Sample records for specific insect attraction

  1. Estimating insect flight densities from attractive trap catches and flight height distributions

    USDA-ARS?s Scientific Manuscript database

    Insect species often exhibit a specific mean flight height and vertical flight distribution that approximates a normal distribution with a characteristic standard deviation (SD). Many studies in the literature report catches on passive (non-attractive) traps at several heights. These catches were us...

  2. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.

  3. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    PubMed

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  4. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    PubMed

    Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel

    2008-10-08

    Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine), much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol), pyrimidines (uracil, thymine), and nucleosides (uridine, thymidine) functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  5. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  6. Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators.

    PubMed

    Friberg, Magne; Schwind, Christopher; Roark, Lindsey C; Raguso, Robert A; Thompson, John N

    2014-09-01

    Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.

  7. Colors of attraction: Modeling insect flight to light behavior.

    PubMed

    Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar

    2018-06-26

    Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.

  8. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies. © 2015 Elsevier Inc. All rights reserved.

  9. Role of phermones and kairmones for insect suppression systems and their possible health and environmental impacts.

    PubMed Central

    Knipling, E F

    1976-01-01

    Insects produce pheromones as a chemical communication system to facilitate reproduction. These highly active chemical attractants have been synthesized for some of the most important insect pests, including the boll weevil, gypsy moth, codling moth, tobacco budworm, European corn borer, and several bark beetles. While none of the synthetic sex attractants have yet been developed for use in insect control, they offer opportunities for the future both as control agents and to greatly improved insect detection. Investigations are underway on insect trapping systems employing the phermones and on air permeation techniques to disrupt insect reproduction. The pheromones are generally highly species-specific and are not likely to pose hazards to nontarget organisms in the environment. Toxicological studies indicate that they are low in toxicity to mammals, birds, and fish, but adequate toxicological data are necessary before they can be registered for use in insect control. Another new class of compounds called kaironomes has been discovered. These chemicals are involved in the detection of hosts or prey by insect parasites and predators. Kairomones may prove useful in manipulating natural or released biological agents for more effective biological control of insect pests. No information is yet available on the toxicology of these chemicals. PMID:789061

  10. Survey of insect visitation of ornamental flowers in Southover Grange garden, Lewes, UK.

    PubMed

    Garbuzov, Mihail; Samuelson, Elizabeth E W; Ratnieks, Francis L W

    2015-10-01

    Ornamental flowers commonly grown in urban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we quantified the insect attractiveness of 79 varieties in full bloom being grown in a public urban garden that is popular due to its beautiful flowers and other attractions. The results showed very clearly that most varieties (77%, n = 61) were either poorly attractive or completely unattractive to insect flower visitors. Several varieties (19%, n = 15) were moderately attractive, but very few (4%, n = 3) were highly attractive. Closer examination of Dahlia varieties showed that "open" flowered forms were approximately 20 times more attractive than "closed" flowered forms. These results strongly suggest that there is a great potential for making urban parks and gardens considerably more bee- and insect-friendly by selecting appropriate varieties. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  11. Using the British National Collection of Asters to Compare the Attractiveness of 228 Varieties to Flower-Visiting Insects.

    PubMed

    Garbuzov, Mihail; Ratnieks, Francis L W

    2015-06-01

    Wildlife-friendly gardening practices can help conserve biodiversity in urban areas. These include growing ornamental plant varieties attractive to flower-visiting insects. Because varieties vary greatly in attractiveness, there is a need to quantify it in order to give objective advice to gardeners. Here, we used the British national collection of asters to compare the attractiveness of varieties to flower-visiting insects. We counted and identified insects as they foraged on flowers in 228 varieties growing in discrete patches that flowered during the survey period, 14 September-20 October 2012. In each variety, we also determined the overall capitulum size, the central disc floret area, and the ray floret color (blue, red, purple, or white). We also scored attributes relevant to gardening: attractiveness to humans, ease of cultivation, and availability in the United Kingdom. There was great variation among varieties in their attractiveness to insects, ranging from 0.0 to 15.2 per count per square meter, and highly skewed, with most being unattractive. A similar skew held for the two main insect categories, honey bees and hover flies, which comprised 28 and 64% of all insects, respectively. None of the floral traits or attributes relevant to gardening correlated significantly with attractiveness to insects. Our study shows the practicality of using a national collection for quantifying and comparing the attractiveness of ornamental varieties to flower-visiting insects. These results imply that choosing varieties carefully is likely to be of conservation benefit to flower-visiting insects, and that doing so is a no-cost option in terms of garden beauty and workload. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pollination by brood-site deception.

    PubMed

    Urru, Isabella; Stensmyr, Marcus C; Hansson, Bill S

    2011-09-01

    Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types?

    PubMed

    Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen

    2016-11-01

    LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.

  14. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  15. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  16. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant.

    PubMed

    Bertol, Nils; Paniw, Maria; Ojeda, Fernando

    2015-05-01

    Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low-nutrient environments. Disparate mechanisms have been suggested as luring traits to attract prey insects into their deadly leaves, ranging from very elaborate to none at all. Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves or they act just as passive traps. We compared prey capture between live, potted plants and Drosophyllum-shaped artificial mimics coated with odorless glue. Since this species is insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by quantifying the similarity between the pollination and prey guilds in a natural population. All experiments were done in southern Spain. The sticky leaves of Drosophyllum captured significantly more prey than mimics, particularly small dipterans. Prey attraction, likely exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as inferred from the low similarity between pollinator and prey insect faunas found in this species. Our results illustrate the effectiveness of this carnivorous species at attracting insects to their flypaper-trap leaves. © 2015 Botanical Society of America, Inc.

  17. Simpler is better: fewer nontarget insects trapped with a 4-component chemical lure versus a chemically more complex food-type bait for Drosophila suzukii

    USDA-ARS?s Scientific Manuscript database

    As baits, fermented food products are generally attractive to many types of insects, making it difficult to sort through nontarget insects to monitor a pest species of interest. We test the hypothesis that a chemically simpler and more defined attractant developed for a target insect is more specifi...

  18. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation Biology.

  19. Active space of pheromone plume and its relationship to effective attraction radius in applied models.

    PubMed

    Byers, John A

    2008-09-01

    The release rate of a semiochemical lure that attracts flying insects has a specific effective attraction radius (EAR) that corresponds to the lure's orientation response strength. EAR is defined as the radius of a passive sphere that intercepts the same number of insects as a semiochemical-baited trap. It is estimated by calculating the ratio of trap catches in the field in baited and unbaited traps and the interception area of the unbaited trap. EAR serves as a standardized method for comparing the attractive strengths of lures that is independent of population density. In two-dimensional encounter rate models that are used to describe insect mass trapping and mating disruption, a circular EAR (EAR(c)) describes a key parameter that affects catch or influence by pheromone in the models. However, the spherical EAR, as measured in the field, should be transformed to an EAR(c) for appropriate predictions in such models. The EAR(c) is calculated as (pi/2EAR(2))/F (L), where F (L) is the effective thickness of the flight layer where the insect searches. F (L) was estimated from catches of insects (42 species in the orders Coleoptera, Lepidoptera, Diptera, Hemiptera, and Thysanoptera) on traps at various heights as reported in the literature. The EAR(c) was proposed further as a simple but equivalent alternative to simulations of highly complex active-space plumes with variable response surfaces that have proven exceedingly difficult to quantify in nature. This hypothesis was explored in simulations where flying insects, represented as coordinate points, moved about in a correlated random walk in an area that contained a pheromone plume, represented as a sector of active space composed of a capture probability surface of variable complexity. In this plume model, catch was monitored at a constant density of flying insects and then compared to simulations in which a circular EAR(c) was enlarged until an equivalent rate was caught. This demonstrated that there is a circular EAR(c), where all insects that enter are caught, which corresponds in catch effect to any plume. Thus, the EAR(c), based on the field-observed EAR, can be used in encounter rate models to develop effective control programs based on mass trapping and/or mating disruption.

  20. Field study on the attraction and development of insects on human meconium and breast-fed-infant feces.

    PubMed

    De Jong, Grant D

    2014-09-01

    Urogenital myiasis of newborn infants, although rare, is usually considered to indicate neglect due to attraction of flies to feces; however, infant feces have not been determined to attract insects. Human meconium and breast-fed-infant feces were used to determine attractiveness to insects and to examine subsequent colonization and growth patterns of insect larvae. Despite small amounts of fecal material present, adults of Lucilia sericata arrived at breast-fed-infant feces within five minutes; insects were rarely observed on meconium. Oviposition and growth of L. sericata larvae occurred only on breast-fed-infant feces; however, the larvae did not progress beyond the second instar. These data suggest that urogenital myiasis by L. sericata in newborn human infants within the first few days postpartum would not be expected, but desiccation and depletion of infested feces may provide a possible pathway for urogenital myiasis in older newborn infants. © 2014 American Academy of Forensic Sciences.

  1. A new approach to optic disc detection in human retinal images using the firefly algorithm.

    PubMed

    Rahebi, Javad; Hardalaç, Fırat

    2016-03-01

    There are various methods and algorithms to detect the optic discs in retinal images. In recent years, much attention has been given to the utilization of the intelligent algorithms. In this paper, we present a new automated method of optic disc detection in human retinal images using the firefly algorithm. The firefly intelligent algorithm is an emerging intelligent algorithm that was inspired by the social behavior of fireflies. The population in this algorithm includes the fireflies, each of which has a specific rate of lighting or fitness. In this method, the insects are compared two by two, and the less attractive insects can be observed to move toward the more attractive insects. Finally, one of the insects is selected as the most attractive, and this insect presents the optimum response to the problem in question. Here, we used the light intensity of the pixels of the retinal image pixels instead of firefly lightings. The movement of these insects due to local fluctuations produces different light intensity values in the images. Because the optic disc is the brightest area in the retinal images, all of the insects move toward brightest area and thus specify the location of the optic disc in the image. The results of implementation show that proposed algorithm could acquire an accuracy rate of 100 % in DRIVE dataset, 95 % in STARE dataset, and 94.38 % in DiaRetDB1 dataset. The results of implementation reveal high capability and accuracy of proposed algorithm in the detection of the optic disc from retinal images. Also, recorded required time for the detection of the optic disc in these images is 2.13 s for DRIVE dataset, 2.81 s for STARE dataset, and 3.52 s for DiaRetDB1 dataset accordingly. These time values are average value.

  2. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  3. Pollinator-prey conflicts in carnivorous plants: When flower and trap properties mean life or death

    PubMed Central

    El-Sayed, Ashraf M.; Byers, John A.; Suckling, David M.

    2016-01-01

    Insect-pollinated carnivorous plants are expected to have higher fitness if they resolve pollinator-prey conflicts by sparing insects pollinating their flowers while trapping prey insects. We examined whether separation between flowers and traps of the carnivorous sundew species or pollinator preferences for colours of flowers enable these plants to spare pollinators. In addition, we collected odours from flowers and traps of each carnivorous species in order to identify volatile chemicals that are attractive or repellent to pollinators and prey insects. In Drosera spatulata and D. arcturi, no volatiles were detected from either their flowers or traps that could serve as kairomone attractants for insects. However, behavioural experiments indicated white colour and spatial separation between flowers and traps aid in reducing pollinator entrapment while capturing prey. In contrast, D. auriculata have flowers that are adjacent to their traps. In this species we identified chemical signals emanating from flowers that comprised an eight-component blend, while the plant’s traps emitted a unique four-component blend. The floral odour attracted both pollinator and prey insects, while trap odour only attracted prey. This is the first scientific report to demonstrate that carnivorous plants utilize visual, spatial, and chemical signals to spare flower visitors while trapping prey insects. PMID:26888545

  4. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals

    PubMed Central

    Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor

    2006-01-01

    We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork. PMID:16769639

  5. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System

    PubMed Central

    McArt, Scott H.; Miles, Timothy D.; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S.; Grieshop, Matthew J.

    2016-01-01

    Several fungal plant pathogens induce ‘pseudoflowers’ on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently. PMID:27851747

  6. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System.

    PubMed

    McArt, Scott H; Miles, Timothy D; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S; Grieshop, Matthew J

    2016-01-01

    Several fungal plant pathogens induce 'pseudoflowers' on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently.

  7. Seminal Fluid Regulation of Female Sexual Attractiveness in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Tram, Uyen; Wolfner, Mariana F.

    1998-03-01

    Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female's behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male's accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm.

  8. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  9. Traps and attractants for wood-boring insects in ponderosa pine stands in the Black Hills, South Dakota

    Treesearch

    Sheryl L. Costello; Jose F. Negron; William R. Jacobi

    2008-01-01

    Recent large-scale wildfires have increased populations of wood-boring insects in the Black Hills of South Dakota. Because little is known about possible impacts of wood-boring insects in the Black Hills, land managers are interested in developing monitoring techniques such as flight trapping with semiochemical baits. Two trap designs and four semiochemical attractants...

  10. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  11. Experience-dependent modulation of the attraction to faeces in the kissing bug Triatoma infestans.

    PubMed

    Mengoni, Sofía L; Lorenzo-Figueiras, Alicia N; Minoli, Sebastián A

    2017-04-01

    Triatoma infestans is the main vector of the Chagas disease in Latin America. These nocturnal bugs spend most of the daylight hours aggregated with conspecifics inside crevices in roofs and walls. Around the entrances of the shelters T. infestans deposits faeces that contain chemical cues that attract conspecifics. In this work we investigated whether attraction to faeces can be modulated by experience in this insect species. First, we analyzed if the attraction of nymphs to faeces is innate or acquired through previous sensory experiences. Results show that after hatching, 1st instar nymphs are attracted to faeces even if they had never been in contact with them before, thus indicating that this attraction is innate. Second, we studied if attraction to faeces can be influenced by the presence of con-specifics. No differences were found in the attraction to faeces of nymphs released alone or in groups, suggesting that attraction to faeces is independent of the presence of other individuals. Third, we examined if the innate response to faeces of nymphs can be modulated by experience. After pre-exposing nymphs to faeces during 24h, insects were no longer attracted to faeces. Finally, by pairing the presence of faeces with an aversive mechanical disturbance, nymphs switched from attraction to avoidance of faeces. These results show that although faeces attraction has a strong innate component, it can be modulated by experience. The learning and memory capacities of triatomines have been studied only recently, and our work is the first report on the effects of experience in the aggregation context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects.

    PubMed

    Garbuzov, Mihail; Alton, Karin; Ratnieks, Francis L W

    2017-01-01

    Gardeners and park managers seeking to support biodiversity in urban areas often plant ornamentals attractive to flower-visiting insects. There is a huge diversity of garden plant varieties, and some recommendations are available as to which are attractive to insects. However, these are largely not based on rigorous empirical data. An important factor in consumer choice is the range of varieties available for purchase. In the UK, garden centres are a key link in the supply chain between growers and private gardens. This study is the first to determine the proportions of flowering ornamentals being sold that are attractive to flower-visiting insects. We surveyed six garden centres in Sussex, UK, each over two days in 2015, by making 12 counts of insects visiting patches of each ornamental plant on display for sale that was in bloom. To provide a consistent baseline among different locations, we brought with us and surveyed marjoram ( Origanum vulgare ) plants in pots, which are known to be attractive to a wide range of flower-visiting insects. The attractiveness of plant varieties to insects was then expressed in two ways: the absolute number and relative to that on marjoram ('marjoram score'), both per unit area of plant cover. In addition, we noted whether each variety was recommended as pollinator-friendly either via a symbol on the label, or by being included in the Royal Horticultural Society's 'Perfect for Pollinators' list. Furthermore, we compared the attractiveness of plants that are typically grown for more than one year versus only one year. We surveyed 59-74 plant varieties in bloom across the six garden centres. In each garden centre, the distributions of variety attractiveness were highly skewed to the right, with most varieties being relatively unattractive, and few varieties highly attractive to flower-visiting insects. The median attractiveness of varieties with a recommendation was 4.2× higher than that of varieties without. But, due to the large variation there was a substantial number of both poor varieties that had a recommendation and good varieties that did not. Median attractiveness of multi-year plants was 1.6× that of single-year plants, with a similar overlap in distributions. Our study demonstrates the practicality of carrying out plant surveys in garden centres. Garden centres display large numbers of varieties for sale, most of which are in bloom. Furthermore, data gathered in garden centres appear to correlate well with data gathered in two previous studies in Sussex for plants established in gardens. Although it is unclear whether the varieties being sold in garden centres are a fair representation of varieties that are actually grown by gardeners, our results suggest that there might be considerable scope for making parks and gardens considerably more insect-friendly through judicious variety choices.

  13. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects

    PubMed Central

    Alton, Karin; Ratnieks, Francis L.W.

    2017-01-01

    Background Gardeners and park managers seeking to support biodiversity in urban areas often plant ornamentals attractive to flower-visiting insects. There is a huge diversity of garden plant varieties, and some recommendations are available as to which are attractive to insects. However, these are largely not based on rigorous empirical data. An important factor in consumer choice is the range of varieties available for purchase. In the UK, garden centres are a key link in the supply chain between growers and private gardens. This study is the first to determine the proportions of flowering ornamentals being sold that are attractive to flower-visiting insects. Methods We surveyed six garden centres in Sussex, UK, each over two days in 2015, by making 12 counts of insects visiting patches of each ornamental plant on display for sale that was in bloom. To provide a consistent baseline among different locations, we brought with us and surveyed marjoram (Origanum vulgare) plants in pots, which are known to be attractive to a wide range of flower-visiting insects. The attractiveness of plant varieties to insects was then expressed in two ways: the absolute number and relative to that on marjoram (‘marjoram score’), both per unit area of plant cover. In addition, we noted whether each variety was recommended as pollinator-friendly either via a symbol on the label, or by being included in the Royal Horticultural Society’s ‘Perfect for Pollinators’ list. Furthermore, we compared the attractiveness of plants that are typically grown for more than one year versus only one year. Results We surveyed 59–74 plant varieties in bloom across the six garden centres. In each garden centre, the distributions of variety attractiveness were highly skewed to the right, with most varieties being relatively unattractive, and few varieties highly attractive to flower-visiting insects. The median attractiveness of varieties with a recommendation was 4.2× higher than that of varieties without. But, due to the large variation there was a substantial number of both poor varieties that had a recommendation and good varieties that did not. Median attractiveness of multi-year plants was 1.6× that of single-year plants, with a similar overlap in distributions. Discussion Our study demonstrates the practicality of carrying out plant surveys in garden centres. Garden centres display large numbers of varieties for sale, most of which are in bloom. Furthermore, data gathered in garden centres appear to correlate well with data gathered in two previous studies in Sussex for plants established in gardens. Although it is unclear whether the varieties being sold in garden centres are a fair representation of varieties that are actually grown by gardeners, our results suggest that there might be considerable scope for making parks and gardens considerably more insect-friendly through judicious variety choices. PMID:28286716

  14. Physiological Studies and Pest Control

    ERIC Educational Resources Information Center

    Philogene, Bernard J. R.

    1972-01-01

    In the light of new knowledge about insecticides, future research should be conducted by plant and insect physiologists together. Plant physiologists should explain what characteristics in plants attract insects and insect physiologists should study adaptive patterns of insects and combine their knowledge to control insects. (PS)

  15. Unexpected Attraction of Polarotactic Water-Leaving Insects to Matt Black Car Surfaces: Mattness of Paintwork Cannot Eliminate the Polarized Light Pollution of Black Cars

    PubMed Central

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles. PMID:25076137

  16. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    PubMed

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  17. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii.

    PubMed

    Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C

    2010-01-01

    Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Insect odorant receptors are molecular targets of the insect repellent DEET.

    PubMed

    Ditzen, Mathias; Pellegrino, Maurizio; Vosshall, Leslie B

    2008-03-28

    DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster. DEET inhibits behavioral attraction to food odors in Drosophila, and this inhibition requires the highly conserved olfactory co-receptor OR83b. DEET inhibits odor-evoked currents mediated by the insect odorant receptor complex, comprising a ligand-binding subunit and OR83b. We conclude that DEET masks host odor by inhibiting subsets of heteromeric insect odorant receptors that require the OR83b co-receptor. The identification of candidate molecular targets for the action of DEET may aid in the design of safer and more effective insect repellents.

  19. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns.

    PubMed

    Taning, Clauvis Nji Tizi; Van Eynde, Benigna; Yu, Na; Ma, Sanyuan; Smagghe, Guy

    2017-04-01

    Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. How Predictable Are the Behavioral Responses of Insects to Herbivore Induced Changes in Plants? Responses of Two Congeneric Thrips to Induced Cotton Plants

    PubMed Central

    Silva, Rehan; Furlong, Michael J.; Wilson, Lewis J.; Walter, Gimme H.

    2013-01-01

    Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae) to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae)) damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), Tetranychus urticae (Koch) (Trombidiforms: Tetranychidae), Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate. PMID:23691075

  1. Insect form vision as one potential shaping force of spider web decoration design.

    PubMed

    Cheng, R-C; Yang, E-C; Lin, C-P; Herberstein, M E; Tso, I-M

    2010-03-01

    Properties of prey sensory systems are important factors shaping the design of signals generated by organisms exploiting them. In this study we assessed how prey sensory preference affected the exploiter signal design by investigating the evolutionary relationship and relative attractiveness of linear and cruciate form web decorations built by Argiope spiders. Because insects have an innate preference for bilaterally symmetrical patterns, we hypothesized that cruciate form decorations were evolved from linear form due to their higher visual attractiveness to insects. We first reconstructed a molecular phylogeny of the Asian members of the genus Argiope using mitochondrial markers to infer the evolutionary relationship of two decoration forms. Results of ancestral character state reconstruction showed that the linear form was ancestral and the cruciate form derived. To evaluate the luring effectiveness of two decoration forms, we performed field experiments in which the number and orientation of decoration bands were manipulated. Decoration bands arranged in a cruciate form were significantly more attractive to insects than those arranged in a linear form, no matter whether they were composed of silks or dummies. Moreover, dummy decoration bands arranged in a cruciate form attracted significantly more insects than those arranged in a vertical/horizontal form. Such results suggest that pollinator insects' innate preference for certain bilateral or radial symmetrical patterns might be one of the driving forces shaping the arrangement pattern of spider web decorations.

  2. Practical applications of insects' sexual development for pest control.

    PubMed

    Koukidou, M; Alphey, L

    2014-01-01

    Elucidation of the sex differentiation pathway in insects offers an opportunity to understand key aspects of evolutionary developmental biology. In addition, it provides the understanding necessary to manipulate insects in order to develop new synthetic genetics-based tools for the control of pest insects. Considerable progress has been made in this, especially in improvements to the sterile insect technique (SIT). Large scale sex separation is considered highly desirable or essential for most SIT targets. This separation can be provided by genetic methods based on sex-specific gene expression. Investigation of sex determination by many groups has provided molecular components and methods for this. Though the primary sex determination signal varies considerably, key regulatory genes and mechanisms remain surprisingly similar. In most cases studied so far, a primary signal is transmitted to a basal gene at the bottom of the hierarchy (dsx) through an alternative splicing cascade; dsx is itself differentially spliced in males and females. A sex-specific alternative splicing system therefore offers an attractive route to achieve female-specific expression. Experience has shown that alternative splicing modules can be developed with cross-species function; modularity and standardisation and re-use of parts are key principles of synthetic biology. Both female-killing and sex reversal (XX females to phenotypic males) can in principle also be used as efficient alternatives to sterilisation in SIT-like methods. Sexual maturity is yet another area where understanding of sexual development may be applied to insect control programmes. Further detailed understanding of this crucial aspect of insect biology will undoubtedly continue to underpin innovative practical applications. © 2014 S. Karger AG, Basel.

  3. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  4. A synergistic aggregation pheromone component in the banana weevil Cosmopolites sordidus Germar 1824 (Coleoptera: Curculionidae).

    PubMed

    Cerda, H; Mori, K; Nakayama, T; Jaffe, K

    1998-01-01

    Cosmopolites sordidus is an important pest on banana plantations worldwide. The chemistry of the aggregation pheromone of this insect has been recently resolved and here we present the first evidence from field trails that sordidin, a compound from the male released aggregation pheromone, attracts significant number of weevils only if host plant odors are also present. Sordidin attracts few insects when it is presented without the host plant tissue. However, the attractiveness of host plant tissue increases more than tenfold when it is presented simultaneously with sordidin in field traps. We confirm experimentally that sordidin may be used as part of a system for mass trapping and monitoring this insect.

  5. Protecting Yourself from Stinging Insects

    MedlinePlus

    ... at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While most ... by several stinging insects, run to get away. (Bees release a chemical when they sting, which attracts ...

  6. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA

    PubMed Central

    James, David G.; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2016-01-01

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation. PMID:27367733

  7. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA.

    PubMed

    James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2016-06-29

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  8. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  9. Sexual dimorphism of bed bug (Cimex lectularis) attraction and aggregation responses to cuticular extracts from nymph exuviae

    USDA-ARS?s Scientific Manuscript database

    A large variety of releaser pheromones are used by insects to attract or disperse conspecifics, while group cohesion is often influenced by primer pheromones that induce behavioral or physiological changes. Differentiating the roles of such pheromones in insect taxa displaying intermediate levels of...

  10. Meligethes aeneus pollen-feeding suppresses, and oviposition induces, Brassica napus volatiles: beetle attraction/repellence to lilac aldehydes and veratrole

    USDA-ARS?s Scientific Manuscript database

    Insect pollination and pollen-feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured pla...

  11. Allergies to Insect Venom

    MedlinePlus

    ... colored clothing. Dark clothing and clothing with flowery designs is more likely to attract insects.  Use unscented ... keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing ...

  12. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds.

    PubMed

    Bruce, Toby J A

    2015-02-01

    In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Can ménage-a-trois be used for controlling insects?

    PubMed

    Suckling, D M; Jang, E B; Carvalho, L A; Nagata, J T; Schneider, E L; El-Sayed, A M

    2007-08-01

    We propose a new cross-species disruption approach that might be capable of interrupting mating of one species that uses another insect species as the mercenary agent. We argue that insects treated with a sufficiently powerful attractant for a second species might interfere with mating of one or both species, for example, by leading males astray in pursuit of the false trails created by suitably dosing individuals of the first species. Our reciprocal test systems used (1) methyl eugenol, an attractant for male oriental fruit flies (Bactrocera dorsalis), applied to melon flies (B. cucurbitae) and (2) cuelure, a lure for male melon flies, applied to B. dorsalis. There was no mortality 1 week after either attractant was applied to individual flies at doses up to 100 ng, which was effective in attracting insects in a field cage and in the field. In wind tunnel choice tests, 100 ng of either lure topically applied to tethered flies attracted fruit fly males of the second species, which exhibited prolonged bouts of physically disruptive behaviors including chasing and bumping. In small cages, treatment of males did not reduce mating of either species, with one group of three (ménage) per cage. However, in large field cages with multiple pairs of both species present, there was a significant reduction in the mating of melon flies resulting from methyl eugenol applied to males compared to untreated controls. The treatment of oriental fruit flies with cuelure also reduced their mating to a lesser extent. These results do not yet provide the practical proof of this new concept for pest management, but other model systems may be more appropriate. This work is novel in presenting attractants on a moving target, in this case, another insect species.

  14. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs.

    PubMed

    Grison-Pigé, Laure; Bessière, Jean-Marie; Hossaert-McKey, Martine

    2002-02-01

    Floral scents often act as pollinator attractants. In the case of obligate and specific plant-pollinator relationships, the role of floral signals may be crucial in allowing the encounter of the partners. About 750 Ficus species (Moraceae) are involved in such interactions, each with a distinct species of pollinating wasp (Chalcidoidea, Agaonidae). Several species have been shown to release volatile compounds, but their role in pollinator attraction has rarely been simultaneously tested. We investigated the floral scents of four tropical fig species and combined chemical analysis with biological tests of stimulation of insects. Pollinators of three species were stimulated by the odor of their associated fig species and generally not by the odor of another species. The fourth actually comprised two distinct varieties. The main compound was often a different one in each species. Floral blends of different species always shared compounds, but ratios of these compounds varied among species.

  15. Yeast‐insect associations: It takes guts

    PubMed Central

    2018-01-01

    Abstract Insects interact with microorganisms in several situations, ranging from the accidental interaction to locate attractive food or the acquisition of essential nutrients missing in the main food source. Despite a wealth of studies recently focused on bacteria, the interactions between insects and yeasts have relevant implications for both of the parties involved. The insect intestine shows several structural and physiological differences among species, but it is generally a hostile environment for many microorganisms, selecting against the most sensitive and at the same time guaranteeing a less competitive environment to resistant ones. An intensive characterization of the interactions between yeasts and insects has highlighted their relevance not only for attraction to food but also for the insect's development and behaviour. Conversely, some yeasts have been shown to benefit from interactions with insects, in some cases by being carried among different environments. In addition, the insect intestine may provide a place to reside for prolonged periods and possibly mate or generate sexual forms able to mate once back in the external environments. YEA‐May‐17‐0084.R3 PMID:29363168

  16. The First Survey of Forensically Important Entomofauna Collected from Medicolegal Autopsies in South Korea

    PubMed Central

    Shin, Sang Eon; Lee, Hyun Ju; Park, Ji Hye; Ko, Kwang Soo; Kim, Yu-Hoon; Kim, Kyung Ryoul

    2015-01-01

    Forensic entomology applies insect evidence to legal problems such as the estimation of minimum postmortem interval (mPMI). For this purpose, knowledge of the insect fauna that are attracted to human cadavers in each geographic region is a prerequisite. Despite many studies investigating the insect fauna attracted to meat, there has been no survey of the entomofauna on human cadavers in the East Asian temperate climate zone, particularly in Korea. Therefore, this study reports the entomofauna collected from medicolegal autopsies in northeastern Seoul and its suburbs. Insect samples were collected from 35 medicolegal autopsies in 2010, 2011, and 2013. Molecular and morphological methods were utilized for taxonomic identification. Among 1398 individual samples belonging to 3 orders, 13 families, 18 genera, and 32 species, the dominant family and species were Calliphoridae and Lucilia sericata, respectively. Despite its limited scale, this study provides a snapshot of the general entomofauna that are attracted to human cadavers in this region. PMID:26185759

  17. Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo.

    PubMed

    Giusto, Bruno Di; Grosbois, Vladimir; Fargeas, Elodie; Marshall, David J; Gaume, Laurence

    2008-03-01

    Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping:attraction, capture and retention. Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction,the contribution of capture and retention has been overlooked. This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction. The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species,with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers. Capture efficiency was low compared with attraction or retention efficiency. Fragrance of the peristome,or nectar rim,accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey. The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.

  18. The effect of a topical insecticide containing permethrin on the number of Culicoides midges caught near horses with and without insect bite hypersensitivity in the Netherlands.

    PubMed

    de Raat, I J; van den Boom, R; van Poppel, M; van Oldruitenborgh-Oosterbaan, M M Sloet

    2008-10-15

    Insect bite hypersensitivity (IBH) in horses is most likely caused by Culicoides species, although other insects may also play a role. Until now no effective cure has been found for this condition, although numerous therapeutic and preventive measures have been used to control insect hypersensitivity. One such method is to apply a topical insecticide to horses. In this study, the effect of a topical insecticide containing permethrin (3.6%) was examined in seven pairs of horses. The horses were placed inside a tent trap to collect Culicoides spp. and other insects attracted to the horses on two subsequent evenings. On the first evening, both horses were untreated. After the end of this session, one horse of each pair was treated with the pour-on insecticide; treated horses were kept separate from untreated horses. The next evening the pairs of horses were again placed inside the tent trap and insects were collected. Similar percentages of Culicoides were trapped as in earlier studies (C. obsoletus 95.34% and C. pulicaris 4.54%), with healthy horses attracting more Culicoides than horses affected by IBH. The number of Culicoides, the percentage of blood-fed Culicoides obsoletus, and the total number of insects attracted to horses 24 hours after treatment with permethrin were reduced but the reduction was not statistically significant. No negative side effects of permethrin administration were observed.

  19. Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae)

    USDA-ARS?s Scientific Manuscript database

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that microbes associated with an oviposition resource and resulting eggs deposited by insects serve as a mechanism regulating subsequent insect attraction, colonization, ...

  20. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    PubMed

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  1. Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles.

