements. High heat flow values could be explained using a cinematic model where upward convection occurs in the upper mantle for a period of 40 m.y. with a vertical velocity reaching 5 mm/y.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier-Stokes simulations for a supersonic turbine stage.
Investigation of bubbles in arterial heat pipes
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1972-01-01
The behavior of gas occlusions in arterial heat pipes has been studied experimentally and theoretically. Specifically, the gas-liquid system properties, solubility and diffusivity, have been measured from -50 to 100 C for helium and argon in ammonia, Freon-21 (CHC12F), and methanol. Properties values obtained were then used to experimentally test models for gas venting from a heat pipe artery under isothermal conditions (i.e., no-heat flow), although the models, as developed, are also applicable to heat pipes operated at power, with some minor modifications. Preliminary calculations indicated arterial bubbles in a stagnant pipe require from minutes to days to collapse and vent. It has been found experimentally that a gas bubble entrapped within an artery structure has a very long lifetime in many credible situations. This lifetime has an approximately inverse exponential dependence on temperature, and is generally considerably longer for helium than for argon. The models postulated for venting under static conditions were in general quantitative agreement with experimental data. Factors of primary importance in governing bubble stability are artery diameter, artery wall thickness, noncondensible gas partial pressure, and the property group (the Ostwald solubility coefficient multiplied by the gas/liquid diffusivity).
Heat Capacity, Crystallization, and Nucleation in Poly(vinyl alcohol) Thin Films
NASA Astrophysics Data System (ADS)
Thomas, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph; Cebe, Peggy
Polyvinyl alcohol (PVA) is hydrophilic, biodegradable, semi-crystalline polymer with a wide array of applications ranging from textiles and packaging to medicine. Despite possessing favorable properties, PVA thermally degrades at temperatures just in excess of 200 °C which occurs slightly below the observed peak endothermic melting peak at 203 °C. Utilizing fast scanning calorimetry it is possible to minimize sample degradation allowing measurements of the liquid phase heat capacity as well as study nucleation and crystallization from the amorphous melt state. Samples cut from parent films 2-3 μm thick were placed on UFSC1 sensors and brought between -80 and 270 °C at rates of 2000 °C/s under a nitrogen atmosphere. After five complete cycles samples did not show any signs of degradation. By fitting the symmetry corrected glassy phase heat capacity with literature values for the specific heat capacity from the ATHAS databank sample masses were determined to vary between 15-50 ng. Homogeneous nucleation was observed for all samples cooled from the melt with peak temperature 123 °C. Fitting linear heat capacity baselines in the melt and glassy states it was possible to obtain an experimental measurement of the heat capacity increment 44.5 J/mol K at the glass transition 85 °C. NSF DMR-1206010.
Kolsarici, Nuray; Candoğan, Kezban
2014-01-01
In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg-1, and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg-1. Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups. PMID:26760744
Karsloğlu, Betül; Çiçek, Ümran Ensoy; Kolsarici, Nuray; Candoğan, Kezban
2014-01-01
In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg(-1), and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg(-1). Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.
Heat resistance of thermoduric enterococci isolated from milk.
McAuley, Catherine M; Gobius, Kari S; Britz, Margaret L; Craven, Heather M
2012-03-15
Enterococci are reported to survive pasteurisation but the extent of their survival is unclear. Sixty-one thermoduric enterococci isolates were selected from laboratory pasteurised milk obtained from silos in six dairy factories. The isolates were screened to determine log(10) reductions incurred after pasteurisation (63°C/30 min) and ranked from highest to lowest log(10) reduction. Two isolates each of Enterococcus faecalis, Enterococcus faecium, Enterococcus durans and Enterococcus hirae, exhibiting the median and the greatest heat resistance, as well as E. faecalis ATCC 19433, were selected for further heat resistance determinations using an immersed coil apparatus. D values were calculated from survival curves plotted from viable counts obtained after heating isolates in Brain Heart Infusion Broth at 63, 69, 72, 75 and 78°C followed by rapid cooling. At 72°C, the temperature employed for High Temperature Short Time (HTST) pasteurisation (72°C/15s), the D values extended from 0.3 min to 5.1 min, depending on the isolate and species. These data were used to calculate z values, which ranged from 5.0 to 9.8°C. The most heat sensitive isolates were E. faecalis (z values 5.0, 5.7 and 7.5°C), while the most heat resistant isolates were E. durans (z values 8.7 and 8.8°C), E. faecium (z value 9.0°C) and E. hirae (z values 8.5 and 9.8°C). The data show that heat resistance in enterococci is highly variable. Copyright © 2011 Elsevier B.V. All rights reserved.
Calvani, Mauro; Arasi, Stefania; Bianchi, Annamaria; Caimmi, Davide; Cuomo, Barbara; Dondi, Arianna; Indirli, Giovanni Cosimo; La Grutta, Stefania; Panetta, Valentina; Verga, Maria Carmen
2015-09-01
The diagnosis of IgE-mediated egg allergy lies both on a compatible clinical history and on the results of skin prick tests (SPTs) and IgEs levels. Both tests have good sensitivity but low specificity. For this reason, oral food challenge (OFC) is the ultimate gold standard for the diagnosis. The aim of this study was to systematically review the literature in order to identify, analyze, and synthesize the predictive value of SPT and specific IgEs both to egg white and to main egg allergens and to review the cutoffs suggested in the literature. A total of 37 articles were included in this systematic review. Studies were grouped according to the degree of cooking of the egg used for OFC, age, and type of allergen used to perform the allergy workup. In children <2 years, raw egg allergy seems very likely when SPTs with egg white extract are ≥4 mm or specific IgEs are ≥1.7 kUA /l. In children ≥2 years, OFC could be avoided when SPTs with egg white extract are ≥10 mm or prick by prick with egg white is ≥14 mm or specific IgE is ≥7.3 kUA /l. Likewise, heated egg allergy can be diagnosed if SPTs with egg white extract are >5 and >11 mm in children <2 and ≥2 years, respectively. Further and better-designed studies are needed to determine the remaining diagnostic cutoff of specific IgE and SPT for heated and baked egg allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aqra, Fathi; Ayyad, Ahmed
2011-09-01
An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.
A study on the dewatering of industrial waste sludge by fry-drying technology.
Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun
2009-08-30
In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum, lead, zinc, mercury, and cadmium. Most importantly, if the dried sludge is used as a solid fuel, these heavy metals can be collected from the dust collector after combustion.
NASA Astrophysics Data System (ADS)
Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin
2017-10-01
As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by inversion, enabling the prediction of the specific heat of the carbonized ablators with different constituent mass fractions by means of the weighted average method in engineering.
Spatially distinct effects of preceding precipitation on heat stress over Eastern China
NASA Astrophysics Data System (ADS)
Tang, Q.; Liu, X.; Zhang, X.; Groisman, P. Y.; Sun, S.; Lu, H.; Li, Z.
2017-12-01
In many terrestrial regions, higher than usual surface temperatures are associated with (or even are induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for human body thermal comfort. However, effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature (WBGT) and preceding 3-month precipitation was assessed over Eastern China. It is found that the probability of occurrence of the above-the-average number of hot days exceeds 0.7 after preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over Eastern China, precipitation in preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in Eastern China a few weeks ahead of its occurrence.
FAST TRACK COMMUNICATION Heat transfer between graphene and amorphous SiO2
NASA Astrophysics Data System (ADS)
Persson, B. N. J.; Ueba, H.
2010-11-01
We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives.
Mazas, M; López, M; Martínez, S; Bernardo, A; Martin, R
1999-04-01
Heat resistance of Bacillus cereus spores (ATCC 7004, 4342, and 9818) heated in different types of milk (skim, whole, and concentrated skim milk), skim milk containing stabilizing additives (sodium citrate, monopotassium phosphate, or disodium phosphate, 0.1%), and cream was investigated. Thermal resistance experiments were performed at temperatures within the range of 92 to 115 degrees C under continuous monitoring of pH. For strain 4342 no significant differences (P < 0.05) in D values were detected in any case. For strains 7004 and 9818 higher D values of about 20% were obtained in whole and concentrated skim milk than those calculated in skim milk. From all stabilizing additives tested, only sodium citrate and sodium phosphate increased the heat resistance for strain 9818. However, when the menstruum pH was measured at the treatment temperature, different pH values were found between the heating media. The differences in heat resistance observed could be due to a pH effect rather than to the difference in the substrates in which spores were heated. In contrast, when cream (fat content 20%) was used, lower D values were obtained, especially for strains 7004 and 9818. z values were not significantly modified by the milk composition, with an average z value of 7.95+/-0.20 degrees C for strain 7004, 7.88+/-0.10 degrees C for strain 4342, and 9.13+/-0.16 degrees C for strain 9818.
NASA Astrophysics Data System (ADS)
Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc
2017-03-01
Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.
Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications
Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-01-01
Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300
Gasification of agricultural residues in a demonstrative plant: corn cobs.
Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo
2014-12-01
Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Susceptibility of the Ising Model on a Kagomé Lattice by Using Wang-Landau Sampling
NASA Astrophysics Data System (ADS)
Kim, Seung-Yeon; Kwak, Wooseop
2018-03-01
The susceptibility of the Ising model on a kagomé lattice has never been obtained. We investigate the properties of the kagomé-lattice Ising model by using the Wang-Landau sampling method. We estimate both the magnetic scaling exponent yh = 1.90(1) and the thermal scaling exponent yt = 1.04(2) only from the susceptibility. From the estimated values of yh and yt, we obtain all the critical exponents, the specific-heat critical exponent α = 0.08(4), the spontaneous-magnetization critical exponent β = 0.10(1), the susceptibility critical exponent γ = 1.73(5), the isothermalmagnetization critical exponent δ = 16(4), the correlation-length critical exponent ν = 0.96(2), and the correlation-function critical exponent η = 0.20(4), without using any other thermodynamic function, such as the specific heat, magnetization, correlation length, and correlation function. One should note that the evaluation of all the critical exponents only from information on the susceptibility is an innovative approach.
Confined semiflexible polymers suppress fluctuations of soft membrane tubes.
Mirzaeifard, Sina; Abel, Steven M
2016-02-14
We use Monte Carlo computer simulations to investigate tubular membrane structures with and without semiflexible polymers confined inside. At small values of membrane bending rigidity, empty fluid and non-fluid membrane tubes exhibit markedly different behavior, with fluid membranes adopting irregular, highly fluctuating shapes and non-fluid membranes maintaining extended tube-like structures. Fluid membranes, unlike non-fluid membranes, exhibit a local maximum in specific heat as their bending rigidity increases. The peak is coincident with a transition to extended tube-like structures. We further find that confining a semiflexible polymer within a fluid membrane tube reduces the specific heat of the membrane, which is a consequence of suppressed membrane shape fluctuations. Polymers with a sufficiently large persistence length can significantly deform the membrane tube, with long polymers leading to localized bulges in the membrane that accommodate regions in which the polymer forms loops. Analytical calculations of the energies of idealized polymer-membrane configurations provide additional insight into the formation of polymer-induced membrane deformations.
Quantum oscillations in the heavy-fermion compound YbPtBi
Mun, E.; Bud'ko, S. L.; Lee, Y.; ...
2015-08-01
We present quantum oscillations observed in the heavy-fermion compound YbPtBi in magnetic fields far beyond its field-tuned, quantum critical point. Quantum oscillations are observed in magnetic fields as low as 60 kOe at 60 mK and up to temperatures as high as 3 K, which confirms the very high quality of the samples as well as the small effective mass of the conduction carriers far from the quantum critical point. Although the electronic specific heat coefficient of YbPtBi reaches ~7.4 J/molK 2 in zero field, which is one of the highest effective mass values among heavy-fermion systems, we suppress itmore » quickly by an applied magnetic field. The quantum oscillations were used to extract the quasiparticle effective masses of the order of the bare electron mass, which is consistent with the behavior observed in specific heat measurements. Furthermore, such small effective masses at high fields can be understood by considering the suppression of Kondo screening.« less
NASA Astrophysics Data System (ADS)
Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar
2016-04-01
Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.
Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J
2016-08-01
Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.
Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia
Talaat, A.; Alonso, J.; Zhukova, V.; ...
2016-12-01
The heating properties of Fe 71.7Si 11B 13.4Nb 3Ni 0.9 amorphous glass-coated microwires are explored for prospective applications in magnetic hyperthermia. We show that a single 5 mm long wire is able to produce a sufficient amount of heat, with the specific loss power (SLP) reaching a value as high as 521 W/g for an AC field of 700 Oe and a frequency of 310 kHz. The large SLP is attributed to the rectangular hysteresis loop resulting from a peculiar domain structure of the microwire. For an array of parallel microwires, we have observed an SLP improvement by one ordermore » of magnitude; 950 W/g for an AC field of 700 Oe. The magnetostatic interaction strength essential in the array of wires can be manipulated by varying the distance between the wires, showing a decreasing trend in SLP with increasing wire separation. The largest SLP is obtained when the wires are aligned along the direction of the AC field. The origin of the large SLP and relevant heating mechanisms are discussed.« less
Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Talaat, A.; Alonso, J.; Zhukova, V.; Garaio, E.; García, J. A.; Srikanth, H.; Phan, M. H.; Zhukov, A.