    PubMed

    Meier, Linnea R; Zou, Yunfan; Millar, Jocelyn G; Mongold-Diers, Judith A; Hanks, Lawrence M

    2016-11-01

    Research over the last decade has revealed extensive parsimony among pheromones within the large insect family Cerambycidae, with males of many species producing the same, or very similar aggregation pheromones. Among some species in the subfamily Cerambycinae, interspecific attraction is minimized by temporal segregation, and/or by minor pheromone components that synergize attraction of conspecifics or inhibit attraction of heterospecifics. Less is known about pheromone-based mechanisms of reproductive isolation among species in the largest subfamily, the Lamiinae. Here, we present evidence that the pheromone systems of two sympatric lamiine species consist of synergistic blends of enantiomers of (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), as a mechanism by which species-specific blends of pheromone components can minimize interspecific attraction. Male Astylidius parvus (LeConte) were found to produce (R)- and (S)-fuscumol + (R)-fuscumol acetate + geranylacetone, whereas males of Lepturges angulatus (LeConte) produced (R)- and (S)-fuscumol acetate + geranylacetone. Field experiments confirmed that adult beetles were attracted only by their species-specific blend of the enantiomers of fuscumol and fuscumol acetate, respectively, and not to the individual enantiomers. Because other lamiine species are known to produce single enantiomers or blends of enantiomers of fuscumol and/or fuscumol acetate, synergism between enantiomers, or inhibition by enantiomers, may be a widespread mechanism for forming species-specific pheromone blends in this subfamily.

  2. House Fly (Musca domestica L.) Attraction to Insect Honeydew.

    PubMed

    Hung, Kim Y; Michailides, Themis J; Millar, Jocelyn G; Wayadande, Astri; Gerry, Alec C

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species.

  3. House Fly (Musca domestica L.) Attraction to Insect Honeydew

    PubMed Central

    Hung, Kim Y.; Michailides, Themis J.; Millar, Jocelyn G.; Wayadande, Astri; Gerry, Alec C.

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species. PMID:25970333

  4. Chemical ecology of obligate pollination mutualisms: testing the 'private channel' hypothesis in the Breynia-Epicephala association.

    PubMed

    Svensson, Glenn P; Okamoto, Tomoko; Kawakita, Atsushi; Goto, Ryutaro; Kato, Makoto

    2010-06-01

    *Obligate mutualisms involving actively pollinating seed predators are among the most remarkable insect-plant relationships known, yet almost nothing is known about the chemistry of pollinator attraction in these systems. The extreme species specificity observed in these mutualisms may be maintained by specific chemical compounds through 'private channels'. Here, we tested this hypothesis using the monoecious Breynia vitis-idaea and its host-specific Epicephala pollinator as a model. *Headspace samples were collected from both male and female flowers of the host. Gas chromatography with electroantennographic detection (GC-EAD), coupled gas chromatography-mass spectrometry, and olfactometer bioassays were used to identify the floral compounds acting as the pollinator attractant. *Male and female flowers of B. vitis-idaea produced similar sets of general floral compounds, but in different ratios, and male flowers emitted significantly more scent than female flowers. A mixture of 2-phenylethyl alcohol and 2-phenylacetonitrile, the two most abundant compounds in male flowers, was as attractive to female moths as the male flower sample, although the individual compounds were slightly less attractive when tested separately. *Data on the floral scent signals mediating obligate mutualisms involving active pollination are still very limited. We show that system-specific chemistry is not necessary for efficient host location by exclusive pollinators in these tightly coevolved mutualisms.

  5. Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer).

    PubMed

    Weinandt, Meggin L; Meyer, Michael; Strand, Mac; Lindsay, Alec R

    2012-12-01

    The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood-feeding insect, we made a series of bird decoy presentations to black flies on loon-inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers. © 2012 The Society for Vector Ecology.

  6. Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses.

    PubMed

    van der Niet, Timotheüs; Hansen, Dennis M; Johnson, Steven D

    2011-05-01

    Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often exploit different niches, which has been interpreted as avoidance of interspecific competition. Interactions between the orchid Satyrium pumilum and a local assemblage of carrion flies were investigated, and the functional significance of floral traits, especially scent, tested. Pollination success and the incidence of pollinator-mediated self-pollination were measured and these were compared with values for orchids with sexual- and food-deceptive pollination systems. Observations of insect visitation to animal carcasses and to flowers showed that the local assemblage of carrion flies was dominated by blow flies (Calliphoridae), house flies (Muscidae) and flesh flies (Sarcophagidae), but flowers of the orchid were pollinated exclusively by flesh flies, with a strong bias towards females that sometimes deposited live larvae on flowers. A trend towards similar partitioning of fly taxa was found in an experiment that tested the effect of large versus small carrion quantities on fly attraction. GC-MS analysis showed that floral scent is dominated by oligosulfides, 2-heptanone, p-cresol and indole, compounds that also dominate carrion scent. Flesh flies did not distinguish between floral and carrion scent in a choice experiment using olfactory cues only, which also showed that scent alone is responsible for fly attraction. Pollination success was relatively high (31·5 % of flowers), but tracking of stained pollinia also revealed that a relatively high percentage (46 %) of pollen deposited on stigmas originates from the same plant. Satyrium pumilum selectively attracts flesh flies, probably because its relatively weak scent resembles that of the small carrion on which these flies predominate. In this way, the plants exploit a specific subset of the insect assemblage associated with carrion. Pollination rates and levels of self-pollination were high compared with those in other deceptive orchids and it is therefore unlikely that this mimicry system evolved to promote outcrossing.

  7. A Computer Model of Insect Traps in a Landscape

    NASA Astrophysics Data System (ADS)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  8. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes.

    PubMed

    Batista, Elis Pa; Costa, Elizangela Fm; Silva, Alexandre A

    2014-05-29

    Most hematophagous insects use host odours as chemical cues. The odour components, some physiological parameters and host attractiveness are affected by several conditions, including infection by parasites, e.g., plasmodia and, therefore, change the epidemiological scenario. This study evaluated the attractiveness of individuals with vivax malaria before, during (7 days) and after treatment (14 days) with specific antimalarial drugs. Mosquito attractiveness to vivax-infected patients was assessed using a vertical olfactometer using the foot as a source of body odour. The ratio of Anopheles darlingi mosquitoes in the lower chamber of the olfactometer was used to calculate the attractiveness, and patient temperature was measured using a digital thermometer. An increased attractiveness was found only in patients bearing vivax gametocytes during the first experiment (early infection) (P<0.001). Patients in the first experiment tended to have a higher body temperature, but grouping patients into fever and non-fever resulted in a higher attractiveness only in the fever group of gametocyte carriers, suggesting a synergistic effect of temperature and gametocytes in the host attractiveness to A. darlingi. Gametocyte presence and fever in vivax malaria patients increased short distance host attractiveness to An. darlingi.

  9. Insects attracted to Maple Sap: Observations from Prince Edward Island, Canada

    PubMed Central

    Majka, Christopher G.

    2010-01-01

    Abstract The collection of maple sap for the production of maple syrup is a large commercial enterprise in Canada and the United States. In Canada, which produces 85% of the world’s supply, it has an annual value of over $168 million CAD. Over 38 million trees are tapped annually, 6.5% of which use traditional buckets for sap collection. These buckets attract significant numbers of insects. Despite this, there has been very little investigation of the scale of this phenomenon and the composition of insects that are attracted to this nutrient source. The present paper reports the results of a preliminary study conducted on Prince Edward Island, Canada. Twenty-eight species of Coleoptera, Lepidoptera, and Trichoptera were found in maple sap buckets, 19 of which are known to be attracted to saps and nectars. The physiological role of sap feeding is discussed with reference to moths of the tribe Xylenini, which are active throughout the winter, and are well documented as species that feed on sap flows. Additionally, 18 of the 28 species found in this study are newly recorded in Prince Edward Island. PMID:21594122

  10. Insects attracted to Maple Sap: Observations from Prince Edward Island, Canada.

    PubMed

    Majka, Christopher G

    2010-07-23

    The collection of maple sap for the production of maple syrup is a large commercial enterprise in Canada and the United States. In Canada, which produces 85% of the world's supply, it has an annual value of over $168 million CAD. Over 38 million trees are tapped annually, 6.5% of which use traditional buckets for sap collection. These buckets attract significant numbers of insects. Despite this, there has been very little investigation of the scale of this phenomenon and the composition of insects that are attracted to this nutrient source. The present paper reports the results of a preliminary study conducted on Prince Edward Island, Canada. Twenty-eight species of Coleoptera, Lepidoptera, and Trichoptera were found in maple sap buckets, 19 of which are known to be attracted to saps and nectars. The physiological role of sap feeding is discussed with reference to moths of the tribe Xylenini, which are active throughout the winter, and are well documented as species that feed on sap flows. Additionally, 18 of the 28 species found in this study are newly recorded in Prince Edward Island.

  11. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...

  12. An amino acid substitution inhibits specialist herbivore production of a competitive antagonist effector and recovers insect-induced plant defenses

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...

  13. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    PubMed

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  14. Innate responses to putative ancestral hosts: is the attraction of Western flower thrips to pine pollen a result of relict olfactory receptors?

    PubMed

    Abdullah, Zayed S; Ficken, Katherine J; Greenfield, Bethany P J; Butt, Tariq M

    2014-06-01

    Pollinophagy is widely documented in the order Thysanoptera, with representative individuals from six of the nine divergent families known to feed on pollen. Various pollens of the genus Pinus increase the development time, fecundity, longevity, and settling preference of Western Flower Thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Certain species of flower thrips discriminate among pollen types, but no studies have elucidated the olfactory cues that play a role in their pollen preferences. In this study, the volatile organic compounds emitted by pollens of the genus Pinus were elucidated. Various chemicals from pollen headspace elicited electrophysiological responses from WFT antennae. The compound (S)-(-)-verbenone, identified in pollen headspace, attracted WFT in a 4-arm olfactometer. This compound has potential for use in integrated pest management programs against the pest. We present the hypothesis that this polyphagous insect may have retained ancestral 'relict' olfactory receptors through the course of evolution, to explain this attraction to pine pollen. This attraction has allowed the insect to find and exploit an unusual nutrient source that significantly increases its fitness. The study demonstrates how fossil record analysis and subsequent evolutionary knowledge can aid in explaining possibilities as to why some insects sense and respond to chemicals that would otherwise seem peculiar to their ecology, allowing insight into the evolutionary forces that may shape insect olfactory systems over time.

  15. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628

  16. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.

  17. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects.

    PubMed

    Reisenman, Carolina E; Lei, Hong; Guerenstein, Pablo G

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.

  18. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects

    PubMed Central

    Reisenman, Carolina E.; Lei, Hong; Guerenstein, Pablo G.

    2016-01-01

    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies. PMID:27445858

  19. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success

    USDA-ARS?s Scientific Manuscript database

    The ability to attract pollinators is crucial to plants that rely on insects for pollination. We examined and contrasted the role of floral display size and flower color in attracting three bee species to Medicago sativa and determined the relationships between plant attractiveness and seed set for ...

  20. Vertical T-maze Choice Assay for Arthropod Response to Odorants

    PubMed Central

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  1. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  2. An oppositely charged insect exclusion screen with gap-free multiple electric fields

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi

    2012-12-01

    An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.

  3. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius.

    PubMed

    Liu, Feng; Haynes, Kenneth F; Appel, Arthur G; Liu, Nannan

    2014-06-01

    Populations of the common bed bug Cimex lectularius (Hemiptera; Cimicidae), a temporary ectoparasite on both humans and animals, have surged in many developed countries. Similar to other haematophagous arthropods, C. lectularius relies on its olfactory system to detect semiochemicals in the environment, including both attractants and repellents. To elucidate the olfactory responses of the common bed bug to commonly used insect chemical repellents, particularly haematophagous repellents, we investigated the neuronal responses of individual olfactory sensilla in C. lectularius' antennae to 52 insect chemical repellents, both synthetic and botanic. Different types of sensilla displayed highly distinctive response profiles. While C sensilla did not respond to any of the insect chemical repellents, Dγ sensilla proved to be the most sensitive in response to terpene-derived insect chemical repellents. Different chemical repellents elicited neuronal responses with differing temporal characteristics, and the responses of the olfactory sensilla to the insect chemical repellents were dose-dependent, with an olfactory response to the terpene-derived chemical repellent, but not to the non-terpene-derived chemical repellents. Overall, this study furnishes a comprehensive map of the olfactory response of bed bugs to commonly used insect chemical repellents, providing useful information for those developing new agents (attractants or repellents) for bed bug control.

  4. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects

    PubMed Central

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2008-01-01

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores. PMID:18945664

  5. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects.

    PubMed

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2009-02-22

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores.

  6. PsOr1, a potential target for RNA interference-based pest management.

    PubMed

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.

  7. Floral visual signal increases reproductive success in a sexually deceptive orchid

    PubMed Central

    Streinzer, Martin; Paulus, Hannes F.; Spaethe, Johannes

    2013-01-01

    Sexually deceptive orchids mimic signals emitted by female insects in order to attract mate-searching males. Specific attraction of the targeted pollinator is achieved by sex pheromone mimicry, which constitutes the major attraction channel. In close vicinity of the flower, visual signals may enhance attraction, as was shown recently in the sexually deceptive orchid Ophrys heldreichii. Here, we conducted an in situ manipulation experiment in two populations of O. heldreichii on Crete to investigate whether the presence/absence of the conspicuous pink perianth affects reproductive success in two natural orchid populations. We estimated reproductive success of three treatment groups (with intact, removed and artificial perianth) throughout the flowering period as pollinaria removal (male reproductive success) and massulae deposition (female reproductive success). Reproductive success was significantly increased by the presence of a strong visual signal—the conspicuous perianth—in one study population, however, not in the second, most likely due to the low pollinator abundance in the latter population. This study provides further evidence that the coloured perianth in O. heldreichii is adaptive and thus adds to the olfactory signal to maximise pollinator attraction and reproductive success. PMID:23750181

  8. Floral visual signal increases reproductive success in a sexually deceptive orchid.

    PubMed

    Rakosy, Demetra; Streinzer, Martin; Paulus, Hannes F; Spaethe, Johannes

    2012-12-01

    Sexually deceptive orchids mimic signals emitted by female insects in order to attract mate-searching males. Specific attraction of the targeted pollinator is achieved by sex pheromone mimicry, which constitutes the major attraction channel. In close vicinity of the flower, visual signals may enhance attraction, as was shown recently in the sexually deceptive orchid Ophrys heldreichii . Here, we conducted an in situ manipulation experiment in two populations of O. heldreichii on Crete to investigate whether the presence/absence of the conspicuous pink perianth affects reproductive success in two natural orchid populations. We estimated reproductive success of three treatment groups (with intact, removed and artificial perianth) throughout the flowering period as pollinaria removal (male reproductive success) and massulae deposition (female reproductive success). Reproductive success was significantly increased by the presence of a strong visual signal-the conspicuous perianth-in one study population, however, not in the second, most likely due to the low pollinator abundance in the latter population. This study provides further evidence that the coloured perianth in O. heldreichii is adaptive and thus adds to the olfactory signal to maximise pollinator attraction and reproductive success.

  9. Sex pheromones and their impact on pest management.

    PubMed

    Witzgall, Peter; Kirsch, Philipp; Cork, Alan

    2010-01-01

    The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

  10. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants.

    PubMed

    Pangesti, Nurmi; Weldegergis, Berhane T; Langendorf, Benjamin; van Loon, Joop J A; Dicke, Marcel; Pineda, Ana

    2015-08-01

    Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.

  11. Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses

    PubMed Central

    van der Niet, Timotheüs; Hansen, Dennis M.; Johnson, Steven D.

    2011-01-01

    Background and Aims Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often exploit different niches, which has been interpreted as avoidance of interspecific competition. Interactions between the orchid Satyrium pumilum and a local assemblage of carrion flies were investigated, and the functional significance of floral traits, especially scent, tested. Pollination success and the incidence of pollinator-mediated self-pollination were measured and these were compared with values for orchids with sexual- and food-deceptive pollination systems. Methods and Key Results Observations of insect visitation to animal carcasses and to flowers showed that the local assemblage of carrion flies was dominated by blow flies (Calliphoridae), house flies (Muscidae) and flesh flies (Sarcophagidae), but flowers of the orchid were pollinated exclusively by flesh flies, with a strong bias towards females that sometimes deposited live larvae on flowers. A trend towards similar partitioning of fly taxa was found in an experiment that tested the effect of large versus small carrion quantities on fly attraction. GC-MS analysis showed that floral scent is dominated by oligosulfides, 2-heptanone, p-cresol and indole, compounds that also dominate carrion scent. Flesh flies did not distinguish between floral and carrion scent in a choice experiment using olfactory cues only, which also showed that scent alone is responsible for fly attraction. Pollination success was relatively high (31·5 % of flowers), but tracking of stained pollinia also revealed that a relatively high percentage (46 %) of pollen deposited on stigmas originates from the same plant. Conclusions Satyrium pumilum selectively attracts flesh flies, probably because its relatively weak scent resembles that of the small carrion on which these flies predominate. In this way, the plants exploit a specific subset of the insect assemblage associated with carrion. Pollination rates and levels of self-pollination were high compared with those in other deceptive orchids and it is therefore unlikely that this mimicry system evolved to promote outcrossing. PMID:21402538

  12. Leaf volatile compounds and the distribution of ant patrollingin an ant-plant protection mutualism: Preliminary results on Leonardoxa (Fabaceae: Caesalpinioideae) and Petalomyrmex(Formicidae: Formicinae)

    NASA Astrophysics Data System (ADS)

    Brouat, Carine; McKey, Doyle; Bessière, Jean-Marie; Pascal, Laurence; Hossaert-McKey, Martine

    2000-12-01

    While observations suggest that plant chemicals could be important in maintaining the specificity and permitting the functioning of ant-plant symbioses, they have been little studied. We report here the strongest evidence yet for chemical signalling between ants and plants in a specific ant-plant protection symbiosis. In the mutualism between Leonardoxa africana subsp. africana and Petalomyrmex phylax, ants continuously patrol young leaves, which are vulnerable to attacks by phytophagous insects. We provide experimental evidence for chemical mediation of ant attraction to young leaves in this system. By a comparative analysis of the related non-myrmecophytic tree L. africana subsp. gracilicaulis, we identify likely candidates for attractant molecules, and suggest they may function not only as signals but also as resources. We also propose hypotheses on the evolutionary origin of these plant volatiles, and of the responses to them by mutualistic ants.

  13. Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers.

    PubMed

    Mori, Shinnosuke; Fukui, Hiroshi; Oishi, Masanori; Sakuma, Masayuki; Kawakami, Mari; Tsukioka, Junko; Goto, Katsumi; Hirai, Nobuhiro

    2018-06-01

    Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight.

  14. An insect-feeding guild of carnivorous plants and spiders: does optimal foraging lead to competition or facilitation?

    PubMed

    Crowley, Philip H; Hopper, Kevin R; Krupa, James J

    2013-12-01

    Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.

  15. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  16. The effectiveness of habitat modification schemes for enhancing beneficial insects: Assessing the importance of trap cropping management approach

    NASA Astrophysics Data System (ADS)

    Trisnawati, Indah; Azis, Abdul

    2017-06-01

    Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field. Three specific predator species were found on habitat modification field, i.e.: Crocothemis servilia, Orthetrum sabina and Paratrechina sp., as well as specific parasitoid species, i.e.: Polistes sp. (vegetative stage), Chloromyia sp., Theronia sp., Sarcophaga sp. and Cletus sp (generative stage), Condylodtylus sp., Trichogramma sp. (reproductive stage). Trends in predator abundance toward parasitoid insects were indicated a positive linear trend, with the abundance of predator on habitat modification field has an influence on the level of 67.1% parasitoid.

  17. Colour mimicry and sexual deception by Tongue orchids (Cryptostylis).

    PubMed

    Gaskett, A C; Herberstein, M E

    2010-01-01

    Typically, floral colour attracts pollinators by advertising rewards such as nectar, but how does colour function when pollinators are deceived, unrewarded, and may even suffer fitness costs? Sexually deceptive orchids are pollinated only by male insects fooled into mating with orchid flowers and inadvertently transferring orchid pollinia. Over long distances, sexually deceptive orchids lure pollinators with counterfeit insect sex pheromones, but close-range deception with colour mimicry is a tantalising possibility. Here, for the first time, we analyse the colours of four sexually deceptive Cryptostylis orchid species and the female wasp they mimic (Lissopimpla excelsa, Ichneumonidae), from the perspective of the orchids' single, shared pollinator, male Lissopimpla excelsa. Despite appearing different to humans, the colours of the orchids and female wasps were effectively identical when mapped into a hymenopteran hexagonal colour space. The orchids and wasps reflected predominantly red-orange wavelengths, but UV was also reflected by raised bumps on two orchid species and by female wasp wings. The orchids' bright yellow pollinia contrasted significantly with their overall red colour. Orchid deception may therefore involve accurate and species-specific mimicry of wavelengths reflected by female wasps, and potentially, exploitation of insects' innate attraction to UV and yellow wavelengths. In general, mimicry may be facilitated by exploiting visual vulnerabilities and evolve more readily at the peripheries of sensory perception. Many sexually deceptive orchids are predominantly red, green or white: colours that are all potentially difficult for hymenoptera to detect or distinguish from the background.

  18. The evolution of floral scent and insect chemical communication.

    PubMed

    Schiestl, Florian P

    2010-05-01

    Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.

  19. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition

    PubMed Central

    Allmann, Silke; Späthe, Anna; Bisch-Knaden, Sonja; Kallenbach, Mario; Reinecke, Andreas; Sachse, Silke; Baldwin, Ian T; Hansson, Bill S

    2013-01-01

    The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI: http://dx.doi.org/10.7554/eLife.00421.001 PMID:23682312

  20. Plants as green phones: Novel insights into plant-mediated communication between below- and above-ground insects.

    PubMed

    Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-08-01

    Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

  1. Pheromone lure and trap color affects bycatch in agricultural landscapes of Utah

    USDA-ARS?s Scientific Manuscript database

    Aerial traps, using combinations of color and attractive lures, are a critical tool for detecting and managing insect pest populations. Yet, despite improvements in trap efficacy, collection of non-target species (“bycatch”) plagues many insect pest surveys. Bycatch can influence survey effectivenes...

  2. Dealing with Bugs.

    ERIC Educational Resources Information Center

    Matthews, Bruce

    1994-01-01

    Strategies for warding off insects during outdoor activities include wearing thick, densely woven clothing in light brown or green colors; wearing clothing with tight cuffs to restrict access; and avoiding soaps, lotions, and other products with strong odors that attract insects. Repellents should be considered when skin must be exposed. (LP)

  3. Attract them anyway: benefits of large, showy flowers in a highly autogamous, carnivorous plant species

    PubMed Central

    Salces-Castellano, A.; Paniw, M.; Casimiro-Soriguer, R.; Ojeda, F.

    2016-01-01

    Reproductive biology of carnivorous plants has largely been studied on species that rely on insects as pollinators and prey, creating potential conflicts. Autogamous pollination, although present in some carnivorous species, has received less attention. In angiosperms, autogamous self-fertilization is expected to lead to a reduction in flower size, thereby reducing resource allocation to structures that attract pollinators. A notable exception is the carnivorous pyrophyte Drosophyllum lusitanicum (Drosophyllaceae), which has been described as an autogamous selfing species but produces large, yellow flowers. Using a flower removal and a pollination experiment, we assessed, respectively, whether large flowers in this species may serve as an attracting device to prey insects or whether previously reported high selfing rates for this species in peripheral populations may be lower in more central, less isolated populations. We found no differences between flower-removed plants and intact, flowering plants in numbers of prey insects trapped. We also found no indication of reduced potential for autogamous reproduction, in terms of either seed set or seed size. However, our results showed significant increases in seed set of bagged, hand-pollinated flowers and unbagged flowers exposed to insect visitation compared with bagged, non-manipulated flowers that could only self-pollinate autonomously. Considering that the key life-history strategy of this pyrophytic species is to maintain a viable seed bank, any increase in seed set through insect pollinator activity would increase plant fitness. This in turn would explain the maintenance of large, conspicuous flowers in a highly autogamous, carnivorous plant. PMID:26977052

  4. Plants as green phones

    PubMed Central

    Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-01-01

    Plants can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or ‘green phones’ between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects. PMID:19513244

  5. Volatiles of grape inoculated with microorganisms: modulation of grapevine moth oviposition and field attraction

    USDA-ARS?s Scientific Manuscript database

    Semiochemicals released by plant-microbe associations are used by herbivorous insects to access and evaluate food resources and oviposition sites. Adult insects may utilize microbial-derived nutrients to prolong their lifespan, promote egg development and offer a high nutritional substrate to their ...

  6. Pheromone Signalling

    ERIC Educational Resources Information Center

    Hart, Adam G.

    2011-01-01

    Pheromones are chemicals used to communicate with members of the same species. First described in insects, pheromones are often used to attract mates but in social insects, such as ants and bees, pheromone use is much more sophisticated. For example, ants use pheromones to make foraging trails and the chemical and physical properties of the…

  7. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management

    USDA-ARS?s Scientific Manuscript database

    In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. ...

  8. Invasive insect herbivores as disrupters of chemically-mediated tritrophic interactions: effects of herbivore density and parasitoid learning

    USDA-ARS?s Scientific Manuscript database

    Invasive species of insect herbivores have the potential to interfere with native multitrophic interactions when they invade new environments. For instance, exotic herbivores can affect the chemical cues emitted by plants and disrupt attraction of natural enemies mediated by herbivore-induced plant ...

  9. Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci.

    PubMed

    Silva, Diego B; Bueno, Vanda H P; Van Loon, Joop J A; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Van Lenteren, Joop C

    2018-01-01

    Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.

  10. Volatiles of Solena amplexicaulis (Lam.) Gandhi Leaves Influencing Attraction of Two Generalist Insect Herbivores.

    PubMed

    Sarkar, Nupur; Karmakar, Amarnath; Barik, Anandamay

    2016-10-01

    Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide + 3.86 μg nonanal + 2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.

  11. Traps and attractants for wood-boring insects in ponderosa pine stands in the Black Hills, South Dakota.

    PubMed

    Costello, Sheryl L; Negrón, José F; Jacobi, William R

    2008-04-01

    Recent large-scale wildfires have increased populations of wood-boring insects in the Black Hills of South Dakota. Because little is known about possible impacts of wood-boring insects in the Black Hills, land managers are interested in developing monitoring techniques such as flight trapping with semiochemical baits. Two trap designs and four semiochemical attractants were tested in a recently burned ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in the Black Hills. Modified panel and funnel traps were tested in combination with the attractants, which included a woodborer standard (ethanol and alpha-pinene), standard plus 3-carene, standard plus ipsenol, and standard plus ipsdienol. We found that funnel traps were equally efficient or more efficient in capturing wood-boring insects than modified panel traps. Trap catches of cerambycids increased when we added the Ips spp. pheromone components (ipsenol or ipsdienol) or the host monoterpene (3-carene) to the woodborer standard. During the summers of 2003 and 2004, 18 cerambycid, 14 buprestid, and five siricid species were collected. One species of cerambycid, Monochamus clamator (LeConte), composed 49 and 40% of the 2003 and 2004 trap catches, respectively. Two other cerambycids, Acanthocinus obliquus (LeConte) and Acmaeops proteus (Kirby), also were frequently collected. Flight trap data indicated that some species were present throughout the summer, whereas others were caught only at the beginning or end of the summer.

  12. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    PubMed

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  13. Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella.

    PubMed

    Sas, Claudia; Müller, Frank; Kappel, Christian; Kent, Tyler V; Wright, Stephen I; Hilker, Monika; Lenhard, Michael

    2016-12-19

    The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate:CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate:CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Suppression of cuelure attraction in male Queensland fruit flies provided raspberry ketone supplements as immature adults

    PubMed Central

    Akter, Humayra; Adnan, Saleh; Morelli, Renata; Taylor, Phillip W.

    2017-01-01

    Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such ‘male replacement’ requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or ‘Qfly’) to raspberry ketone (RK) mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages. PMID:28859132

  15. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET.

    PubMed

    DeGennaro, Matthew; McBride, Carolyn S; Seeholzer, Laura; Nakagawa, Takao; Dennis, Emily J; Goldman, Chloe; Jasinskiene, Nijole; James, Anthony A; Vosshall, Leslie B

    2013-06-27

    Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.

  16. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory.

    PubMed

    Helms, Anjel M; De Moraes, Consuelo M; Tooker, John F; Mescher, Mark C

    2013-01-02

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant-insect interactions involving plant responses to insect-derived olfactory cues.

  17. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory

    PubMed Central

    Helms, Anjel M.; De Moraes, Consuelo M.; Tooker, John F.; Mescher, Mark C.

    2013-01-01

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant–insect interactions involving plant responses to insect-derived olfactory cues. PMID:23237852

  18. Structure-Activity Studies of Semiochemicals from the Spider Orchid Caladenia plicata for Sexual Deception.

    PubMed

    Bohman, Bjorn; Karton, Amir; Flematti, Gavin R; Scaffidi, Adrian; Peakall, Rod

    2018-05-01

    Sexually deceptive orchids attract specific pollinators by mimicking insect sex pheromones. Normally this mimicry is very specific and identical compounds have been identified from orchids and matching females of the pollinators. In this study, we conduct a detailed structure-activity investigation on isomers of the semiochemicals involved in the sexual attraction of the male pollinator of the spider orchid Caladenia plicata. This orchid employs an unusual blend of two biosynthetically unrelated compounds, (S)-β-citronellol and 2-hydroxy-6-methylacetophenone, to lure its Zeleboria sp. thynnine wasp pollinator. We show that the blend is barely attractive when (S)-β-citronellol is substituted with its enantiomer, (R)-β-citronellol. Furthermore, none of the nine-possible alternative hydroxy-methylacetophenone regioisomers of the natural semiochemical are active when substituted for the natural 2-hydroxy-6-methylacetophenone. Our results were surprising given the structural similarity between the active compound and some of the analogues tested, and results from previous studies in other sexually deceptive orchid/wasp systems where substitution with analogues was possible. Interestingly, high-level ab initio and density functional theory calculations of the hydroxy-methylacetophenones revealed that the active natural isomer, 2-hydroxy-6-methylacetophenone, has the strongest intramolecular hydrogen bond of all regioisomers, which at least in part may explain the specific activity.

  19. Host suitability affects odor association in Cotesia marginiventris: implications in generalist parasitoid host-finding

    USDA-ARS?s Scientific Manuscript database

    Insect herbivores often induce plant volatile compounds that can attract natural enemies. Cotesia marginiventris (Hymenoptera: Braconidae) is a generalist parasitoid wasp of noctuid caterpillars and is highly attracted to Spodoptera exigua-induced plant volatiles. The plasticity of C. marginiventris...

  20. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis.

  1. Response of insects to damaged and undamaged germinating acorns

    Treesearch

    Jimmy R. Galford; Deloris Weiss-Cottrill

    1991-01-01

    Damaged germinating northern red oak, Quercus rubra L., acorns in pitfall traps were significantly more attractive to two species of acorn insects than undamaged germinating acorns. Significantly more adults of the weevil Conotrachelus posticatus ohe em an and the sap beetle Stelidota octomaculata (Say) were caught in traps containing germinating acorns cut into halves...

  2. Wounding and hardwood diseases

    Treesearch

    James W. Walters

    1992-01-01

    Most hardwood diseases are spread by spores that are carried either by wind or insects. The spores enter into the host tree through natural wounds (fire scars, bark splits, sunscald, cankers, and branch stubs) or artificial wounds (bark carving, improper pruning, logging damage). Fresh wounds attract certain insects that can carry spores into the exposed part of the...

  3. Public Participation in Insect Research through the Use of Pheromones

    ERIC Educational Resources Information Center

    Harvey, Deborah; Hedenström, Erik; Finch, Paul

    2017-01-01

    In a project to determine the UK distribution of a conservation-status beetle "Elater ferrugineus", 300 volunteers were recruited and supplied with traps containing a female pheromone that is an effective attractant for adult males. The occurrence and distribution of the insect were extended from previously estimated values and shown to…

  4. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii

    USDA-ARS?s Scientific Manuscript database

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  5. UV induced visual cues in grasses

    PubMed Central

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji; Lukose, Sujith; Gopakumar, Bhaskaran; Koshy, Konnath Chacko

    2013-01-01

    Grasses are traditionally considered as wind pollinated, however, field observations confirmed frequent insect visits to grass flowers, suggesting insect pollination. Fruit and seed predators inflict heavy losses to cereals and millets during their growth, maturation and storage. The actual factors guiding insects and predators to grass flowers, fruits and seeds are not clear. Here, we report attractive blue fluorescence emissions on grass floral parts such as glumes, lemma, palea, lodicules, staminal filaments, pollens and fruits in ultraviolet (UV) 366 nm, whereas the stigmatic portions were not blue, but red fluorescent. We characterized the blue fluorescent constituent in grass reproductive structures as ferulic acid (FA). Fluorescence spectra of blue-emitting grass floral, seed extracts and isolated FA on excitation at 366 nm showed their emissions at 420–460 nm. We propose these FA-based blue fluorescence emissions in grass reproductive structures as visual cues that attract pollinators, predators and even pests towards them. PMID:24061408

  6. The role of juvenile hormone in immune function and pheromone production trade-offs: a test of the immunocompetence handicap principle.

    PubMed Central

    Rantala, Markus J; Vainikka, Anssi; Kortet, Raine

    2003-01-01

    The immunocompetence handicap hypothesis postulates that secondary sexual traits are honest signals of mate quality because the hormones (e.g. testosterone) needed to develop secondary sexual traits have immunosuppressive effects. The best support for predictions arising from the immunocompetence handicap hypothesis so far comes from studies of insects, although they lack male-specific hormones such as testosterone. In our previous studies, we found that female mealworm beetles prefer pheromones of immunocompetent males. Here, we tested how juvenile hormone (JH) affects male investment in secondary sexual characteristics and immune functions in the mealworm beetle, Tenebrio molitor. We injected male mealworm beetles with JH (type III) and found that injection increased the attractiveness of male pheromones but simultaneously suppressed immune functions (phenoloxidase activity and encapsulation). Our results suggest that JH, which is involved in the control of reproduction and morphogenesis, also plays a central role in the regulation of a trade-off between the immune system and sexual advertisement in insects. Thus, the results reflect a general mechanism by which the immunocompetence handicap hypothesis may work in insects. PMID:14613612

  7. Halyomorpha halys (Hemiptera: Pentatomidae) response to pyramid traps baited with attractive light and pheromonal stimuli

    USDA-ARS?s Scientific Manuscript database

    Halyomorpha halys is an invasive insect that causes severe economic damage to multiple agricultural commodities. Several monitoring techniques have been developed to monitor H. halys including pheromone and light-baited black pyramid traps. Here, we evaluated the attractiveness of these traps bait...

  8. New developments in bait stations for control of pest Tephritids

    USDA-ARS?s Scientific Manuscript database

    Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...

  9. Behavioral and chemical mechanisms of plant-mediated deterrence and attraction among frugivorous insects

    USDA-ARS?s Scientific Manuscript database

    A number of studies have now reported increased levels of non Bt-targeted secondary pests in Bt crops. Although pesticide reduction plays a role, interactions between the secondary pests and the targeted primary pest may also be important. Feeding preference—attractiveness (selection behavior, acce...

  10. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm

    USDA-ARS?s Scientific Manuscript database

    The use of entomopathogenic nematodes in the biological control of soil insect pests is hampered by the costly and inadequate application techniques. As a possible solution we evaluated an encapsulation approach that offers effective application and may possibly attract the pest by adding attractant...

  11. Effect of seeding on the capture of six stored product beetle species: The relative species matters

    USDA-ARS?s Scientific Manuscript database

    n trapping programs prior capture of individuals of the same or different species may influence subsequent attractiveness of the trap. To evaluate this process with stored-product insects, the effect of the presence of dead or alive adults on the behavioral responses of six stored product insect spe...

  12. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?

    PubMed

    Boullis, Antoine; Francis, Frederic; Verheggen, François J

    2015-04-01

    Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant-insect and insect-insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A sensory code for host seeking in parasitic nematodes

    PubMed Central

    Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.

    2011-01-01

    Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558

  14. Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers?

    PubMed Central

    Cozzolino, Salvatore; Schiestl, Florian P; Müller, Andreas; De Castro, Olga; Nardella, Antonio Marco; Widmer, Alex

    2005-01-01

    Pollinator specificity has traditionally been considered the main reproductive isolation mechanism in orchids. Among Mediterranean orchids, however, many species attract and deceive pollinators by mimicking nectar-rewarding plants. To test the extent to which deceptive orchid species share pollinators, we collected and identified hemipollinaria-carrying insects, and used ribosomal sequences to identify the orchid species from which hemipollinaria were removed. We found that social and solitary bees, and also flies, carried hemipollinaria belonging to nine orchid species with different degrees of specialization. In particular, Anacamptis morio, Dactylorhiza romana and Orchis mascula used a large set of pollinator species, whereas others such as Orchis quadripunctata seemed to be pollinated by one pollinator species only. Out of the insects with hemipollinaria, 19% were found to carry hemipollinaria from more than one orchid species, indicating that sympatric food-deceptive orchids can share pollinators. This sharing was apparent even among orchid sister-species, thus revealing an effective overlap in pollinator sets among closely related species. These results suggest varying degrees of pollinator specificity in these orchids, and indicate that pollinator specificity cannot always act as the main isolation mechanism in food-deceptive temperate orchids. PMID:16024392

  15. Searching for effective forces in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.

    2014-04-01

    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.

  16. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    PubMed

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  17. The use of insects in forensic investigations: An overview on the scope of forensic entomology

    PubMed Central

    Joseph, Isaac; Mathew, Deepu G; Sathyan, Pradeesh; Vargheese, Geetha

    2011-01-01

    Forensic entomology is the study of insects/arthropods in criminal investigation. Right from the early stages insects are attracted to the decomposing body and may lay eggs in it. By studying the insect population and the developing larval stages, forensic scientists can estimate the postmortem index, any change in position of the corpse as well as the cause of death. Forensic odontologists are called upon more frequently to collaborate in criminal investigations and hence should be aware of the possibilities that forensic entomology have to offer and use it as an adjunct to the conventional means of forensic investigation. PMID:22408328

  18. The use of insects in forensic investigations: An overview on the scope of forensic entomology.

    PubMed

    Joseph, Isaac; Mathew, Deepu G; Sathyan, Pradeesh; Vargheese, Geetha

    2011-07-01

    Forensic entomology is the study of insects/arthropods in criminal investigation. Right from the early stages insects are attracted to the decomposing body and may lay eggs in it. By studying the insect population and the developing larval stages, forensic scientists can estimate the postmortem index, any change in position of the corpse as well as the cause of death. Forensic odontologists are called upon more frequently to collaborate in criminal investigations and hence should be aware of the possibilities that forensic entomology have to offer and use it as an adjunct to the conventional means of forensic investigation.

  19. Versatile aggressive mimicry of cicadas by an Australian predatory katydid.

    PubMed

    Marshall, David C; Hill, Kathy B R

    2009-01-01

    In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species.

  20. Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field.

    PubMed

    Rivera, Monique J; Rodriguez-Saona, Cesar; Alborn, Hans T; Koppenhöfer, Albrecht M

    2016-12-01

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which they were identified. We compared (E)-β-caryophyllene and pregeijerene in the highbush blueberry (Vaccinium corymbosum) agroecosystem in their ability to enhance the attraction of EPN to and efficacy against the system's herbivore, oriental beetle (Anomala orientalis). The relative attractiveness of (E)-β-caryophyllene and pregeijerene to a local isolate of the EPN species Steinernema glaseri was tested in a six-arm olfactometer in the laboratory to gather baseline values of attraction to the chemicals alone in sand substrate before field tests. A similar arrangement was used in a V. corymbosum field by placing six cages with assigned treatments and insect larvae with and without compound into the soil around the base of 10 plants. The cages were removed after 72 h, and insect baits were retrieved and assessed for EPN infection. The lab results indicate that in sand alone (E)-β-caryophyllene is significantly more attractive than pregeijerene to the local S. glaseri isolate Conversely, there was no difference in attractiveness in the field study, but rather, native S. glaseri were more attracted to cages with G. mellonella larvae, no larvae, and cages with the blank control and G. mellonella larvae.

  1. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants.

    PubMed

    Wilson, J K; Woods, H A

    2015-12-01

    Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.

  2. Female penis, male vagina, and their correlated evolution in a cave insect.

    PubMed

    Yoshizawa, Kazunori; Ferreira, Rodrigo L; Kamimura, Yoshitaka; Lienhard, Charles

    2014-05-05

    Sex-specific elaborations are common in animals and have attracted the attention of many biologists, including Darwin [1]. It is accepted that sexual selection promotes the evolution of sex-specific elaborations. Due to the faster replenishment rate of gametes, males generally have higher potential reproductive and optimal mating rates than females. Therefore, sexual selection acts strongly on males [2], leading to the rapid evolution and diversification of male genitalia [3]. Male genitalia are sometimes used as devices for coercive holding of females as a result of sexual conflict over mating [4, 5]. In contrast, female genitalia are usually simple. Here we report the reversal of intromittent organs in the insect genus Neotrogla (Psocodea: Prionoglarididae) from Brazilian caves. Females have a highly elaborate, penis-like structure, the gynosome, while males lack an intromittent organ. The gynosome has species-specific elaborations, such as numerous spines that fit species-specific pouches in the simple male genital chamber. During prolonged copulation (~40-70 hr), a large and potentially nutritious ejaculate is transferred from the male via the gynosome. The correlated genital evolution in Neotrogla is probably driven by reversed sexual selection with females competing for seminal gifts. Nothing similar is known among sex-role reversed animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Molecular mechanisms of floral mimicry in orchids.

    PubMed

    Schlüter, Philipp M; Schiestl, Florian P

    2008-05-01

    Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.

  4. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  5. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  6. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  7. Attraction of wild-like and colony-reared Bactrocera cucurbitae (Diptera: Tephritidae) to Cuelure in the field

    USDA-ARS?s Scientific Manuscript database

    The attraction of wild tephritids to semiochemical-based lures are the ideal basis for trap network design in detection programs, but in practice, mass-reared colony insects are usually used to determine trap efficiency. For Bactrocera cucurbitae Coquillett, a lower response by wild males compared w...

  8. A novel attract-and-kill device for strengthening the management of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Control strategies that exploit the behavior of Asian citrus psyllid will lead to sustainable management practices of this economically important pest. Asian citrus psyllid (ACP) is a diurnal insect that strongly responds to visual cues. We developed an attract-and-kill device (AK) mimicking a citru...

  9. Semiochemicals to monitor insect pests – future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...

  10. Electroantennographic responses of the lesser chestnut weevil curculio sayi (Coleoptera: Curculionidae) to volatile organic compounds identified from chestnut reproductive plant tissue

    USDA-ARS?s Scientific Manuscript database

    The primary insect pest of the developing chestnut industry in the central United States is the lesser chestnut weevil, Curculio sayi (Gyllenhal), which is a specialist on only Castanea trees. Recent research has shown this insect is attracted to and feeds upon the reproductive tissues of the chestn...

  11. Knockdown of a metathoracic scent gland desaturase enhances the production of (E)-4-oxo-2-hexenal and suppresses female sexual attraction in the plant bug, Adelphocoris suturalis

    USDA-ARS?s Scientific Manuscript database

    Insect sex pheromones (SPs) are central to mate-finding behavior, and play an essential role in the survival and reproduction of organisms. Understanding the roles, biosynthetic pathways, and evolution of insect chemical communication systems has been an exciting challenge for biologists. Compared w...

  12. A Multi-species Bait for Chagas Disease Vectors

    PubMed Central

    Mota, Theo; Vitta, Ana C. R.; Lorenzo-Figueiras, Alicia N.; Barezani, Carla P.; Zani, Carlos L.; Lazzari, Claudio R.; Diotaiuti, Liléia; Jeffares, Lynne; Bohman, Björn; Lorenzo, Marcelo G.

    2014-01-01

    Background Triatomine bugs are the insect vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. These insects are known to aggregate inside shelters during daylight hours and it has been demonstrated that within shelters, the aggregation is induced by volatiles emitted from bug feces. These signals promote inter-species aggregation among most species studied, but the chemical composition is unknown. Methodology/Principal Findings In the present work, feces from larvae of the three species were obtained and volatile compounds were identified by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). We identified five compounds, all present in feces of all of the three species: Triatoma infestans, Panstrongylus megistus and Triatoma brasiliensis. These substances were tested for attractivity and ability to recruit insects into shelters. Behaviorally active doses of the five substances were obtained for all three triatomine species. The bugs were significantly attracted to shelters baited with blends of 160 ng or 1.6 µg of each substance. Conclusions/Significance Common compounds were found in the feces of vectors of Chagas disease that actively recruited insects into shelters, which suggests that this blend of compounds could be used for the development of baits for early detection of reinfestation with triatomine bugs. PMID:24587457

  13. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    PubMed Central

    Knudsen, Geir K.; Norli, Hans R.; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system. PMID:29312430

  14. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    PubMed

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.

  15. Metabolic interdependence of obligate intracellular bacteria and their insect hosts.

    PubMed

    Zientz, Evelyn; Dandekar, Thomas; Gross, Roy

    2004-12-01

    Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism--that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.

  16. Identification of Sex Pheromones and Sex Pheromone Mimics for Two North American Click Beetle Species (Coleoptera: Elateridae) in the Genus Cardiophorus Esch.

    PubMed

    Serrano, Jacqueline M; Collignon, R Maxwell; Zou, Yunfan; Millar, Jocelyn G

    2018-04-01

    To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.

  17. Key Odorants Regulate Food Attraction in Drosophila melanogaster

    PubMed Central

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642

  18. Gall volatiles defend aphids against a browsing mammal

    PubMed Central

    2013-01-01

    Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365

  19. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.).

    PubMed

    Kariyat, Rupesh R; Mauck, Kerry E; De Moraes, Consuelo M; Stephenson, Andrew G; Mescher, Mark C

    2012-04-01

    The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants. © 2012 Blackwell Publishing Ltd/CNRS.

  20. Sexual selection on cuticular hydrocarbons in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    Thomas, Melissa L; Simmons, Leigh W

    2009-01-01

    Background Females in a wide range of taxa have been shown to base their choice of mates on pheromone signals. However, little research has focussed specifically on the form and intensity of selection that mate choice imposes on the pheromone signal. Using multivariate selection analysis, we characterise directly the form and intensity of sexual selection acting on cuticular hydrocarbons, chemical compounds widely used in the selection of mates in insects. Using the Australian field cricket Teleogryllus oceanicus as a model organism, we use three measures of male attractiveness to estimate fitness; mating success, the duration of courtship required to elicit copulation, and subsequent spermatophore attachment duration. Results We found that all three measures of male attractiveness generated sexual selection on male cuticular hydrocarbons, however there were differences in the form and intensity of selection among these three measures. Mating success was the only measure of attractiveness that imposed both univariate linear and quadratic selection on cuticular hydrocarbons. Although we found that all three attractiveness measures generated nonlinear selection, again only mating success was found to exert statistically significant stabilizing selection. Conclusion This study shows that sexual selection plays an important role in the evolution of male cuticular hydrocarbon signals. PMID:19594896

  1. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, D.; Barber, G.; DeBarr, G.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the lattermore » insects to control kudzu.« less

  2. DNA recovery from microhymenoptera using six non-destructive methodologies with considerations for subsequent preparation of museum slides.

    PubMed

    Guzmán-Larralde, Adriana J; Suaste-Dzul, Alba P; Gallou, Adrien; Peña-Carrillo, Kenzy I

    2017-01-01

    Because of the tiny size of microhymenoptera, successful morphological identification typically requires specific mounting protocols that require time, skills, and experience. Molecular taxonomic identification is an alternative, but many DNA extraction protocols call for maceration of the whole specimen, which is not compatible with preserving museum vouchers. Thus, non-destructive DNA isolation methods are attractive alternatives for obtaining DNA without damaging sample individuals. However, their performance needs to be assessed in microhymenopterans. We evaluated six non-destructive methods: (A) DNeasy® Blood & Tissue Kit; (B) DNeasy® Blood & Tissue Kit, modified; (C) Protocol with CaCl 2 buffer; (D) Protocol with CaCl 2 buffer, modified; (E) HotSHOT; and (F) Direct PCR. The performance of each DNA extraction method was tested across several microhymenopteran species by attempting to amplify the mitochondrial gene COI from insect specimens of varying ages: 1 day, 4 months, 3 years, 12 years, and 23 years. Methods B and D allowed COI amplification in all insects, while methods A, C, and E were successful in DNA amplification from insects up to 12 years old. Method F, the fastest, was useful in insects up to 4 months old. Finally, we adapted permanent slide preparation in Canada balsam for every technique. The results reported allow for combining morphological and molecular methodologies for taxonomic studies.

  3. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  4. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...

  5. Short range attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to six commercially available plant essential oils

    USDA-ARS?s Scientific Manuscript database

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, this includes use of angelica seed oil as long range attractants and ginger root oil as aromatherapy, which is exposure to sterile males to increase mating success. Neither of these plants are hosts f...

  6. Fecal sacs attract insects to the nest and provoke an activation of the immune system of nestlings.

    PubMed

    Ibáñez-Álamo, Juan Diego; Ruiz-Raya, Francisco; Rodríguez, Laura; Soler, Manuel

    2016-01-01

    Nest sanitation is a widespread but rarely studied behavior in birds. The most common form of nest sanitation behavior, the removal of nestling feces, has focused the discussion about which selective pressures determine this behavior. The parasitism hypothesis, which states that nestling fecal sacs attract parasites that negatively affect breeding birds, was proposed 40 years ago and is frequently cited as a demonstrated fact. But, to our knowledge, there is no previous experimental test of this hypothesis. We carried out three different experiments to investigate the parasitism hypothesis. First, we used commercial McPhail traps to test for the potential attraction effect of nestling feces alone on flying insects. We found that traps with fecal sacs attracted significantly more flies (Order Diptera), but not ectoparasites, than the two control situations. Second, we used artificial blackbird (Turdus merula) nests to investigate the combined attraction effect of feces and nest materials on arthropods (not only flying insects). Flies, again, were the only group of arthropods significantly attracted by fecal sacs. We did not detect an effect on ectoparasites. Third, we used active blackbird nests to investigate the potential effect of nestling feces in ecto- and endoparasite loads in real nestlings. The presence of fecal sacs near blackbird nestlings did not increase the number of louse flies or chewing lice, and unexpectedly reduced the number of nests infested with mites. The endoparasite prevalence was also not affected. In contrast, feces provoked an activation of the immune system as the H/L ratio of nestlings living near excrements was significantly higher than those kept under the two control treatments. Surprisingly, our findings do not support the parasitism hypothesis, which suggests that parasites are not the main reason for fecal sac removal. In contrast, the attraction of flies to nestling feces, the elevation of the immune response of chicks, and the recently described antimicrobial function of the mucous covering of fecal sacs suggest that microorganisms could be responsible of this important form of parental care behavior (microbial hypothesis).

  7. Insights into the role of age and social interactions on the sexual attractiveness of queens in an eusocial bee, Melipona flavolineata (Apidae, Meliponini).

    PubMed

    Veiga, Jamille Costa; Menezes, Cristiano; Contrera, Felipe Andrés León

    2017-04-01

    The attraction of sexual partners is a vital necessity among insects, and it involves conflict of interests and complex communication systems among male and female. In this study, we investigated the developing of sexual attractiveness in virgin queens (i.e., gynes) of Melipona flavolineata, an eusocial stingless bee. We followed the development of sexual attractiveness in 64 gynes, belonging to seven age classes (0, 3, 6, 9, 15, 18 days post-emergence), and we also evaluated the effect of different social interactions (such as competition between queens and interactions with workers) on the development of attractiveness in other 60 gynes. We used the number of males that tried to mate with a focal gyne as a representative variable of its sexual attractiveness. During the essays, each gyne was individually presented to 10 sexually mature males, and during 3 min, we counted the number of males that everted their genitalia in response to the presence of a gyne. Here, we show that M. flavolineata gynes are capable to (i) maintain their sexual attractiveness for long periods through adult life, (ii) they need a minimum social interaction to trigger the development of sexual attractiveness, and (iii) that gynes express this trait only within a social context. We conclude that the effective occurrence of matings is conditional on potential social interactions that gynes experienced before taking the nuptial flight, when they are still in the nest. These findings bring insights into the factors determining reproductive success in social insects.

  8. Insights into the role of age and social interactions on the sexual attractiveness of queens in an eusocial bee, Melipona flavolineata (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Veiga, Jamille Costa; Menezes, Cristiano; Contrera, Felipe Andrés León

    2017-04-01

    The attraction of sexual partners is a vital necessity among insects, and it involves conflict of interests and complex communication systems among male and female. In this study, we investigated the developing of sexual attractiveness in virgin queens (i.e., gynes) of Melipona flavolineata, an eusocial stingless bee. We followed the development of sexual attractiveness in 64 gynes, belonging to seven age classes (0, 3, 6, 9, 15, 18 days post-emergence), and we also evaluated the effect of different social interactions (such as competition between queens and interactions with workers) on the development of attractiveness in other 60 gynes. We used the number of males that tried to mate with a focal gyne as a representative variable of its sexual attractiveness. During the essays, each gyne was individually presented to 10 sexually mature males, and during 3 min, we counted the number of males that everted their genitalia in response to the presence of a gyne. Here, we show that M. flavolineata gynes are capable to (i) maintain their sexual attractiveness for long periods through adult life, (ii) they need a minimum social interaction to trigger the development of sexual attractiveness, and (iii) that gynes express this trait only within a social context. We conclude that the effective occurrence of matings is conditional on potential social interactions that gynes experienced before taking the nuptial flight, when they are still in the nest. These findings bring insights into the factors determining reproductive success in social insects.

  9. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.

    PubMed

    Sasaki, Katsunori; Takahashi, Takashi

    2002-10-01

    The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.

  10. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    PubMed

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.

  11. Suitability and perspectives on using recombinant insect cells for the production of virus-like particles.

    PubMed

    Yamaji, Hideki

    2014-03-01

    Virus-like particles (VLPs) can be produced in recombinant protein production systems by expressing viral surface proteins that spontaneously assemble into particulate structures similar to authentic viral or subviral particles. VLPs serve as excellent platforms for the development of safe and effective vaccines and diagnostic antigens. Among various recombinant protein production systems, the baculovirus-insect cell system has been used extensively for the production of a wide variety of VLPs. This system is already employed for the manufacture of a licensed human papillomavirus-like particle vaccine. However, the baculovirus-insect cell system has several inherent limitations including contamination of VLPs with progeny baculovirus particles. Stably transformed insect cells have emerged as attractive alternatives to the baculovirus-insect cell system. Different types of VLPs, with or without an envelope and composed of either single or multiple structural proteins, have been produced in stably transformed insect cells. VLPs produced by stably transformed insect cells have successfully elicited immune responses in vivo. In some cases, the yield of VLPs attained with recombinant insect cells was comparable to, or higher than, that obtained by baculovirus-infected insect cells. Recombinant insect cells offer a promising approach to the development and production of VLPs.

  12. Tree crickets optimize the acoustics of baffles to exaggerate their mate-attraction signal.

    PubMed

    Mhatre, Natasha; Malkin, Robert; Deb, Rittik; Balakrishnan, Rohini; Robert, Daniel

    2017-12-11

    Object manufacture in insects is typically inherited, and believed to be highly stereotyped. Optimization, the ability to select the functionally best material and modify it appropriately for a specific function, implies flexibility and is usually thought to be incompatible with inherited behaviour. Here, we show that tree-crickets optimize acoustic baffles, objects that are used to increase the effective loudness of mate-attraction calls. We quantified the acoustic efficiency of all baffles within the naturally feasible design space using finite-element modelling and found that design affects efficiency significantly. We tested the baffle-making behaviour of tree crickets in a series of experimental contexts. We found that given the opportunity, tree crickets optimised baffle acoustics; they selected the best sized object and modified it appropriately to make a near optimal baffle. Surprisingly, optimization could be achieved in a single attempt, and is likely to be achieved through an inherited yet highly accurate behavioural heuristic.

  13. Review: Nectar biology: From molecules to ecosystems.

    PubMed

    Roy, Rahul; Schmitt, Anthony J; Thomas, Jason B; Carter, Clay J

    2017-09-01

    Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Developing trap cropping systems for effective organic management of key insect pests of cucurbit crops (IPM)

    USDA-ARS?s Scientific Manuscript database

    Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...

  15. Responses to colour and host odour cues in three cereal pest species, in the context of ecology and control.

    PubMed

    Arnold, S E J; Stevenson, P C; Belmain, S R

    2015-08-01

    Many insects show a greater attraction to multimodal cues, e.g. odour and colour combined, than to either cue alone. Despite the potential to apply the knowledge to improve control strategies, studies of multiple stimuli have not been undertaken for stored product pest insects. We tested orientation towards a food odour (crushed white maize) in combination with a colour cue (coloured paper with different surface spectral reflectance properties) in three storage pest beetle species, using motion tracking to monitor their behaviour. While the maize weevil, Sitophilus zeamais (Motsch.), showed attraction to both odour and colour stimuli, particularly to both cues in combination, this was not observed in the bostrichid pests Rhyzopertha dominica (F.) (lesser grain borer) or Prostephanus truncatus (Horn) (larger grain borer). The yellow stimulus was particularly attractive to S. zeamais, and control experiments showed that this was neither a result of the insects moving towards darker-coloured areas of the arena, nor their being repelled by optical brighteners in white paper. Visual stimuli may play a role in location of host material by S. zeamais, and can be used to inform trap design for the control or monitoring of maize weevils. The lack of visual responses by the two grain borers is likely to relate to their different host-seeking behaviours and ecological background, which should be taken into account when devising control methods.

  16. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  17. Identification and characterization of insect-specific proteins by genome data analysis

    PubMed Central

    Zhang, Guojie; Wang, Hongsheng; Shi, Junjie; Wang, Xiaoling; Zheng, Hongkun; Wong, Gane Ka-Shu; Clark, Terry; Wang, Wen; Wang, Jun; Kang, Le

    2007-01-01

    Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts). ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through experiments reported in the literature, supporting the accuracy of our approach. PMID:17407609

  18. Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid

    PubMed Central

    Marshall, David C.; Hill, Kathy B. R.

    2009-01-01

    Background In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. Methodology/Principal Findings We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. Conclusions/Significance We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species. PMID:19142230

  19. Nutrient compensatory foraging in a free-living social insect

    NASA Astrophysics Data System (ADS)

    Christensen, Keri L.; Gallacher, Anthony P.; Martin, Lizzie; Tong, Desmond; Elgar, Mark A.

    2010-10-01

    The geometric framework model predicts that animal foraging decisions are influenced by their dietary history, with animals targeting a combination of essential nutrients through compensatory foraging. We provide experimental confirmation of nutrient-specific compensatory foraging in a natural, free-living population of social insects by supplementing their diet with sources of protein- or carbohydrate-rich food. Colonies of the ant Iridomyrmex suchieri were provided with feeders containing food rich in either carbohydrate or protein for 6 days, and were then provided with a feeder containing the same or different diet. The patterns of recruitment were consistent with the geometric framework: while feeders with a carbohydrate diet typically attracted more workers than did feeders with protein diet, the difference in recruitment between the two nutrients was smaller if the colonies had had prior access to carbohydrate than protein. Further, fewer ants visited feeders if the colony had had prior access to protein than to carbohydrates, suggesting that the larvae play a role in worker foraging behaviour.

  20. Different pitcher shapes and trapping syndromes explain resource partitioning in Nepenthes species.

    PubMed

    Gaume, Laurence; Bazile, Vincent; Huguin, Maïlis; Bonhomme, Vincent

    2016-03-01

    Nepenthes pitcher plants display interspecific diversity in pitcher form and diets. This species-rich genus might be a conspicuous candidate for an adaptive radiation. However, the pitcher traits of different species have never been quantified in a comparative study, nor have their possible adaptations to the resources they exploit been tested. In this study, we compare the pitcher features and prey composition of the seven Nepenthes taxa that grow in the heath forest of Brunei (Borneo) and investigate whether these species display different trapping syndromes that target different prey. The Nepenthes species are shown to display species-specific combinations of pitcher shapes, volumes, rewards, attraction and capture traits, and different degrees of ontogenetic pitcher dimorphism. The prey spectra also differ among plant species and between ontogenetic morphotypes in their combinations of ants, flying insects, termites, and noninsect guilds. According to a discriminant analysis, the Nepenthes species collected at the same site differ significantly in prey abundance and composition at the level of order, showing niche segregation but with varying degrees of niche overlap according to pairwise species comparisons. Weakly carnivorous species are first characterized by an absence of attractive traits. Generalist carnivorous species have a sweet odor, a wide pitcher aperture, and an acidic pitcher fluid. Guild specializations are explained by different combinations of morpho-functional traits. Ant captures increase with extrafloral nectar, fluid acidity, and slippery waxy walls. Termite captures increase with narrowness of pitchers, presence of a rim of edible trichomes, and symbiotic association with ants. The abundance of flying insects is primarily correlated with pitcher conicity, pitcher aperture diameter, and odor presence. Such species-specific syndromes favoring resource partitioning may result from local character displacement by competition and/or previous adaptations to geographically distinct environments.

  1. Bacteria Mediate Oviposition by the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae)

    PubMed Central

    Zheng, Longyu; Crippen, Tawni L.; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L.; Benbow, M. Eric; Tarone, Aaron M.; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied. PMID:23995019

  2. Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae).

    PubMed

    Zheng, Longyu; Crippen, Tawni L; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L; Benbow, M Eric; Tarone, Aaron M; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L; Wood, Thomas K; Tomberlin, Jeffery K

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied.

  3. Abbreviated Environmental Assessment for the Northwest Infrastructure, Phase II Spangdahlem Air Base, Germany

    DTIC Science & Technology

    2007-12-01

    Impact to flying insect species could be generated by artificial lightning. 2.1.5.2.3 Biotope connecting travel corridors would be impacted by the...well as applying lamps with light that is less attractive to night- active insects (e.g. gaslight, fluorescent tube). Mitigation measures for the...Devi l~bit (Scabious) symphytum officinale agg. Gew6hnlichcr Beinwcll Common Comfrey urtica dioica GroJ3e Brennesscl Stinging Nettle

  4. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has sufficient sensitivity and frequency measuring capability to differentiate between male and female mosquitoes (Figure 1, bottom panel) and fruit flies (data not shown). Similar studies show that AFIDS can be utilized to detect discrete differences between two mosquito species, Aedes aegypti and Aedes albopictus. When fully deployable, a wireless network of AFIDS monitors could be used in combination with other remotely sensed data and visually displayed in a geographic information system (GIS) to provide real-time surveillance (see Figure 2). More accurate and sensitive insect population forecasts and effective rapid response and mitigation of insect issues would then be possible.

  5. Comparison of the volatile emission profiles of ground almond and pistachio mummies: part 1 – addressing a gap in knowledge of current attractants of navel orangeworm

    USDA-ARS?s Scientific Manuscript database

    Over the years various tissues of almond and pistachios have been evaluated for their ability to attract the navel orangeworm moth, a major insect pest to almond and pistachio orchards in California. Almond meal, which typically consists of ground almond kernels, is the current monitoring tool for n...

  6. Multiorganismal insects: diversity and function of resident microorganisms.

    PubMed

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  7. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  8. Defatting and Sonication Enhances Protein Extraction from Edible Insects

    PubMed Central

    2017-01-01

    Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae (Tenebrio molitor), cricket adults (Gryllus bimaculatus), and silkworm pupae (Bombyx mori), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples. PMID:29725219

  9. Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits.

    PubMed

    Wragg, Peter D; Johnson, Steven D

    2011-09-01

    Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  10. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin.

    PubMed

    Despras, Guillaume; Alix, Aurélien; Urban, Dominique; Vauzeilles, Boris; Beau, Jean-Marie

    2014-10-27

    The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Insektenpheromone

    NASA Astrophysics Data System (ADS)

    Bestmann, H. J.; Vostrowsky, O.

    1982-10-01

    Pheromones — semiochemicals used by insects for intraspecific chemical communication — can be isolated and with special analytical techniques their chemical structure elucidated. With stereoselective synthesis methods, presented by the preparation of sex attractants and aggregating pheromones of moths and beetles, respectively, a synthetic access to compounds is given which can be used for behavior manipulation of insects. Aside the importance of these compounds for investigations of the sensoric process the possibility of their application in an integrated and biological pest control is discussed.