2016-12-01
The heating properties of Fe71.7Si11B13.4Nb3Ni0.9 amorphous glass-coated microwires are explored for prospective applications in magnetic hyperthermia. We show that a single 5 mm long wire is able to produce a sufficient amount of heat, with the specific loss power (SLP) reaching a value as high as 521 W/g for an AC field of 700 Oe and a frequency of 310 kHz. The large SLP is attributed to the rectangular hysteresis loop resulting from a peculiar domain structure of the microwire. For an array of parallel microwires, we have observed an SLP improvement by one order of magnitude; 950 W/g for an AC field of 700 Oe. The magnetostatic interaction strength essential in the array of wires can be manipulated by varying the distance between the wires, showing a decreasing trend in SLP with increasing wire separation. The largest SLP is obtained when the wires are aligned along the direction of the AC field. The origin of the large SLP and relevant heating mechanisms are discussed.
Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talaat, A.; Alonso, J.; Zhukova, V.
The heating properties of Fe 71.7Si 11B 13.4Nb 3Ni 0.9 amorphous glass-coated microwires are explored for prospective applications in magnetic hyperthermia. We show that a single 5 mm long wire is able to produce a sufficient amount of heat, with the specific loss power (SLP) reaching a value as high as 521 W/g for an AC field of 700 Oe and a frequency of 310 kHz. The large SLP is attributed to the rectangular hysteresis loop resulting from a peculiar domain structure of the microwire. For an array of parallel microwires, we have observed an SLP improvement by one ordermore » of magnitude; 950 W/g for an AC field of 700 Oe. The magnetostatic interaction strength essential in the array of wires can be manipulated by varying the distance between the wires, showing a decreasing trend in SLP with increasing wire separation. The largest SLP is obtained when the wires are aligned along the direction of the AC field. The origin of the large SLP and relevant heating mechanisms are discussed.« less
Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia
Talaat, A.; Alonso, J.; Zhukova, V.; Garaio, E.; García, J. A.; Srikanth, H.; Phan, M. H.; Zhukov, A.
2016-01-01
The heating properties of Fe71.7Si11B13.4Nb3Ni0.9 amorphous glass-coated microwires are explored for prospective applications in magnetic hyperthermia. We show that a single 5 mm long wire is able to produce a sufficient amount of heat, with the specific loss power (SLP) reaching a value as high as 521 W/g for an AC field of 700 Oe and a frequency of 310 kHz. The large SLP is attributed to the rectangular hysteresis loop resulting from a peculiar domain structure of the microwire. For an array of parallel microwires, we have observed an SLP improvement by one order of magnitude; 950 W/g for an AC field of 700 Oe. The magnetostatic interaction strength essential in the array of wires can be manipulated by varying the distance between the wires, showing a decreasing trend in SLP with increasing wire separation. The largest SLP is obtained when the wires are aligned along the direction of the AC field. The origin of the large SLP and relevant heating mechanisms are discussed. PMID:27991557
Finite element analysis of heat load of tungsten relevant to ITER conditions
NASA Astrophysics Data System (ADS)
Zinovev, A.; Terentyev, D.; Delannay, L.
2017-12-01
A computational procedure is proposed in order to predict the initiation of intergranular cracks in tungsten with ITER specification microstructure (i.e. characterised by elongated micrometre-sized grains). Damage is caused by a cyclic heat load, which emerges from plasma instabilities during operation of thermonuclear devices. First, a macroscopic thermo-mechanical simulation is performed in order to obtain temperature- and strain field in the material. The strain path is recorded at a selected point of interest of the macroscopic specimen, and is then applied at the microscopic level to a finite element mesh of a polycrystal. In the microscopic simulation, the stress state at the grain boundaries serves as the marker of cracking initiation. The simulated heat load cycle is a representative of edge-localized modes, which are anticipated during normal operations of ITER. Normal stresses at the grain boundary interfaces were shown to strongly depend on the direction of grain orientation with respect to the heat flux direction and to attain higher values if the flux is perpendicular to the elongated grains, where it apparently promotes crack initiation.
Detecting Thermal Cloaks via Transient Effects
Sklan, Sophia R.; Bai, Xue; Li, Baowen; Zhang, Xiang
2016-01-01
Recent research on the development of a thermal cloak has concentrated on engineering an inhomogeneous thermal conductivity and an approximate, homogeneous volumetric heat capacity. While the perfect cloak of inhomogeneous κ and inhomogeneous ρcp is known to be exact (no signals scattering and only mean values penetrating to the cloak’s interior), the sensitivity of diffusive cloaks to defects and approximations has not been analyzed. We analytically demonstrate that these approximate cloaks are detectable. Although they work as perfect cloaks in the steady-state, their transient (time-dependent) response is imperfect and a small amount of heat is scattered. This is sufficient to determine the presence of a cloak and any heat source it contains, but the material composition hidden within the cloak is not detectable in practice. To demonstrate the feasibility of this technique, we constructed a cloak with similar approximation and directly detected its presence using these transient temperature deviations outside the cloak. Due to limitations in the range of experimentally accessible volumetric specific heats, our detection scheme should allow us to find any realizable cloak, assuming a sufficiently large temperature difference. PMID:27605153
Wake Flow About the Mars Pathfinder Entry Vehicle
NASA Technical Reports Server (NTRS)
Mitcheltree, R. A.; Gnoffo, P. A.
1995-01-01
A computational approach is used to describe the aerothermodynamics of the Mars Pathfinder vehicle entering the Mars atmosphere at the maximum heating and maximum deceleration points in its trajectory. Ablating and nonablating boundary conditions are developed which produce maximum recombination of CO2 on the surface. For the maximum heating trajectory point, an axisymmetric, nonablating calculation predicts a stagnation-point value for the convective heating of 115 W/cm(exp 2). Radiative heating estimates predict an additional 5-12 W/cm(exp 2) at the stagnation point. Peak convective heating on the afterbody occurs on the vehicle's flat stern with a value of 5.9% of the stagnation value. The forebody flow exhibits chemical nonequilibrium behavior, and the flow is frozen in the near wake. Including ablation injection on the forebody lowers the stagnation-point convective heating 18%.
2014-04-11
Fig. 9(a) and (b). In addition, the temperature dependencies of the true and room-temperature-based mean values of the linear thermal expansion ...Variation of (a) thermal conductivity, (b) specific heat, (c) true linear thermal expansion coefficient, and (d) room-temperature-based mean thermal ...defined as follows: (a) alloy-grade and thermal -mechanical treatment of the workpiece materials to be joined, (b) frequency of reciprocating motion
Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.
1986-02-01
34 9 Sublimation Rates vs. Temperature for Typical Electrode Materials 65 10 Time to Reach Melting vs. Surface Heat Load (One-Dimensional, Large Area...Approx.) for Different Electrode Materials and Initial Temperatures 75 V LIST OF TABLES TABLE PAGE I Models of Thruster Types (with approximation (1...much higher specific impulse values than the minimum must be achieved in order to obtain acceptable effi- Sciencies , e.g. for 30% efficiency with argon
On two special values of temperature factor in hypersonic flow stagnation point
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2018-03-01
The hypersonic aircraft permeable cylindrical and spherical surfaces laminar boundary layer heat and mass transfer control mathematical model properties are investigated. The nonlinear algebraic equations systems are obtained for two special values of temperature factor in the hypersonic flow stagnation point. The mappings bijectivity between heat and mass transfer local parameters and controls is established. The computation experiments results are presented: the domains of allowed values “heat-friction” are obtained.
Modeling of sheet metal fracture via cohesive zone model and application to spot welds
NASA Astrophysics Data System (ADS)
Wu, Joseph Z.
Even though the cohesive zone model (CZM) has been widely used to analyze ductile fracture, it is not yet clearly understood how to calibrate the cohesive parameters including the specific work of separation (the work of separation per unit crack area) and the peak stress. A systematic approach is presented to first determine the cohesive values for sheet metal and then apply the calibrated model to various structure problems including the failure of spot welds. Al5754-0 was chosen for this study since it is not sensitive to heat treatment so the effect of heat-affected-zone (HAZ) can be ignored. The CZM has been applied to successfully model both mode-I and mode-III fracture for various geometries including Kahn specimens, single-notch specimens, and deep double-notch specimens for mode-I and trouser specimens for mode-III. The mode-I fracture of coach-peel spot-weld nugget and the mixed-mode fracture of nugget pull-out have also been well simulated by the CZM. Using the mode-I average specific work of separation of 13 kJ/m2 identified in a previous work and the mode-III specific work of separation of 38 kJ/m 2 found in this thesis, the cohesive peak stress has been determined to range from 285 MPa to 600 MPa for mode-I and from 165 MPa to 280 MPa for mode-III, depending on the degree of plastic deformation. The uncertainty of these cohesive values has also been examined. It is concluded that, if the specific work of separation is a material constant, the peak stress changes with the degree of plastic deformation and is therefore geometry-dependent.
Dry-heat resistance of selected psychrophiles. [Viking lander in spacecraft sterilization
NASA Technical Reports Server (NTRS)
Winans, L.; Pflug, I. J.; Foster, T. L.
1977-01-01
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 C with an ambient relative humidity of 50% at 22 C. The spores evaluated had a relatively low resistance to dry heat. D (110 C) values ranged from 7.5 to 122 min, whereas the D (125 C) values ranged from less than 1.0 to 9.8 min.
Heat flow from eastern Panama and northwestern Colombia
Sass, J.H.; Munroe, R.J.; Moses, T.H.
1974-01-01
Heat flows were determined at 12 sites in four distinct areas between longitude 77?? and 80??W in eastern Panama and northwestern Colombia. Evidently, most of the region is underlain by mafic oceanic crust so that the crustal radiogenic component of heat flow is very small (??? 0.1 ??cal cm-2 sec-1). Low heat-flow values (??? 0.7 ??cal cm-2 sec-1) in northwestern Colombia may reflect thermal transients associated with shallow subduction. The normal values (??? 1) at about 78??W are consistent with the mean heat flow from the western Caribbean and the Gulf of Mexico. At 80??W, a fairly high value of 1.8 may define the easterly limit of thermal transients due to Cenozoic volcanic activity in Central America. ?? 1974.
Dry-heat resistance of selected psychrophiles.
Winans, L; Pflug, I J; Foster, T L
1977-01-01
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min. PMID:410367
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...
3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria
NASA Astrophysics Data System (ADS)
Rock, Gerhard; Kupfersberger, Hans
2018-02-01
For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.
An analysis of heat effects in different subpopulations of Bangladesh
NASA Astrophysics Data System (ADS)
Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md. Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried
2014-03-01
A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.
Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model
NASA Astrophysics Data System (ADS)
Allen, Michael J.; Sheridan, Scott C.
2018-01-01
This study investigates the relationship between all-cause mortality and extreme temperature events (ETEs) from 1975 to 2004. For 50 U.S. locations, these heat and cold events were defined based on location-specific thresholds of daily mean apparent temperature. Heat days were defined by a 3-day mean apparent temperature greater than the 95th percentile while extreme heat days were greater than the 97.5th percentile. Similarly, calculations for cold and extreme cold days relied upon the 5th and 2.5th percentiles. A distributed lag non-linear model assessed the relationship between mortality and ETEs for a cumulative 14-day period following exposure. Subsets for season and duration effect denote the differences between early- and late-season as well as short and long ETEs. While longer-lasting heat days resulted in elevated mortality, early season events also impacted mortality outcomes. Over the course of the summer season, heat-related risk decreased, though prolonged heat days still had a greater influence on mortality. Unlike heat, cold-related risk was greatest in more southerly locations. Risk was highest for early season cold events and decreased over the course of the winter season. Statistically, short episodes of cold showed the highest relative risk, suggesting unsettled weather conditions may have some relationship to cold-related mortality. For both heat and cold, results indicate higher risk to the more extreme thresholds. Risk values provide further insight into the role of adaptation, geographical variability, and acclimatization with respect to ETEs.
Masyagina, O V; Tokareva, I V; Prokushkin, A S
2016-12-15
Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500°C) used for imitation of different burn intensities. Burning at 150-200°C resulted in decreasing of soil pH, whilst heating at 300-500°C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200°C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500°C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150°C and 300-400°C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation. Copyright © 2016 Elsevier B.V. All rights reserved.
Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip
2015-12-21
A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
Currently the actual problem is a precise definition of the normative and actual heat loss. Existing methods - experimental, on metering devices, on the basis of mathematical modeling methods are not without drawbacks. Heat losses establishing during the heat carrier transport has an impact on the tariff structure of heat supply organizations. This quantity determination also promotes proper choice of main and auxiliary equipment power, temperature chart of heat supply networks, as well as the heating system structure choice with the decentralization. Calculation of actual heat loss and their comparison with standard values justifies the performance of works on improvement of the heat networks with the replacement of piping or its insulation. To determine the cause of discrepancies between normative and actual heat losses thermal tests on the magnitude of the actual heat losses in the 124 sections of heat networks in Kazan. As were carried out the result mathematical model of the regulatory definition of heat losses is developed and tested. This model differ from differs the existing according the piping insulation type. The application of this factor will bring the value of calculative normative losses heat energy to their actual value. It is of great importance for enterprises operating distribution networks and because of the conditions of their configuration and extensions do not have the technical ability to produce thermal testing.
Present-day heat flow model of Mars
Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier
2017-01-01
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic. PMID:28367996
On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls
NASA Astrophysics Data System (ADS)
Bilchenko, Grigory; Bilchenko, Nataly
2018-05-01
The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.