  12. Light Color Attraction and Dietary Sugar Composition for Several Mosquito (Diptera: Culicidae) Species Found in North Central Florida

    DTIC Science & Technology

    1998-07-02

    Niwot, CO. Koptur, S. 1992. Extrafloral nectar-mediated interactions between insects and plants , pp. 81-129. In E. A. Bemays [ed.]. Insect- Plant ...Standards- . .■ 45 Results and Discussion 45 Ecological Significance ofHoneydew in Mosquito Diet 46 Sugar Feeding Field Observations 48 4...of combined standards (ca. 0.1%) for common sugars associated with plants . Multiple peaks of the same sugar are anomeric forms .35 2-2

  13. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review

    PubMed Central

    Fiorenzano, Jodi M.; Koehler, Philip G.; Xue, Rui-De

    2017-01-01

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB. PMID:28394284

  14. Nectar protein content and attractiveness to Aedes aegypti and Culex pipiens in plants with nectar/insect associations.

    PubMed

    Chen, Zhongyuan; Kearney, Christopher M

    2015-06-01

    We chose five easily propagated garden plants previously shown to be attractive to mosquitoes, ants or other insects and tested them for attractiveness to Culex pipiens and Aedes aegypti. Long term imbibition was tested by survival on each plant species. Both mosquito species survived best on Impatiens walleriana, the common garden impatiens, followed by Asclepias curassavica, Campsis radicans and Passiflora edulis, which sponsored survival as well as the 10% sucrose control. Immediate preference for imbibition was tested with nectar dyed in situ on each plant. In addition, competition studies were performed with one dyed plant species in the presence of five undyed plant species to simulate a garden setting. In both preference studies I. walleriana proved superior. Nectar from all plants was then screened for nectar protein content by SDS-PAGE, with great variability being found between species, but with I. walleriana producing the highest levels. The data suggest that I. walleriana may have value as a model plant for subsequent studies exploring nectar delivery of transgenic mosquitocidal proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review.

    PubMed

    Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De

    2017-04-10

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.

  16. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  17. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    PubMed

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    PubMed Central

    Barghini, Alessandro; de Medeiros, Bruno A. S.

    2010-01-01

    Background Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people’s behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. Objective We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. Discussion We present three infectious vector-borne diseases—Chagas, leishmaniasis, and malaria—and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. Conclusion Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed. PMID:20675268

  19. Plant Secondary Metabolites Modulate Insect Behavior-Steps Toward Addiction?

    PubMed

    Wink, Michael

    2018-01-01

    Plants produce a diversity of secondary metabolites (PSMs) that serve as defense compounds against herbivores and microorganisms. In addition, some PSMs attract animals for pollination and seed dispersal. In case of pollinating insects, PSMs with colors or terpenoids with fragrant odors attract pollinators in the first place, but when they arrive at a flower, they are rewarded with nectar, so that the pollinators do not feed on flowers. In order to be effective as defense chemicals, PSMs evolved as bioactive substances, that can interfere with a large number of molecular targets in cells, tissues and organs of animals or of microbes. The known functions of PSMs are summarized in this review. A number of PSMs evolved as agonists or antagonists of neuronal signal transduction. Many of these PSMs are alkaloids. Several of them share structural similarities to neurotransmitters. Evidence for neuroactive and psychoactive PSMs in animals will be reviewed. Some of the neuroactive PSMs can cause addiction in humans and other vertrebrates. Why should a defense compound be addictive and thus attract more herbivores? Some insects are food specialists that can feed on plants that are normally toxic to other herbivores. These specialists can tolerate the toxins and many are stored in the insect body as acquired defense chemicals against predators. A special case are pyrrolizidine alkaloids (PAs) that are neurotoxic and mutagenic in vertebrates. PAs are actively sequestered by moths of the family Arctiidae and a few other groups of arthropods. In arctiids, PAs are not only used for defense, but also serve as morphogens for the induction of male coremata and as precursors for male pheromones. Caterpillars even feed on filter paper impregnated with pure PAs (that modulate serotonin receptors in vertebrates and maybe even in insects) and thus show of behavior with has similarities to addiction in vertebrates. Not only PA specialists, but also many monophagous herbivores select their host plants according to chemical cues i.e., PSMs) and crave for plants with a particular PSMs, again a similarity to addiction in vertebrates.

  20. Colour mimicry and sexual deception by Tongue orchids ( Cryptostylis)

    NASA Astrophysics Data System (ADS)

    Gaskett, A. C.; Herberstein, M. E.

    2010-01-01

    Typically, floral colour attracts pollinators by advertising rewards such as nectar, but how does colour function when pollinators are deceived, unrewarded, and may even suffer fitness costs? Sexually deceptive orchids are pollinated only by male insects fooled into mating with orchid flowers and inadvertently transferring orchid pollinia. Over long distances, sexually deceptive orchids lure pollinators with counterfeit insect sex pheromones, but close-range deception with colour mimicry is a tantalising possibility. Here, for the first time, we analyse the colours of four sexually deceptive Cryptostylis orchid species and the female wasp they mimic ( Lissopimpla excelsa, Ichneumonidae), from the perspective of the orchids’ single, shared pollinator, male Lissopimpla excelsa. Despite appearing different to humans, the colours of the orchids and female wasps were effectively identical when mapped into a hymenopteran hexagonal colour space. The orchids and wasps reflected predominantly red-orange wavelengths, but UV was also reflected by raised bumps on two orchid species and by female wasp wings. The orchids’ bright yellow pollinia contrasted significantly with their overall red colour. Orchid deception may therefore involve accurate and species-specific mimicry of wavelengths reflected by female wasps, and potentially, exploitation of insects’ innate attraction to UV and yellow wavelengths. In general, mimicry may be facilitated by exploiting visual vulnerabilities and evolve more readily at the peripheries of sensory perception. Many sexually deceptive orchids are predominantly red, green or white: colours that are all potentially difficult for hymenoptera to detect or distinguish from the background.

  1. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox.

    PubMed Central

    Ballare, C. L.; Scopel, A. L.; Stapleton, A. E.; Yanovsky, M. J.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. PMID:12226382

  2. Fluctuating selection across years and phenotypic variation in food-deceptive orchids.

    PubMed

    Scopece, Giovanni; Juillet, Nicolas; Lexer, Christian; Cozzolino, Salvatore

    2017-01-01

    Nectarless flowers that deceive pollinators offer an opportunity to study asymmetric plant-insect interactions. Orchids are a widely used model for studying these interactions because they encompass several thousand species adopting deceptive pollination systems. High levels of intra-specific phenotypic variation have been reported in deceptive orchids, suggesting a reduced consistency of pollinator-mediated selection on their floral traits. Nevertheless, several studies report on widespread directional selection mediated by pollinators even in these deceptive orchids. In this study we test the hypothesis that the observed selection can fluctuate across years in strength and direction thus likely contributing to the phenotypic variability of this orchid group. We performed a three-year study estimating selection differentials and selection gradients for nine phenotypic traits involved in insect attraction in two Mediterranean orchid species, namely Orchis mascula and O. pauciflora , both relying on a well-described food-deceptive pollination strategy. We found weak directional selection and marginally significant selection gradients in the two investigated species with significant intra-specific differences in selection differentials across years. Our data do not link this variation with a specific environmental cause, but our results suggest that pollinator-mediated selection in food-deceptive orchids can change in strength and in direction over time. In perennial plants, such as orchids, different selection differentials in the same populations in different flowering seasons can contribute to the maintenance of phenotypic variation often reported in deceptive orchids.

  3. A specific binding protein from Tenebrio molitor for the insecticidal toxin of Bacillus thuringiensis subsp. tenebrionis.

    PubMed

    Belfiore, C J; Vadlamudi, R K; Osman, Y A; Bulla, L A

    1994-04-15

    Biopesticides based on the bacterium Bacillus thuringiensis have attracted wide attention as safe alternatives to chemical insecticides. In this paper, we report, for the first time, the identification of a single binding protein from a coleopteran insect, Tenebrio molitor, that is specific for the cryIII toxin of B. thuringiensis. The protein appeared as a single band of 144 kDa on radioligand and immunoblots of total proteins extracted from brush border membrane vesicles of the midgut of T. molitor. Radiolabelled cryIIIA toxin bound to the protein with a Kd value of 17.5 nM and could be specifically blocked by unlabelled toxin but not by toxins from other subspecies of B. thuringiensis. This study lays the groundwork to clone the cryIIIA toxin binding protein and to determine the molecular mechanism(s) of toxin action.

  4. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  5. Synthetic Sex Pheromone Attracts the Leishmaniasis Vector Lutzomyia longipalpis (Diptera: Psychodidae) to Traps in the Field

    PubMed Central

    Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.

    2011-01-01

    Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409

  6. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae) to traps in the field.

    PubMed

    Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C

    2009-05-01

    Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.

  7. Impacts of a water stress followed by an early frost event on beech (Fagus sylvatica L.) susceptibility to Scolytine ambrosia beetles - Research strategy and first results

    NASA Astrophysics Data System (ADS)

    La Spina, Sylvie; de Cannière, Charles; Molenberg, Jean-Marc; Vincke, Caroline; Deman, Déborah; Grégoire, Jean-Claude

    2010-05-01

    Climate change tends to induce more frequent abiotic and biotic extreme events, having large impacts on tree vitality. Weakened trees are then more susceptible to secondary insect outbreaks, as it happened in Belgium in the early 2000s: after an early frost event, secondary Scolytine ambrosia beetles attacks were observed on beech trees. In this study, we test if a combination of stress, i.e. a soil water deficit preceding an early frost, could render trees more attractive to beetles. An experimental study was set in autumn 2008. Two parcels of a beech forest were covered with plastic tents to induce a water stress by rain interception. The parcels were surrounded by 2-meters depth trenches to avoid water supply by streaming. Soil water content and different indicators of tree water use (sap flow, predawn leaf water potential, tree radial growth) were followed. In autumn 2010, artificial frost injuries will be inflicted to trees using dry ice. Trees attractivity for Scolytine insects, and the success of insect colonization will then be studied. The poster will focus on experiment setting and first results (impacts of soil water deficit on trees).

  8. Trichoderma harzianum enhances tomato indirect defense against aphids.

    PubMed

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  10. Frequent Insect Visitors Are Not Always Pollen Carriers in Hybrid Carrot Pollination.

    PubMed

    Gaffney, Ann; Bohman, Björn; Quarrell, Stephen R; Brown, Philip H; Allen, Geoff R

    2018-06-07

    Insect crop visitations do not necessarily translate to carriage or transfer of pollen. To evaluate the potential of the various insects visiting hybrid carrot flowers to facilitate pollen transfer, this study examines insect visitation rates to hybrid carrot seed crops in relation to weather, time of day and season, pollen carrying capacity, inter-row movement, and visitation frequency to male-fertile and male-sterile umbels. The highest pollen loads were carried by nectar scarabs, honey bees, and the hover fly Eristalis tenax (Linnaeus). Honey bees and muscoid flies were observed to forage mostly within the male fertile carrot row while nectar scarabs and E. tenax foraged across rows, carrying equal pollen loads regardless of their distance from the pollen source. All observed insect taxa were more frequently seen visiting male-fertile than male-sterile umbels. In contrast to other visiting insects, honey bees were abundant and frequent visitors and were observed carrying high pollen loads. Consequently, we suggest both optimizing honey bee management and improving the attraction of carrot lines to honey bees to improve pollination rates for hybrid carrot seed crops.

  11. Insect cells as factories for biomanufacturing.

    PubMed

    Drugmand, Jean-Christophe; Schneider, Yves-Jacques; Agathos, Spiros N

    2012-01-01

    Insect cells (IC) and particularly lepidopteran cells are an attractive alternative to mammalian cells for biomanufacturing. Insect cell culture, coupled with the lytic expression capacity of baculovirus expression vector systems (BEVS), constitutes a powerful platform, IC-BEVS, for the abundant and versatile formation of heterologous gene products, including proteins, vaccines and vectors for gene therapy. Such products can be manufactured on a large scale thanks to the development of efficient and scaleable production processes involving the integration of a cell growth stage and a stage of cell infection with the recombinant baculovirus vector. Insect cells can produce multimeric proteins functionally equivalent to the natural ones and engineered vectors can be used for efficient expression. Insect cells can be cultivated easily in serum- and protein-free media. A growing number of companies are currently developing an interest in producing therapeutics using IC-BEVS, and many products are today in clinical trials and on the market for veterinary and human applications. This review summarizes current knowledge on insect cell metabolism, culture conditions and applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Tree crickets optimize the acoustics of baffles to exaggerate their mate-attraction signal

    PubMed Central

    Balakrishnan, Rohini; Robert, Daniel

    2017-01-01

    Object manufacture in insects is typically inherited, and believed to be highly stereotyped. Optimization, the ability to select the functionally best material and modify it appropriately for a specific function, implies flexibility and is usually thought to be incompatible with inherited behaviour. Here, we show that tree-crickets optimize acoustic baffles, objects that are used to increase the effective loudness of mate-attraction calls. We quantified the acoustic efficiency of all baffles within the naturally feasible design space using finite-element modelling and found that design affects efficiency significantly. We tested the baffle-making behaviour of tree crickets in a series of experimental contexts. We found that given the opportunity, tree crickets optimised baffle acoustics; they selected the best sized object and modified it appropriately to make a near optimal baffle. Surprisingly, optimization could be achieved in a single attempt, and is likely to be achieved through an inherited yet highly accurate behavioural heuristic. PMID:29227246

  13. Responses of Cerambycidae and other insects to traps baited with ethanol, 2,3-hexanediol, and 3,2-hydroxyketone lures in north-central Georgia

    Treesearch

    Dan Miller; Christopher Crowe; P. D. Mayo; P. J. Silk; J. D. Sweeney

    2015-01-01

    In north-central Georgia, 13 species of woodboring beetles (Coleoptera: Cerambycidae: Cerambycinae) were attracted to multiple-funnel traps baited with ethanol and one of the following pheromones: (1) racemic 3-hydroxyhexan-2-one; (2) racemic 3-hydroxyoctan-2-one; and (3) syn-2,3-hexanediol. The following species were attracted to traps baited with ethanol and 3-...

  14. Patch size has no effect on insect visitation rate per unit area in garden-scale flower patches

    NASA Astrophysics Data System (ADS)

    Garbuzov, Mihail; Madsen, Andy; Ratnieks, Francis L. W.

    2015-01-01

    Previous studies investigating the effect of flower patch size on insect flower visitation rate have compared relatively large patches (10-1000s m2) and have generally found a negative relationship per unit area or per flower. Here, we investigate the effects of patch size on insect visitation in patches of smaller area (range c. 0.1-3.1 m2), which are of particular relevance to ornamental flower beds in parks and gardens. We studied two common garden plant species in full bloom with 6 patch sizes each: borage (Borago officinalis) and lavender (Lavandula × intermedia 'Grosso'). We quantified flower visitation by insects by making repeated counts of the insects foraging at each patch. On borage, all insects were honey bees (Apis mellifera, n = 5506 counts). On lavender, insects (n = 737 counts) were bumble bees (Bombus spp., 76.9%), flies (Diptera, 22.4%), and butterflies (Lepidoptera, 0.7%). On both plant species we found positive linear effects of patch size on insect numbers. However, there was no effect of patch size on the number of insects per unit area or per flower and, on lavender, for all insects combined or only bumble bees. The results show that it is possible to make unbiased comparisons of the attractiveness of plant species or varieties to flower-visiting insects using patches of different size within the small scale range studied and make possible projects aimed at comparing ornamental plant varieties using existing garden flower patches of variable area.

  15. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment.

    PubMed

    Tomkins, Melissa; Kliot, Adi; Marée, Athanasius Fm; Hogenhout, Saskia A

    2018-03-13

    Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes. Copyright © 2018. Published by Elsevier Ltd.

  16. Molecular characterization and immunolocalization of the olfactory co-recepter Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.)

    PubMed Central

    Olafson, Pia Untalan

    2012-01-01

    Biting flies are economically important, blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviors, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\\Orco) and the horn fly (Hirr\\Orco). Orco forms a complex with an odor-specific odorant receptor to form an odor-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87% – 94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. antennae and maxillary palps, and gustation, i.e. proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from this study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors. PMID:23278866

  17. A novel resource-service mutualism between bats and pitcher plants.

    PubMed

    Grafe, T Ulmar; Schöner, Caroline R; Kerth, Gerald; Junaidi, Anissa; Schöner, Michael G

    2011-06-23

    Mutualistic relationships between vertebrates and plants apart from the pollen and seed-dispersal syndromes are rare. At first view, carnivorous pitcher plants of the genus Nepenthes seem to be highly unlikely candidates for mutualistic interactions with animals, as they form dimorphic terrestrial and aerial pitchers that trap arthropods and small vertebrates. Surprisingly, however, the aerial pitchers of Nepenthes rafflesiana variety elongata are poor insect traps, with low amounts of insect-attractive volatile compounds and low amounts of digestive fluid. Here, we show that N. rafflesiana elongata gains an estimated 33.8 per cent of the total foliar nitrogen from the faeces of Hardwicke's woolly bats (Kerivoula hardwickii hardwickii) that exclusively roost in its aerial pitchers. This is the first case in which the faeces-trapping syndrome has been documented in a pitcher plant that attracts bats and only the second case of a mutualistic association between a carnivorous plant and a mammal to date.

  18. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites.

    PubMed

    Gaugler, R; Suman, D; Wang, Y

    2012-03-01

    A prototype autodissemination station to topically contaminate oviposition-seeking container-dwelling mosquitoes with the insect growth regulator, pyriproxyfen, was developed and tested in the laboratory. Our test subject was the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), an urban species that colonizes small-volume cryptic larval habitats and is a skip ovipositor that visits multiple containers. The station consists of a water reservoir to attract gravid females, which is joined to a transfer chamber designed to contaminate visiting mosquitoes. The unit is easily constructed by moulding wet shredded cardboard using corn starch as a binder. The essential criteria that must be met to prove the efficacy of an autodissemination station require it to demonstrate effectiveness in attracting the target insect, in transferring the toxicant to the insect that will disperse the agent, and in facilitating the subsequent transfer of the toxicant from the insect to target habitats at a lethal concentration. Cage experiments demonstrated that the unit was readily accepted by gravid females as an oviposition site. A powder formulation of pyriproxyfen-impregnated silica particles adhered to visiting Ae. albopictus females (mean: 66 particles/female), although particles were lost over time. In cage (2.2 m(3) ) trials, pyriproxyfen-charged stations resulted in 100% inhibition of adult emergence, whereas in small-room (31.1 m(3) ) trials, 81% emergence inhibition was recorded. The venereal transfer of pyriproxyfen from contaminated males to virgin females was also observed, and pyriproxyfen was subsequently transferred to water-holding containers at concentrations that inhibited emergence. Key autodissemination station features include lack of maintenance requirements, biodegradable construction, low cost and low risk. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  19. Male Enchenopa treehoppers (Hemiptera: Membracidae) vary mate-searching behavior but not signaling behavior in response to spider silk

    NASA Astrophysics Data System (ADS)

    Fowler-Finn, Kasey D.; Al-Wathiqui, Nooria; Cruz, Daniel; Al-Wathiqui, Mishal; Rodríguez, Rafael L.

    2014-03-01

    Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.

  20. Attractiveness of black and white modified Shannon traps to phlebotomine sandflies (Diptera, Psychodidae) in the Brazilian Amazon Basin, an area of intense transmission of American cutaneous leishmaniasis

    PubMed Central

    Brilhante, Andreia Fernandes; de Ávila, Márcia Moreira; de Souza, Jailson Ferreira; Medeiros-Sousa, Antônio Ralph; Sábio, Priscila Bassan; de Paula, Marcia Bicudo; Godoy, Rodrigo Espindola; Melchior, Leonardo Augusto Kohara; Nunes, Vânia Lúcia Brandão; de Oliveira Cardoso, Cristiane; Galati, Eunice Aparecida Bianchi

    2017-01-01

    In the Amazon region the phlebotomine fauna is considered one of the most diverse in the world. The use of Shannon traps may provide information on the anthropophily of the species and improve the traps’ performance in terms of diversity and quantity of insects collected when white and black colored traps are used together. This study sought to verify the attractiveness of the traps to the phlebotomine species of the Brazilian Amazon basin using Shannon traps under these conditions. The insects were collected using two Shannon traps installed side by side, one white and the other black, in a primary forest area of the municipality of Xapuri, Acre, Brazil. Samples were collected once a month during the period August 2013 to July 2015. A sample of females was dissected to test for natural infection by flagellates. A total of 6,309 (864 males and 5,445 females) specimens (36 species) were collected. Psychodopygus carrerai carrerai (42%), Nyssomyia shawi (36%), and Psychodopygus davisi (13%), together represented 90% of the insects collected. Nyssomyia shawi and Psychodopygus davisi were more attracted by the white color. Specimens of Nyssomyia shawi, Nyssomyia whitmani, and Psychodopygus hirsutus hirsutus were found naturally infected by flagellates in the mid and hindgut. This is the first study in Acre state using and comparing both black and white Shannon traps, demonstrating the richness, diversity, and anthropophilic behavior of the phlebotomine species and identifying proven and putative vectors of the etiological agents of leishmaniasis. PMID:28593838

  1. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias

    PubMed Central

    Kouloussis, Nikos A.; Papadopoulos, Nikos T.; Müller, Hans-Georg; Wang, Jane-Ling; Mao, Meng; Katsoyannos, Byron I.; Duyck, Pierre-François; Carey, James R.

    2012-01-01

    Though traps are used widely to sample phytophagous insects for research or management purposes, and recently in aging research, possible bias stemming from differential response of individuals of various ages to traps has never been examined. In this paper, we tested the response of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) males and females of four ages (spanning from 1 to 40 days) to McPhail-type traps baited with a synthetic food attractant in field cages and found that the probability of trapping was significantly influenced by age. The type of food on which flies were maintained before testing (sugar or protein) also had a strong effect and interacted with age. In another experiment, we collected wild C. capitata adults of unknown age using 1–3 methods and then reared them in the laboratory until death. The survival schedules of these flies were subsequently used in a life table assay to infer their age at the time of capture. Results showed that on a single sampling date, males captured in traps baited with a food attractant were younger compared with males aspirated from fruiting host trees, or males captured in traps baited with a sex attractant. Likewise, females captured in food-baited traps were younger compared with aspirated females. In addition to providing the first evidence of age-dependent sampling bias for a phytophagous insect species, this paper also provides a novel approach to estimate the differences in the age composition of samples collected with different techniques. These findings are of utmost importance for several categories of insects, medically important groups notwithstanding. PMID:22844133

  2. Kinematic strategies for mitigating gust perturbations in insects.

    PubMed

    Vance, J T; Faruque, I; Humbert, J S

    2013-03-01

    Insects are attractive models for the development of micro-aerial vehicles (MAVs) due to their relatively simple sensing, actuation and control architectures as compared to vertebrates, and because of their robust flight ability in dynamic and heterogeneous environments, characterized by turbulence and gusts of wind. How do insects respond to gust perturbations? We investigated this question by perturbing freely-flying honey bees and stalk-eye flies with low-pressure bursts of compressed air to simulate a wind gust. Body and wing kinematics were analyzed from flight sequences, recorded using three high-speed digital video cameras. Bees quickly responded to body rotations caused by gusts through bilateral asymmetry in stroke amplitude, whereas stalk-eye flies used a combination of asymmetric stroke amplitude and wing rotation angle. Both insects coordinated asymmetric and symmetric kinematics in response to gusts, which provides model strategies for simple yet robust flight characteristics for MAVs.

  3. Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones.

    PubMed

    Gregg, Peter C; Del Socorro, Alice P; Landolt, Peter J

    2018-01-07

    Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.

  4. Indirect plant defense against insect herbivores: a review.

    PubMed

    Aljbory, Zainab; Chen, Ming-Shun

    2018-02-01

    Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Plants and insect eggs: how do they affect each other?

    PubMed

    Hilker, Monika; Meiners, Torsten

    2011-09-01

    Plant-insect interactions are not just influenced by interactions between plants and the actively feeding stages, but also by the close relationships between plants and insect eggs. Here, we review both effects of plants on insect eggs and, vice versa, effects of eggs on plants. We consider the influence of plants on the production of insect eggs and address the role of phytochemicals for the biosynthesis and release of insect sex pheromones, as well as for insect fecundity. Effects of plants on insect oviposition by contact and olfactory plant cues are summarised. In addition, we consider how the leaf boundary layer influences both insect egg deposition behaviour and development of the embryo inside the egg. The effects of eggs on plants involve egg-induced changes of photosynthetic activity and of the plant's secondary metabolism. Except for gall-inducing insects, egg-induced changes of phytochemistry were so far found to be detrimental to the eggs. Egg deposition can induce hypersensitive-like plant response, formation of neoplasms or production of ovicidal plant substances; these plant responses directly harm the eggs. In addition, egg deposition can induce a change of the plant's odour and leaf surface chemistry which serve indirect plant defence with the help of antagonists of the insect eggs. These egg-induced changes lead to attraction of egg parasitoids and their arrestance on a leaf, respectively. Finally, we summarise knowledge of the elicitors of egg-induced plant changes and address egg-induced effects on the plant's transcriptional pattern. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    PubMed

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  7. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense.

    PubMed

    Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian

    2017-06-01

    Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

  8. A discrete particle model reproducing collective dynamics of a bee swarm.

    PubMed

    Bernardi, Sara; Colombi, Annachiara; Scianna, Marco

    2018-02-01

    In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  10. Assessment of psyllid double-stranded Ribonucleic acid, RNA, off-target effects on a ladybird beetle predator

    USDA-ARS?s Scientific Manuscript database

    Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...

  11. Evaluation of Imidacloprid-Treated Traps as an Attract and Kill System for Filth Flies During Contingency Settings

    DTIC Science & Technology

    2013-04-01

    such as Flies Be Gone* (Combined Distributors, Inc, Jackson, NJ) that capture fl ies in a bag may not be optimal for success during contingency...for maxi- mum effectiveness. An alternative to the physical capture of fl ies alone is the “attract and kill” insect control strategy.7,8 This...compare kill rates between treated and untreated traps. Kill consisted of total fl ies collected from inside traps and from mesh nets suspended

  12. Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-11-01

    Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.

  13. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282

  14. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-02-15

    Host recognition is crucial during the phoretic stage of nematodes because it facilitates their association with hosts. However, limited information is available on the direct cues used for host recognition and host specificity in nematodes. Caenorhabditis japonica forms an intimate association with the burrower bug Parastrachia japonensis. Caenorhabditis japonica dauer larvae (DL), the phoretic stage of the nematode, are mainly found on adult P. japonensis females but no other species. To understand the mechanisms of species-specific and female carrier-biased ectophoresy in C. japonica, we investigated whether C. japonica DL could recognize their hosts using nematode loading and chemoattraction experiments. During the loading experiments, up to 300 C. japonica DL embarked on male and female P. japonensis, whereas none or very few utilized the other shield bugs Erthesina fullo and Macroscytus japonensis or the terrestrial isopod Armadillidium vulgare. In the chemoattraction experiments, hexane extracts containing the body surface components of nymphs and both adult P. japonensis sexes attracted C. japonica DL, whereas those of other shield bugs did not. Parastrachia japonensis extracts also arrested the dispersal of C. japonica DL released at a site where hexane extracts were spotted on an agar plate; i.e. >50% of DL remained at the site even 60 min after nematode inoculation whereas M. japonensis extracts or hexane alone did not have the same effect. These results suggest that C. japonica DL recognize their host species using direct chemical attractants from their specific host to maintain their association.

  15. Use of habitat odour by host-seeking insects.

    PubMed

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  16. Traumatic ventriculitis following consumption of introduced insect prey (Hymenoptera) in nestling hihi (Notiomystis cincta).

    PubMed

    Rippon, Rosemary J; Alley, Maurice R; Castro, Isabel

    2013-01-01

    Nestling mortality in the endangered and endemic Hihi, also called Stitchbird (Notiomystis cincta), was studied over the 2008-09 breeding season at Zealandia-Karori Sanctuary, Wellington, New Zealand. Histopathology showed traumatic ventriculitis in seven of 25 (28%) dead nestlings. Single or multiple granulomas centered on chitinous insect remnants were found lodged within the gizzard mucosa, muscle layers, and ventricular or intestinal serosa. The insect remnants were confirmed as bee or wasp stings (Hymenoptera) using light and electron microscopy. Bacteria or yeasts were also found in some granulomas, and death was due to bacterial septicemia in four cases. Endemic New Zealand birds are likely to lack evolutionary adaptations required to safely consume introduced honey bees (Apis mellifera) and vespulid wasps (Vespula germanica [German wasp], and Vespula vulgaris [common wasp]). However, these insects are attracted to feeding stations used to support translocated Hihi populations. As contact between bees, wasps, and the endemic fauna of New Zealand seems inevitable, it may be necessary to minimize the numbers of these introduced insects in areas set aside for ecologic restoration.

  17. 50 CFR 260.98 - Premises.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... immediate vicinity of the buildings or structures that may constitute an attractant, breeding place, or... providing a breeding place for insects or micro-organisms; If the grounds of an official establishment are...

  18. 50 CFR 260.98 - Premises.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... immediate vicinity of the buildings or structures that may constitute an attractant, breeding place, or... providing a breeding place for insects or micro-organisms; If the grounds of an official establishment are...

  19. 50 CFR 260.98 - Premises.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... immediate vicinity of the buildings or structures that may constitute an attractant, breeding place, or... providing a breeding place for insects or micro-organisms; If the grounds of an official establishment are...

  20. 50 CFR 260.98 - Premises.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... immediate vicinity of the buildings or structures that may constitute an attractant, breeding place, or... providing a breeding place for insects or micro-organisms; If the grounds of an official establishment are...

  1. Identifying Insect Bites and Stings

    MedlinePlus

    ... Page Content Article Body Mosquitoes Mosquitoes are generally found near water (pools, lakes, birdbaths) and are attracted by bright colors and sweat. Bites result in stinging sensation followed by a small, red, itchy mound with a tiny ... found near or around food, garbage, and animal waste. ...

  2. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests

    PubMed Central

    Sobhy, Islam S.; Erb, Matthias; Lou, Yonggen; Turlings, Ted C. J.

    2014-01-01

    An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach. PMID:24535390

  3. [Ethyl 4-methyloctanoate, major component of male pherome in Oryctes rhinoceros (L.) (Coleoptera, Dynastidae)].

    PubMed

    Morin, J P; Rochat, D; Malosse, C; Lettere, M; de Chenon, R D; Wibwo, H; Descoins, C

    1996-07-01

    Ethyl 4-methyloctanoate, which has already been described in Oryctes monoceros, has been identified, using extracts of effluvia collected from males, as being a major component of the male pheromone of O. rhinoceros. Field trials have been carried out in North Sumatra, Indonesia. Ethyl 4-methyloctanoate synthesized in the laboratory and released at 10 mg/d resulted in the capture of 6.8 insects per week per trap, whereas ethyl chrysanthemate (40 mg/d), an allelochemical compound once used as an attractant, only led to the capture of 0.3 insects, and the control none at all. The insects captured with the pheromone were 81% females, the majority being sexually mature. Discovery of this compound opens up new prospects for O. rhinoceros control.

  4. The Long and the Short of Mate Attraction in a Psylloid: do Semiochemicals Mediate Mating in Aacanthocnema dobsoni Froggatt?

    PubMed

    Lubanga, Umar K; Drijfhout, Falko P; Farnier, Kevin; Steinbauer, Martin J

    2016-02-01

    Mating is preceded by a series of interdependent events that can be broadly categorized into searching and courtship. Long-range signals convey species- and sex-specific information during searching, while short-range signals provide information specific to individuals during courtship. Studies have shown that cuticular hydrocarbons (CHCs) can be used for mate recognition in addition to protecting insects from desiccation. In Psylloidea, four species rely on semiochemicals for long-range mate attraction. Psyllid mating research has focused on long-range mate attraction and has largely ignored the potential use of cuticular hydrocarbons (CHCs) as mate recognition cues. This study investigated whether CHCs of Aacanthocnema dobsoni have semiochemical activity for long- and short-range communication prior to mating. Using a solid sampler for solvent-less injection of whole psyllids into coupled gas chromatography/mass spectrometry, we found quantitative, sex- and age-related differences in CHC profiles. Males had higher proportions of 2-MeC28, 11,15-diMeC29, and n-C33 alkanes, while females had higher proportions of 5-MeC27, 3-MeC27, 5,15-diMeC27, n-C29 and n-C30 alkanes. In males and females, 84 and 68 % of CHCs varied with age, respectively. Y-tube olfactometer bioassays provided no evidence that males or females responded to odors emanating from groups of conspecifics of the opposite sex. Tests of male and female psyllids for attraction to branchlets previously occupied by conspecifics showed no evidence of attraction to possible semiochemical residues. Our short-range chemoreception bioassay showed that males were as indifferent to freshly killed individuals of either sex with intact CHC profiles as to those treated with hexane (to remove CHCs). Aacanthocnema dobsoni utilizes substrate-borne vibrations (SBVs) for communication. Therefore, our results indicate that SBVs are probably more important than semiochemicals for long-range mate attraction. Furthermore, CHCs are unlikely to mediate short-range mate recognition or provide mate assessment cues.

  5. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.

    PubMed

    Cooper, Dustin; Eleftherianos, Ioannis

    2017-01-01

    The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  6. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors.

    PubMed

    Kaur, Rimaljeet; Kaur, Narinder; Gupta, Anil Kumar

    2014-11-01

    α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate.

    PubMed

    Broussard, Melissa Ann; Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.

  8. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate

    PubMed Central

    Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M.

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production. PMID:28665949

  9. Reverse chemical ecology approach for the identification of a mosquito oviposition attractant

    USDA-ARS?s Scientific Manuscript database

    Pheromones and other semiochemicals play a crucial role in today’s integrated pest and vector management strategies for controlling populations of insects causing loses to agriculture and vectoring diseases to humans. These semiochemicals are typically discovered by bioassay-guided approaches. Here,...

  10. Inventive Thinking in Biology.

    ERIC Educational Resources Information Center

    McCormack, Alan J., Ed.

    1982-01-01

    To encourage students to become involved in the inventive and imaginative dimensions of biology, students are asked to invent: a useful product, way to use old newspapers, insect repellent, organism attracter, organelle separater, way to measure rate of hyphal growth, and method to measure strength of spider web. (DC)

  11. Enhancing resource availability in agro-ecosystems for beneficial arthropods through floral provisioning

    USDA-ARS?s Scientific Manuscript database

    There has been a decline in beneficial arthropods (insects and spiders) including pollinators because of habitat destruction and intense management practices. Enhancing landscapes with additional floral and other non-crop habitats has the potential to attract pollinators, and predatory arthropods wh...

  12. Bats adjust foraging behavior in response to migratory prey

    USDA-ARS?s Scientific Manuscript database

    Insect migrations represent large movements of resources across a landscape, and are likely to attract predators capable of detecting and catching them. Brazilian free-tailed bats (Tadarida brasiliensis) track resources in time and space and consume large numbers of migratory noctuid moths. During...

  13. Chemicals that disrupt host-seeking in insects

    USDA-ARS?s Scientific Manuscript database

    The United States Department of Agriculture (USDA) has developed repellents and insecticides for the U.S. military since 1942. A small component of this research program has been aimed at the discovery of attractants that can be used to produce potent lures for haematophagous arthropods, especially ...

  14. Pollination: sexual mimicry abounds.

    PubMed

    Schiestl, Florian P

    2010-12-07

    Why do plants mimic female insects to attract males for pollination? A new study gives insights into the advantages of sexual mimicry and documents this pollination system for the first time outside the orchid family, in a South African daisy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  16. Heritability of Attractiveness to Mosquitoes

    PubMed Central

    Fernández-Grandon, G. Mandela; Gezan, Salvador A.; Armour, John A. L.; Pickett, John A.; Logan, James G.

    2015-01-01

    Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development. PMID:25901606

  17. Fenestration: a window of opportunity for carnivorous plants.

    PubMed

    Schaefer, H Martin; Ruxton, Graeme D

    2014-01-01

    A long-standing but controversial hypothesis assumes that carnivorous plants employ aggressive mimicry to increase their prey capture success. A possible mechanism is that pitcher plants use aggressive mimicry to deceive prey about the location of the pitcher's exit. Specifically, species from unrelated families sport fenestration, i.e. transparent windows on the upper surfaces of pitchers which might function to mimic the exit of the pitcher. This hypothesis has not been evaluated against alternative hypotheses predicting that fenestration functions to attract insects from afar. By manipulating fenestration, we show that it does not increase the number of Drosophila flies or of two ant species entering pitchers in Sarracenia minor nor their retention time or a pitcher's capture success. However, fenestration increased the number of Drosophila flies alighting on the pitcher compared with pitchers of the same plant without fenestration. We thus suggest that fenestration in S. minor is not an example of aggressive mimicry but rather functions in long-range attraction of prey. We highlight the need to evaluate aggressive mimicry relative to alternative concepts of plant-animal communication.

  18. Male-specific Y-linked transgene markers to enhance biologically-based control of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Background: Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific,...

  19. Synthetic Sex Pheromone in a Long-Lasting Lure Attracts the Visceral Leishmaniasis Vector, Lutzomyia longipalpis, for up to 12 Weeks in Brazil

    PubMed Central

    Bray, Daniel P.; Carter, Vicky; Alves, Graziella B.; Brazil, Reginaldo P.; Bandi, Krishna K.; Hamilton, James G. C.

    2014-01-01

    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases. PMID:24651528

  20. Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, Lutzomyia longipalpis, for up to 12 weeks in Brazil.

    PubMed

    Bray, Daniel P; Carter, Vicky; Alves, Graziella B; Brazil, Reginaldo P; Bandi, Krishna K; Hamilton, James G C

    2014-03-01

    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.

  1. Selective flowers to attract and enhance Telenomus laeviceps (Hymenoptera: Scelionidae): a released biocontrol agent of Mamestra brassicae (Lepidoptera: Noctuidae).

    PubMed

    Barloggio, G; Tamm, L; Nagel, P; Luka, H

    2018-05-10

    The importance of the right food source for the survival and reproduction of certain insect species is well documented. In the case of biocontrol agents, this is even more important in order to reach a high predation or parasitation performance. The egg parasitoid Telenomus laeviceps (Förster, 1861) (Hymenoptera: Scelionidae) is a promising candidate for mass release as a biological control agent of the cabbage moth Mamestra brassicae (Linnaeus, 1758) (Lepidoptera: Noctuidae). However, adult T. laeviceps need a sugar-rich food source to increase their parasitation performance and produce a good amount of female offspring. Released biocontrol agents were shown to benefit from conservation biocontrol, which includes the provision of selected flowers as nectar resources for beneficial insects. In Switzerland, Centaurea cyanus L. (Asteraceae), Fagopyrum esculentum Moench (Polygonaceae) and Vicia sativa L. (Fabaceae) are successfully implemented in the field to attract and promote natural enemies of different cabbage pests. In this study, we investigated the potential of these selected flowers to attract and promote T. laeviceps under laboratory conditions. In Y-tube olfactometer experiments, we first tested whether the three nectar providing plant species are attractive to T. laeviceps. Furthermore, we assessed their effects on survival and parasitation performance of adult T. laeviceps. We found that flowers of F. esculentum and C. cyanus were attractive in contrast to V. sativa. Also fecundity and the number of female offspring produced were higher for females kept on F. esculentum and C. cyanus than on V. sativa. In contrast, survival was similar on all treatments. Our findings present a further key step towards the implementation of T. laeviceps as a biocontrol agent.

  2. In situ modeling of multimodal floral cues attracting wild pollinators across environments

    PubMed Central

    Dahlbom, Josefin; Ghosh, Suhrid; Olsson, Amadeus; Dyakova, Olga; Suresh, Shravanti Krishna

    2017-01-01

    With more than 80% of flowering plant species specialized for animal pollination, understanding how wild pollinators utilize resources across environments can encourage efficient planting and maintenance strategies to maximize pollination and establish resilience in the face of environmental change. A fundamental question is how generalist pollinators recognize “flower objects” in vastly different ecologies and environments. On one hand, pollinators could employ a specific set of floral cues regardless of environment. Alternatively, wild pollinators could recognize an exclusive signature of cues unique to each environment or flower species. Hoverflies, which are found across the globe, are one of the most ecologically important alternative pollinators after bees and bumblebees. Here, we have exploited their cosmopolitan status to understand how wild pollinator preferences change across different continents. Without employing any a priori assumptions concerning the floral cues, we measured, predicted, and finally artificially recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical) using a field-based methodology. We found that although “flower signatures” were unique for each environment, some multimodal lures were ubiquitously attractive, despite not carrying any reward, or resembling real flowers. While it was unexpected that cue combinations found in real flowers were not necessary, the robustness of our lures across insect species and ecologies could reflect a general strategy of resource identification for generalist pollinators. Our results provide insights into how cosmopolitan pollinators such as hoverflies identify flowers and offer specific ecologically based cues and strategies for attracting pollinators across diverse environments. PMID:29180408

  3. Increasing evidence that bats actively forage at wind turbines

    PubMed Central

    Foo, Cecily F.; Bennett, Victoria J.; Korstian, Jennifer M.; Schildt, Alison J.; Williams, Dean A.

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011–2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities. PMID:29114441

  4. Increasing evidence that bats actively forage at wind turbines.

    PubMed

    Foo, Cecily F; Bennett, Victoria J; Hale, Amanda M; Korstian, Jennifer M; Schildt, Alison J; Williams, Dean A

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat ( Lasiurus borealis ) and 24 hoary bat ( Lasiurus cinereus ) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities.

  5. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light

    NASA Astrophysics Data System (ADS)

    Horváth, Gábor; Majer, József; Horváth, Loránd; Szivák, Ildikó; Kriska, György

    2008-11-01

    Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.

  6. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light.

    PubMed

    Horváth, Gábor; Majer, József; Horváth, Loránd; Szivák, Ildikó; Kriska, György

    2008-11-01

    Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.

  7. Developing Bisexual Attract-and-Kill for Polyphagous Insects: Ecological Rationale versus Pragmatics.

    PubMed

    Gregg, Peter C; Del Socorro, Alice P; Hawes, Anthony J; Binns, Matthew R

    2016-07-01

    We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.

  8. Recent advances of rearing cabinet instrumentation and control system for insect stock culture

    NASA Astrophysics Data System (ADS)

    Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made

    2017-01-01

    Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.

  9. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract

    PubMed Central

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe

    2016-01-01

    The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589

  10. Diversity of Scolytinae (Coleoptera: Curculionidae) attracted to avocado, lychee, and essential oil lures

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), is an exotic wood-boring insect that vectors laurel wilt, a lethal vascular disease of trees in the Lauraceae, including avocado (Persea americana) and native Persea species (redbay, swampbay). As part...

  11. Fruits

    USDA-ARS?s Scientific Manuscript database

    In a botanical sense, fruits are the developed part of the seed-containing ovary. Evolutionarily speaking, plants have developed fruit with the goal of attracting insects, birds, reptiles and mammals to spread the seeds. Fruit can be dry such as the pod of a pea, or fleshy such as a peach. As humans...

  12. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins.

    PubMed

    Targovnik, Alexandra M; Arregui, Mariana B; Bracco, Lautaro F; Urtasun, Nicolas; Baieli, Maria F; Segura, Maria M; Simonella, Maria A; Fogar, Mariela; Wolman, Federico J; Cascone, Osvaldo; Miranda, Maria V

    2016-01-01

    In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of recombinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect larvae as an alternative to produce commercial recombinant proteins.

  13. Sex-specific developmental models for Creophilus maxillosus (L.) (Coleoptera: Staphylinidae): searching for larger accuracy of insect age estimates.

    PubMed

    Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon

    2018-05-01

    Differences in size between males and females, called the sexual size dimorphism, are common in insects. These differences may be followed by differences in the duration of development. Accordingly, it is believed that insect sex may be used to increase the accuracy of insect age estimates in forensic entomology. Here, the sex-specific differences in the development of Creophilus maxillosus were studied at seven constant temperatures. We have also created separate developmental models for males and females of C. maxillosus and tested them in a validation study to answer a question whether sex-specific developmental models improve the accuracy of insect age estimates. Results demonstrate that males of C. maxillosus developed significantly longer than females. The sex-specific and general models for the total immature development had the same optimal temperature range and similar developmental threshold but different thermal constant K, which was the largest in the case of the male-specific model and the smallest in the case of the female-specific model. Despite these differences, validation study revealed just minimal and statistically insignificant differences in the accuracy of age estimates using sex-specific and general thermal summation models. This finding indicates that in spite of statistically significant differences in the duration of immature development between females and males of C. maxillosus, there is no increase in the accuracy of insect age estimates while using the sex-specific thermal summation models compared to the general model. Accordingly, this study does not support the use of sex-specific developmental data for the estimation of insect age in forensic entomology.

  14. Trypanosomatidae: Phytomonas detection in plants and phytophagous insects by PCR amplification of a genus-specific sequence of the spliced leader gene.

    PubMed

    Serrano, M G; Nunes, L R; Campaner, M; Buck, G A; Camargo, E P; Teixeira, M M

    1999-03-01

    In this paper we describe a method for the detection of Phytomonas spp. from plants and phytophagous insects using the PCR technique by targeting a genus-specific sequence of the spliced leader (SL) gene. PCR amplification of DNA from 48 plant and insect isolates previously classified as Phytomonas by morphological, biochemical, and molecular criteria resulted in all cases in a 100-bp fragment that hybridized with the Phytomonas-specific spliced leader-derived probe SL3'. Moreover, this Phytomonas-specific PCR could also detect Phytomonas spp. in crude preparations of naturally infected plants and insects. This method shows no reaction with any other trypanosomatid genera or with plant and insect host DNA, revealing it to be able to detect Phytomonas spp. from fruit, latex, or phloem of various host plants as well as from salivary glands and digestive tubes of several species of insect hosts. Results demonstrated that SLPCR is a simple, fast, specific, and sensitive method that can be applied to the diagnosis of Phytomonas among cultured trypanosomatids and directly in plants and putative vector insects. Therefore, the method was shown to be a very specific and sensitive tool for diagnosis of Phytomonas without the need for isolation, culture, and DNA extraction of flagellates, a feature that is very convenient for practical and epidemiological purposes. Copyright 1999 Academic Press.

  15. Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Li, De-E.; Hong, You-Li; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia; Gao, Kun; Zhou, Hong-Zhang; Wu, Zi-Yu

    2013-07-01

    A penetrating view of the three-dimensional nanostructure of female spermatheca and male flagellum in the species Aleochara verna is obtained with 100-nm resolution using a hard X-ray microscope, which provides a fast noninvasive imaging technology for insect morphology. Through introducing Zernike phase contrast and heavy metal staining, images taken at 8 keV displayed sufficient contrast for observing nanoscale fine structures, such as the spermatheca cochleate duct and the subapex of the flagellum, which have some implications for the study of the sperm transfer process and genital evolution in insects. This work shows that both the spatial resolution and the contrast characteristic of hard X-ray microscopy are quite promising for insect morphology studies and, particularly, provide an attractive alternative to the destructive techniques used for investigating internal soft tissues.

  16. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens1[C][W

    PubMed Central

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro

    2011-01-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens. PMID:21525333

  17. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens.

    PubMed

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Castañera, Pedro; Peña, Leandro

    2011-06-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.

  18. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner

    PubMed Central

    MacLean, Allyson M.; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M.; Angenent, Gerco C.; Immink, Richard G. H.; Hogenhout, Saskia A.

    2014-01-01

    Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants). PMID:24714165

  19. Utah lotus: North American legume for rangeland revegetation in southern Great Basin and Colorado Plateau

    USDA-ARS?s Scientific Manuscript database

    Utah lotus (Lotus utahensis Ottley) is a North American leguminous forb that may hold promise for rangeland revegetation in the western USA for diversifying planting mixtures, attracting pollinators, providing high quality forage, and expanding habitats for insects needed by sage grouse chicks. We ...

  20. Impaired growth and development of Colorado potato beetle larvae on potato plants overexpressing the oryzacystatin II gene

    USDA-ARS?s Scientific Manuscript database

    Plant proteinase inhibitors are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. Oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate ...

  1. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator

    USDA-ARS?s Scientific Manuscript database

    The microbiome of the phyllosphere and anthosphere plays an important role in many plant-plant, plant-insect, and plant-microbe interactions. A particularly essential interaction is that of the plant pollinator, which is important for ensuring high crop yields, pollinator health and successful plant...

  2. Building double-decker traps for early detection of emerald ash borer

    Treesearch

    Deborah G. McCullough; Therese M. Poland

    2017-01-01

    Emerald ash borer (EAB) (Agrilus planipennis Fairmaire), the most destructive forest insect to have invaded North America, has killed hundreds of millions of forest and landscape ash (Fraxinus spp.) trees. Several artificial trap designs to attract and capture EAB beetles have been developed to detect, delineate, and monitor...

  3. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars

    USDA-ARS?s Scientific Manuscript database

    Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...

  4. Evaluation of double-decker traps for emerald ash borer (Coleoptera:Buprestidae)

    Treesearch

    Therese M. Poland; Deborah G. McCullough; Andrea C. Anulewicz

    2011-01-01

    Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002.We evaluated attraction of adult A. planipennis...

  5. Plant Guide: Tapertip hawksbeard (Crepis acuminata Nutt.)

    Treesearch

    Derek Tilley; Scott Jensen; Loren St. John

    2012-01-01

    Tapertip hawksbeard leaves are consumed by pre-laying sage grouse hens and make up a large portion of their diet (Barnett and Crawford, 1994). Sage grouse chicks also feed on tapertip hawksbeard leaves in addition to the insects attracted by the flowers (Drut and others, 1994; Klebenow and Gray, 1968).

  6. Genetically-engineered baculovirus pesticides and their environmental safety

    Treesearch

    H. Alan Wood; Yu Zailin

    1991-01-01

    Baculoviruses such as the Lymantria dispar nuclear polyhedrosis virus (LdMNPV) are ecologically attractive alternatives to chemical insect pesticides but have a slow rate of control. To overcome this we have developed and are field testing an environmentally acceptable strategy which can be used for the introduction and expression of pesticide-...

  7. Developing attractants and trapping techniques for the emerald ash borer

    Treesearch

    Therese M. Poland; Peter de Groot; Gary Grant; Linda MacDonald; Deborah G. McCullough

    2003-01-01

    Shortly after the 2002 discovery of emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in southeastern Michigan and Windsor, Ontario, quarantines regulating the movement of ash logs, firewood, and nursery stock were established to reduce the risk of human-assisted spread of this exotic forest insect pest. Accurate...

  8. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    PubMed Central

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  9. Birds Bug on Indirect Plant Defenses to Locate Insect Prey.

    PubMed

    Hiltpold, Ivan; Shriver, W Gregory

    2018-06-01

    It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.

  10. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida

    PubMed Central

    Revay, Edita E.; Müller, Gunter C.; Qualls, Whitney A.; Kline, Daniel; Naranjo, Diana P.; Arheart, Kristopher L.; Kravchenko, Vasiliy D.; Yfremova, Zoya; Hausmann, Axel; Beier, John C.; Schlein, Yosef; Xue, Rui-De

    2013-01-01

    The purpose of this study was to test the efficacy of bait stations and foliar applications containing attractive toxic sugar baits (ATSB) and eugenol to control Aedes albopictus. At the same time the potential impact of these control methods was evaluated on non-target organisms. The study was conducted at five tire sites in St. Augustine, Florida. Aedes albopictus populations were significantly reduced with ATSB-eugenol applications applied directly to non-flowering vegetation and as bait stations compared with non-attractive sugar baits and control. The application of ATSB made to non-flowering vegetation resulted in more significant reductions of mosquito populations compared to the application of ATSB presented in a bait station. Over 5.5% of the non-targets were stained in the flowering vegetation application site. However, when the attractive sugar bait application was made to non-flowering vegetation or presented in bait stations the impact on non-target insects was very low for all non-target orders as only 0.6% of the individual insects were stained with the dye from the sugar solutions, respectively. There were no significant differences between the staining of mosquitoes collected in flowering vegetation (206/1000) or non-flowering vegetation (242/1000) sites during the non-target evaluation. Our field studies support the use of eugenol as an active ingredient for controlling the dengue vector Ae. albopictus when used as an ATSB toxin and demonstrates potential use in sub-tropical and tropical environments for dengue control. PMID:24122115

  11. Prostaglandins modify phosphorylation of specific proteins in the insect cell line BCIRL-HzAM1

    USDA-ARS?s Scientific Manuscript database

    Prostaglandins (PGs) play crucial roles in vertebrate biology, particularly in immune functions. Because PGs also mediate specific cell functions in insect immunity, we are investigating how these signaling molecules affect insect cells. We reported that PGs, notably PGA1, PGA2, and PGE1, up and/or ...

  12. Morphology and physiology of the olfactory system of blood-feeding insects.

    PubMed

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Determination of the Relative and Absolute Configurations of the Female-produced Sex Pheromone of the Cerambycid Beetle Prionus californicus

    PubMed Central

    Rodstein, Joshua; Barbour, James D.; McElfresh, J. Steven; Wright, Ian M.; Barbour, Karen S.; Ray, Ann M.; Hanks, Lawrence M.

    2010-01-01

    We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10 ng and 10 μg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100 μg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho. PMID:21127949

  14. Advertising to the enemy: enhanced floral fragrance increases beetle attraction and reduces plant reproduction.

    PubMed

    Theis, Nina; Adler, Lynn S

    2012-02-01

    Many organisms face challenges in avoiding predation while searching for mates. For plants, emitting floral fragrances to advertise reproductive structures could increase the attraction of detrimental insects along with pollinators. Very few studies have experimentally evaluated the costs and benefits of fragrance emission with explicit consideration of how plant fitness is affected by both pollinators and florivores. To determine the reproductive consequences of increasing the apparency of reproductive parts, we manipulated fragrance, pollination, and florivores in the wild Texas gourd, Cucurbita pepo var. texana. With enhanced fragrance we found an increase in the attraction of florivores, rather than pollinators, and a decrease in seed production. This study is the first to demonstrate that enhanced floral fragrance can increase the attraction of detrimental florivores and decrease plant reproduction, suggesting that florivory as well as pollination has shaped the evolution of floral scent.

  15. Kin discrimination allows plants to modify investment towards pollinator attraction.

    PubMed

    Torices, Rubén; Gómez, José M; Pannell, John R

    2018-05-22

    Pollinators tend to be preferentially attracted to large floral displays that may comprise more than one plant in a patch. Attracting pollinators thus not only benefits individuals investing in advertising, but also other plants in a patch through a 'magnet' effect. Accordingly, there could be an indirect fitness advantage to greater investment in costly floral displays by plants in kin-structured groups than when in groups of unrelated individuals. Here, we seek evidence for this strategy by manipulating relatedness in groups of the plant Moricandia moricandioides, an insect-pollinated herb that typically grows in patches. As predicted, individuals growing with kin, particularly at high density, produced larger floral displays than those growing with non-kin. Investment in attracting pollinators was thus moulded by the presence and relatedness of neighbours, exemplifying the importance of kin recognition in the evolution of plant reproductive strategies.

  16. Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons

    NASA Technical Reports Server (NTRS)

    Turner, B. J. (Principal Investigator); Baumer, G. M.; Myers, W. L.; Sykes, S. G.

    1981-01-01

    The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests.

  17. Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

    USGS Publications Warehouse

    Valdez, Ernest W.; Cryan, Paul M.

    2013-01-01

    Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

  18. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods

    PubMed Central

    Longcore, Travis; Aldern, Hannah L.; Eggers, John F.; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N.; Yan, Wilson A.; Barroso, André M.

    2015-01-01

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. PMID:25780237

  19. EAG responses to host-based attractants and temporal patterns in host-seeking flight of Xyleborus glabratus, X. affinis, and X. ferrugineus

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-boring insect that vectors the mycopathogen responsible for laurel wilt, a lethal vascular disease of trees in the Lauraceae, including avocado (Persea americana Mill.). Effective semiochemical-based detection and control p...

  20. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  1. Ambient orchard and on-tree volatile collection system for monitoring and detection of attractants for navel orangeworm

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (NOW) is a major insect pest of California tree nuts. Its feeding damage lowers nut kernel quality resulting in considerable monetary loss to growers, producers, and shippers. Moreover, NOW feeding damage directly contributes to aflatoxin contamination. Hence, control of NOW has...

  2. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  3. The gastropod menace: slugs on Brassica plants affect caterpillar survival through consumption and interference with parasitoid attraction

    USDA-ARS?s Scientific Manuscript database

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small ...

  4. Site Selection, Acquisition, and Planning for Aquaculture in Dredged Material Containment Areas

    DTIC Science & Technology

    1993-08-01

    LCUIRSETTIWVIN Figure ACUAT 6. Fowhr o ei gnpoeuefrstln n nta trg RAEQUREDt S RACErmadWd 98 18~RE FORte 2- SiteA Selej) Site characteristics Table 1 lists...seeds, spores, organisms, etc.) (5) Effects on preserves, etc. Imvact f Attraction of vectors ( insects or rodents) due to creation of favorable

  5. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  6. Plant guide: Sharpleaf penstemon: Penstemon acuminatus Douglas ex Lindl.

    Treesearch

    Loren St. John; Dan Ogle; Nancy L. Shaw

    2009-01-01

    Sharpleaf penstemon is primarily used as a forb component for wildlife habitat enhancement and restoration efforts. Its showy flowers attract numerous pollinators and other insects that provide a food source for birds and other vertebrates. This species is used in xeriscaping and other low-wateruse landscaping. It is suited for roadside and other beautification...

  7. Hecatera dysodea (Denis and Schiffermüller) (Lepidoptera: Noctuidae) new to the state of Idaho

    USDA-ARS?s Scientific Manuscript database

    Traps baited with a sex attractant were used to determine if the invasive noctuid moth Hecatera dysodea is generally distributed in the state of Idaho. The insect, which originated from Europe, utilizes species of Lactuca (lettuce) as a larval host. It was previously reported from northern Oregon ...

  8. Volatile semiochemicals increase trap catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in corn and soybean plots

    USDA-ARS?s Scientific Manuscript database

    Knowledge about beneficial insects’ responsiveness to plant-produced volatiles may improve understanding of insect chemical ecology and lead to practical means of enhancing ecosystem services. This study reports on the attractiveness of various volatile chemicals to green lacewings (Neuroptera: Chr...

  9. Behavioral effects of plant essential oils on Ceratitis capitata males – risk versus reward

    USDA-ARS?s Scientific Manuscript database

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, these roles include male-targeted attractants for traps and aromatherapy exposure for increased mating success. Essential oils that affect C. capitata behavior may be from either host or non-host pl...

  10. Pro-toxic 1,2-Dehydropyrrolizidine alkaloid esters, including unprecedented 10-membered macrocyclic diesters, in the medicinally-used Alafia cf. caudata and Amphineurion marginatum (Apocynaceae: Apocynoideae: Nerieae and Apoc

    USDA-ARS?s Scientific Manuscript database

    The attraction of pyrrolizidine alkaloid-pharmacophagous insects indicated the presence of pro-toxic dehydropyrrolizidine alkaloids in Alafia cf. caudata Stapf (Nerieae: Alafinae) and Amphineurion marginatum (Roxb.) D.J. Middleton (Apocyneae: Amphineuriinae). Subsequently, monoesters of retronecine ...

  11. Contrasting insect attraction and herbivore-induced plant volatile production in maize

    USDA-ARS?s Scientific Manuscript database

    Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) ...

  12. Attraction of the Euwallacea sp. near fornicatus (Coleoptera: Curculionidae) to Quercivorol and to Infestations in Avocado.

    PubMed

    Byers, John A; Maoz, Yonatan; Levi-Zada, Anat

    2017-08-01

    The Euwallacea sp. near fornicatus (Euwallacea sp. 1 hereafter) feeds on many woody shrubs and trees and is a pest of avocado, Persea americana Mill., in several countries including Israel and the United States. Quercivorol baits are commercially available for Euwallacea sp. 1 females (males do not fly), but their attractive strength compared to other pheromones and potential for mass trapping are unknown. We used sticky traps baited with quercivorol released at 0.126 mg/d (1×) and at 0.01×, 0.1×, and 10× relative rates to obtain a dose-response curve of Euwallacea sp. 1 attraction. The curve fitted well a kinetic formation function of first order. Naturally infested limbs of living avocado trees had attraction rates equivalent to 1× quercivorol. An effective attraction radius (EAR) was calculated according to previous equations for each of the various baits (1× EAR = 1.18 m; 10× EAR = 2.00 m). A pole with six sticky traps spaced from 0.25-5.75 m in height had captures of Euwallacea sp. 1 yielding a mean flight height of 1.24 m with vertical flight distribution SD of 0.88 m (0.82-0.96 m, 95% CI). The SD with specific EAR was used to calculate EARc, two-dimensional EAR (1× EARc = 0.99 m; 10× EARc = 2.86 m), for comparison with other insect pheromone traps and for use in simulations. The simulation methods described previously were performed with combinations of 1-16 traps with 1-50 aggregations per 9-ha plot. The simulations indicate mass trapping with quercivorol could be effective if begun in spring before Euwallacea sp. 1 establishes competing sources of attraction. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Aggregation pheromones for monitoring the coconut rhinoceros beetle (Oryctes rhinoceros) in Jerukwangi Village, Jepara, Indonesia

    NASA Astrophysics Data System (ADS)

    Indriyanti, D. R.; Lutfiana, J. E.; Widiyaningrum, P.; Susilowati, E.; Slamet, M.

    2018-03-01

    Oryctes rhinoceros (Coleoptera: Scarabaeidae) is the most serious pest of coconut plantations in Indonesia. Jerukwangi Village is O. rhinoceros attacked one of the coconuts producing villages with more than 75% of the coconut plant population O. rhinoceros. The study aimed to monitor the population and analyze the sex ratio of O. rhinoceros that were attracted to aggregation pheromones in the field. Aggregation pheromones is a chemical compound containing Ethyl 4-methyl octanoate. The pheromone compounds were placed in traps (buckets), hung 2 meters above the ground. The traps were observed, and the beetles trapped were counted every week. In 12 weeks of monitoring, the traps captured 101 insects consist of 90.1% O. rhinoceros and 9.9% other insect species (Rhynchophorus ferrugineus and Xylotrupes gideon). This result indicates the high population of O. rhinoceros in the field. Aggregation pheromone is useful for attracting females. Rhinoceros by 61% and the males by 39%. The advantage of research is it can be used in integrated pest management (IPM) packages for monitoring of beetle population, and removal of beetles.

  14. Allergenicity and cross-reactivity of booklice (Liposcelis bostrichophila): a common household insect pest in Japan.

    PubMed

    Fukutomi, Yuma; Kawakami, Yuji; Taniguchi, Masami; Saito, Akemi; Fukuda, Azumi; Yasueda, Hiroshi; Nakazawa, Takuya; Hasegawa, Maki; Nakamura, Hiroyuki; Akiyama, Kazuo

    2012-01-01

    Booklice (Liposcelis bostrichophila) are a common household insect pest distributed worldwide. Particularly in Japan, they infest 'tatami' mats and are the most frequently detected insect among all detectable insects, present at a frequency of about 90% in dust samples. Although it has been hypothesized that they are an important indoor allergen, studies on their allergenicity have been limited. To clarify the allergenicity of booklice and the cross-reactivity of this insect allergen with allergens of other insects, patients sensitized to booklice were identified from 185 Japanese adults with allergic asthma using skin tests and IgE-ELISA. IgE-inhibition analysis, immunoblotting and immunoblotting-inhibition analysis were performed using sera from these patients. Allergenic proteins contributing to specific sensitization to booklice were identified by two-dimensional electrophoresis and two-dimensional immunoblotting. The booklouse-specific IgE antibody was detected in sera from 41 patients (22% of studied patients). IgE inhibition analysis revealed that IgE reactivity to the booklouse allergen in the sera from one third of booklouse-sensitized patients was not inhibited by preincubation with extracts from any other environmental insects in this study. Immunoblotting identified a 26-kD protein from booklouse extract as the allergenic protein contributing to specific sensitization to booklice. The amino acid sequence of peptide fragments of this protein showed no homology to those of previously described allergenic proteins, indicating that this protein is a new allergen. Sensitization to booklice was relatively common and specific sensitization to this insect not related to insect panallergy was indicated in this population. Copyright © 2011 S. Karger AG, Basel.