Age-velocity dispersion relations and heating histories in disc galaxies
NASA Astrophysics Data System (ADS)
Aumer, Michael; Binney, James; Schönrich, Ralph
2016-10-01
We analyse the heating of stellar discs by non-axisymmetric structures and giant molecular clouds (GMCs) in N-body simulations of growing disc galaxies. The analysis resolves long-standing discrepancies between models and data by demonstrating the importance of distinguishing between measured age-velocity dispersion relations (AVRs) and the heating histories of the stars that make up the AVR. We fit both AVRs and heating histories with formulae ∝tβ and determine the exponents βR and βz derived from in-plane and vertical AVRs and tilde{β }_R and tilde{β }_z from heating histories. Values of βz are in almost all simulations larger than values of tilde{β }_z, whereas values of βR are similar to or mildly larger than values of tilde{β }_R. Moreover, values of βz (tilde{β }_z) are generally larger than values of βR (tilde{β }_R). The dominant cause of these relations is the decline over the life of the disc in importance of GMCs as heating agents relative to spiral structure and the bar. We examine how age errors and biases in solar neighbourhood surveys influence the measured AVR: they tend to decrease β values by smearing out ages and thus measured dispersions. We compare AVRs and velocity ellipsoid shapes σz/σR from simulations to solar neighbourhood data. We conclude that for the expected disc mass and dark halo structure, combined GMC and spiral/bar heating can explain the AVR of the Galactic thin disc. Strong departures of the disc mass or the dark halo structure from expectation spoil fits to the data.
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.
NASA Astrophysics Data System (ADS)
Jones, F. W.; Majorowicz, J. A.
Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.
Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation
NASA Technical Reports Server (NTRS)
Novick, A. S.; Troth, D. L.
1982-01-01
The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.
Thermal Desorption Analysis of Effective Specific Soil Surface Area
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.
2017-12-01
A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.
Effect of surface hydroxyl groups on heat capacity of mesoporous silica
NASA Astrophysics Data System (ADS)
Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent
2018-05-01
This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.
Evaluation of generalized heat-transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Evaluation of generalized heat transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Leukocyte glutamate dehydrogenase activity in patients with degenerative neurological disorders.
Aubby, D; Saggu, H K; Jenner, P; Quinn, N P; Harding, A E; Marsden, C D
1988-01-01
Leukocyte glutamate dehydrogenase (GDH) activity was measured in 39 normal subjects, 32 neurological controls, 66 patients with progressive ataxic disorders, 32 with multiple system atrophy, 40 with Parkinson's disease, eight with Steele-Richardson-Olszewski syndrome, eight with juvenile Parkinsonism and four with the dystonia-Parkinsonism syndrome. GDH activity was reproducible to within 10% in leukocyte pellets stored at -70 degrees C for up to 9 months, and did not vary with sex or age in control subjects. There was marked variation in the relative proportions of heat stable and heat labile forms of GDH between control subjects and on repeated assay in the same subject. Total leukocyte GDH activity was similar in normal subjects and neurological controls. Mean total GDH activity was reduced in all patient groups by between 15 to 29% compared with controls. Fourteen patients had total GDH activity below 50% of the control mean, but low values were not specific for any one disease (five had ataxic disorders, four Parkinson's disease, three multiple system atrophy, one juvenile Parkinsonism, and one dystonia-Parkinsonism). The heat labile fraction of GDH represented about 20% of total activity in control subjects, and 27% in the patients with reduced total GDH activity. Thus low GDH activity was not disease-specific in this study, and the heat-labile GDH fraction was not selectively affected. "Reduced" leucocyte GDH activity in some patients may represent no more than the lower end of a normal distribution. PMID:3204397
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-01-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599
NASA Astrophysics Data System (ADS)
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-08-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
Transient boiling in two-phase helium natural circulation loops
NASA Astrophysics Data System (ADS)
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2014-01-01
Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.
Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas
2017-10-01
A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, B.; Kim, Y. S.; Hofman, G. L.
2011-05-23
This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections presentmore » the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.« less
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
NASA Astrophysics Data System (ADS)
Buonomo, B.; Diana, A.; Manca, O.; Nardini, S.
2017-11-01
Natural convection gets a great attention for its importance in many thermal engineering applications, such as cooling of electronic components and devices, chemical vapor deposition systems and solar energy systems. In this work, a numerical investigation on steady state natural convection in a horizontal channel partially filled with a porous medium and heated at uniform heat flux from above is carried out. A three-dimensional model is realized and solved by means of the ANSYS-FLUENT code. The computational domain is made up of the principal channel and two lateral extended reservoirs at the open vertical sections. Furthermore, a porous plate is considered near the upper heated plate and the aluminium foam has different values of PPI. The numerical simulations are performed with working fluid air. Different values of assigned wall heat flux at top surface are considered and the configuration of the channel partially filled with metal foam is compared to the configuration without foam. Results are presented in terms of velocity and temperature fields, and both temperature and velocity profiles at different significant sections are shown. Results show that the use of metal foams, with low values of PPI, promotes the cooling of the heated wall and it causes a reduction of Nusselt Number values with high values of PPI.
Rosene, J M; Matthews, T D; Mcbride, K J; Galla, A; Haun, M; Mcdonald, K; Gagne, N; Lea, J; Kasen, J; Farias, C
2015-12-01
The purpose of this investigation was to determine the effects of 3 d of creatine supplementation on thermoregulation and isokinetic muscular performance. Fourteen males performed two exercise bouts following 3 d of creatine supplementation and placebo. Subjects exercised for 60 min at 60-65% of VO2max in the heat followed by isokinetic muscular performance at 60, 180, and 300°·s(-1). Dependent variables for pre- and postexercise included nude body weight, urine specific gravity, and serum creatinine levels. Total body water, extracellular water and intracellular water were measured pre-exercise. Core temperature was assessed every 5 min during exercise. Peak torque and Fatigue Index were used to assess isokinetic muscular performance. Core temperature increased during the run for both conditions. Total body water and extracellular water were significantly greater (P<0.05) following creatine supplementation. No significant difference (P>0.05) was found between conditions for intracellular water, nude body weight, urine specific gravity, and serum creatinine. Pre-exercise scores for urine specific gravity and serum creatinine were significantly less (P<0.05) versus post-exercise. No significant differences (P>0.05) were found in peak torque values or Fatigue Index between conditions for each velocity. A significant (P<0.05) overall velocity effect was found for both flexion and extension. As velocity increased, mean peak torque values decreased. Three d of creatine supplementation does not affect thermoregulation during submaximal exercise in the heat and is not enough to elicit an ergogenic effect for isokinetic muscle performance following endurance activity.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion
NASA Technical Reports Server (NTRS)
Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.
1972-01-01
On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.
Bulk Properties of Ni3Al(gamma') With Cu and Au Additions
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1995-01-01
The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.
Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe 2Ge 2
Kim, H.; Ran, S.; Mun, E. D.; ...
2015-02-05
In this study, we investigated the occurrence and nature of superconductivity in single crystals of YFe 2Ge 2 grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as ~60, by decanting the crystals from the molten Sn at ~350°C and/or by annealing at temperatures between 550°C and 600°C. We found that the samples with RRR ≳ 34 showed resistive signatures of superconductivity with the onset of the superconducting transition T c ≈ 1.4K. RRR values varymore » between 35 and 65 with, on average, no systematic change in value T c, indicating that the systematic changes in RRR do not lead to comparable changes in T c. Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed YFe 2Ge 2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques.« less
NASA Astrophysics Data System (ADS)
Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.
2005-11-01
Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.
Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys
NASA Astrophysics Data System (ADS)
Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.
2018-05-01
Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.
Electronic and magnetic properties of quasi-skutterudite PrCo2Ga8 compound
NASA Astrophysics Data System (ADS)
Ogunbunmi, Michael O.; Sondezi, Buyisiwe M.; Nair, Harikrishnan S.; Strydom, André M.
2018-05-01
PrCo2Ga8 is an orthorhombic quasi-skutterudite type compound which crystallizes in the CaCo2Al8 structure type, with space group Pbam (No. 55). The Pr3+ ion has a site symmetry of Cs which predicts a crystal electric field (CEF) level splitting into 9 singlets for J = 4. However, a phase transition at Tm = 1.28 K is observed in electrical resistivity and specific heat results and is reported in this paper. The electrical resistivity shows an upturn below Tm due to the superzone-gap formation. This transition is tuneable in fields and is suppressed to lower temperatures with applied magnetic fields. The electronic specific heat Cp(T) / T increases below Tm and reaches a value of 7.37 J/(mol K2) at 0.4 K. The Sommerfeld coefficient, γ extracted from the low temperature analysis of C4f(T) / T is 637 mJ/(mol K2) indicating a possible mass enhancement of the quasiparticles. The calculated entropy value of 3.05 J/(mol K) is recovered around Tm exhibiting almost 53% of Rln2, where R is the universal gas constant. Magnetic susceptibility results obeys the Curie-Weiss law for data above 100 K with an estimated effective magnetic moment, μeff = 3.37 μB/Pr and Weiss temperature, θp = -124 K.
Microwave-induced increase of water and conductivity in submaxillary salivary gland of rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikolajczyk, H.
Hypersalivation is an important mechanism for heat dissipation by animals without sweat glands. The water content and conductivity (at 20 kHz) in submaxillary salivary glands (SSG) and in other tissues were investigated in adult male rats exposed to microwaves (2880 MHz, 1.5 microsecond pulses at 1000 Hz) or to conventional heat at 40 degrees C. Eighty rats in one series were exposed, one at a time, for 30 min to microwaves producing a specific absorption rate (SAR) of 4.2, 6.3, 6.8, 8.4, 10.8 or 12.6 W/kg. Fifty rats were sham-exposed under similar environmental conditions. In the second series, ten ratsmore » were sham-exposed, 33 rats were exposed one at time, for 15, 30 or 60 min to microwaves at a SAR of 9.5 W/kg, and 32 rats were exposed for similar periods to conventional heat at 40 degrees C. In rats of the first series colonic temperatures were elevated significantly at a SAR of 4.2 W/kg, while SSG water content and conductivity increased significantly at SAR values of 6.3 W/kg and higher. In the second series of experiments increases in colonic temperature and SSG water content were greater after 15 and 30 min of microwave exposure than after exposure to heat. Also, SSG conductivity was significantly depressed by heat and significantly increased by microwaves after exposure for 15 or 30 min. The results support the hypothesis that water content and conductivity of SSG of rats can be used as a sensitive specific test of a microwave induced thermal response.« less
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical
NASA Astrophysics Data System (ADS)
Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.
2017-12-01
The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.
On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas
NASA Astrophysics Data System (ADS)
Meisner, G. P.
2013-03-01
The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
NASA Astrophysics Data System (ADS)
Askalany, Ahmed A.; Saha, Bidyut B.
2017-01-01
This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.
Synthesis, Characterization, and Thermal Behavior of Ni3(PO4)2·8H2O·Na3PO4·3.5H2O·0.75Na2SO4
NASA Astrophysics Data System (ADS)
Swain, Trilochan; Brahma, Gouri Sankhar
2018-02-01
A mixture of anhydrous sodium sulfate, hydrated nickel phosphate, and sodium phosphate has been synthesized and various techniques used to characterize it. Differential scanning calorimetry was used to investigate the thermal properties in both O2 and N2 atmosphere at rate of 10 K min-1. The specific heat capacity was calculated from 298 K to 573 K and vice versa in two thermal cycles in both atmospheres, revealing values of 18,931.64 J kg-1 K-1 in O2 atmosphere and 15,568.39 J kg-1 K-1 in N2 atmosphere in the second thermal cycle, being exothermic in nature in both cases. This exothermic behavior of the mixture indicates its potential use as a heat-dissipating material. The crystallite size of this inorganic heat-dissipating mixture was found to be 22.9 nm.
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bang, Jihyun; Choi, Moonkak; Jeong, Haeseok; Lee, Sangseob; Kim, Yoonbin; Ryu, Jee-Hoon; Kim, Hoikyung
2017-07-01
Food-grade galactooligosaccharide (GOS) with low water activity (a w of ca. 0.7) is used as an ingredient in various foods. We evaluated heat tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici at temperatures (70 to 85°C) used during the saturation process of GOS by comparing decimal reduction time (D-values) and thermal resistance constants (z-values). To determine the D- and z-values, GOS containing Salmonella (5.1 to 5.8 log CFU/g) or C. sakazakii (5.3 to 5.9 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 40, 25, or 15 s, respectively, and GOS containing P. acidilactici (6.1 to 6.5 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 150, 75, or 40 s, respectively. The D-values were calculated using a linear model for heating time versus microbial population for each bacterium. When the D-values for Salmonella, C. sakazakii, and P. acidilactici in GOS were compared, the thermal resistance of all bacteria decreased as the temperature increased. Among the three bacteria, P. acidilactici had higher D-values than did Salmonella and C. sakazakii. The z-values of Salmonella, C. sakazakii, and P. acidilactici were 30.10, 33.18, and 13.04°C, respectively. Overall order of thermal resistance was P. acidilactici > Salmonella ≈ C. sakazakii. These results will be useful for selecting appropriate heat treatment conditions for the decontamination of pathogenic microorganisms during GOS manufacturing.
Energy balance studies and plasma catecholamine values for patients with healed burns.
Wallace, B H; Cone, J B; Caldwell, F T
1991-01-01
We report heat balance studies and plasma catecholamine values for 49 children and young adults with healed burn wounds (age range 0.6 to 31 years and burn range 1% to 82% body surface area burned; mean 41%). All measurements were made during the week of discharge. Heat production for patients with healed burns was not significantly different from predicted normal values. However, compartmented heat loss demonstrated a persistent increment in evaporative heat loss that was secondary to continued elevation of cutaneous water vapor loss immediately after wound closure. A reciprocal decrement in dry heat loss was demonstrated (as a result of a cooler average surface temperature, 0.84 degree C cooler than the average integrated skin temperature of five normal volunteers who were studied in our unit under similar environmental conditions). Mean values for plasma catecholamines were in the normal range: epinephrine = 56 +/- 37 pg/ml, norepinephrine = 385 +/- 220 pg/ml, and dopamine = 34 +/- 29 pg/ml. In conclusion, patients with freshly healed burn wounds have normal rates of heat production; however, there is a residual increment in transcutaneous water vapor loss, which produces surface cooling and decreased average surface temperature, which in turn lowers dry heat loss by an approximately equivalent amount.
Characterization of a mine fire using atmospheric monitoring system sensor data.
Yuan, L; Thomas, R A; Zhou, L
2017-06-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.
Topological effects on the mechanical properties of polymer knots
NASA Astrophysics Data System (ADS)
Zhao, Yani; Ferrari, Franco
2017-11-01
The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.
Modeling and impacts of the latent heat of phase change and specific heat for phase change materials
NASA Astrophysics Data System (ADS)
Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.
2018-05-01
We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
Power control of SAFE reactor using fuzzy logic
NASA Astrophysics Data System (ADS)
Irvine, Claude
2002-01-01
Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .
Spatially distinct effects of preceding precipitation on heat stress over eastern China
NASA Astrophysics Data System (ADS)
Liu, Xingcai; Tang, Qiuhong; Zhang, Xuejun; Groisman, Pavel; Sun, Siao; Lu, Hui; Li, Zhe
2017-11-01
In many terrestrial regions, higher than usual surface temperatures are associated with (or are even induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for bodily thermal comfort. However, the effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature and the preceding three months of precipitation was assessed over eastern China. It is found that the probability of occurrence of above the average number of hot days exceeds 0.7 after a preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over eastern China, the precipitation in the preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for the increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in eastern China a few weeks ahead of its occurrence.
NASA Astrophysics Data System (ADS)
Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj
2016-08-01
A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.
Combustion of coal gas fuels in a staged combustor
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.
1982-01-01
Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.
NASA Astrophysics Data System (ADS)
Greffrath, Fabian; Prieler, Robert; Telle, Rainer
2014-11-01
A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.
Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.
Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin
2015-11-03
We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.
Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating
Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin
2015-01-01
We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kincs, J.; Cho, J.; Bloyer, D.
1994-09-01
The T{sub g}`s and heat capacity functions have been measured for a series of Na{sub 2}S + B{sub 2}S{sub 3} glasses for the first time. Unlike the alkali borates, T{sub g} decreases rapidly as Na{sub 2}S is added to B{sub 2}S{sub 3}. This effect, even in the presence of a rapidly increasing fraction of tetrahedrally coordinated borons, has been associated with the ``over crosslinking`` effect of the sulfide ion. Unlike the borate glasses where each added oxygen produces two tetrahedral borons, the conversion rate for the thioborates is between four and six. This behavior is suggested to result in themore » formation of local tightly-bonded molecular-like structures that exhibit less long-range network bonding than the alkali borite glasses. A a result, T{sub g} decreases with added alkali in alkali thioborates rather than increases as in the alkali borate glasses. The change in heat capacity at T{sub g}, {Delta}C{sub p}(T{sub g}) has been carefully measured and is found to also decrease dramatically as alkali sulfide is added to the glass. Again this effect is opposite to the trends observed for the alkali borate glasses. The decreasing {Delta}C{sub p}(T{sub g}) occurs even in the presence of a decreasing T{sub g}. The authors have tentatively associated the diminishing {Delta}C{sub p}(T{sub g}) values to the decreasing density of the configurational states above T{sub g}. This is attributed to the high coordination number and site specificity caused by the added alkali sulfide. The glassy state heat capacities were analyzed and found to reach {approximately}90% of the classical limiting DuLong-Petit value just below T{sub g} for all glasses. This was used to suggest that the diminishing {Delta}C{sub p}(T{sub g}) values are associated with a unique behavior in the system to become a liquid with very little change in the density of configurational states.« less
Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism.
Whittington, Alan G; Hofmeister, Anne M; Nabelek, Peter I
2009-03-19
The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation.
NASA Technical Reports Server (NTRS)
Winter, E. R. F.; Schoenhals, R. J.; Haug, R. I.; Libby, T. L.; Nelson, R. N.; Stevenson, W. H.
1968-01-01
The stratification behavior of a contained fluid subjected to transient free convection heat transfer was studied. A rectangular vessel was employed with heat transfer from two opposite walls of the vessel to the fluid. The wall temperature was increased suddenly to initiate the process and was then maintained constant throughout the transient stratification period. Thermocouples were positioned on a post at the center of the vessel. They were adjusted so that temperatures could be measured at the fluid surface and at specific depths beneath the surface. The predicted values of the surface temperature and the stratified layer thickness were found to agree reasonably well with the experimental measurements. The experiments also provided information on the transient centerline temperature distribution and the transient flow distribution.
Malik, V.; Goodwill, J.; Mallapragada, S.; ...
2014-11-13
The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less
Development of an intelligent system for cooling rate and fill control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-09-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-01-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
A novel approach for detecting heat waves: the Standardized Heat-Wave Index.
NASA Astrophysics Data System (ADS)
Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro
2016-04-01
Extreme temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. The ability to capture the occurrence of extreme temperature events is therefore an essential property of a multi-hazard extreme climate indicator. In this paper we introduce a new index for the detection of such extreme temperature events called SHI (Standardized Heat-Wave Index), developed in the context of XCF project for the construction of a multi-hazard extreme climate indicator (ECI). SHI is a probabilistic index based on the analysis of maximum daily temperatures time series; it is standardized, enabling comparisons overs space/time and with other indices, and it is capable of describing both extreme cold and hot events. Given a particular location, SHI is constructed using the time series of local maximum daily temperatures with the following procedure: three-days cumulated maximum daily temperatures are assigned to each day of the time series; probabilities of occurrence in the same months the reference days belong to are computed for each of the previous calculated values; such probability values are thus projected on a standard normal distribution, obtaining our standardized indices. In this work we present results obtained using NCEP Reanalysis dataset for air temperature at sigma 0.995 level, which timespan ranges from 1948 to 2014. Given the specific framework of this work, the geographical focus of this study is limited to the African continent. We present a validation of the index by showing its use for monitoring heat-waves under different climate regimes.
Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O
2017-09-15
We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.
Dehghan, Habibolah; Mortazavi, Seyed Bagher; Jafari, Mohammad J; Maracy, Mohammad R
2012-12-01
Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT), Heart Rate Monitor (Polar RS100), and Personal Heat Strain Monitor (Questemp II), respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. The mean (SD) of WBGT values was 33.1 (2.7). The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH) standard (30°C) in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain) in 11% of workstations. The correlation between WBGT and PSI values was 0.61 (P = 0.001). When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain) and 5.2 (moderate strain), respectively. In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases) and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index.
Dehghan, Habibolah; Mortazavi, Seyed Bagher; Jafari, Mohammad J.; Maracy, Mohammad R.
2012-01-01
Background: Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. Material and Methods: This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT), Heart Rate Monitor (Polar RS100), and Personal Heat Strain Monitor (Questemp II), respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. Results: The mean (SD) of WBGT values was 33.1 (2.7). The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH) standard (30°C) in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain) in 11% of workstations. The correlation between WBGT and PSI values was 0.61 (P = 0.001). When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain) and 5.2 (moderate strain), respectively. Conclusion: In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases) and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index. PMID:23853626
On the use of photothermal techniques for the characterization of solar-selective coatings
NASA Astrophysics Data System (ADS)
Ramírez-Rincón, J. A.; Ares-Muzio, O.; Macias, J. D.; Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Oskam, G.; Alvarado-Gil, J. J.
2018-03-01
The efficiency of the conversion of solar energy into thermal energy is determined by the optical and thermal properties of the selective coating, in particular, the solar absorptance and thermal emittance at the desired temperature of the specific application. Photothermal techniques are the most appropriate methods to explore these properties, however, a quantitative determination using photothermal radiometry, which is based on the measurement of emitted radiation caused by the heating generated by a modulated light source, has proven to be elusive. In this work, we present experimental results for selective coatings based on electrodeposited black nickel-nickel on both stainless steel and copper substrates, as well as for commercial TiNOX coatings on aluminum, illustrating that the radiation emitted by the surface depends on the optical absorption, thermal emissivity and on the light-into-heat energy conversion efficiency (quantum efficiency). We show that a combination of photothermal radiometry and photoacoustic spectroscopy can successfully account for these parameters, and provide values for the emissivity in agreement with values obtained by Fourier-transform infrared spectroscopy.
SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, P.R.
1962-01-01
A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)
Lukšienė, B; Marčiulionienė, D; Gudelienė, I; Schönhofer, F
2013-02-01
The radioecological state of the forest ecosystem in the vicinity of the Ignalina Power Plant prior to decommissioning was analysed with specific emphasis on (137)Cs and (90)Sr activity concentrations in plant species growing in two reference sampling sites (Tilze and Grikiniskes). In the period of 1996-2008 the mean contamination of plants with (137)Cs was from 45 to 119 Bq/kg and with (90)Sr - from 3 to 42 Bq/kg. Measured (137)Cs TF values for soil-root transfer mainly ranged between 1.0-1.4, except for Calamagrostis arundinacea which had a TF value of 0.1. On average, the (137)Cs TF value from root to shoot was 1.7 fold higher than for soil to root transfer. (90)Sr TF values (soil-root) were in the range of 1.2-1.8 but for Calluna vulgaris it was 0.2. The mean root to shoot TF value for (90)Sr was 7.7 fold higher. These results indicate the higher (90)Sr bioavailability than that of (137)Cs in the forested area. The Grikiniskes reference site is located nearby the Ignalina NPP, specifically the heated water outlet channel, which results in altered microclimatic conditions. These specific microclimatic conditions result in relationships between (137)Cs TF (soil-root) values and pH, moisture and organic matter content in the soil at Grikiniskes which appear to be different to those at the Tilze reference sampling site. Copyright © 2012 Elsevier Ltd. All rights reserved.
An analysis of heat effects in different subpopulations of Bangladesh.
Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried
2014-03-01
A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh
2016-05-23
Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
NASA Astrophysics Data System (ADS)
Rimov, A. A.; Chukanova, T. I.; Trofimov, Yu. V.
2016-12-01
Data on the comparative analysis variants of the quality of power installations (benchmarking) applied in the power industry is systematized. It is shown that the most efficient variant of implementation of the benchmarking technique is the analysis of statistical distributions of the indicators in the composed homogenous group of the uniform power installations. The benchmarking technique aimed at revealing the available reserves on improvement of the reliability and heat efficiency indicators of the power installations of the thermal power plants is developed in the furtherance of this approach. The technique provides a possibility of reliable comparison of the quality of the power installations in their homogenous group limited by the number and adoption of the adequate decision on improving some or other technical characteristics of this power installation. The technique provides structuring of the list of the comparison indicators and internal factors affecting them represented according to the requirements of the sectoral standards and taking into account the price formation characteristics in the Russian power industry. The mentioned structuring ensures traceability of the reasons of deviation of the internal influencing factors from the specified values. The starting point for further detail analysis of the delay of the certain power installation indicators from the best practice expressed in the specific money equivalent is positioning of this power installation on distribution of the key indicator being a convolution of the comparison indicators. The distribution of the key indicator is simulated by the Monte-Carlo method after receiving the actual distributions of the comparison indicators: specific lost profit due to the short supply of electric energy and short delivery of power, specific cost of losses due to the nonoptimal expenditures for repairs, and specific cost of excess fuel equivalent consumption. The quality loss indicators are developed facilitating the analysis of the benchmarking results permitting to represent the quality loss of this power installation in the form of the difference between the actual value of the key indicator or comparison indicator and the best quartile of the existing distribution. The uncertainty of the obtained values of the quality loss indicators was evaluated by transforming the standard uncertainties of the input values into the expanded uncertainties of the output values with the confidence level of 95%. The efficiency of the technique is demonstrated in terms of benchmarking of the main thermal and mechanical equipment of the extraction power-generating units T-250 and power installations of the thermal power plants with the main steam pressure 130 atm.
Hole pairing and thermodynamic properties of the two dimensional frustrated t-J model
NASA Astrophysics Data System (ADS)
Roy, K.; Pal, P.; Nath, S.; Ghosh, N. K.
2018-04-01
The frustrated t-J model is investigated by using the exact-diagonalization (ED) method on an 8-site cluster. The effect on next-nearest-neighbor (NNN) exchange interaction J' (frustration) on the hole pairing and the thermodynamic properties of the system is considered. Two holes initially remain unbound at smaller value of J'/t, but tend to bind at larger value. The maximum possibility of pair formation has been observed to be at NNN sites. Entropy calculation shows that the system goes to more disordered state with J'. The specific heat curves show a single peak structure. A decrease in effective exchange energy is observed due to the frustration.
Heat flow and geothermal potential of the East Mesa KGRA, Imperial Valley, California
NASA Technical Reports Server (NTRS)
Swanberg, C. A.
1974-01-01
The East Mesa KGRA (Known Geothermal Resource Area) is located in the southeast part of the Imperial Valley, California, and is roughly 150 kilometers square in areal extent. A new heat flow technique which utilizes temperature gradient measurements across best clays is presented and shown to be as accurate as conventional methods for the present study area. Utilizing the best clay gradient technique, over 70 heat flow determinations have been completed within and around the East Mesa KGRA. Background heat flow values range from 1.4 to 2.4 hfu (1 hfu = .000001 cal. per square centimeter-second) and are typical of those throughout the Basin and Range province. Heat flow values for the northwest lobe of the KGRA (Mesa anomaly) are as high as 7.9 hfu, with the highest values located near gravity and seismic noise maxima and electrical resistivity minima. An excellent correlation exists between heat flow contours and faults defined by remote sensing and microearthquake monitoring.