  15. The impact of infrared radiation in flight control in the Australian "firebeetle" Merimna atrata.

    PubMed

    Hinz, Marcel; Klein, Adrian; Schmitz, Anke; Schmitz, Helmut

    2018-01-01

    Infrared (IR) receptors are rare in insects and have only been found in the small group of so-called pyrophilous insects, which approach forest fires. In previous work the morphology of the IR receptors and the physiology of the inherent sensory cells have been investigated. It was shown that receptors are located on the thorax and the abdomen respectively and show an astounding diversity with respect to structure and the presumed transduction mechanism. What is completely missing, however, is any behavioral evidence for the function of the IR receptors in pyrophilous insects. Here we describe the responses of the Australian "firebeetle", Merimna atrata to IR radiation. Beetles in a restrained flight were laterally stimulated with IR radiation of an intensity 20% above a previously determined electrophysiological threshold of the IR organs (40 mW/cm2). After exposure, beetles always showed an avoidance response away from the IR source. Reversible ablation experiments showed that the abdominal IR receptors are essential for the observed behavior. Tests with weaker IR radiation (11.4 mW/cm2) also induced avoidance reactions in some beetles pointing to a lower threshold. In contrast, beetles were never attracted by the IR source. Our results suggest that the IR receptors in Merimna atrata serve as an early warning system preventing an accidental landing on a hot surface. We also tested if another fire specific stimulus, the view of a large smoke plume, influenced the flight. However, due to an unexpected insensitivity of the flying beetles to most visual stimuli results were ambiguous.

  16. Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    PubMed Central

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.

    2008-01-01

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926

  17. The impact of infrared radiation in flight control in the Australian “firebeetle” Merimna atrata

    PubMed Central

    2018-01-01

    Infrared (IR) receptors are rare in insects and have only been found in the small group of so-called pyrophilous insects, which approach forest fires. In previous work the morphology of the IR receptors and the physiology of the inherent sensory cells have been investigated. It was shown that receptors are located on the thorax and the abdomen respectively and show an astounding diversity with respect to structure and the presumed transduction mechanism. What is completely missing, however, is any behavioral evidence for the function of the IR receptors in pyrophilous insects. Here we describe the responses of the Australian “firebeetle”, Merimna atrata to IR radiation. Beetles in a restrained flight were laterally stimulated with IR radiation of an intensity 20% above a previously determined electrophysiological threshold of the IR organs (40 mW/cm2). After exposure, beetles always showed an avoidance response away from the IR source. Reversible ablation experiments showed that the abdominal IR receptors are essential for the observed behavior. Tests with weaker IR radiation (11.4 mW/cm2) also induced avoidance reactions in some beetles pointing to a lower threshold. In contrast, beetles were never attracted by the IR source. Our results suggest that the IR receptors in Merimna atrata serve as an early warning system preventing an accidental landing on a hot surface. We also tested if another fire specific stimulus, the view of a large smoke plume, influenced the flight. However, due to an unexpected insensitivity of the flying beetles to most visual stimuli results were ambiguous. PMID:29432476

  18. Insects as alternative hosts for phytopathogenic bacteria.

    PubMed

    Nadarasah, Geetanchaly; Stavrinides, John

    2011-05-01

    Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Pollination of Schisandra henryi (Schisandraceae) by Female, Pollen-eating Megommata Species (Cecidomyiidae, Diptera) in South-central China

    PubMed Central

    Yuan, Liang-Chen; Luo, Yi-Bo; Thien, Leonard B.; Fan, Jian-Hua; Xu, Huan-Li; Chen, Zhi-Duan

    2007-01-01

    Background and Aims The mutualistic interaction between insects and flowers is considered to be a major factor in the early evolution of flowering plants. The Schisandraceae were, until now, the only family in the ANITA group lacking information on pollination biology in natural ecosystems. Thus, the objective of this research was to document the pollination biology and breeding system of Schisandra henryi. Methods Field observations were conducted in three populations of S. henryi and the floral phenology, floral characters and insect activities were recorded. Floral fragrances were sampled in the field and analysed using TCT-GC-MS. Floral thermogenesis was measured with a TR-71U Thermo Recorder. Pollen loads and location of pollen grains on insect bodies (including the gut) were checked with a scanning electron microscope and under a light microscope. Key Results Schisandra henryi is strictly dioecious. Male flowers are similar to female flowers in colour, shape, and size, but more abundant than female flowers. The distance between tepals and the androecium or gynoecium is narrow. Neither male nor female flowers are fragrant or thermogenic. Schisandra henryi is pollinated only by adult female Megommata sp. (Cecidomyiidae, Diptera) that eat the pollen grains as extra nutrition for ovary maturation and ovipositing. Both male and female flowers attract the pollinators using similar visual cues and thus the female flowers use deceit as they offer no food. Conclusions Schisandra henryi exhibits a specialized pollination system, which differs from the generalized pollination system documented in other ANITA members. Pollen is the sole food resource for Megommata sp. and the female flowers of S. henryi attract pollinators by deceit. This is the first report of predacious gall midges utilizing pollen grains as a food source. The lack of floral thermogenesis and floral odours further enforces the visual cues by reducing attractants for other potential pollinators. PMID:17237212

  20. Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2011-01-01

    Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862

  1. Insect glycerol transporters evolved by functional co-option and gene replacement

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  2. Carnivorous pitcher plants: insights in an old topic.

    PubMed

    Mithöfer, Axel

    2011-09-01

    Plant insect interactions are usually recognized as a scenario where herbivorous insects feed on a host plant. However, also the opposite situation is known, where plants feed on insects. Carnivorous pitcher plants of the genus Nepenthes as well as other pitcher plants obtain many nutrients from caught insect prey. Special features of the pitcher traps' surface are responsible for attraction and trapping insects. Once caught, the prey is digested in the fluid of the pitchers to release nutrients and make them available for the plant. Nutrients are taken up by special glands localized on the inner surface of the pitchers. These glands also secrete the hydrolyzing enzymes into the digestion fluid. Although this is known for more than 100 years, our knowledge of the pitcher fluid composition is still limited. Only in recent years some enzymes have been purified from the pitcher fluid and their corresponding genes could be identified. Among them, many pathogenesis-related proteins have been identified, most of which exhibiting hydrolytic activities. The role of these proteins as well as the role of secondary metabolites, which have been identified in the pitcher fluid, is discussed in general and in the context of further studies on carnivorous plants that might give answers to basic questions in plant biology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Moonlight pollination in the gymnosperm Ephedra (Gnetales).

    PubMed

    Rydin, Catarina; Bolinder, Kristina

    2015-04-01

    Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    PubMed Central

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  5. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    PubMed

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  6. Dancing attraction: followers of honey bee tremble and waggle dances exhibit similar behaviors.

    PubMed

    Lam, Calvin; Li, Yanlei; Landgraf, Tim; Nieh, James

    2017-06-15

    The function of the honey bee tremble dance and how it attracts signal receivers is poorly understood. We tested the hypothesis that tremble followers and waggle followers exhibit the same dance-following behavior. If correct, this could unify our understanding of dance following, provide insight into dance information transfer, and offer a way to identify the signal receivers of tremble dance information. Followers showed similar initial attraction to and tracking of dancers. However, waggle dancers were faster than tremble dancers, and follower-forward, -sideways, and -angular velocities were generally similar to the velocities of their respective dancers. Waggle dancers attracted followers from 1.3-fold greater distances away than tremble dancers. Both follower types were attracted to the lateral sides of dancers, but tremble followers were more attracted to the dancer's head, and waggle followers were more attracted to the dancer's abdomen. Tremble dancers engaged in 4-fold more brief food exchanges with their followers than waggle dancers. The behaviors of both follower types are therefore relatively conserved. Researchers can now take the next steps, observing tremble followers to determine their subsequent behaviors and testing the broader question of whether follower attraction and tracking is conserved in a wide range of social insects. © 2017. Published by The Company of Biologists Ltd.

  7. Dancing attraction: followers of honey bee tremble and waggle dances exhibit similar behaviors

    PubMed Central

    Lam, Calvin; Li, Yanlei; Landgraf, Tim

    2017-01-01

    ABSTRACT The function of the honey bee tremble dance and how it attracts signal receivers is poorly understood. We tested the hypothesis that tremble followers and waggle followers exhibit the same dance-following behavior. If correct, this could unify our understanding of dance following, provide insight into dance information transfer, and offer a way to identify the signal receivers of tremble dance information. Followers showed similar initial attraction to and tracking of dancers. However, waggle dancers were faster than tremble dancers, and follower-forward, -sideways, and -angular velocities were generally similar to the velocities of their respective dancers. Waggle dancers attracted followers from 1.3-fold greater distances away than tremble dancers. Both follower types were attracted to the lateral sides of dancers, but tremble followers were more attracted to the dancer's head, and waggle followers were more attracted to the dancer's abdomen. Tremble dancers engaged in 4-fold more brief food exchanges with their followers than waggle dancers. The behaviors of both follower types are therefore relatively conserved. Researchers can now take the next steps, observing tremble followers to determine their subsequent behaviors and testing the broader question of whether follower attraction and tracking is conserved in a wide range of social insects. PMID:28432104

  8. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    PubMed

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  9. Acarine attractants: Chemoreception, bioassay, chemistry and control

    PubMed Central

    Carr, Ann L.; Roe, Michael

    2016-01-01

    The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the “foretarsal sensory organ” (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction–aggregation–attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study. PMID:27265828

  10. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface.

    PubMed

    Bohn, Holger F; Federle, Walter

    2004-09-28

    Pitcher plants of the genus Nepenthes have highly specialized leaves adapted to attract, capture, retain, and digest arthropod prey. Several mechanisms have been proposed for the capture of insects, ranging from slippery epicuticular wax crystals to downward-pointing lunate cells and alkaloid secretions that anesthetize insects. Here we report that perhaps the most important capture mechanism has thus far remained overlooked. It is based on special surface properties of the pitcher rim (peristome) and insect "aquaplaning." The peristome is characterized by a regular microstructure with radial ridges of smooth overlapping epidermal cells, which form a series of steps toward the pitcher inside. This surface is completely wettable by nectar secreted at the inner margin of the peristome and by rain water, so that homogenous liquid films cover the surface under humid weather conditions. Only when wet, the peristome surface is slippery for insects, so that most ant visitors become trapped. By measuring friction forces of weaver ants (Oecophylla smaragdina) on the peristome surface of Nepenthes bicalcarata, we demonstrate that the two factors preventing insect attachment to the peristome, i.e., water lubrication and anisotropic surface topography, are effective against different attachment structures of the insect tarsus. Peristome water films disrupt attachment only for the soft adhesive pads but not for the claws, whereas surface topography leads to anisotropic friction only for the claws but not for the adhesive pads. Experiments on Nepenthes alata show that the trapping mechanism of the peristome is also essential in Nepenthes species with waxy inner pitcher walls.

  11. Sexually dimorphic traits in the silkworm, Bombyx mori, are regulated by doublesex.

    PubMed

    Xu, Jun; Zhan, Shuai; Chen, Shuqing; Zeng, Baosheng; Li, Zhiqian; James, Anthony A; Tan, Anjiang; Huang, Yongping

    2017-01-01

    The DM domain genes, doublesex (dsx) in insects, or their structural homologs, male abnormal 3 (mab-3) in nematodes and Dmrt1 (doublesex and mab-3-related transcription factor 1) in mammals, are downstream regulators of the sex determination pathway that control sexually dimorphic development. Despite the functional importance of dsx and its potential applications in sterile insect technologies (SITs), the mechanisms by which it controls sexually dimorphic traits and the subsequent developmental gene networks in insects are poorly understood. Phylogenetic analyses indicate that insect dsx genes have sex-specific alternative splicing isoforms, whereas other taxa do not. We exploited genome editing and transgenesis technologies to induce mutations in either the male-specific isoform (dsx M ) or common region (dsx C ) of dsx in the somatic tissues of the lepidopteran model insect Bombyx mori. Disruptions of gene function produced either male-specific sexually-dimorphic defects or intersexual phenotypes; these results differ from those observed in other insects, including Drosophila melanogaster. Our data provide insights into the divergence of the insect sex determination pathways related to the most conserved downstream component dsx. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Elucidating the substrate specificities of acyl-lipid thioesterases from diverse plant taxa.

    PubMed

    Kalinger, Rebecca S; Pulsifer, Ian P; Rowland, Owen

    2018-06-01

    Acyl-ACP thioesterase enzymes, which cleave fatty acyl thioester bonds to release free fatty acids, contribute to much of the fatty acid diversity in plants. In Arabidopsis thaliana, a family of four single hot-dog fold domain, plastid-localized acyl-lipid thioesterases (AtALT1-4) generate medium-chain (C6-C14) fatty and β-keto fatty acids as secondary metabolites. These volatile products may serve to attract insect pollinators or deter predatory insects. Homologs of AtALT1-4 are present in all plant taxa, but are nearly all uncharacterized. Despite high sequence identity, AtALT1-4 generate different lipid products, suggesting that ALT homologs in other plants also have highly varied activities. We investigated the catalytic diversity of ALT-like thioesterases by screening the substrate specificities of 15 ALT homologs from monocots, eudicots, a lycophyte, a green microalga, and the ancient gymnosperm Gingko biloba, via expression in Escherichia coli. Overall, these enzymes had highly varied substrate preferences compared to one another and to AtALT1-4, and could be classified into four catalytic groups comprising members from diverse taxa. Group 1 ALTs primarily generated 14:1 β-keto fatty acids, Group 2 ALTs produced 6-10 carbon fatty/β-keto fatty acids, Group 3 ALTs predominantly produced 12-14 carbon fatty acids, and Group 4 ALTs mainly generated 16 carbon fatty acids. Enzymes in each group differed significantly in the quantities of lipids and types of minor products they generated in E. coli. Medium-chain fatty acids are used to manufacture insecticides, pharmaceuticals, and biofuels, and ALT-like proteins are ideal candidates for metabolic engineering to produce specific fatty acids in significant quantities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Avanex Unique Endophyte Technology: Reduced Insect Food Source at Airports.

    PubMed

    Pennell, Christopher G L; Popay, Alison J; Rolston, M Philip; Townsend, Richard J; Lloyd-West, Catherine M; Card, Stuart D

    2016-02-01

    Birds and other forms of wildlife are a major issue for airport authorities worldwide, as they can create hazards to operating aircraft. Wildlife "strikes," the majority caused by birds, can cause damage to operating aircraft and in severe cases lead to a loss of human life. Many airfields contain large areas of ground cover herbage alongside their runways that consist of mixtures of grasses, legumes, and weeds that can harbor many invertebrates. Many airfields use insecticides to control insect populations; however, mounting pressure from regional councils and water boards aim to reduce this practice due to ground water runoff and contamination concerns. Avanex Unique Endophyte Technology, a product specifically developed to reduce the attractiveness of airports and surrounding areas to birds, is based on a novel association between a selected strain of Epichloë endophyte and a turf-type tall fescue cultivar. This grass-endophyte association acts through a direct mechanism whereby a negative response in birds is created through taste aversion and postingestion feedback as well as an indirect mechanism by deterring many invertebrates, a food source of many bird species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-boring insect that vectors the mycopathogen responsible for laurel wilt, a lethal vascular disease of trees in the Lauraceae, including avocado (Persea americana Mill.). Effective semiochemical-based detection and control p...

  15. Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?.

    Treesearch

    Min Lu; Daniel Miller; Jiang-Hua Sun

    2007-01-01

    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain...

  16. Cross-attraction between an exotic and a native pine bark beetle: a novel invasion mechanism?

    Treesearch

    Min Lu; Daniel R. Miller; Jiang-Hua Sun

    2007-01-01

    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain...

  17. Pales Weevil

    Treesearch

    John C. Nord; Iral Ragenovich; Coleman A. Doggett

    1984-01-01

    The pales weevil, Hylobius pales (Herbst),4 is the most serious insect pest of pine seedlings in the Eastern United States. Great numbers of adult weevils are attracted to freshly cutover pine lands where they breed in stumps and old root systems. Seedlings planted in freshly cut areas are injured or killed by adult weevils that feed on the stem bark. It is not...

  18. Plant Guide: Royal penstemon: Penstemon speciosus Douglas ex Lindl

    Treesearch

    Derek Tilley; Dan Ogle; Loren St. John; Nancy Shaw

    2009-01-01

    Royal penstemon is chiefly used as a forb component for wildlife habitat enhancement projects and restoration efforts. Its showy flowers attract numerous pollinators and other insects which provide a food source for birds and other vertebrates. This species is also commonly used in xeriscaping and other low-water-use landscaping. It is also suited for roadsides and...

  19. Plant guide: Hotrock penstemon: Penstemon deustus Douglas ex Lindl

    Treesearch

    Loren St. John; Dan Ogle; Nancy Shaw

    2009-01-01

    Hotrock penstemon is chiefly used as a forb component for wildlife habitat enhancement and restoration efforts. Its showy flowers attract numerous pollinators and other insects which provide a food source for birds and other vertebrates. This species is also commonly used in xeriscaping and other low-water-use landscaping. It is suited for roadside and other...

  20. Acetophenone superior to verbenone for reducing attraction of western pine beetle Dendroctonus brevicomis to its aggregation pheromone

    Treesearch

    Nadir Erbilgin; Nancy E. Gillette; Donald R. Owen; Sylvia R. Mori; Andrew S. Nelson; Fabian C.C. Uzoh; David L. Wood

    2008-01-01

    The western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae) is one of the most damaging insect pests of ponderosa pines Pinus ponderosa Douglas ex P. & C. Lawson in Western U.S.A. We compared the effect of verbenone, a well known bark beetle anti-aggregation pheromone, with that...

  1. Influence of methoprene and dietary protein on maturation and sexual performance of sterile, Anastrepha ludens (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormone levels and adult diet have important effects on the attractiveness and competitiveness of the male Anastrepha ludens (Loew) (Mexican fruit fly). Since the success of the sterile insect technique requires the release of males that can compete in the wild, these effects are very impor...

  2. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    PubMed Central

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis. PMID:23422735

  3. EvaGreen real-time PCR protocol for specific 'Candidatus Phytoplasma mali' detection and quantification in insects.

    PubMed

    Monti, Monia; Martini, Marta; Tedeschi, Rosemarie

    2013-01-01

    In this paper the validation and implementation of a Real-time PCR protocol based on ribosomal protein genes has been carried out for sensitive and specific quantification of 'Candidatus (Ca.) Phytoplasma mali' (apple proliferation phytoplasma, APP) in insects. The method combines the use of EvaGreen(®) dye as chemistry detection system and the specific primer pair rpAP15f-mod/rpAP15r3, which amplifies a fragment of 238 bp of the ribosomal protein rplV (rpl22) gene of APP. Primers specificity was demonstrated by running in the same Real-time PCR 'Ca. Phytoplasma mali' samples with phytoplasmas belonging to the same group (16SrX) as 'Ca. Phytoplasma pyri' and 'Ca. Phytoplasma prunorum', and also phytoplasmas from different groups, as 'Ca. Phytoplasma phoenicium' (16SrIX) and Flavescence dorée phytoplasma (16SrV). 'Ca. Phytoplasma mali' titre in insects was quantified using a specific approach, which relates the concentration of the phytoplasma to insect 18S rDNA. Absolute quantification of APP and insect 18S rDNA were calculated using standard curves prepared from serial dilutions of plasmids containing rplV-rpsC and a portion of 18S rDNA genes, respectively. APP titre in insects was expressed as genome units (GU) of phytoplasma per picogram (pg) of individual insect 18S rDNA. 'Ca. Phytoplasma mali' concentration in examined samples (Cacopsylla melanoneura overwintered adults) ranged from 5.94 × 10(2) to 2.51 × 10(4) GU/pg of insect 18S rDNA. Repeatability and reproducibility of the method were also evaluated by calculation of the coefficient of variation (CV%) of GU of phytoplasma and pg of 18S rDNA fragment for both assays. CV less than 14% and 9% (for reproducibility test) and less than 10 and 11% (for repeatability test) were obtained for phytoplasma and insect qPCR assays, respectively. Sensitivity of the method was also evaluated, in comparison with conventional 16S rDNA-based nested-PCR procedure. The method described has been demonstrated reliable, sensitive and specific for the quantification of 'Ca. Phytoplasma mali' in insects. The possibility to study the trend of phytoplasma titre in the vectors will allow a deepen investigation on the epidemiology of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Identification of semiochemicals attractive to Simulium vittatum (IS-7).

    PubMed

    Verocai, G G; McGAHA, T W; Iburg, J P; Katholi, C R; Cupp, E W; Noblet, R; Unnasch, T R

    2017-06-01

    Many blackfly species (Diptera: Simuliidae) are economically important insect pests, both as nuisance biters and as vectors of pathogens of medical and veterinary relevance. Among the important blackfly pest species in North America is Simulium vittatum Zetterstedt sensu lato. The objective of this study was to identify compounds excreted by mammalian hosts that are attractive to host-seeking S. vittatum females. The attractiveness of putative compounds to colonized S. vittatum was tested through electrophysiological (electroantennography; n = 58 compounds) and behavioural (Y-tube assays; n = 7 compounds in three concentrations) bioassays. Five compounds were significantly attractive to host-seeking S. vittatum females: 1-octen-3-ol; 2-heptanone; acetophenone; 1-octanol, and naphthalene. These candidate compounds might be useful as attractants in traps that could be developed for use in alternative or complementary management tactics in programmes to suppress nuisance blackfly populations, or for the collection of samples in which to study the transmission ecology of pathogens transmitted by blackflies of the S. vittatum complex. © 2016 The Royal Entomological Society.

  5. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  6. Collection of mammal manure and other Debris by nesting Burrowing Owls

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2011-01-01

    Burrowing Owls (Athene cunicularia) routinely collect and scatter dry manure of mammals around their nesting burrows. Recent studies have suggested this behavior attracts insect prey to the nesting burrow. However, some Burrowing Owls do not use manure, but instead, collect and scatter other materials (e.g., grass, moss, paper, plastic) around their nesting burrow in a similar fashion. Use of these materials seemingly contradicts the prey-attraction hypothesis. Using observational and experimental methods, we tested whether Burrowing Owls preferred manure to other materials commonly found at nesting burrows in eastern Washington. We found a wide variety of materials at nests, but grass and manure were the most common materials. The amount of manure present at nests was negatively correlated with the amount of other materials, and with the distance to the nearest source of manure. Burrowing Owls showed no preference between horse manure and grass divots at experimental supply stations that we placed near nesting burrows. They did prefer these two materials to carpet pieces and aluminum foil (both materials that are often found at Burrowing Owl nests). Our results did not support the premise that Burrowing Owls specifically seek out manure when lining their nesting burrows. The unusual behavior of collecting and scattering mammal manure and other debris at Burrowing Owl nests may serve functions other than (or in addition to) prey attraction and alternative hypotheses need further testing before the function of this behavior is certain. ?? 2011 The Raptor Research Foundation, Inc.

  7. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    PubMed

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  8. The Asian citrus psyllid host Murraya koenigii is immune to citrus Huanglongbing pathogen 'Candidatus Liberibacter asiaticus'.

    PubMed

    Beloti, Vitor Hugo; Alves, Gustavo; Coletta-Filho, Helvécio; Yamamoto, Pedro

    2018-04-12

    The Asian citrus psyllid (ACP) Diaphorina citri, vector of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of citrus Huanglongbing (HLB), is controlled by application of insecticides, which, although effective, has resulted in serious biological imbalances. New management tools are needed, and the technique known as 'trap crop' has been attracting attention. A potential plant for use as a trap crop in the management of the ACP is Murraya koenigii (curry leaf). However, for this plant to be used in the field, it needs to be attractive for the vector and must not harbor CLas. To verify the potential of curry leaf as trap crop for the management of HLB, we investigated the ability of D. citri to transmit CLas to M. koenigii, and to other test plants, including M. paniculata (orange jasmine) and 'Valencia' sweet-orange seedlings. For the tests, the insects were reared on a symptomatic CLas-infected plant and allowed to feed on the three test plant species. The overall maximum transmission rate for the citrus seedlings was 83.3%, and for orange jasmine was 33.3%. Successful transmission of CLas by ACP to the curry-leaf seedlings was not observed, and it was treated as immune to CLas. Supported by the previous results that M. koenigii is attractive for ACP, these results indicate that curry leaf is an excellent candidate for use as a trap crop, to improve the management of the insect vector and consequently of HLB.

  9. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles.

    PubMed

    Adhikary, P; Mukherjee, A; Barik, A

    2015-04-01

    Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) is an important stored grain pest of Lathyrus sativus L. (Leguminosae), commonly known as khesari, in India, Bangladesh and Ethiopia. Volatiles were collected from four varieties, i.e., Bio L 212 Ratan, Nirmal B-1, WBK-14-7 and WBK-13-1 of uninfested khesari seeds, and subsequently identified and quantified by gas chromatography mass spectrometry and gas chromatography flame ionization detector analyses, respectively. A total of 23 volatiles were identified in the four varieties of khesari seeds. In Bio L 212 Ratan and WBK-13-1 seeds, nonanal was the most abundant followed by farnesyl acetone; whereas farnesyl acetone was predominant followed by nonanal in Nirmal B-1 and WBK-14-7 khesari seeds. The olfactory responses of female C. maculatus toward volatile blends from four varieties of khesari seeds, and individual synthetic compounds and their combinations were examined through Y-shaped glass tube olfactometer bioassays. Callosobruchus maculatus showed significant preference for the whole volatile blends from Bio L 212 Ratan seeds compared to whole volatile blends from other three varieties. The insect exhibited attraction to five individual synthetic compounds, 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal. A synthetic blend of 448, 390, 1182, 659 and 8114 ng/20 μl methylene chloride of 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal, respectively, was most attractive to C. maculatus, and this combination might be used for insect pest management program such as baited traps.

  10. CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system.

    PubMed

    Mabashi-Asazuma, Hideaki; Jarvis, Donald L

    2017-08-22

    The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.

  11. Novel Insights into Insect-Microbe Interactions—Role of Epigenomics and Small RNAs

    PubMed Central

    Kim, Dohyup; Thairu, Margaret W.; Hansen, Allison K.

    2016-01-01

    It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory “dark matter” such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes. PMID:27540386

  12. Vision in flying insects.

    PubMed

    Egelhaaf, Martin; Kern, Roland

    2002-12-01

    Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.

  13. Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis

    PubMed Central

    Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.

    2010-01-01

    Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763

  14. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  15. Neonate larvae of the specialist herbivore Diabrotica virgifera virgifera do not exploit the defensive volatile (E)-ß-caryophyllene in locating maize roots

    USDA-ARS?s Scientific Manuscript database

    The behavior of the neonate larvae of Diabrotica virgifera virgifera LeConte (western corn rootworm, WCR) was assessed in presence of maize root constitutively emitting (E)-ß-caryophylene (EßC). This root volatile has been shown to attract both second instar WCR and insect-killing nematodes, offerin...

  16. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Non-normalized male and female O. furnacalis antennal cDNA libraries we...

  17. Trypodendron domesticum and Trypodendron signatum: two scolytid species involved in beech decline in Belgium

    Treesearch

    B. Gaubicher; M. De Proft; J.-C. Gregoire

    2003-01-01

    Xylophagous scolytids (Ambrosia beetles) have long been known to prefer fallen or seriously weakened trees and stumps. They are attracted to this host material by ethanol produced by the fermenting phloem and sapwood. However, these insects have begun aggressively attacking living beeches in Southern Belgium, raising the issue of a possible shift towards primarity....

  18. Flowers at the border: Plant native flowers around your yard to attract pollinators and other beneficial insects

    Treesearch

    Heidi Kratsch

    2014-01-01

    Pollinators, including bees, moths, beetles and butterflies, are critical to the production of nearly one?third of the world's food supply. Our pollinator populations are decreasing due to a combination of factors, including habitat loss and fragmentation, overuse of pesticides, malnutrition, disease and parasites. It is imperative that we, as responsible...

  19. Floral to green: mating switches moth olfactory coding and preference.

    PubMed

    Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard

    2012-06-22

    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.

  20. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  1. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata.

    PubMed

    Hatano, Naoya; Hamada, Tatsuro

    2012-08-03

    The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. [Insect cholinesterases and irreversible inhibitors. Statistical treatment of the data].

    PubMed

    Moralev, S N

    2010-01-01

    The data on sensitivity of cholinesterases (ChE) of different insects to reversible inhibitors, as well as the data on physico-chemical parameters of amino acids constituting their active centers, were treated by factor analysis and juxtaposed. It is shown that both these characteristics are related to taxonomical belonging of insects. It is revealed the "material substrate" of the factors determining inhibitor action specificity, which are specific sites in ChE active center.

  3. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE PAGES

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela; ...

    2016-05-19

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  4. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone.

    PubMed

    Sedeek, Khalid E M; Whittle, Edward; Guthörl, Daniela; Grossniklaus, Ueli; Shanklin, John; Schlüter, Philipp M

    2016-06-06

    Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  6. Mechanical defenses of plant extrafloral nectaries against herbivory

    PubMed Central

    Gish, Moshe; Mescher, Mark C.; De Moraes, Consuelo M.

    2016-01-01

    ABSTRACT Extrafloral nectaries play an important role in plant defense against herbivores by providing nectar rewards that attract ants and other carnivorous insects. However, extrafloral nectaries can themselves be targets of herbivory, in addition to being exploited by nectar-robbing insects that do not provide defensive services. We recently found that the extrafloral nectaries of Vicia faba plants, as well as immediately adjacent tissues, exhibit high concentrations of chemical toxins, apparently as a defense against herbivory. Here we report that the nectary tissues of this plant also exhibit high levels of structural stiffness compared to surrounding tissues, likely due to cell wall lignification and the concentration of calcium oxalate crystals in nectary tissues, which may provide an additional deterrent to herbivore feeding on nectary tissues. PMID:27489584

  7. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects.

    PubMed

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le

    2017-06-01

    The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.

  8. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects

    PubMed Central

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling

    2017-01-01

    Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351

  9. Old maids have more appeal: effects of age and pheromone source on mate attraction in an orb-web spider.

    PubMed

    Cory, Anna-Lena; Schneider, Jutta M

    2016-01-01

    Background. In many insects and spider species, females attract males with volatile sex pheromones, but we know surprisingly little about the costs and benefits of female pheromone emission. Here, we test the hypothesis that mate attraction by females is dynamic and strategic in the sense that investment in mate attraction is matched to the needs of the female. We use the orb-web spider Argiope bruennichi in which females risk the production of unfertilised egg clutches if they do not receive a copulation within a certain time-frame. Methods. We designed field experiments to compare mate attraction by recently matured (young) females with females close to oviposition (old). In addition, we experimentally separated the potential sources of pheromone transmission, namely the female body and the web silk. Results. In accordance with the hypothesis of strategic pheromone production, the probability of mate attraction and the number of males attracted differed between age classes. While the bodies and webs of young females were hardly found by males, the majority of old females attracted up to two males within two hours. Old females not only increased pheromone emission from their bodies but also from their webs. Capture webs alone spun by old females were significantly more efficient in attracting males than webs of younger females. Discussion. Our results suggest that females modulate their investment in signalling according to the risk of remaining unmated and that they thereby economize on the costs associated with pheromone production and emission.

  10. Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    PubMed Central

    van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2011-01-01

    Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908

  11. Predator-prey interaction reveals local effects of high-altitude insect migration

    USDA-ARS?s Scientific Manuscript database

    High-altitude nocturnal insect migrations represent significant pulses of resources, yet are difficult to study and poorly understood. Predator-prey interactions, specifically migratory moth consumption by high-flying bats, potentially reveal flows of migratory insects across a landscape. In North...

  12. Towards the elements of successful insect Ribonucleic acid interference (RNAi)

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...

  13. Double strand RNA delivery system for plant-sap-feeding insects

    PubMed Central

    Ghosh, Saikat Kumar B.; Hunter, Wayne B.; Park, Alexis L.; Gundersen-Rindal, Dawn E.

    2017-01-01

    Double-stranded RNA (dsRNA)-mediated gene silencing, also known as RNA interference (RNAi), has been a breakthrough technology for functional genomic studies and represents a potential tool for the management of insect pests. Since the inception of RNAi numerous studies documented successful introduction of exogenously synthesized dsRNA or siRNA into an organism triggering highly efficient gene silencing through the degradation of endogenous RNA homologous to the presented siRNA. Managing hemipteran insect pests, especially Halyomorpha halys (Stål) (Heteroptera: Pentatomidae), the brown marmorated stink bug (BMSB), is critical to food productivity. BMSB was recently introduced into North America where it is both an invasive agricultural pest of high value specialty, row, and staple crops, as well as an indoor nuisance pest. RNAi technology may serve as a viable tool to manage this voracious pest, but delivery of dsRNA to piercing-sucking insects has posed a tremendous challenge. Effective and practical use of RNAi as molecular biopesticides for biocontrol of insects like BMSB in the environment requires that dsRNAs be delivered in vivo through ingestion. Therefore, the key challenge for molecular biologists in developing insect-specific molecular biopesticides is to find effective and reliable methods for practical delivery of stable dsRNAs such as through oral ingestion. Here demonstrated is a reliable delivery system of effective insect-specific dsRNAs through oral feeding through a new delivery system to induce a significant decrease in expression of targeted genes such as JHAMT and Vg. This state-of-the-art delivery method overcomes environmental delivery challenges so that RNAi is induced through insect-specific dsRNAs orally delivered to hemipteran and other insect pests. PMID:28182760

  14. Bed Bug Detection: Current Technologies and Future Directions

    PubMed Central

    Vaidyanathan, Rajeev; Feldlaufer, Mark F.