Kuu, Wei Y; Nail, Steven L; Hardwick, Lisa M
2007-01-01
The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.
NASA Astrophysics Data System (ADS)
Arita, Yuji; Suzuki, Keisuke; Matsui, Tsuneo
2005-02-01
The temperature limit for heat capacity measurements with the direct heating pulse calorimeter has been increased up to 2000 K by means of the combination of an optical pyrometer to detect the relative temperature change with tungsten rhenium thermocouples to determine absolute temperatures. With this improved calorimeter the heat capacities were measured up to 1950 K, for SiC and B4C, and 2000 K for graphite. The heat capacity values obtained in this study were in good agreement, within the error of ±5%, with those previous values calculated from the enthalpy data by drop method. The electrical conductivities of SiC, B4C and graphite were also simultaneously determined from the inducted voltage and the current for heat capacity measurement.
Theoretical calculation of heat of formation and heat of combustion for several flammable gases.
Kondo, Shigeo; Takahashi, Akifumi; Tokuhashi, Kazuaki
2002-09-02
Heats of formation have been calculated by the Gaussian-2 (G2) and/or G2MP2 method for a number of flammable gases. As a result, it has been found that the calculated heat of formation for compounds containing, such atoms as fluorine and chlorine tends to deviate from the observed values more than calculations for other molecules do. A simple atom additivity correction (AAC) has been found effective to improve the quality of the heat of formation calculation from the G2 and G2MP2 theories for these molecules. The values of heat of formation thus obtained have been used to calculate the heat of combustion and related constants for evaluating the combustion hazard of flammable gases.
D'Evoli, L; Salvatore, P; Lucarini, M; Nicoli, S; Aguzzi, A; Gabrielli, P; Lombardi-Boccia, G
2009-01-01
The present study provides a picture of the compositional figure and nutritive value of meat-based dishes typical of Italian culinary tradition. Recipes specific for a bovine meat cut (top-side) were selected among the most widespread ones in Italy: in pan, pizzaiola, cutlet, meat ball, and escalope. The total fat and cholesterol content varied depending on the ingredients utilized (extra-virgin olive oil, parmesan, egg). Meat-based dishes that utilized extra-virgin olive oil showed a significant reduction in palmitic and stearic acids and a parallel increase in oleic acid compared with raw meat; furthermore, the ratio among saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids shifted in favour of monounsaturated fatty acids. B vitamins were affected at different extent by heating; by contrast, vitamin E content increased because of the new sources of this vitamin, which masked losses due to heating. Ingredients (parmesan, discretionary salt) induced significant increases in the calcium and sodium concentrations compared with raw meat. The total iron content did not show marked differences in most of the meat-based dishes compared with raw meat; by contrast, losses in the heme-iron concentration were detected depending on the severity of heating treatments. Our findings suggest that heme iron, because of its important health aspects, might be a useful index of the nutritional quality of cooked meats.
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2011 CFR
2011-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2013 CFR
2013-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2012 CFR
2012-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
NASA Astrophysics Data System (ADS)
Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.
2017-11-01
We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.
Numerical Investigation of Transition in Supersonic Boundary Layers Using DNS and LES
2008-03-31
stream values of velocity, temperature, density, and specific heat ( Uro , Tio, Pe and C2, respectively). For investigations of flows over cones, free...field is simulated without those assumptions for the current investigations. For 2,5 2 UI.l UL u* lO Pn 2BL - - Tl" TU o DNS ’. DNS PDNS T DNS T DNS 025...Because primary amplitude levels impact the resonance behavior, the resonance lo - cation moved upstream to R., = 1, 800 and the nonlinear amplification
Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation
NASA Astrophysics Data System (ADS)
Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.
2018-05-01
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.
The shape memory alloy actuator controlled by the Sun’s radiation
NASA Astrophysics Data System (ADS)
Riad, Amine; Alhamany, Abdelilah; Benzohra, Mouna
2017-07-01
Shape memory alloys (SMAs) have many thermo-mechanical characteristics which can return to their original value once exposed to a specific temperature. These materials are able to change their mechanical features such as shape, displacement or frequency in response to stress or heating; this may be useful for actuators in many fields such as aircraft, robotics and microsystems. In order to know the effect of the Sun’s radiation on SMAs we have conducted a numerical study that simulates a SMA actuator.
Thermal regime of the San Andreas fault near Parkfield, California
Sass, J.H.; Williams, C.F.; Lachenbruch, A.H.; Galanis, S.P.; Grubb, F.V.
1997-01-01
Knowledge of the temperature variation with depth near the San Andreas fault is vital to understanding the physical processes that occur within the fault zone during earthquakes and creep events. Parkfield is near the southern end of the Coast Ranges segment of the San Andreas fault. This segment has higher mean heat flow than the Cape Mendocino segment to the northwest or the Mojave segment to the southeast. Boreholes were drilled specifically for the U.S. Geological Survey's Parkfield earthquake prediction experiment or converted from other uses at 25 sites within a few kilometers of the fault near Parkfield. These holes, which range in depth from 150 to over 1500 m, were intended mainly for the deployment of volumetric strain meters, water-level recorders, and other downhole instruments. Temperature profiles were obtained from all the holes, and heat flow values were estimated from 17 of them. For a number of reasons, including a paucity of thermal conductivity data and rugged local topography, the accuracy of individual determinations was not sufficiently high to document local variations in heat flow. Values range from 54 to 92 mW m-2, with mean and 95% confidence limits of 74 ?? 4 mW m-2. This mean is slightly lower than the mean (83 ?? 3) of 39 previously published values from the central Coast Ranges, but it is consistent with the overall pattern of elevated heat flow in the Coast Ranges, and it is transitional to the mean of 68 ?? 2 mW m-2 that characterizes the Mojave segment of the San Andreas fault immediately to the south. The lack of a heat flow peak near the fault underscores the absence of a frictional thermal anomaly and provides additional support for a very small resolved shear stress parallel to the San Andreas fault and the nearly fault-normal maximum compressive stress observed in this region. Estimates of subsurface thermal conditions indicate that the seismic-aseismic transition for the Parkfield segment corresponds to temperatures in the range of 350??-400??C. Increasing heat flow to the northwest of Parkfield corresponds to a transition from locked to creeping sections and to a shallowing of the base of seismicity and confirms the importance of temperature in controlling the thickness of the seismogenic crust. Lateral variations in heat flow do not appear to have any major role in determining the regularity of M5.5-6 earthquakes at Parkfield.
Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.
Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257
Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds.
Jeong, Seul-Gi; Baik, Oon-Doo; Kang, Dong-Hyun
2017-08-02
This study was conducted to investigate the efficacy of radio-frequency (RF) heating to reduce Salmonella enterica serovars Enteritidis, Typhimurium, and Senftenberg in raw shelled almonds compared to conventional convective heating, and the effect of RF heating on quality by measuring changes in the color and degree of lipid oxidation. Agar-grown cells of three pathogens were inoculated onto the surface or inside of raw shelled almonds using surface inoculation or the vacuum perfusion method, respectively, and subjected to RF or conventional heating. RF heating for 40s achieved 3.7-, 6.0-, and 5.6-log reductions in surface-inoculated S. Enteritidis, S. Typhimurium, and S. Senftenberg, respectively, whereas the reduction of these pathogens following convective heating for 600s was 1.7, 2.5, and 3.7 log, respectively. RF heating reduced internally inoculated pathogens to below the detection limit (0.7 logCFU/g) after 30s. However, conventional convective heating did not attain comparable reductions even at the end of treatment (600s). Color values, peroxide values, and acid values of RF-treated (40-s treatment) almonds were not significantly (P>0.05) different from those of nontreated samples. These results suggest that RF heating can be applied to control internalized pathogens as well as surface-adhering pathogens in raw almonds without affecting product quality. Copyright © 2017. Published by Elsevier B.V.
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
NASA Astrophysics Data System (ADS)
Rubio López, Adrián E.; Poggi, Pablo M.; Lombardo, Fernando C.; Giannini, Vincenzo
2018-04-01
In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR . We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d ), showing the scale at which each magnitude converges to the value of infinite thickness (d →+∞ ) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.
Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System
NASA Astrophysics Data System (ADS)
Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila
2017-10-01
Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal properties that low in melting point and have high specific heat capacity which could be a potential heat transfer fluid in heat recovery application.
Specific heat in KFe2As2 in zero and applied magnetic field
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kim, E. G.; Stewart, G. R.; Chen, X. H.; Wang, X. F.
2011-05-01
The specific heat down to 0.08 K of the iron pnictide superconductor KFe2As2 was measured on a single-crystal sample with a residual resistivity ratio of ˜650, with a Tconset determined by a specific heat of 3.7 K. The zero-field normal-state specific heat divided by temperature, C/T, was extrapolated from above Tc to T=0 by insisting on agreement between the extrapolated normal-state entropy at Tc, Snextrap(Tc), and the measured superconducting-state entropy at Tc, Ssmeas(Tc), since for a second-order phase transition the two entropies must be equal. This extrapolation would indicate that this rather clean sample of KFe2As2 exhibits non-Fermi-liquid behavior; i.e., C/T increases at low temperatures, in agreement with the reported non-Fermi-liquid behavior in the resistivity. However, specific heat as a function of magnetic field shows that the shoulder feature around 0.7 K, which is commonly seen in KFe2As2 samples, is not evidence for a second superconducting gap as has been previously proposed but instead is due to an unknown magnetic impurity phase, which can affect the entropy balance and the extrapolation of the normal-state specific heat. This peak (somewhat larger in magnitude) with similar field dependence is also found in a less pure sample of KFe2As2, with a residual resistivity ratio of only 90 and Tconset=3.1 K. These data, combined with the measured normal-state specific heat in field to suppress superconductivity, allow the conclusion that an increase in the normal-state specific heat as T→0 is in fact not seen in KFe2As2; i.e., Fermi-liquid behavior is observed.
Microfabricated fuel heating value monitoring device
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM
2010-05-04
A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.
The Scientific Papers of James Prescott Joule 2 Volume Set
NASA Astrophysics Data System (ADS)
Prescott Joule, James
2011-03-01
Volume 1: Description of an electro-magnetic engine; Description of an electro-magnetic engine, with experiments; On the use of electro-magnets made of iron wire for the electro-magnetic engine; Investigations in magnetism and electro-magnetism; Investigations in magnetism and electro-magnetism; Description of an electro-magnetic engine; On electro-magnetic forces; On electro-magnetic forces; On electro-magnetic forces; Description of a new electro-magnet; On a new class of magnetic forces; On voltaic apparatus; On the production of heat by voltaic electricity; On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis; On the electric origin of the heat of combustion; On the electrical origin of chemical heat; On Sir G. C. Haughton's experiments; On the heat evolved during the electrolysis of water; On the calorific effects of magneto-electricity, and on the mechanical value of heat; On the intermittent character of the voltaic current in certain cases of electrolysis; and on the intensities of various voltaic arrangements; On the changes of temperature produced by the rarefaction and condensation of air; On specific heat; On a new method for ascertaining the specific heat of bodies; Note on the employment of electrical currents for ascertaining the specific heat of bodies; On the mechanical equivalent of heat; On the existence of an equivalent relation between heat and the ordinary forms of mechanical power; On the heat disengaged in chemical combinations; On the effects of magnetism upon the dimensions of iron and steel bars; On matter, living force, and heat; On the mechanical equivalent of heat, as determined from the heat evolved by the function of fluids; On the theoretical velocity of sound; Expériences sur l'identité entre le calorique et la force méchanique. Détermination de l'équivalent par la chaleur dégagée pendant la friction du mercure; On shooting-stars; On the mechanical equivalent of heat, and on the constitution of elastic fluids; Some remarks on heat and the constitution of elastic fluids; On the mechanical equivalent of heat; On a remarkable appearance of lightning; On some amalgams; On the air-engine; Account of experiments with a powerful electro-magnet; On the economical production of mechanical effect from chemical forces; An account of some experiments with a large electro-magnet; Introductory research on the induction of magnetism by electric currents; On the fusion of metals by voltaic electricity; Note on Dalton's determination of the expansion of air by heat; On the utilization of the sewage of London and other large towns; Notice of experiments on the heat developed by friction in air; On the intensity of light during the recent solar eclipse; On an improved galvanometer; On the thermo-electricity of ferruginous metals, and on the thermal effects of stretching solid bodies; On the thermal effects of longitudinal compression of solids, with an investigation on the alterations of temperature accompanying changes of pressure in fluids; On some thermo-dynamic properties of solids; On the thermal effects of compressing fluids; On a method of testing the strength of steam-boilers; Experiments on the total heat of steam; Experiments on the passage of air through pipes and apertures in thin plates; On some amalgams; On the probable cause of electric storms; On the surface-condensation of steam; Notice of a compressing air-pump; Note on a mirage at Douglas; On a sensitive barometer; On a sensitive thermometer; Note on the meteor of February 6th, 1818; On a method of hardening steel wires for magnetic needles; On an instrument for showing rapid changes in magnetic declination; Determination of the dynamical equivalent of heat from the thermal effects of electric currents; Observations on the alteration of the freezing-point in thermometers; On a new
Specific heat and thermal conductivity of nanomaterials
NASA Astrophysics Data System (ADS)
Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish
2017-01-01
A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Heat loss, heat gain and cooling...
Heat flux measurements on ceramics with thin film thermocouples
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.
1993-01-01
Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2014 CFR
2014-04-01
... is an air space of at least 1/2 inch between the duct and the insulation, heat loss/gain need not be..., 2013. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence of measured infiltration heat loss data...
Some methods for achieving more efficient performance of fuel assemblies
NASA Astrophysics Data System (ADS)
Boltenko, E. A.
2014-07-01
More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.
Grant, I R; Patterson, M F
1995-10-01
The effect of heating alone (60, 65 or 70 degrees C), heating after irradiation (0.8 kGy) and heating after irradiation and storage for 14 days at 2-3 degrees C on the destruction of Listeria monocytogenes and Salmonella typhimurium in artifically inoculated minced cook-chill roast beef and gravy was investigated. Inoculated minced roast beef samples (5 g) were heated in Stomacher bags completely immersed in a water bath at each of the test temperatures. Survivors were enumerated and D and z values were determined for each of the pathogens. Observed thermal D values for two strains of L. monocytogenes at 60, 65 and 70 degrees C in the absence of pre-irradiation were 90.0-97.5 s, 34.0-53.0 s and 22.4-28.0 s, respectively, whereas thermal D values after pre-irradiation were 44.0-46.4 s, 15.3-16.8 s and 5.5-7.8 s at 60, 65 and 70 degrees C, respectively. This reduction in D values provides evidence for radiation-induced heat-sensitisation in L. monocytogenes. There was some evidence of heat-sensitisation of S. typhimurium at 60 degrees C, but not at either 65 or 70 degrees C. The z value also decreased as a consequence of pre-irradiation to a dose of 0.8 kGy (11.0-12.7 degrees C). The radiation-induced heat-sensitivity in L. monocytogenes was found to persist for up to 2 weeks storage at 2-3 degrees C prior to heating. As cook-chill products are intended to be reheated prior to consumption the results of the present study suggest that any L. monocytogenes present in a cook-chill product would be more easily killed during reheating if it were to be treated with a low dose of gamma radiation during manufacture.
Heat flow vs. atmospheric greenhouse on early Mars
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Postawko, S. E.
1991-01-01
Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.
A note on drillhole depths required for reliable heat flow determinations
Chapman, D.S.; Howell, J.; Sass, J.H.
1984-01-01
In general, there is a limiting depth in a drillhole above which the reliability of a single determination of heat flow decreases rapidly with decreasing depth and below which the statistical uncertainty of a heat flow determination does not change perceptibly with increasing depth. This feature has been established empirically for a test case comprising a group of twelve heat flow sites in the Republic of Zambia. The technique consists of constructing heat flow versus depth curves for individual sites by progressively discarding data from the lower part of the hole and recomputing heat flow from the remaining data. For the Zambian test case, the curves converge towards a uniform value of 67 ?? 3 mW m-2 when all available data are used, but values of heat flow calculated for shallow(< 100 m) parts of the same holes range from 45 to 95 mW m-2. The heat flow versus depth curves are enclosed by a perturbation envelope which has an amplitude of 40 mW m-2 at the surface and decreases linearly to the noise level at 190 m. For the test region of Zambia a depth of 170 m is needed to guarantee a heat flow measurement within ?? 10% of the background regional value. It is reasonable to expect that this depth will be shallower in some regions and deeper in others. Features of heat flow perturbation envelopes can be used as quantitative reliability indices for heat flow studies. ?? 1984.
Sasaki, K; Honda, W; Miyake, Y
1998-01-01
The high-temperature and short-time sterilization by microwave heating with a continuous microwave sterilizer (MWS) was evaluated. The evaluation were performed with respect to: [1] lethal effect against microorganisms corresponding to F-value, and [2] reliability of MWS sterilization process. Bacillus stearothermophilus ATCC 7953 spores were used as the biological indicator and the heat-resistance of spores was evaluated with conventional heating method (121-129 degrees C). In MWS sterilization (125-135 degrees C), the actual lethal effect against B. stearothermophilus spores was almost in agreement with the F-value and the survival curve against the F-value was quite consistent with that for the autoclave. These results suggest that the actual lethal effect could be estimated by the F-value with heat-resistance parameters of spores from lower than actual temperatures and that there was no nonthermal effect of the microwave on B. stearothermophilus spores. The reliability of sterilization with the MWS was confirmed using more than 25,000 test ampules containing biological indicators. All biological indicators were killed, thus the present study shows that the MWS was completely reliable for all ampules.
Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2011-01-01
Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.
Interpretation of lunar heat flow data. [for estimating bulk uranium abundance
NASA Technical Reports Server (NTRS)
Conel, J. E.; Morton, J. B.
1975-01-01
Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions - possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the moon.
Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials
NASA Astrophysics Data System (ADS)
Paik, Younkee
Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.
Method to reduce non-specific tissue heating of small animals in solenoid coils.
Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert
2013-01-01
Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.
Method to reduce non-specific tissue heating of small animals in solenoid coils
KUMAR, ANANDA; ATTALURI, ANILCHANDRA; MALLIPUDI, RAJIV; CORNEJO, CHRISTINE; BORDELON, DAVID; ARMOUR, MICHAEL; MORUA, KATHERINE; DEWEESE, THEODORE L.; IVKOV, ROBERT
2014-01-01
Purpose Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Materials and methods Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50kA/m and frequency of 160 kHz. Results Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. Conclusions These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs. PMID:23402327
Passive gas-gap heat switch for adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)
2005-01-01
A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.
Sound-velocity measurements for HFC-134a and HFC-152a with a spherical resonator
NASA Astrophysics Data System (ADS)
Hozumi, T.; Koga, T.; Sato, H.; Watanabe, K.
1993-07-01
A spherical acoustic resonator was developed for measuring sound velocities in the gaseous phase and ideal-gas specific heats for new refrigerants. The radius of the spherical resonator, being about 5 cm, was determined by measuring sound velocities in gaseous argon at temperatures from 273 to 348 K and pressures up to 240 kPa. The measurements of 23 sound velocities in gaseous HFC-134a (1,1,1,2-tetrafluoroethane) at temperatures of 273 and 298 K and pressures from 10 to 250 kPa agree well with the measurements of Goodwin and Moldover. In addition, 92 sound velocities in gaseous HFC-152a (1,1-difluoroethane) with an accuracy of ±0.01% were measured at temperatures from 273 to 348 K and pressures up to 250 kPa. The ideal-gas specific heats as well as the second acoustic virial coefficients have been obtained for both these important alternative refrigerants. The second virial coefficients for HFC-152a derived from the present sound velocity measurements agree extremely well with the reported second virial coefficient values obtained with a Burnett apparatus.
Subramanian, Swetha; Mast, T Douglas
2015-10-07
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.
NASA Astrophysics Data System (ADS)
Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.
Specific heat and Knight shift of cuprates within the van Hove scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Das, A.N.
1996-12-01
The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Harshan, Suraj
The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.
Regional Heat Flow Map and the Continental Thermal Isostasy Understanding of México
NASA Astrophysics Data System (ADS)
Espinoza-Ojeda, O. M.; Harris, R. N.
2014-12-01
The first heat flow values made in Mexico were reported by Von Herzen [Science, 1963] for the marine environment and Smith [EPSL, 1974] for the continent. Since that time the number of measurements has increased greatly but are mostly from oil and gas exploration and in and around geothermal areas. We have compiled published values of conductive heat flow for Mexico and the Gulf of California to generate a new regional heat flow map consisting of 261 values. In addition to those original values, published heat flow sources include, Lee and Henyey [JGR, 1975], Lawver and Williams [JGR, 1979] Smith et al. [JGR, 1979], Lachenbruch et al. [JGR, 1985], and Ziagos et al. [JGR, 1985]. Although the geographic distribution is uneven, heat flow data are present in each of the eight main tectonic provinces. Our new compilation indicates relatively high regional heat flow averages in the Gulf Extensional Province (n=114, 92±22 mW/m2) and Mexican Basin and Range (n=21, 82±20 mW/m2) and are consistent with geologic estimates of extension. Lower regional averages are found in the Baja California Microplate (n=91, 75±19 mW/m2), the Sierra Madre Occidental (n=9, 75±12 mW/m2), the Sierra Madre Oriental (n=4, 68±15 mW/m2) and Mesa Central (n=X 77±23 mW/m2). In contrast low and variable heat flow value characterize the forearc region of the Middle America Trench (n=6, 35±16 mW/m2). A higher mean heat flow is associated with the Trans-Mexican Volcanic Belt (n=6, 78±26 mW/m2). Continental elevation results from a combination of buoyancy (i.e. compositional and thermal) and geodynamic forces. We combine these regional heat flow values with estimates of crustal thickness and density for each tectonic province and compute the thermal and compositional buoyancy following the approach of Hasterok and Chapman [JGR, 2007a,b]. We find that within uncertainties most provinces lie near the theoretical isostatic relationship with the exception of the Mesa Central and Sierra Madre del Sur that are anomalously below and above the theoretical relationship, respectively.
Estimating heat capacity and heat content of rocks
Robertson, Eugene C.; Hemingway, Bruch S.
1995-01-01
Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.
Relative Role of Horizontal and Vertical Processes in Arctic Amplification
NASA Astrophysics Data System (ADS)
Kim, K. Y.
2017-12-01
The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.
Laser-Shock Experiments: Calorimetry Measurements to TPa Pressures
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2012-12-01
Laser-driven shock experiments are more like calorimetry measurements, characterized by determinations of Hugoniot temperature (TH) as a function of shock velocity (US), rather than the equation-of-state measurements afforded by mechanical-impact experiments. This is because particle velocity (up) is often not accessible to direct measurement in laser-shock experiments, so must be inferred with reference to a material having a well-determined, independently calibrated Hugoniot equation of state (up is obtained from the impact velocity in traditional shock experiments, and the combination of US and up yields the pressure-density equation of state for the sample). Application of a Mie-Grüneisen model shows that the isochoric specific heat for a given phase is: CV = (US - c0)2 {s2US (dTH/dUS) + γ0 c0 s (TH/US)}-1 with US = c0 + s up, and γ0 is the zero-pressure Grüneisen parameter (γ/V = constant is assumed here). This result is a generalization to TH-US variables of the Walsh and Christian (1955) formula for the temperature rise along the Hugoniot of a given phase (identified here with a US - up relation that is locally linear); it can be analytically integrated to give TH(US) in terms of an average value of CV, if no phase transition takes place. Analysis of the TH-US slopes obtained from laser-shock measurements on MgO yields specific-heat values ranging from 1.02 (± 0.05) kJ/kg/K at 320-345 GPa and TH = 7700-9000 K to 1.50 (± 0.05) kJ/kg/K at 350-380 GPa and TH = 8700-9500 K. A fit to the absolute values of TH(US) in this pressure-temperature range gives CV = 1.26 (± 0.10) kJ/kg/K, in good accord with the Dulong-Petit value CV = 1.24 kJ/kg/K.
Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M
2017-02-01
In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.
Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine
2013-03-01
Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that
NASA Astrophysics Data System (ADS)
Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang
2018-02-01
Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.
Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H
2008-02-01
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.
Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions
NASA Astrophysics Data System (ADS)
Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.
2016-09-01
To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giuffrè, Angelo Maria; Capocasale, Marco; Zappia, Clotilde; Poiana, Marco
2017-01-01
Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg -1 ), peroxide value (17.00 meq kg -1 ), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g -1 oil, iodine value 117.83 g I 2 100 g -1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm 2 s -1 , higher heating value 39.86 MJ kg -1 , density 933.34 kg/m 3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying.
Influence of kondo effect on the specific heat jump of anisotropic superconductors
NASA Astrophysics Data System (ADS)
Yoksan, S.
1986-01-01
A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.
Preliminary Thermal Modeling of HI-STORM 100 Storage Modules at Diablo Canyon Power Plant ISFSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuta, Judith M.; Adkins, Harold E.
Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for two modules at the Diablo Canyon Power Plant ISFSI identified as candidates for inspection. These are HI-STORM 100 modules of a site-specific design for storing PWR 17x17 fuel in MPC-32 canisters. The temperature predictions reported in this document were obtained with detailedmore » COBRA-SFS models of these storage systems, with the following boundary conditions and assumptions. • storage module overpack configuration based on FSAR documentation of HI-STORM100S-218, Version B; due to unavailability of site-specific design data for Diablo Canyon ISFSI modules • Individual assembly and total decay heat loadings for each canister, based on at-loading values provided by PG&E, “aged” to time of inspection using ORIGEN modeling o Special Note: there is an inherent conservatism of unquantified magnitude – informally estimated as up to approximately 20% -- in the utility-supplied values for at-loading assembly decay heat values • Axial decay heat distributions based on a bounding generic profile for PWR fuel. • Axial location of beginning of fuel assumed same as WE 17x17 OFA fuel, due to unavailability of specific data for WE17x17 STD and WE 17x17 Vantage 5 fuel designs • Ambient conditions of still air at 50°F (10°C) assumed for base-case evaluations o Wind conditions at the Diablo Canyon site are unquantified, due to unavailability of site meteorological data o additional still-air evaluations performed at 70°F (21°C), 60°F (16°C), and 40°F (4°C), to cover a range of possible conditions at the time of the inspection. (Calculations were also performed at 80°F (27°C), for comparison with design basis assumptions.) All calculations are for steady-state conditions, on the assumption that the surfaces of the module that are accessible for temperature measurements during the inspection will tend to follow ambient temperature changes relatively closely. Comparisons to the results of the inspections, and post-inspection evaluations of temperature measurements obtained in the specific modules, will be documented in a separate follow-on report, to be issued in a timely manner after the inspection has been performed.« less
NASA Astrophysics Data System (ADS)
Mishonov, T. M.; Penev, E. S.; Indekeu, J. O.