    2013-01-01

    Technologies to detect bed bugs have not kept pace with their global resurgence. Early detection is critical to prevent infestations from spreading. Detection based exclusively on bites is inadequate, because reactions to insect bites are non-specific and often misdiagnosed. Visual inspections are commonly used and depend on identifying live bugs, exuviae, or fecal droplets. Visual inspections are inexpensive, but they are time-consuming and unreliable when only a few bugs are present. Use of a dog to detect bed bugs is gaining in popularity, but it can be expensive, may unintentionally advertise a bed bug problem, and is not foolproof. Passive monitors mimic natural harborages; they are discreet and typically use an adhesive to trap bugs. Active monitors generate carbon dioxide, heat, a pheromone, or a combination to attract bed bugs to a trap. New technologies using DNA analysis, mass spectrometry, and electronic noses are innovative but impractical and expensive for widespread use. PMID:23553226

  15. Abiotic and Biotic Factors Regulating Inter-Kingdom Engagement between Insects and Microbe Activity on Vertebrate Remains

    PubMed Central

    Jordan, Heather R.; Tomberlin, Jeffery K.

    2017-01-01

    A number of abiotic and biotic factors are known to regulate arthropod attraction, colonization, and utilization of decomposing vertebrate remains. Such information is critical when assessing arthropod evidence associated with said remains in terms of forensic relevance. Interactions are not limited to just between the resource and arthropods. There is another biotic factor that has been historically overlooked; however, with the advent of high-throughput sequencing, and other molecular techniques, the curtain has been pulled back to reveal a microscopic world that is playing a major role with regards to carrion decomposition patterns in association with arthropods. The objective of this publication is to review many of these factors and draw attention to their impact on microbial, specifically bacteria, activity associated with these remains as it is our contention that microbes serve as a primary mechanism regulating associated arthropod behavior. PMID:28538664

  16. Insect-like flapping wing mechanism based on a double spherical Scotch yoke.

    PubMed

    Galiński, Cezary; Zbikowski, Rafał

    2005-06-22

    We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a "figure-of-eight" or a "banana" and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50-100g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves.

  17. Insect-like flapping wing mechanism based on a double spherical Scotch yoke

    PubMed Central

    Galiński, Cezary; Żbikowski, Rafał

    2005-01-01

    We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves. PMID:16849181

  18. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    PubMed

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.

  19. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE PAGES

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; ...

    2014-01-12

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  20. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  1. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses

    PubMed Central

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; Brault, Aaron C.

    2015-01-01

    In the past decade there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated “Nhumirim virus”; NHUV) (Pauvolid-Correa et al., in review) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential, 3’ untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp. vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3’ UTR indicate NHUV to be most similar to viruses within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak titers, respectively. PMID:25146007

  2. Sterile insect technique as a tool for increasing the efficacy of gypsy moth biocontrol

    Treesearch

    Julius Novotny; Milan Zubrik

    2003-01-01

    Characteristics such as the duration of the larval stage and attraction of larvae to oviposition by an endoparasitic wasp were evaluated between groups of irradiated and non irradiated gypsy moth larvae. Untreated larvae required a shorter time to reach the adult stage (both male and female). The mortality of larvae was highest at the highest irradiation dose. Pupae...

  3. Ambulatory responses of Laricobius nigrinus (Coleoptera: Derodontidae), a hemlock woolly adelgid predator, to odors from prey, host foliage, and feeding conspecifics.

    Treesearch

    Arielle Arsenault; Albert (Bud) Mayfield; Kimberly Wallin

    2015-01-01

    Behavioral interactions between insects and their environments are often mediated by volatile cues. Plant-produced chemical cues induced by herbivore activity are often more effective at attracting predators than are cues produced by the herbivore alone (Dicke and van Loon 2000). The presence of herbivore-induced plant volatiles makes foraging by predators more...

  4. Successful refolding and NMR structure of rMagi3: A disulfide-rich insecticidal spider toxin.

    PubMed

    Titaux-Delgado, Gustavo; Carrillo, Elisa; Mendoza, Angeles; Mayorga-Flores, Marlen; Escobedo-González, Fátima C; Cano-Sánchez, Patricia; López-Vera, Estuardo; Corzo, Gerardo; Del Rio-Portilla, Federico

    2018-03-01

    The need for molecules with high specificity against noxious insects leads the search towards spider venoms that have evolved highly selective toxins for insect preys. In this respect, spiders as a highly diversified group of almost exclusive insect predators appear to possess infinite potential for the discovery of novel insect-selective toxins. In 2003, a group of toxins was isolated from the spider Macrothele gigas and the amino acid sequence was reported. We obtained, by molecular biology techniques in a heterologous system, one of these toxins. Purification process was optimized by chromatographic methods to determine the three-dimensional structure by nuclear magnetic resonance in solution, and, finally, their biological activity was tested. rMagi3 resulted to be a specific insect toxin with no effect on mice. © 2017 The Protein Society.

  5. Precision phenotyping of epicuticular waxes associated with insect resistance

    USDA-ARS?s Scientific Manuscript database

    Accurate phenotyping is imperative for linkage mapping and association genetics. Amounts and types of epicuticular waxes on the leaf surface are important for plant-insect interactions. In onion, specific wax profiles are associated with resistance to the insect pest Thrips tabaci. Epicuticular wax ...

  6. Potentialities of Mermithid Nematodes for the Biocontrol of Blackflies (Diptera: Simuliidae)--A Review,

    DTIC Science & Technology

    biocontrol agents of agricultural insect pests and medically important insect vectors. More specifically, mermithid nematodes appear to regulate natural...Mermithids comprise a family of nematodes which invariably kill/sterilize their insect host(s). These nematodes have considerable potential as

  7. Bias to pollen odors is affected by early exposure and foraging experience.

    PubMed

    Arenas, A; Farina, W M

    2014-07-01

    In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus

    PubMed Central

    Nunes, Marcio R.T.; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C.; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P.; Carvalho, Valeria L.; da Silva, Sandro Patroca; Cardoso, Jedson F.; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G.; Widen, Steven G.; Vasconcelos, Pedro F.C.; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B.

    2017-01-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. PMID:28193550

  10. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    PubMed

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Attraction of Male Nymphs to Adult Male Volatiles in the Bronze Bug Thaumastocoris peregrinus Carpintero & Dellape (Heteroptera: Thaumastocoridae).

    PubMed

    Calvo, M V; Groba, H F; Martínez, G; Sellanes, C; Rossini, C; González, A

    2017-12-23

    The bronze bug, Thaumastocoris peregrinus Carpintero & Dellape (Heteroptera: Thaumastocoridae), is an exotic emerging pest in Eucalyptus commercial forests in South America, Africa and southern Europe. Information on the chemical communication system and reproductive ecology of this insect is scant, and it may be relevant for designing management strategies for eucalypt plantations. Adults and nymphs usually aggregate in the field, possibly by means of chemical signals. Males emit large amounts of 3-methyl-2-butenyl butyrate, which attracts conspecific adult males but not females. The ecological role of this putative male aggregation pheromone remains unknown. Here, we report olfactometer bioassays showing that late-instar male nymphs are also attracted to synthetic 3-methyl-2-butenyl butyrate and to adult male volatile extracts, which contain this compound as the major component. As previously shown for adult females, nymphs that moulted into females were not attracted to either volatile stimulus. The intra-gender attraction of nymphs and adults may be related to the exploitation of food resources, or as a reproductive strategy for newly emerged males. Further studies on the reproductive behaviour and mating system of T. peregrinus will contribute to understanding the ecological significance of male-male, adult-nymph attraction, as well as the practical applications that may result from these findings.

  12. Stinging and biting insect allergy: an Australian experience.

    PubMed

    Solley, Graham O

    2004-12-01

    Stings and bites from various insects are responsible for many anaphylactic events. To document the clinical features of specific forms of anaphylaxis and investigate clinical concerns regarding stinging and biting insect allergy. All patients presenting for evaluation of adverse reactions to insect stings or bites between December 1980 and December 1997 had the clinical details of their reactions recorded and their reactions classified. The spectrum of clinical symptoms and signs is similar to that seen in anaphylaxis from other sources; stings on the head or neck are not more likely to cause life-threatening reactions than stings elsewhere on the body; a lesser reaction will not necessarily lead to a more serious reaction from a future sting; asthmatic patients do appear to have an increased risk of asthma as a feature of their anaphylactic response; anaphylaxis is usually confined to a particular insect species for the individual patient; patients who have had multiple stings at one time may have experienced true anaphylaxis and not a "toxic" response; and patients who have had anaphylaxis from other sources are at no greater risk than that of the general population of reacting similarly to insect stings or bites. Anaphylactic events from insect stings show the same clinical features as those from other sources. Systemic reactions seem confined to a specific insect species. Patients who experience RXN3 reactions from multiple stings at one time should undergo specific venom testing, because many have experienced true anaphylaxis and not a toxic response. Future consideration should be given to the role of beta-adrenergic antagonists and ACE inhibitors in patients with systemic reactions.

  13. Role of phytohormones in insect-specific plant reactions

    PubMed Central

    Erb, Matthias; Meldau, Stefan; Howe, Gregg A.

    2012-01-01

    The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant–insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene, salicylic acid, abscisic acid, auxin, cytokinins, brassinosteroids and gibberellins. The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores. PMID:22305233

  14. Insect Attraction versus Plant Defense: Young Leaves High in Glucosinolates Stimulate Oviposition by a Specialist Herbivore despite Poor Larval Survival due to High Saponin Content

    PubMed Central

    Badenes-Perez, Francisco R.; Gershenzon, Jonathan; Heckel, David G.

    2014-01-01

    Glucosinolates are plant secondary metabolites used in plant defense. For insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), glucosinolates act as “fingerprints” that are essential in host plant recognition. Some plants in the genus Barbarea (Brassicaceae) contain, besides glucosinolates, saponins that act as feeding deterrents for P. xylostella larvae, preventing their survival on the plant. Two-choice oviposition tests were conducted to study the preference of P. xylostella among Barbarea leaves of different size within the same plant. P. xylostella laid more eggs per leaf area on younger leaves compared to older ones. Higher concentrations of glucosinolates and saponins were found in younger leaves than in older ones. In 4-week-old plants, saponins were present in true leaves, while cotyledons contained little or no saponins. When analyzing the whole foliage of the plant, the content of glucosinolates and saponins also varied significantly in comparisons among plants that were 4, 8, and 12 weeks old. In Barbarea plants and leaves of different ages, there was a positive correlation between glucosinolate and saponin levels. This research shows that, in Barbarea plants, ontogenetical changes in glucosinolate and saponin content affect both attraction and resistance to P. xylostella. Co-occurrence of a high content of glucosinolates and saponins in the Barbarea leaves that are most valuable for the plant, but are also the most attractive to P. xylostella, provides protection against this specialist herbivore, which oviposition behavior on Barbarea seems to be an evolutionary mistake. PMID:24752069

  15. Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content.

    PubMed

    Badenes-Perez, Francisco R; Gershenzon, Jonathan; Heckel, David G

    2014-01-01

    Glucosinolates are plant secondary metabolites used in plant defense. For insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), glucosinolates act as "fingerprints" that are essential in host plant recognition. Some plants in the genus Barbarea (Brassicaceae) contain, besides glucosinolates, saponins that act as feeding deterrents for P. xylostella larvae, preventing their survival on the plant. Two-choice oviposition tests were conducted to study the preference of P. xylostella among Barbarea leaves of different size within the same plant. P. xylostella laid more eggs per leaf area on younger leaves compared to older ones. Higher concentrations of glucosinolates and saponins were found in younger leaves than in older ones. In 4-week-old plants, saponins were present in true leaves, while cotyledons contained little or no saponins. When analyzing the whole foliage of the plant, the content of glucosinolates and saponins also varied significantly in comparisons among plants that were 4, 8, and 12 weeks old. In Barbarea plants and leaves of different ages, there was a positive correlation between glucosinolate and saponin levels. This research shows that, in Barbarea plants, ontogenetical changes in glucosinolate and saponin content affect both attraction and resistance to P. xylostella. Co-occurrence of a high content of glucosinolates and saponins in the Barbarea leaves that are most valuable for the plant, but are also the most attractive to P. xylostella, provides protection against this specialist herbivore, which oviposition behavior on Barbarea seems to be an evolutionary mistake.

  16. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.

    PubMed

    Chow, Dawnis M; Frye, Mark A

    2008-08-01

    Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, flying straight requires the regulation of image rotation across the eye, whereas minimizing side-slip and avoiding a collision require regulation of image expansion. In flies, visual rotation stabilizes plume tracking, but rotation and expansion optomotor responses are controlled by separate visual pathways. Are olfactory signals integrated with optomotor responses in a manner dependent upon visual context? We addressed this question by investigating the effect of an attractive food odor on active optomotor flight control. Odorant caused flies both to increase aerodynamic power output and to steer straighter. However, when challenged with wide-field optic flow, odor resulted in enhanced amplitude rotation responses but reduced amplitude expansion responses. For both visual conditions, flies tracked motion signals more closely in odor, an indication of increased saliency. These results suggest a simple search algorithm by which olfactory signals improve the salience of visual stimuli and modify optomotor control in a context-dependent manner, thereby enabling an animal to fly straight up a plume and approach odiferous objects.

  17. Novel Immunocytokine IL12-SS1 (Fv) Inhibits Mesothelioma Tumor Growth in Nude Mice

    PubMed Central

    Kim, Heungnam; Gao, Wei; Ho, Mitchell

    2013-01-01

    Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies. PMID:24260587

  18. Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.

    PubMed

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver

    2016-12-01

    RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Comparative ultrastructural characterization of African horse sickness virus-infected mammalian and insect cells reveals a novel potential virus release mechanism from insect cells.

    PubMed

    Venter, E; van der Merwe, C F; Buys, A V; Huismans, H; van Staden, V

    2014-03-01

    African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.

  20. Attraction of the cutaneous leishmaniasis vector Nyssomyia neivai (Diptera: Psychodidae) to host odour components in a wind tunnel

    PubMed Central

    2012-01-01

    Background Laboratory studies of host-seeking olfactory behaviour in sandflies have largely been restricted to the American visceral leishmaniasis vector Lutzomyia longipalpis. In comparison, almost nothing is known about the chemical ecology of related species, which transmit American cutaneous leishmaniasis (ACL), due in part to difficulties in raising these insects in the laboratory. Understanding how ACL vectors locate their hosts will be essential to developing new vector control strategies to combat this debilitating disease. Methods This study examined host-odour seeking behaviour of the ACL vector Nyssomyia neivai (Pinto) (=Lutzomyia neivai) using a wind tunnel olfactometer. The primary aim was to determine whether field-collected female N. neivai would respond to host odours in the laboratory, thereby eliminating the need to maintain colonies of these insects for behavioural experiments. Responses to two key host odour components, 1-octen-3-ol and lactic acid, and a commercially-available mosquito lure (BG-Lure™) were assessed and compared relative to an air control. We also tested whether trials could be conducted outside of the normal evening activity period of N. neivai without impacting on fly behaviour, and whether the same flies could be used to assess baseline responses to air without affecting responses to octenol, thereby reducing the number of flies required for experiments. Results Octenol was found to both activate host-seeking behaviour and attract female N. neivai in the wind tunnel, while lactic acid elicited weaker responses of activation and attractiveness under identical conditions. The BG-Lure did not activate or attract N. neivai under test conditions. Further experiments showed that sandfly behaviour in the wind tunnel was not affected by time of day, such that experiments need not be restricted to nocturnal hours. Moreover, using the same flies to measure both baseline responses to air and attraction to test compounds did not affect odour-seeking behaviour. Conclusions The results of this study demonstrate that N. neivai taken from the field are suitable for use in laboratory olfactometer experiments. It is hoped this work will facilitate further research into chemical ecology of this species, and other ACL vectors. PMID:23009099

  1. Attraction of the cutaneous leishmaniasis vector Nyssomyia neivai (Diptera: Psychodidae) to host odour components in a wind tunnel.

    PubMed

    Pinto, Mara C; Bray, Daniel P; Eiras, Alvaro E; Carvalheira, Henrique P; Puertas, Camila P

    2012-09-25

    Laboratory studies of host-seeking olfactory behaviour in sandflies have largely been restricted to the American visceral leishmaniasis vector Lutzomyia longipalpis. In comparison, almost nothing is known about the chemical ecology of related species, which transmit American cutaneous leishmaniasis (ACL), due in part to difficulties in raising these insects in the laboratory. Understanding how ACL vectors locate their hosts will be essential to developing new vector control strategies to combat this debilitating disease. This study examined host-odour seeking behaviour of the ACL vector Nyssomyia neivai (Pinto) (=Lutzomyia neivai) using a wind tunnel olfactometer. The primary aim was to determine whether field-collected female N. neivai would respond to host odours in the laboratory, thereby eliminating the need to maintain colonies of these insects for behavioural experiments. Responses to two key host odour components, 1-octen-3-ol and lactic acid, and a commercially-available mosquito lure (BG-Lure™) were assessed and compared relative to an air control. We also tested whether trials could be conducted outside of the normal evening activity period of N. neivai without impacting on fly behaviour, and whether the same flies could be used to assess baseline responses to air without affecting responses to octenol, thereby reducing the number of flies required for experiments. Octenol was found to both activate host-seeking behaviour and attract female N. neivai in the wind tunnel, while lactic acid elicited weaker responses of activation and attractiveness under identical conditions. The BG-Lure did not activate or attract N. neivai under test conditions. Further experiments showed that sandfly behaviour in the wind tunnel was not affected by time of day, such that experiments need not be restricted to nocturnal hours. Moreover, using the same flies to measure both baseline responses to air and attraction to test compounds did not affect odour-seeking behaviour. The results of this study demonstrate that N. neivai taken from the field are suitable for use in laboratory olfactometer experiments. It is hoped this work will facilitate further research into chemical ecology of this species, and other ACL vectors.

  2. Insecticide Resistance Management

    DTIC Science & Technology

    2013-01-01

    been a side effect of insect vector control programs since 1914, and insect disease vectors in over 45 countries are resistant to at least one...the CDC and WHO bioassays can be performed on various insects , the remainder of the guide will focus specifically on how to detect resistance in...mosquito vector populations. For a description of how to develop a bioassay for resistance testing in other groups of insects , refer to the following

  3. With or without pheromone habituation: possible differences between insect orders?

    PubMed

    Suckling, David Maxwell; Stringer, Lloyd D; Jiménez-Pérez, Alfredo; Walter, Gimme H; Sullivan, Nicola; El-Sayed, Ashraf M

    2018-06-01

    Habituation to sex pheromones is one of the key mechanisms in mating disruption, an insect control tactic. Male moths often show reduced sexual response after pre-exposure to female sex pheromone. Mating disruption is relatively rare in insect orders other than Lepidoptera. As a positive control we confirmed habituation in a moth (Epiphyas postvittana) using 24 h pre-exposure to sex pheromone to reduce subsequent activation behaviour. We then tested the impact of pre-exposure to sex or trail pheromone on subsequent behavioural response with insects from three other orders. Similar pre-exposure for 24 h to either sex pheromone [Pseudococcus calceolariae (Homoptera) and apple leaf curling midge Dasineura mali (Diptera), or trail pheromone of Argentine ants (Linepithema humile (Hymenoptera)], followed by behavioural assay in clean air provided no evidence of habituation after pre-exposure in these latter cases. The moths alone were affected by pre-exposure to pheromone. For pests without habituation, sustained attraction to a point source may make lure and kill more economical. Improved knowledge of behavioural processes should lead to better success in pest management and mechanisms should be investigated further to inform studies and practical efforts generally enhancing effectiveness of pheromone-based management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. FluBlok, a next generation influenza vaccine manufactured in insect cells.

    PubMed

    Cox, Manon M J; Hollister, Jason R

    2009-06-01

    FluBlok, a recombinant trivalent hemagglutinin (rHA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV). Its manufacturing process presents the possibility for safe and expeditious vaccine production. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. The high purity of the antigen enables administration at higher doses without a significant increase in side-effects in human subjects. The insect cell-baculovirus production technology is particularly suitable for influenza where annual adjustment of the vaccine is required. The baculovirus-insect expression system is generally considered a safe production system, with limited growth potential for adventitious agents. Still regulators question and challenge the safety of this novel cell substrate as FluBlok continues to advance toward product approval. This review provides an overview of cell substrate characterization for expresSF cell line used for the manufacturing of FluBlok. In addition, this review includes an update on the clinical development of FluBlok. The highly purified protein vaccine, administered at three times higher antigen content than TIV, is well tolerated and results in stronger immunogenicity, a long lasting immune response and provides cross-protection against drift influenza viruses.

  5. Eco-Friendly Insecticide Discovery via Peptidomimetics: Design, Synthesis, and Aphicidal Activity of Novel Insect Kinin Analogues.

    PubMed

    Zhang, Chuanliang; Qu, Yanyan; Wu, Xiaoqing; Song, Dunlun; Ling, Yun; Yang, Xinling

    2015-05-13

    Insect kinin neuropeptides are pleiotropic peptides that are involved in the regulation of hindgut contraction, diuresis, and digestive enzyme release. They share a common C-terminal pentapeptide sequence of Phe(1)-Xaa(2)-Yaa(3)-Trp(4)-Gly(5)-NH2 (where Xaa(2) = His, Asn, Phe, Ser, or Tyr; Yaa(3) = Pro, Ser, or Ala). Recently, the aphicidal activity of insect kinin analogues has attracted the attention of researchers. Our previous work demonstrated that the sequence-simplified insect kinin pentapeptide analogue Phe-Phe-[Aib]-Trp-Gly-NH2 could retain good aphicidal activity and be the lead compound for the further discovery of eco-friendly insecticides which encompassed a broad array of biochemicals derived from micro-organisms and other natural sources. Using the peptidomimetics strategy, we chose Phe-Phe-[Aib]-Trp-Gly-NH2 as the lead compound, and we designed and synthesized three series, including 31 novel insect kinin analogues. The aphicidal activity of the new analogues against soybean aphid was determined. The results showed that all of the analogues exhibited aphicidal activity. Of particular interest was the analogue II-1, which exhibited improved aphicidal activity with an LC50 of 0.019 mmol/L compared with the lead compound (LC50 = 0.045 mmol/L) or the commercial insecticide pymetrozine (LC50 = 0.034 mmol/L). This suggests that the analogue II-1 could be used as a new lead for the discovery of potential eco-friendly insecticides.

  6. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America

    PubMed Central

    Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047

  7. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America.

    PubMed

    Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.

  8. The Male Produced Aggregation Pheromone of a Strawberry Sap Beetle, Lobiopa insularis (Coleoptera: Nitidulidae).

    PubMed

    Moliterno, Antonioni A C; Martins, Camila B C; Szczerbowski, Daiane; Zawadneak, Maria Aparecida C; Zarbin, Paulo H G

    2017-06-01

    The nitidulid beetle Lobiopa insularis is an important pest of strawberry crops in the United States and Brazil. Both larvae and adults feed on ripe strawberries, causing 20-70% loss in production during serious infestations. Aiming at the development of efficient, clean, and highly specific pest management systems, semiochemicals, especially pheromones, are particularly useful. Analyses of the extracts of both males and females obtained from aeration of live beetles showed the presence of three male specific compounds, 2-nonanone, 2-undecanone, and 2-undecanol (in an enantiomeric ratio of S:R = 3.5:1). This is the first record of ketones and an alcohol as pheromone components in Nitidulidae. These compounds were emitted by males in amounts of 0.3:6:1.5 ng per insect within 24 h (1:30:3), respectively, during the scotophase, indicating nocturnal sexual activity. Field tests with pitfall traps containing different mixtures of compounds and ripe strawberries as a co-attractant summed up to five treatments with 25 replications. As a result, 59% males and 41% females (1:0.7) were caught, indicating the L. insularis pheromone to cause aggregation of both sexes. Results of the field tests showed that the attractivity of the binary mixture of ketones (T3) differed from the control (T5), from traps with 2-undecanone alone (T4), and from the mixture of 2-undecanone and racemic 2-undecanol (T2). Moreover, the activity of the ternary mixture of compounds (T1) was not different from that of T3, indicating that the racemic alcohol did not positively influence trap catches. In future applications, a mixture of synthetic strawberry-derived compounds that are attractive to L. insularis may substitute rapidly decaying fruit in the field, maintaining catches for longer periods. Because of its efficiency and low cost, a mixture of 2-undecanone and 2-nonanone is recommended to catch adult L. insularis in the field.

  9. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    PubMed Central

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  10. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.

    PubMed

    Behmer, Spencer T

    2017-10-01

    Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Magnet Healing?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2000-03-01

    Many people are convinced that static magnets—applied to their skin—will heal ills, and many businesses sell such magnets. The biophysics of such healing was reviewed [1] together with the general biophysics of static fields. Birds and insects do use the earth’s magnetic field for navigation. While insect and frog egg development can clearly be influenced by high fields (7 T and 17 T respectively), there is no experimental evidence that small magnetic fields (of less than 0.5 T) might heal, and much evidence that they cannot heal. A puzzle to the physics community is: How to show laypersons that simple magnets (very probably) do not heal, however attractive that idea might be. [1] L. Finegold, The Physics of "Alternative Medicine": Magnet Therapy, The Scientific Review of Alternative Medicine 3:26-33 (1999).

  12. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    NASA Astrophysics Data System (ADS)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  13. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid.

    PubMed

    Miyako, Eijiro; Sugino, Takushi; Okazaki, Toshiya; Bianco, Alberto; Yudasaka, Masako; Iijima, Sumio

    2013-10-22

    Insect wings have many unique and complex nano/microstructures that are presently beyond the capabilities of any current technology to reproduce them artificially. In particular, Morpho butterflies are an attractive type of insect because their multifunctional wings are composed of nano/microstructures. In this paper, we show that carbon nanotube-containing composite adopts honeycomb-shaped networks when simply self-assembled on Morpho butterfly wings used as a template. The unique nano/microstructure of the composites exhibits multifunctionalities such as laser-triggered remote-heating, high electrical conductivity, and repetitive DNA amplification. Our present study highlights the important progress that has been made toward the development of smart nanobiomaterials for various applications such as digital diagnosis, soft wearable electronic devices, photosensors, and photovoltaic cells.

  14. Chrysolina herbacea Modulates Terpenoid Biosynthesis of Mentha aquatica L.

    PubMed Central

    Atsbaha Zebelo, Simon; Bertea, Cinzia M.; Bossi, Simone; Occhipinti, Andrea; Gnavi, Giorgio; Maffei, Massimo E.

    2011-01-01

    Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. PMID:21408066

  15. Respiratory symptoms in insect breeders.

    PubMed

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  16. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    PubMed

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  17. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-01-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market. PMID:22280344

  18. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture.

    PubMed

    Li, P; Luo, Y; Bernhardt, P; Kou, Y; Perner, H

    2008-03-01

    The pollination of Cypripedium plectrochilum Franch. was studied in the Huanglong Nature Reserve, Sichuan, China. Although large bees (Bombus, Apis), small bees (Ceratina, Lasioglossum), ants (Formica sp.), true flies (Diptera) and a butterfly were all found to visit the flowers, only small bees, including three Lasioglossum spp. (L. viridiclaucum, L. sichuanense and L. sp.; Halictidae) and one Ceratina sp., carried the flower's pollen and contacted the receptive stigma. Measurements of floral architecture showed that interior floral dimensions best fit the exterior dimensions of Lasioglossum spp., leading to the consistent deposition and stigmatic reception of dorsally-placed, pollen smears. The floral fragrance was dominated by one ketone, 3-methyl-Decen-2-one. The conversion rate of flowers into capsules in open (insect) pollinated flowers at the site was more than 38%. We conclude that, while pigmentation patterns and floral fragrance attracted a wide variety of insect foragers, canalization of interior floral dimensions ultimately determined the spectrum of potential pollinators in this generalist, food-mimic flower. A review of the literature showed that the specialised mode of pollination-by-deceit in C. plectrochilum, limiting pollinators to a narrow and closely related guild of 'dupes' is typical for other members of this genus.

  19. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution

    PubMed Central

    Ebert, Dieter

    2016-01-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407

  20. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.

    PubMed

    Altermatt, Florian; Ebert, Dieter

    2016-04-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).

  1. Chemical and morphological filters in a specialized floral mimicry system.

    PubMed

    Martos, Florent; Cariou, Marie-Louise; Pailler, Thierry; Fournel, Jacques; Bytebier, Benny; Johnson, Steven D

    2015-07-01

    Many plant species attract insect pollinators through chemical mimicry of their oviposition sites, often detaining them in a trap chamber that ensures pollen transfer. These plant mimics are considered to be unspecialized at the pollinator species level, yet field observations of a mycoheterotrophic rainforest orchid (Gastrodia similis), which emits an odour reminiscent of rotting fruit, indicate that it is pollinated by a single drosophilid fly species (Scaptodrosophila bangi). We investigated the roles of floral volatiles and the dimensions of the trap chamber in enforcing this specialization, using gas chromatography-mass spectrometry analyses, bioassays and scanning electron microscopy. We showed that G. similis flowers predominantly emit three fatty-acid esters (ethyl acetate, ethyl isobutyrate and methyl isobutyrate) that were shown in experiments to attract only Scaptodrosophila flies. We additionally showed that the trap chamber, which flies enter into via a touch-sensitive 'trapdoor', closely matches the body size of the pollinator species S. bangi and plays a key role in pollen transfer. Our study demonstrates that specialization in oviposition site mimicry is due primarily to volatile chemistry and is reflected in the dimensions of the trapping apparatus. It also indicates that mycoheterotrophic plants can be specialized both on mycorrhizal fungi and insect pollinators. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective

    PubMed Central

    2010-01-01

    Background Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. Results By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear α-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. Conclusion The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects. PMID:20302637

  3. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector

    PubMed Central

    Liu, Si; Xie, Jiatao; Cheng, Jiasen; Li, Bo; Chen, Tao; Fu, Yanping; Li, Guoqing; Wang, Manqun; Jin, Huanan; Wan, Hu; Jiang, Daohong

    2016-01-01

    Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua. Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1–like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage. PMID:27791095

  4. Pollen limitation of reproductive effort in willows.

    PubMed

    Fox, John F

    1992-05-01

    Pollen limitation of seed set differs from resource limitation in its implications for the evolution of floral traits. Willow flowers attract insects, but also abundantly produce wind-dispersed pollen. I demonstrated pollen limitation in single branches bearing 2-4 inflorescences (catkins) in a field experiment with five species by artificially increasing or decreasing the pollen load. Because the responses by single branches might be explained by diversion of resources to better-pollinated branches within a plant, a second experiment with one species tested both pollen limitation of whole plants and the autonomy of catkins. Seed set of single willow catkins is unaffected by experimental alterations of seed set in other catkins on the same plant. Hand-pollination of single catkins and of whole plants increased seed set to the same degree, suggesting there is little or no competition for resources between catkins only 5-10 cm apart. Thus, seed set in willows appears to be pollen limited, favoring insect pollination and the evolution of entomophilous traits. The data support previous views that willows have a dual pollination system utilizing wind and insects.

  5. Room Temperature Operable Autonomously Moving Bio-Microrobot Powered by Insect Dorsal Vessel Tissue

    PubMed Central

    Akiyama, Yoshitake; Hoshino, Takayuki; Iwabuchi, Kikuo; Morishima, Keisuke

    2012-01-01

    Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5×10−2 µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces. PMID:22808004

  6. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects.

    PubMed

    Wong, Darren C J; Pichersky, Eran; Peakall, Rod

    2017-01-01

    Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  7. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects

    PubMed Central

    Wong, Darren C. J.; Pichersky, Eran; Peakall, Rod

    2017-01-01

    Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems. PMID:29181016

  8. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    PubMed

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects. © 2013 S. Karger AG, Basel.