2003-02-01
An analytical result for the renormalization of the jump of the heat capacity ΔC/CN by the anisotropy of the order parameter is derived within the framework of the very recent model proposed by Posazhennikova, Dahm and Maki (Europhys. Lett., 60 (2002) 134), for both oblate and prolate anisotropy. The graph of ΔC/CN vs. the ratio of the gaps on the equator and the pole of the Fermi surface, Δe/Δp, allows a direct determination of the gap anisotropy parameter Δe/Δp by fitting data from specific-heat measurements ΔC/CN. Using the experimental value ΔC/CN = 0.82 ± 10% by Wang, Plackowski, and Junod (Physica C 355 (2001) 179) we find Δe/Δp approx 4.0.
Nanoscale Seebeck effect at hot metal nanostructures
NASA Astrophysics Data System (ADS)
Ly, Aboubakry; Majee, Arghya; Würger, Alois
2018-02-01
We theoretically study the electrolyte Seebeck effect in the vicinity of a heated metal nanostructure, such as the cap of an active Janus colloid in an electrolyte, or gold-coated interfaces in optofluidic devices. The thermocharge accumulated at the surface varies with the local temperature, thus modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform temperature, the isopotential condition imposes a significant polarization charge within the metal. Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered swimming, extending to microseconds after switching on the heating.
Selective chemical detection by energy modulation of sensors
Stetter, J.R.; Otagawa, T.
1985-05-20
A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.
Retrospective analysis of RF heating measurements of passive medical implants.
Song, Ting; Xu, Zhiheng; Iacono, Maria Ida; Angelone, Leonardo M; Rajan, Sunder
2018-05-09
The test reports for the RF-induced heating of metallic devices of hundreds of medical implants have been provided to the U.S. Food and Drug Administration as a part of premarket submissions. The main purpose of this study is to perform a retrospective analysis of the RF-induced heating data provided in the reports to analyze the trends and correlate them with implant geometric characteristics. The ASTM-based RF heating test reports from 86 premarket U.S. Food and Drug Administration submissions were reviewed by three U.S. Food and Drug Administration reviewers. From each test report, the dimensions and RF-induced heating values for a given whole-body (WB) specific absorption rate (SAR) and local background (LB) SAR were extracted and analyzed. The data from 56 stents were analyzed as a subset to further understand heating trends and length dependence. For a given WB SAR, the LB/WB SAR ratio varied significantly across the test labs, from 2.3 to 11.3. There was an increasing trend on the temperature change per LB SAR with device length. The maximum heating for stents occurred at lengths of approximately 100 mm at 3 T, and beyond 150 mm at 1.5 T. Differences in the LB/WB SAR ratios across testing labs and various MRI scanners could lead to inconsistent WB SAR labeling. Magnetic resonance (MR) conditional labeling based on WB SAR should be derived from a conservative estimate of global LB/WB ratios. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Energy-efficient miniature-scale heat pumping based on shape memory alloys
NASA Astrophysics Data System (ADS)
Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred
2016-08-01
Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
NASA Astrophysics Data System (ADS)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Ball, Richard D
2014-01-01
Radiofrequency ablation (RFA) is a safe and effective pain therapy used to create sensory dysfunction in appropriate nerves via thermal damage. While commonly viewed as a simple process, RF heating is actually quite complex from an electrical engineering standpoint, and it is difficult for the non-electrical engineer to achieve a thorough understanding of the events that occur. RFA is highly influenced by the configuration and properties of the peri-electrode tissues. To rationally discuss the science of RFA requires that examples be procedure-specific, and lumbar RFA is the procedure selected for this review. Adequate heating of the lumbar medial branch has many potential failure points, and the underlying science is discussed with recommendations to reduce the frequency of failure in heating target tissues. Important technical details of the procedure that are not generally appreciated are discussed, and the status quo is challenged on several aspects of accepted technique. The rationale underlying electrode placement and the limitations of RF heating are, for the most part, commonly misunderstood, and there may even need to be significant changes in how lumbar radiofrequency rhizotomy (RFR) is performed. A new paradigm for heating target tissue may be of value. Foremost in developing best practices for this procedure is avoiding pitfalls. Good RF heating and medial branch lesioning are the rewards for understanding how the process functions, attention to detail, and meticulous attention to electrode positioning.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactionsmore » among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.« less
Characterization of a mine fire using atmospheric monitoring system sensor data
Yuan, L.; Thomas, R.A.; Zhou, L.
2017-01-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth — in terms of heat release rate — and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division’s Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy. PMID:28845058
Unified trade-off optimization for general heat devices with nonisothermal processes.
Long, Rui; Liu, Wei
2015-04-01
An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.
Energy Dissipation in Ex-Vivo Porcine Liver during Electrosurgery
Karaki, Wafaa; Akyildiz, Ali; De, Suvranu
2017-01-01
This paper explores energy dissipation in ex-vivo liver tissue during radiofrequency current excitation with application in electrosurgery. Tissue surface temperature for monopolar electrode configuration is measured using infrared thermometry. The experimental results are fitted to a finite element model for transient heat transfer taking into account energy storage and conduction in order to extract information about “apparent” specific heat, which encompasses storage and phase change. The average apparent specific heat determined for low temperatures is in agreement with published data. However, at temperatures approaching the boiling point of water, apparent specific heat increases by a factor of five, indicating that vaporization plays an important role in the energy dissipation through latent heat loss. PMID:27479955
Heat flow measurements on the southeast coast of Australia
Hyndman, R.D.; Jaeger, J.C.; Sass, J.H.
1969-01-01
Three boreholes have been drilled for the Australian National University near the southeast coast of New South Wales, Australia. The heat flows found are 1.1, 1.0, and 1.3 ??cal/cm2sec. The errors resulting from the proximity of the sea and a lake, surface temperature change, conductivity structure and water flow have been examined. The radioactive heat production in some of the intrusive rocks of the area have also been measured. The heat flows are much lower than the values of about 2.0 found elsewhere in south eastern Australia. The lower values appear to be part of a distinct heat flow province in eastern Australia. ?? 1969.
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Song, JuHee; Kim, Mi-Ja; Kim, Young-Jun; Lee, JaeHwan
2017-04-01
Oxidation products and tocol homologues were monitored in oils during chicken frying to determine the discarding point of highly used frying oils. Oils were heated without chicken for 170h while chicken frying was performed 130 cycles at 180°C. As heating time and frying cycles increased, all oxidation parameters including acid value, total polar materials (TPM), conjugated dienoic acid (CDA), and p-anisidine values (p-AV) increased significantly (p<0.05). γ-Tocopherol and γ-tocotrienol had the lowest stability in oils during heating or frying processes compared to other tocol homologues. TPM values over 24% were obtained after about 109h for heated oil and 100 cycles for oils used to fry chicken. A decrease of 2,2-diphenyl-1-picrylhydrazyl (DPPH) in isooctane and methanol was highly correlated with the formation of TPM in oils during the frying process. Both DPPH loss and TPM values could be applied to determine the discarding points of highly used frying oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yurchenko, I.; Karakotin, I.; Kudinov, A.
2011-05-01
Minimization of head fairing heat protection shield weight during spacecraft injecting in atmosphere dense layers is a complicated task. The identification of heat transfer coefficient on heat protection shield surface during injection can be considered as a primary task to be solved with certain accuracy in order to minimize heat shield weight as well as meet reliability requirements. The height of the roughness around sound point on the head fairing spherical nose tip has a great influence on the heat transfer coefficient calculation. As it has found out during flight tests the height of the roughness makes possible to create boundary layer transition criterion on the head fairing in flight. Therefore the second task is an assessment how height of the roughness influences on the total incoming heat flux to the head fairing. And finally the third task is associated with correct implementation of the first task results, as there are changing boundary conditions during a flight such as bubbles within heat shield surface paint and thermal protection ablation for instance. In the article we have considered results of flight tests carried out using launch vehicles which allowed us to measure heat fluxes in flight and to estimate dispersions of heat transfer coefficient. The experimental-analytical procedure of defining heat fluxes on the LV head fairings has been presented. The procedure includes: - calculation of general-purpose dimensionless heat transfer coefficient - Nusselt number Nueff - based on the proposed effective temperature Teff method. The method allows calculate the Nusselt number values for cylindrical surfaces as well as dispersions of heat transfer coefficient; - universal criterion of turbulent-laminar transition for blunted head fairings - Reynolds number Reek = [ρеUеk/μе]TR = const , which gives the best correlation of all dates of flight experiment carried out per Reda procedure to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when turbulent flux on space head surfaces exists. It was defined that in conditions when high background disturbances of free stream flux while main LV engines operating join with integrated roughness influence the critical value of Reynolds number is an order-diminished value compared to values obtained in wind tunnels and in free flight. Influence of minimization of height of surface roughness near sound point on head fairing nose has been estimated. It has been found that the criterion of turbulent-laminar transition for smooth head fairings elements - Reynolds number - reaches the limit value which is equal to 200. This value is obtained from momentum thickness Reynolds number when roughness height is close to zero. So the turbulent- laminar flux transition occurs earlier with decreased duration of effect of high turbulent heat fluxes to the heat shield. This will allow decreasing head shield thickness up to 30%
Heat flux measurements of Tb3M series (M=Co, Rh and Ru): Specific heat and magnetocaloric properties
NASA Astrophysics Data System (ADS)
Monteiro, J. C. B.; Lombardi, G. A.; dos Reis, R. D.; Freitas, H. E.; Cardoso, L. P.; Mansanares, A. M.; Gandra, F. G.
2016-12-01
We report on the magnetic properties and magnetocaloric effect (MCE) for the Tb3M series, with M=Co, Rh and Ru, obtained using a heat flux technique. The specific heat of Tb3Co and Tb3Rh are very similar, with a first order type transition occurring around 6 K below the magnetic ordering temperature without any corresponding feature on the magnetization. The slightly enhanced electronic specific heat, the Debye temperature around 150 K and the presence of the magnetic specific heat well above the ordering temperature are also characteristic of many other compounds of the R3M family (R=Rare Earth). The specific heat for Tb3Ru, however, presents two peaks at 37 K and 74 K. The magnetization shows that below the first peak the system presents an antiferromagnetic behavior and is paramagnetic above 74 K. We obtained a magnetocaloric effect for M=Co and Rh, -∆S=12 J/kg K, but for Tb3Ru it is less than 3 J/kg K (μ0∆H=5 T). We believe that the experimental results show that the MCE is directly related with the process of hybridization of the (R)5d-(M)d electrons that occurs in the R3M materials.
NASA Astrophysics Data System (ADS)
Wen, Hai-Hu; Liu, Zhi-Yong; Zhou, Fang; Xiong, Jiwu; Ti, Wenxing; Xiang, Tao; Komiya, Seiki; Sun, Xuefeng; Ando, Yoichi
2004-12-01
Low-temperature specific heat has been measured and extensively analyzed on a series of La2-xSrxCuO4 single crystals from underdoped to overdoped regime. From these data the quasiparticle density of state in the mixed state is derived and compared to the predicted scaling law Cvol/TH=f(T/H) of d -wave superconductivity. It is found that the scaling law can be nicely followed by the optimally doped sample (x=0.15) in quite a wide region of (T/H⩽8K/T) . However, the region for this scaling becomes smaller and smaller toward more underdoped region: a clear trend can be seen for samples from x=0.15to0.069 . Therefore, generally speaking, the scaling quality becomes worse on the underdoped samples in terms of scalable region of T/H . This feature in the underdoped region is explained as due to the low-energy excitations from a second order (for example, antiferromagnetic correlation, d -density wave, spin-density wave, or charge-density wave order) that may coexist or compete with superconductivity. Surprisingly, deviations from the d -wave scaling law have also been found for the overdoped sample (x=0.22) , while the scaling law is reconciled for the overdoped sample, when the core size effect is taken into account. An important discovery of present work is that the zero-temperature data follow the Volovik’s relation Δγ(T=0)=AH quite well for all samples investigated here; although the applicability of the d -wave scaling law to the data at finite temperatures varies with doped-hole concentration. We also present the doping dependence of some parameters, such as the residual linear term γ0 , the α value, etc. It is suggested that the residual linear term (γ0T) of the electronic specific heat observed in all cuprate superconductors is probably due to the inhomogeneity, either chemical or electronic in origin. The field-induced reduction of the specific heat in the mixed state is also reported. Finally, implications on the electronic phase diagram are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hafid, Hassan; Velázquez, Matias, E-mail: matias.velazquez@icmcb-bordeaux.cnrs.fr; Pérez, Olivier
2013-06-15
The PbFe{sub 3}O(PO{sub 4}){sub 3} powder compound was studied by means of X-ray diffraction (XRD) from 300 to 6 K, electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), calorimetric (DSC and specific heat) and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on PbFe{sub 3}O(PO{sub 4}){sub 3} powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32–8 K temperature range. Discrepancies between magnetization and specific heat data obtained in PbFe{sub 3}O(PO{sub 4}){sub 3} powders and single crystals are highlighted. A first extraction of the critical exponents (β,γ,δ) wasmore » performed by ac magnetic susceptibility in both PbFe{sub 3}O(PO{sub 4}){sub 3} powders and single crystals and the values were found to be consistent with mean-field theory. Further exploration of the PbO–Fe{sub 2}O{sub 3}–P{sub 2}O{sub 5} system led to the discovery of a new langbeinite phase, Pb{sub 1.5}Fe{sub 2}(PO{sub 4}){sub 3}, the crystal structure of which was solved by room temperature single crystal XRD (P2{sub 1}3, Z=4, a=9.7831(2) Å). This phase does not undergo any structural phase transition down to 6 K nor any kind of long range ordering down to 2 K. - Graphical abstract: Three ferromagnetic-like phase transitions discovered in the new compound PbFe{sub 3}O(PO{sub 4}){sub 3} by specific heat and ZFC/FC magnetization measurements. - Highlights: • Three FM-like second order phase transitions in PbFe{sub 3}O(PO{sub 4}){sub 3} powders. • Critical exponents (β,γ,δ) in PbFe{sub 3}O(PO{sub 4}){sub 3} consistent with mean-field behavior. • Discovery of a new langbeinite phase, Pb{sub 1.5}Fe{sub 2}(PO{sub 4}){sub 3}.« less
Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars.
O'Connor, Ryan S; Wolf, Blair O; Brigham, R Mark; McKechnie, Andrew E
2017-04-01
Nightjars represent a model taxon for investigating physiological limits of heat tolerance because of their habit of roosting and nesting in sunlit sites during the heat of the day. We investigated the physiological responses of Rufous-cheeked nightjars (Caprimulgus rufigena) and Freckled nightjars (Caprimulgus tristigma) to high air temperatures (T a ) by measuring body temperature (T b ), resting metabolic rate (RMR) and total evaporative water loss (TEWL) at T a ranging from 10 to 56 °C. Both species became hyperthermic at T a > T b . Lower critical limits of thermoneutrality occurred at T a between 35 and 37 °C, whereas we detected no clear upper critical limits of thermoneutrality. Between T a ≈ 37.0 and 39.9 °C, rates of TEWL increased rapidly with T a . At T a ≥ 40 °C, fractional increases in mass-specific TEWL rates were 78-106% of allometric predictions. Increasing evaporative heat dissipation incurred only small metabolic costs, with the RMR of neither species ever increasing by more than 20% above thermoneutral values. Consequently, both species displayed extremely efficient evaporative cooling; maximum evaporative heat dissipation was equivalent to 515% of metabolic heat production (MHP) at T a ≈ 56 °C in C. rufigena and 452% of MHP at T a ≈ 52 °C in C. tristigma. Our data reiterate that caprimulgids have evolved an efficient mechanism of evaporative cooling via gular fluttering, which minimizes metabolic heat production at high T a and reduces total heat loads. This likely aids in reducing TEWL rates and helps nightjars cope with some of the most thermally challenging conditions experienced by any bird.
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu
2014-07-01
The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... and for a flow monitoring system and an O2 or CO2 diluent gas monitoring system to measure heat input...
NASA Astrophysics Data System (ADS)
Li, Mo
Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.
Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry
2009-05-31
inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter
Modeling Hydrothermal Activity on Enceladus
NASA Astrophysics Data System (ADS)
Stamper, T., Jr.; Farough, A.
2017-12-01
Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing hydrothermal activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor hydrothermal systems by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 103 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase systems is required to obtain a full understanding of the characteristics and evolution of the hydrothermal system on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.
NASA Astrophysics Data System (ADS)
Mininni, Giuseppe; Sbrilli, Andrea; Maria Braguglia, Camilla; Guerriero, Ettore; Marani, Dario; Rotatori, Mauro
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200-350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm -3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t -1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41-3700 μg ITEQ t -1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91-414 μg kg -1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018-0.5 μg Nm -3) were below the Italian limit of 10 μg Nm -3.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
1993-01-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Astrophysics Data System (ADS)
Swift, Walter L.
1993-12-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Watanabe, I; Watanabe, E; Cai, Z; Okabe, T; Atsuta, M
2001-09-01
The aim of this study was to investigate the effect of various heat treatments on the mechanical properties of gold alloys capable of age-hardening at intraoral temperature. Dumbbell-shaped patterns (ISO 6871) were cast with three gold alloys (Sofard; NC Type-IV; Aurum Cast, NihombashiTokuriki Co.). The Sofard alloy is age-hardenable at intraoral temperature. The castings underwent various heat treatments [as-cast (AC); solution treatment (ST); high-temperature aging (HA); intraoral aging (IA)]. After these heat treatments, ultimate tensile strength (UTS), 0.2% offset yield strength (YS), and elongation (EL) were measured at a strain rate of 1.7x10(-4)/s. Fracture surfaces of the specimens after tensile testing were observed using SEM. Vickers hardness was also measured after heat treating. After IA, the hardness values of the Sofard alloy increased and reached values similar to the hardness of the Sofard specimens aged at high temperature (HA). The hardness values of the NC Type-IV and Aurum Cast specimens slightly increased after IA, but did not reach the values of the specimens after HA. All the Sofard, NC Type-IV and Aurum Cast specimens showed significantly (P<0.05) greater hardness values after HA, compared with the values after any other heat treatments (AC, ST and IA). The UTS and YS of the specimens indicated a tendency similar to the results obtained for hardness. The Sofard specimens with ST showed the greatest elongation compared to the corresponding NC Type-IV and Aurum Cast specimens. However, the elongation of the Sofard specimens was abruptly reduced after intraoral aging. Intraoral aging significantly improved the mechanical properties and hardness of the Sofard alloy.
Solar thermal harvesting for enhanced photocatalytic reactions.
Hashemi, Seyyed Mohammad Hosseini; Choi, Jae-Woo; Psaltis, Demetri
2014-03-21
The Shockley-Queisser limit predicts a maximum efficiency of 30% for single junction photovoltaic (PV) cells. The rest of the solar energy is lost as heat and due to phenomena such as reflection and transmission through the PV and charge carrier recombination. In the case of photocatalysis, this maximum value is smaller since the charge carriers should be transferred to acceptor molecules rather than conductive electrodes. With this perspective, we realize that at least 70% of the solar energy is available to be converted into heat. This is specifically useful for photocatalysis, since heat can provide more kinetic energy to the reactants and increase the number of energetic collisions leading to the breakage of chemical bonds. Even in natural photosynthesis, at the most 6% of the solar spectrum is used to produce sugar and the rest of the absorbed photons are converted into heat in a process called transpiration. The role of this heating component is often overlooked; in this paper, we demonstrate a coupled system of solar thermal and photocatalytic decontamination of water by titania, the most widely used photocatalyst for various photo reactions. The enhancement of this photothermal process over solely photocatalytic water decontamination is demonstrated to be 82% at 1× sun. Our findings suggest that the combination of solar thermal energy capture with photocatalysis is a suitable strategy to utilize more of the solar spectrum and improve the overall performance.
Heat Management in Thermoelectric Power Generators
Zebarjadi, M.
2016-01-01
Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717
Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.
Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R
2015-08-01
Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
Lehto, V P; Laine, E
2000-06-01
In this study, instrumentation for measuring vapor sorption enthalpies and sorption uptakes simultaneously with an isothermal microcalorimeter is introduced. Various pharmaceutical model substances undergoing phase transitions when exposed to humid conditions (25 degrees C), were employed to evaluate the usefulness and sensitivity of the constructed experimental method. The sample is placed in the sample vessel of a RH cell and the moisture content of the air flow is controlled. From the RH cell the air flow is conducted into a subsequent perfusion cell in which a saturated salt solution has been loaded. The RH cell and perfusion cells are positioned in the sample sides of two twin calorimetric units. Depending on the moisture content in the outlet flow leaving the preceding RH cell, the heat flow signal from the subsequent perfusion cell will vary. By means of blank measurement with identical settings, the rate of water sorption can be calculated and, by integration, the amount of sorbed water is obtained. Amorphous lactose and cefadroxil undergo recrystallization when the moisture level in the surroundings exceeds the threshold values specific to each compound. During the sorption phase, heat is evolved fairly linearly as a function of consumed moisture, and also after the recrystallization, the heats indicate linear behavior. The heat values for the desorption phase of amorphous lactose and the adsorption of crystalline lactose coincide. With the different anhydrous forms of theophylline, the hydration takes place more rapidly in the metastable form 1, and generally, the process is more energetic in form 1. In all cases, the gravimetric results agree with the water sorption uptakes calculated from the calorimetric data. The technique introduced offers a rapid and sensitive method to gain new insights into the transitions in which vapors are involved. In addition, different kinds of surfaces with various energetics can now be studied more closely.
NASA Astrophysics Data System (ADS)
Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando
2015-01-01
Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
A study on thermal properties of biodegradable polymers using photothermal methods
NASA Astrophysics Data System (ADS)
Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.
2005-06-01
In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.
Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments
NASA Astrophysics Data System (ADS)
Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.
2017-12-01
Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.
Heat resistance of Escherichia coli O157:H7 in apple juice.
Splittstoesser, D F; McLellan, M R; Churey, J J
1996-03-01
The objective was to determine the effect of cider composition on the heat resistance of Escherichia coli O157:H7. The average D52 value in a model Empire apple juice was 18 min with a z value of 4.8 degrees C. Increasing the Brix from 11.8 to 16.5 degrees had no effect on thermal resistance, while increasing L-malic acid from 0.2 to 0.8%, or reducing the pH from 4.4 to 3.6 sensitized the cells to heat. The greatest effect on heat resistance was afforded by the preservatives benzoic and sorbic acids: D50 values in ciders containing 1,000 mg/l were 5.2 min in the presence of sorbic acid and only 0.64 min in the presence of benzoic acid. Commercial apple juice concentrates yielded lower numbers of survivors than single-strength juices even though their higher sugar concentrations of about 46 degrees Brix increased heat resistance.
Jiang, Shaohui; Liu, Changhong; Fan, Shoushan
2014-03-12
In this work, we report our studies related to the natural-convective heat transfer properties of carbon nanotube (CNT) sheets. We theoretically derived the formulas and experimentally measured the natural-convective heat transfer coefficients (H) via electrical heating method. The H values of the CNT sheets containing different layers (1, 2, 3, and 1000) were measured. We found that the single-layer CNT sheet had a unique ability on heat dissipation because of its great H. The H value of the single-layer CNT sheet was 69 W/(m(2) K) which was about twice of aluminum foil in the same environment. As the layers increased, the H values dropped quickly to the same with that of aluminum foil. We also discussed its roles on thermal dissipation, and the results indicated that the convection was a significant way of dissipation when the CNT sheets were applied on macroscales. These results may give us a new guideline to design devices based on the CNT sheets.
Brackett, R E; Schuman, J D; Ball, H R; Scouten, A J
2001-07-01
The heat resistance of six strains of Salmonella (including Enteritidis, Heidelberg, and Typhimurium) in liquid whole egg and shell eggs was determined. Decimal reduction times (D-values) of each of the six strains were determined in liquid whole egg heated at 56.7 degrees C within glass capillary tubes immersed in a water bath. D-values ranged from 3.05 to 4.09 min, and significant differences were observed between the strains tested (alpha = 0.05). In addition, approximately 7 log10 CFU/g of a six-strain cocktail was inoculated into the geometric center of raw shell eggs and the eggs heated at 57.2 degrees C using convection currents of humidity-controlled air. D-values of the pooled salmonellae ranged from 5.49 to 6.12 min within the center of intact shell eggs. A heating period of 70 min or more resulted in no surviving salmonellae being detected (i.e., an 8.7-log reduction per egg).
NASA Astrophysics Data System (ADS)
Nishigori, Shijo; Seida, Osamu
2018-05-01
We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.
Hosseini Koupaie, E; Eskicioglu, C
2015-01-01
This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.
On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface
NASA Astrophysics Data System (ADS)
Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.
2018-03-01
This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... specified temperature for a specific time period to kill targeted pests. Vapor heat. Heated air saturated with water vapor and used to raise the temperature of a commodity to a required point for a specific... products. Hot water immersion dip. Complete immersion of a commodity in heated water to raise the...
Heat flow and near-surface radioactivity in the Australian continental crust
Sass, J.H.; Jaeger, J.C.; Munroe, Robert J.
1976-01-01
Heat-flow data have been obtained at 44 sites in various parts of Australia. These include seven sites from the old (~ 2500 m.y.) Precambrian shield of Western Australia, seventeen from the younger (~ 600- 2000 m.y.) Precambrian rocks of South Australia, the Northern Territory, and Queensland, and twenty within the eastern Paleozoic and younger rocks. Thirty of the sites are located where no previous heat-flow data existed, and the remainder provide significant extensions or refinements of areas previously studied. Where the holes studied penetrated the crystalline basement rocks, or where the latter rocks were exposed within a few kilometers of the holes, the upper crustal radiogenic heat production has been estimated based on gamma-ray spectrometric determinations of U, Th, and K abundances. Three heat-flow provinces are recognized in Australia based on the linear relation (q = q* + DA0 ) between heat flow q and surface radioactivity A0. New data from the Western Australian shield support earlier studies showing that heat flow is low to normal with values ranging from 0.7 to 1.2 hfu and with the majority of values less than 1.0 hfu, and the parameters q* = 0.63 hfu and 0 = 4.5 km determined previously were confirmed. Heat flow in the Proterozoic shield of central Australia is quite variable, with values ranging between about l and 3 hfu. This variability is attributed mainly to variations in near-surface crustal radioactivity. The parameters of the heat-flow line are q* = 0.64 hfu and 0 = 11.1 km and moderately high temperatures are predicted for the lower crust and upper mantle. Previous suggestions of a band of l ow- to - normal heat flow near the coast in eastern Australia were confirmed in some areas, but the zone is interrupted in at least one region (the Sydney Basin), where heat flow is about 2.0 hfu over a large area. The reduced heat flow, q*, in the Paleozoic intrusive rocks of eastern Australia varies from about 0.8 to 2.0 hfu . This variability might be related to thermal transients associated with Late Tertiary and younger volcanic and tectonic activity, even though the relation between heat-flow values and the age of volcanism is not a simple one. Parts of the high heat-flow area in the southeast might be exploitable for geothermal energy.