  9. Nectar, not colour, may lure insects to their death

    PubMed Central

    Bennett, Katherine F.; Ellison, Aaron M.

    2009-01-01

    We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted ‘pseudopitchers’, half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey. PMID:19429649

  10. Nectar, not colour, may lure insects to their death.

    PubMed

    Bennett, Katherine F; Ellison, Aaron M

    2009-08-23

    We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted 'pseudopitchers', half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey.

  11. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    PubMed

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Machine recognition of navel orange worm damage in x-ray images of pistachio nuts

    NASA Astrophysics Data System (ADS)

    Keagy, Pamela M.; Parvin, Bahram; Schatzki, Thomas F.

    1995-01-01

    Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non- destructive test is currently not available to determine the insect content of pistachio nuts. This paper uses film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.

  13. Emerging strategies for RNA interference (RNAi) applications in insects.

    PubMed

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  14. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola) Within Host Insects from the Scale Insect Family Diaspididae

    PubMed Central

    Gruwell, Matthew E.; Flarhety, Meghan; Dittmar, Katharina

    2012-01-01

    It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling. PMID:26467959

  15. Insect barcode information system.

    PubMed

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  16. How to collect and process small polyhedral viruses of insects

    Treesearch

    Franklin B. Lewis

    1960-01-01

    The past few years have seen increased interest in and use of microbial agents for the control of destructive forest insects. One of the most successful applications of this control method has been the use of the polyhedral virus disease of the European pine sawfly, Neodiprion sertifer (Geoff.). Control of this insect by its specific pathogen has...

  17. Host-plant specialization in needle-eating insects of Sweden

    Treesearch

    Christer Björkman; Stig Larsson

    1991-01-01

    It has been suggested that the enormous diversity of phytochemicals within the plant kingdom makes it impossible for one and the same insect species to exploit all plant species (Dethier 1954, Fraenkel 1959). Not surprisingly, the number and diversity of host plants utilized by different phytophagous insects are highly variable, and the specific selective pressures...

  18. Evaluation of Light Attraction for the Stored-Product Psocids, Liposcelis entomophila, Liposcelis paeta, and Liposcelis brunnea.

    PubMed

    Diaz-Montano, John; Campbell, James F; Phillips, Thomas W; Throne, James E

    2018-05-28

    Psocids have become global pests of stored commodities as they can cause considerable economic losses. These insects are difficult to control because they have developed resistance to many chemical insecticides. Therefore, it is crucial to investigate alternative integrated pest management (IPM) approaches, such as the use of light attraction for monitoring and/or controlling psocids. Light attraction has been studied for Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae) but not for other psocid species. In this study, we investigated the response of adults of three psocid species (Psocoptera: Liposcelididae), Liposcelis entomophila (Enderlein), Liposcelis paeta Pearman, and Liposcelis brunnea Motschulsky, to six wavelengths of light from light-emitting diode (LED) in paired-choice pitfall tests. L. entomophila females and males were not attracted to any of the wavelengths tested. L. paeta females responded positively to two ultraviolet (UV) wavelengths (351 and 400 nm) and to green light (527 nm), while males did not respond to any light. L. brunnea females and males responded positively to all six wavelengths evaluated. Most of the LEDs that elicited positive responses to L. paeta females and L. brunnea females and males were also preferred when these lights were presented against brewer's yeast, a food attractant highly preferred by several psocid species. Females of L. paeta and L. brunnea were attracted to white light when compared with a blank, but females of L. entomophila were not attracted to white light compared to a blank.

  19. Nonadaptive radiation: Pervasive diet specialization by drift in scale insects?

    PubMed

    Hardy, Nate B; Peterson, Daniel A; Normark, Benjamin B

    2016-10-01

    At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic analyses of scale insects, a group for which there appear to be few host-use trade-offs that would select against polyphagy, and for which passive wind-dispersal should make host specificity costly. We infer a strong positive relationship between host range and diversification rate, and a marked asymmetry in cladogenetic changes in diet breadth. These results are consonant with a system of pervasive nonadaptive host specialization in which small, drift- and extinction-prone populations are frequently isolated from persistent and polyphagous source populations. They also contrast with the negative relationship between diet breadth and taxonomic diversification that has been estimated in butterflies, a disparity that likely stems from differences in the average costs and benefits of host specificity and generalism in scale insects versus butterflies. Our results indicate the potential for nonadaptive processes to be important to diet-breadth evolution and taxonomic diversification across herbivorous insects. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. Silencing NaTPI Expression Increases Nectar Germin, Nectarins, and Hydrogen Peroxide Levels and Inhibits Nectar Removal from Plants in Nature1[W][OA

    PubMed Central

    Bezzi, Siham; Kessler, Danny; Diezel, Celia; Muck, Alexander; Anssour, Samir; Baldwin, Ian T.

    2010-01-01

    Native flower visitors removed less nectar from trypsin proteinase inhibitor (TPI)-silenced Nicotiana attenuata plants (ir-pi) than from wild-type plants in four field seasons of releases, even when the nectar repellant, nicotine, was also silenced. Analysis of floral chemistry revealed no differences in the emission of the floral attractants benzylacetone and benzaldehyde or in the concentrations of nectar sugar and nicotine between wild-type and ir-pi flowers, suggesting that these two lines are equally able to attract insect visitors. TPI activity was found in all wild-type flower parts and was highest in anther heads, while TPI activity was not found in any parts of ir-pi flowers. The nectar of ir-pi flowers contained 3.6-fold more total proteins than the nectar of wild-type flowers. Proteomics analysis and hydrogen peroxide (H2O2) measurements revealed that ir-pi nectar contained more nectarins and nectar germin-like proteins and about 1.5-fold more H2O2 compared with wild-type nectar. Field experiments with wild-type flowers supplemented with a solution containing sugar and glucose oxidase demonstrated a causal association between the accumulation of H2O2 and the reduction in nectar removal. These results showed that silencing TPI expression increases the accumulation of nectar proteins and H2O2 levels, which in turn reduces nectar removal by native insect floral visitors. The effect of silencing TPIs on nectar protein accumulation suggests an endogenous regulatory function for TPIs in N. attenuata flowers. The repellency of H2O2 to floral visitors raises new questions about the qualities of nectar that make it attractive for pollinators. PMID:20190094

  1. Linear Regression Modeling of Selected Analytes from the Balad Air Sampling Program

    DTIC Science & Technology

    2012-04-05

    groundwater, air and soil contamination with unwanted chemicals as well as attract vectors (Insects, rodents, etc.) for diseases. In deployed...via in-flight jettisoning of fuel and from 31 accidental spills or leaks to soil during use, storage, and transportation. VOC components of JP-8...can be introduced to the atmosphere from the soil through volatilization.46 In addition, the reaction between JP-8 and atmospheric chemicals may

  2. A New Approach for the Control of Cockroaches Utilizing the Entomophilic Nematode DD-136 in Conjunction with Attractants.

    DTIC Science & Technology

    1982-08-01

    002 I. - Nematode Studies I nt roduc t io n: Nematodes are multicellular animals that, like insects, have evolved to occupy nearly every biological...hoemocoel, the nematodes release an associated bacterium from their intestinal lumen into the hemolymph . The bacterium multiplies rapidly, causing a...with members of either the Neoaplectana or Heterothabditis. The relationship between the nematode and its associated bacterium, Xenorhabdus

  3. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  4. Machine recognition of navel orange worm damage in X-ray images of pistachio nuts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keagy, P.M.; Schatzki, T.F.; Parvin, B.

    Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non-destructive test is currently not available to determine the insect content of pistachio nuts. This paper presents the use of film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.

  5. Species-specific and female host-biased ectophoresy in the roundworm Caenorhabditis japonica

    NASA Astrophysics Data System (ADS)

    Yoshiga, Toyoshi; Ishikawa, Yuji; Tanaka, Ryusei; Hironaka, Mantaro; Okumura, Etsuko

    2013-02-01

    Caenorhabditis japonica is a bacteriophagous nematode species that was discovered on the semi-social burrower bug, Parastrachia japonensis, which demonstrates egg-guarding and provisioning behaviors. To understand the life history of C. japonica in relation to P. japonensis, we demonstrated the specificity of this association and fluctuations in nematode number on the insect throughout the year. C. japonica dauer larvae (DL), larvae in a nonfeeding diapause stage, were predominantly found as clumps on the adult female insects but rarely found on the male insects in all populations examined. This female-biased association was consistent throughout the year, but after the nymphs hatched, nematodes were not detected on the mother insects showing provisioning behavior. DL appeared on the nymphs, and the number of DL on the newly emerged female insects gradually increased thereafter. C. japonica has never been detected on other invertebrates collected from the P. japonensis habitat thus far. Our data suggest that the life cycles of C. japonica and P. japonensis are synchronized.

  6. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    PubMed

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  7. Insect allergy.

    PubMed

    Tracy, James M

    2011-01-01

    Anaphylaxis is a life-threatening allergic condition. The 3 most common triggers for anaphylaxis are food, medications, and insects. All of these triggers are the sources of considerable morbidity and mortality, but of the 3, only insect allergy is treatable through means other than trigger avoidance. Because ≥ 40 deaths per year are attributed to insect stings, it is critical that healthcare providers and the public understand the proper diagnosis as well as the long-term treatment of this potentially life-threatening allergy. Unlike food and medication allergy, which are managed primarily by allergen avoidance, Hymenoptera allergy is managed prospectively using venom immunotherapy; this results in a protective level of up to 98%. Insects of the order Hymenoptera include bees, wasps, hornets, yellowjackets, and ants. They are responsible for the majority of the fatal and near-fatal sting events. Understanding the biology and habitat of the various Hymenoptera species is helpful in recommending insect-avoidance strategies. The diagnosis of insect allergy relies on a history of a systemic allergic reaction with appropriate testing for venom-specific immunoglobulin E. If the history of a systemic reaction to an insect sting and the presence of venom specific immunoglobulin E is confirmed, venom immunotherapy is indicated. The proper and primary means of treating acute anaphylaxis is immediate epinephrine-and studies suggest that it is underutilized in the acute setting. However, it is venom immunotherapy, a disease-modifying therapy, that provides the affected individual with the most effective protection against future sting reactions. Long-term management of insect allergy and anaphylaxis includes appropriate referral to an allergist familiar with insect allergy and, if indicated, venom immunotherapy. © 2011 Mount Sinai School of Medicine.

  8. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths

    PubMed Central

    Udell, Bradley J.

    2017-01-01

    The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB), the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm) enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available. PMID:29236740

  9. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    PubMed

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  10. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  11. Insect density-plant density relationships: a modified view of insect responses to resource concentrations.

    PubMed

    Andersson, Petter; Löfstedt, Christer; Hambäck, Peter A

    2013-12-01

    Habitat area is an important predictor of spatial variation in animal densities. However, the area often correlates with the quantity of resources within habitats, complicating our understanding of the factors shaping animal distributions. We addressed this problem by investigating densities of insect herbivores in habitat patches with a constant area but varying numbers of plants. Using a mathematical model, predictions of scale-dependent immigration and emigration rates for insects into patches with different densities of host plants were derived. Moreover, a field experiment was conducted where the scaling properties of odour-mediated attraction in relation to the number of odour sources were estimated, in order to derive a prediction of immigration rates of olfactory searchers. The theoretical model predicted that we should expect immigration rates of contact and visual searchers to be determined by patch area, with a steep scaling coefficient, μ = -1. The field experiment suggested that olfactory searchers should show a less steep scaling coefficient, with μ ≈ -0.5. A parameter estimation and analysis of published data revealed a correspondence between observations and predictions, and density-variation among groups could largely be explained by search behaviour. Aphids showed scaling coefficients corresponding to the prediction for contact/visual searchers, whereas moths, flies and beetles corresponded to the prediction for olfactory searchers. As density responses varied considerably among groups, and variation could be explained by a certain trait, we conclude that a general theory of insect responses to habitat heterogeneity should be based on shared traits, rather than a general prediction for all species.

  12. Bed bug aggregation on dirty laundry: a mechanism for passive dispersal.

    PubMed

    Hentley, William T; Webster, Ben; Evison, Sophie E F; Siva-Jothy, Michael T

    2017-09-28

    Bed bugs have shown a recent and rapid global expansion that has been suggested to be caused by cheap air travel. How a small, flightless and anachoretic insect that hides within its host's sleeping area manages to travel long distances is not yet clear. Bed bugs are attracted to the odour of sleeping humans and we suggest that soiled clothing may present a similarly attractive cue, allowing bed bugs to 'hitch-hike' around the world after aggregating in the laundry bags of travellers. We show that (1) soiled clothing is significantly more attractive than clean clothing to active bed bugs moving within a bedroom sized arena and (2) elevation of CO 2 to a level that simulates human occupancy in the same arena appears to initiate search behaviour rather than direct it. Our results show, for the first time, how leaving worn clothing exposed in sleeping areas when travelling can be exploited by bed bugs to facilitate passive dispersal.

  13. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    PubMed

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  14. Flower-visiting behavior of male bees is triggered by nectar-feeding insects.

    PubMed

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  15. Flower-visiting behavior of male bees is triggered by nectar-feeding insects

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  16. Strategies for Enhanced Crop Resistance to Insect Pests.

    PubMed

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  17. DNA methylation in insects: on the brink of the epigenomic era.

    PubMed

    Glastad, K M; Hunt, Brendan G; Yi, S V; Goodisman, M A D

    2011-10-01

    DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  18. Description and Biology of Insects and Related Pests Injurious to Vegetable Crops - For Commercial Growers Only.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of vegetable crops grown commercially in Massachusetts. It contains general information on insects and specific descriptions of the major pests, their life cycles, and the damage they cause. The topics…

  19. The Mantis Project.

    ERIC Educational Resources Information Center

    Palopoli, Maria L.

    1998-01-01

    Explains an integrated insect unit in which students learn about the characteristics, life cycle, and environment of an organism; learn about specific body structures; and make inferences about the body structure and behaviors of the insects. (DDR)

  20. Domain Shuffling in a Sensor Protein Contributed to the Evolution of Insect Pathogenicity in Plant-Beneficial Pseudomonas protegens

    PubMed Central

    Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph

    2014-01-01

    Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity. PMID:24586167

  1. Trends in genome dynamics among major orders of insects revealed through variations in protein families.

    PubMed

    Rappoport, Nadav; Linial, Michal

    2015-08-07

    Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.

  2. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity

    PubMed Central

    Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.

    2018-01-01

    For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955

  3. Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth).

    PubMed

    Møldrup, Morten E; Geu-Flores, Fernando; de Vos, Martin; Olsen, Carl E; Sun, Joel; Jander, Georg; Halkier, Barbara A

    2012-05-01

    Glucosinolates are biologically active natural products characteristic of crucifers, including oilseed rape, cabbage vegetables and the model plant Arabidopsis thaliana. Crucifer-specialist insect herbivores, like the economically important pest Plutella xylostella (diamondback moth), frequently use glucosinolates as oviposition stimuli. This suggests that the transfer of a glucosinolate biosynthetic pathway to a non-crucifer would stimulate oviposition on an otherwise non-attractive plant. Here, we demonstrate that stable genetic transfer of the six-step benzylglucosinolate pathway from A. thaliana to Nicotiana tabacum (tobacco) results in the production of benzylglucosinolate without causing morphological alterations. Benzylglucosinolate-producing tobacco plants were more attractive for oviposition by female P. xylostella moths than wild-type tobacco plants. As newly hatched P. xylostella larvae were unable to survive on tobacco, these results represent a proof-of-concept strategy for rendering non-host plants attractive for oviposition by specialist herbivores with the long-term goal of generating efficient dead-end trap crops for agriculturally important pests. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae).

    PubMed

    Caissard, Jean-Claude; Meekijjironenroj, Aroonrat; Baudino, Sylvie; Anstett, Marie-Charlotte

    2004-08-01

    Volatile compounds, which frequently play important roles in plant-insect interaction, can be produced either by flowers to attract pollinators or by leaves to deter herbivores. The specialized structures associated with odor production differ in these two organs. The European dwarf palm Chamaerops humilis represents a unique intermediate between these two. In previous work, its leaves were shown to produce volatile organic compounds (VOCs) that attract pollinators only during flowering. Because the leaf sinuses look like a gland, the sinus was examined histologically and with environmental scanning electron microscopy (ESEM) for evidence that the sinus emits VOCs. Volatile compounds emitted by the different parts of the leaf were extracted by washes and headspace then analyzed by gas chromatograph-mass spectrometer (GC-MS). The sinus does not have the expected gland-like structure; the VOCs are actually produced by the whole leaf, even if the composition of the VOCs emitted by the sinus slightly differs. Thus, attraction of pollinators does not result from specialized secreting cells in leaves of flowering European dwarf palms. The results are discussed in the context of a convergent evolution of leaves toward petals.

  5. Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

    PubMed Central

    Briscoe, Adriana D.; Macias-Muñoz, Aide; Kozak, Krzysztof M.; Walters, James R.; Yuan, Furong; Jamie, Gabriel A.; Martin, Simon H.; Dasmahapatra, Kanchon K.; Ferguson, Laura C.; Mallet, James; Jacquin-Joly, Emmanuelle; Jiggins, Chris D.

    2013-01-01

    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes. PMID:23950722

  6. Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad: what mechanisms apply?

    PubMed

    Suinyuy, Terence N; Donaldson, John S; Johnson, Steven D

    2013-09-01

    Ontogenetic patterns of odour emissions and heating associated with plant reproductive structures may have profound effects on insect behaviour, and consequently on pollination. In some cycads, notably Macrozamia, temporal changes in emission of specific odour compounds and temperature have been interpreted as a 'push-pull' interaction in which pollinators are either attracted or repelled according to the concentration of the emitted volatiles. To establish which mechanisms occur in the large Encephalartos cycad clade, the temporal patterns of volatile emissions, heating and pollinator activity of cones of Encephalartos villosus in the Eastern Cape (EC) and KwaZulu Natal (KZN) of South Africa were investigated. Gas chromatography-mass spectrometry (GC-MS) analyses of Encephalartos villosus cone volatiles showed that emissions, dominated by eucalyptol and 2-isopropyl-3-methoxypyrazine in EC populations and (3E)-1,3-octadiene and (3E,5Z)-1,3,5-octatriene in the KZN populations, varied across developmental stages but did not vary significantly on a daily cycle. Heating in male cones was higher at dehiscence than during pre- and post-dehiscence, and reached a maximum at about 1830 h when temperatures were between 7·0 and 12·0 °C above ambient. Daily heating of female cones was less pronounced and reached a maximum at about 1345 h when it was on average between 0·9 and 3·0 °C above ambient. Insect abundance on male cones was higher at dehiscence than at the other stages and significantly higher in the afternoon than in the morning and evening. There are pronounced developmental changes in volatile emissions and heating in E. villosus cones, as well as strong daily changes in thermogenesis. Daily patterns of volatile emissions and pollinator abundance in E. villosus are different from those observed in some Macrozamia cycads and not consistent with the push-pull pattern as periods of peak odour emission do not coincide with mass exodus of insects from male cones.

  7. Behavioural syndromes and social insects: personality at multiple levels.

    PubMed

    Jandt, Jennifer M; Bengston, Sarah; Pinter-Wollman, Noa; Pruitt, Jonathan N; Raine, Nigel E; Dornhaus, Anna; Sih, Andrew

    2014-02-01

    Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade-offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes-research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals). © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  8. Development and Evaluation of a Pyriproxyfen-treated Device to Control the Dengue Vector, Aedes aegypti (L.) (Diptera: Culicidae)

    DTIC Science & Technology

    2013-03-01

    Jersey: John Wiley & Sons, 2011. Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 2002; 347: 13-8...control of Aedes aegypti mosquitoes , the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device...that is visually-attractive to mosquitoes . This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population

  9. FluBlok, a recombinant hemagglutinin influenza vaccine.

    PubMed

    Cox, Manon M J; Patriarca, Peter A; Treanor, John

    2008-11-01

    FluBlok, a recombinant trivalent hemagglutinin (HA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV) manufacturing process. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. This review discusses the four main clinical studies that were used to support licensure of FluBlok under the 'Accelerated Approval' mechanism in the United States.

  10. Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita, and its implication for conservation biology.

    PubMed

    Svensson, Glenn P; Larsson, Mattias C; Hedin, Jonas

    2004-02-01

    Elater ferrugineus is a threatened click beetle inhabiting old hollow trees. Its larvae consume larvae of other saproxylic insects including the threatened scarab beetle Osmoderma eremita. Recently, (R)-(+)-gamma-decalactone was identified as a male-produced sex pheromone of O. eremita. Here we present evidence that E. ferrugineus adults use this odor as a kairomone for location of their prey. In field trapping experiments, significantly more trapping events of E. ferrugineus beetles were observed in Lindgren funnel traps baited with (R)-(+)-gamma-decalactone than in control traps (20 vs. 1, respectively). Analyses of headspace collections from E. ferrugineus beetles indicate that the predator itself does not produce the substance. Both sexes were attracted to the prey pheromone. suggesting that E. ferrugineus males use the odor as an indirect cue for location of mates or of the tree hollows, which make up their habitat. When compared to pitfall traps, the Lindgren system was significantly more effective in trapping E. ferragineus, and no difference could be established for O. eremita, showing the high potential to use odor-based systems to catch both species. We suggest that (R)-(+)-gamma-decalactone could be used as a master signal in monitoring programs for these vulnerable beetle species. which are both regarded as indicators of the associated insect fauna of the threatened habitat of old hollow trees.

  11. Identification of a pheromone regulating caste differentiation in termites.

    PubMed

    Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L; Keller, Laurent

    2010-07-20

    The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.

  12. Identification of a pheromone regulating caste differentiation in termites

    PubMed Central

    Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L.; Keller, Laurent

    2010-01-01

    The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes. PMID:20615972

  13. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori.

    PubMed

    Uno, Tomohide; Furutani, Masayuki; Sakamoto, Katsuhiko; Uno, Yuichi; Kanamaru, Kengo; Mizoguchi, Akira; Hiragaki, Susumu; Takeda, Makio

    2017-09-01

    Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori. © 2017 Wiley Periodicals, Inc.

  15. [Importance of competition for pollination in formation of the entomophylous plants complex structure].

    PubMed

    Dlusskiĭ, G M

    2013-01-01

    Many species of entomophylous plants have a wide range of pollinators, and the same insects visit flowers of many plants. The competition for pollination leads to decreasing in seed production of competing species. However, there exists a variety of adaptations that allow plants to reduce the intensity of competition. A comparative analysis of pollinators spectra has allowed to designate groups (subcomplexes) of plants with regard to dominance of various groups of pollinators: myiophylous (flies from the superfamily Muscomorha dominate), syphidophylous (flies from the family Syrphidae dominate), psychophylous (butterflies dominate), cantharophylous (beetles dominate), nonspecialized and specialized melittophylous (Apidae, mainly bumblebees, dominate). The belonging of plants to a specific subcomplex is defined mainly by the structure of flowers and inflorescences. Modes of mechanical and attractive isolation are discussed that lead to restriction of pollinators composition. Competition abatement between species with similar spectra of pollinators and belonging to the same subcomplex is achieved mainly by spatial (ecological) and temporal (different timing of flowering) isolation.

  16. Analysis of amino acids in nectar from pitchers of Sarracenia purpurea (Sarraceniaceae).

    PubMed

    Dress, W; Newell, S; Nastase, A; Ford, J

    1997-12-01

    Sarracenia purpurea L. (northern pitcher plant) is an insectivorous plant with extrafloral nectar that attracts insects to a water-filled pitfall trap. We identified and quantified the amino acids in extrafloral nectar produced by pitchers of S. purpurea. Nectar samples were collected from 32 pitchers using a wick-sampling technique. Samples were analyzed for amino acids with reverse-phase high-performance liquid chromatography with phenylisothiocyanate derivatization. Detectable amounts of amino acids were found in each of the 32 nectar samples tested. Mean number of amino acids in a nectar sample was 9 (SD = 2.2). No amino acid was detected in all 32 samples. Mean amount of amino acids in a nectar sample (i.e., amount per wick) was 351.4 ng (SD = 113.2). Nine amino acids occurred in 20 of the 32 samples (aspartic acid, cysteine, glutamic acid, glycine, histidine, hydroxyproline, methionine, serine, valine) averaging 263.4 ng (SD = 94.9), and accounting for ~75% of the total amino acid content. Nectar production may constitute a significant cost of carnivory since the nectar contains amino acids. However, some insects prefer nectar with amino acids and presence of amino acids may increase visitation and capture of insect prey.

  17. Design features of a proposed insecticidal sugar trap for biting midges.

    PubMed

    Cohnstaedt, Lee William; Snyder, Darren

    2016-09-30

    Insecticidal sugar baits for mosquitoes and house ies have proven e cacy to reduce insect populations and consequently, disease transmission rates. The new insecticidal sugar trap (IST) is designed speci cally for controlling biting midge disease vector populations around livestock and near larval habitats. The trap operates by combining light-emitting diode (LED) technology with insecticidal sugar baits. The positive photo attraction of Culicoides elicited by the LEDs, draws the insects to the insecticidal sugar bait, which can be made from various commercial insecticide formulations (pyrethroids, neonicotinoids, etc.) or naturally derived formulations (boric acid, garlic oil, etc.) lethal to Culicoides. Insecticidal sugar trap advantages include: customizable LED lights, they can be used with several di erent oral insecticides that have di erent modes of action to help combat the evolution of pesticide resistance, screening on the trap reduces non-target insect feeding (for example bees and butter ies), targets males and females of the species because both must feed on sugar, and low energy LEDs and a solar panel reduce trap maintenance to re lling sugar baits, rather than replacing batteries. This article discusses key components of an IST, which increase the traps e ectiveness for biting midge control.

  18. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection

    NASA Astrophysics Data System (ADS)

    Gao, Tianni; Wang, Zhaolei; Huang, Yü; Keyhani, Nemat O.; Huang, Zhen

    2017-02-01

    The emergence of insecticide resistant insect pests is of significant concern worldwide. The whitefly, Bemisia tabaci, is an important agricultural pest and has shown incredible resilience developing resistance to a number of chemical pesticides. Entomopathogenic fungi such as Isaria fumosorosea offer an attractive alternative to chemical pesticides for insect control, and this fungus has been shown to be an effective pathogen of B. tabaci. Little is known concerning the potential for the development of resistance to I. fumosorosea by B. tabaci. Five generations of successive survivors of B. tabaci infected by I. fumosorosea were assayed with I. fumosorosea. No significant differences in susceptibility to I. fumosorosea, number of ovarioles, or ovipostioning were seen between any of the generations tested. Effects of I. fumosorosea and cell-free ethyl acetate fractions derived from the fungus on the B. tabaci fat body, ovary, and vitellogenin were also investigated. These data revealed significant deformation and degradation of ovary tissues and associated vitellogenin by the fungal mycelium as well as by cell-free ethyl acetate fungal extracts. These data indicate the lack of the emergence of resistance to I. fumosorosea under the conditions tested and demonstrate invasion of the insect reproductive tissues during fungal infection.

  19. Signal interactions and interference in insect choruses: singing and listening in the social environment.

    PubMed

    Greenfield, Michael D

    2015-01-01

    Acoustic insects usually sing amidst conspecifics, thereby creating a social environment-the chorus-in which individuals communicate, find mates, and avoid predation. A temporal structure may arise in a chorus because of competitive and cooperative factors that favor certain signal interactions between neighbors. This temporal structure can generate significant acoustic interference among singers that pose problems for communication, mate finding, and predator detection. Acoustic insects can reduce interference by means of selective attention to only their nearest neighbors and by alternating calls with neighbors. Alternatively, they may synchronize, allowing them to preserve call rhythm and also to listen for predators during the silent intervals between calls. Moreover, males singing in choruses may benefit from reduced per capita predation risk as well as enhanced vigilance. They may also enjoy greater per capita attractiveness to females, particularly in the case of synchronous choruses. In many cases, however, the overall temporal structure of the chorus is only an emergent property of simple, pairwise interactions between neighbors. Nonetheless, the chorus that emerges can impose significant selection pressure on the singing of those individual males. Thus, feedback loops may occur and potentially influence traits at both individual and group levels in a chorus.

  20. Changes of sex pheromone communication systems associated with tebufenozide and abamectin resistance in diamondback moth, Plutella xylostella (L.).

    PubMed

    Xu, Zhen; Cao, Guang-Chun; Dong, Shuang-Lin

    2010-05-01

    Many insect pests have evolved resistance to insecticides. Along with this evolution, the sex pheromone communication system of insects also may change, and subsequently reproductive isolation may occur between resistant and susceptible populations. In this study of the diamondback moth, we found that resistant females (especially Abamectin resistant females) produced less sex pheromone and displayed a lower level of calling behavior. Resistant males showed higher EAG responsiveness to the sex pheromone mixture of females, and responded to a broader range of ratios between the two major components compared to the responses of susceptible moths. In addition, wind tunnel experiments indicated that changes associated with insecticide resistance in the Abamectin resistant strain (Aba-R) significantly reduced female attractiveness to susceptible males. Furthermore, mating choice experiments confirmed that non-random mating occurred between the two different strains. Aba-R females with an abnormal pheromone production and blend ratio exhibited significantly lower mating percentages with males from either their own strain or other strains, which corroborates the results obtained by the wind tunnel experiments. The implications of this non-random mating for insect speciation and insecticide resistance management are discussed.

  1. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi.

    PubMed

    Kim, Il-Hwan; Ensign, Jerald; Kim, Do-Young; Jung, Hoe-Yune; Kim, Na-Ri; Choi, Bo-Hwa; Park, Sun-Min; Lan, Que; Goodman, Walter G

    2017-10-01

    Reduction of mosquito-borne diseases relies, in part, on the use of synthetic pesticides to control pest mosquitoes. This reliance has led to genetic resistance, environmental contamination and the nondiscriminatory elimination of both pest and non-pest species. To expand our options for control, we screened entomopathogenic bacteria for potential larvicidal activity. A lipopeptide from the bacterium, Xenorhabdus innexi, was discovered that displayed potent larvicidal activity. The LC 50 s of the lipopeptide towards Aedes aegypti, Culex pipiens and Anopheles gambiae larvae were 1.81, 1.25 and 1.86 parts-per-million, respectively. No mortality was observed in other insect species tested. The putative mode of action of the lipopeptide suggested that after orally ingestion, it bound to the apical membrane of anterior midgut cells and created pores in the cellular membranes. The rapid neutralization of midgut pH suggested the pores disabled the H + -V-ATPase on the basal membrane and led to epithelial cell death. Specificity and toxicity towards mosquito larvae and the unique mode of action makes this lipopeptide a potentially attractive bacterial insecticide for control of mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments.

    PubMed

    Zotti, M J; Smagghe, G

    2015-06-01

    The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.

  3. Insect Ferritins: typical or atypical?

    PubMed Central

    Pham, Daphne Q. D.; Winzerling, Joy J.

    2010-01-01

    Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field—especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters—quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences. PMID:20230873

  4. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    PubMed

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  5. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle.

    PubMed

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike

    2017-01-01

    The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers.

  6. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle

    PubMed Central

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian

    2017-01-01

    ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers. PMID:28101536

  7. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.

    PubMed

    Büschges, A; Wolf, H

    1995-05-01

    1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.

  8. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  9. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  10. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies.

    PubMed

    Matsuura, Kenji

    2012-06-01

    Pheromones are likely involved in all social activities of social insects including foraging, sexual behavior, defense, nestmate recognition, and caste regulation. Regulation of the number of fertile queens requires communication between reproductive and non-reproductive individuals. Queen-produced pheromones have long been believed to be the main factor inhibiting the differentiation of new reproductive individuals. However, since the discovery more than 50 years ago of the queen honeybee substance that inhibits the queen-rearing behavior of workers, little progress has been made in the chemical identification of inhibitory queen pheromones in other social insects. The recent identification of a termite queen pheromone and subsequent studies have elucidated the multifaceted roles of volatile pheromones, including functions such as a fertility signal, worker attractant, queen-queen communication signal, and antimicrobial agent. The proximate origin and evolutionary parsimony of the termite queen pheromone also are discussed.

  11. Production of extracellular chitinase Beauveria bassiana under submerged fermentation conditions

    NASA Astrophysics Data System (ADS)

    Elawati, N. E.; Pujiyanto, S.; Kusdiyantini, E.

    2018-05-01

    Chitinase-producing microbes have attracted attention as one of the potential agents for control of phytopathogenic fungi and insect pests. The fungus that potentially produces chitinase is Beauveria bassiana. This study aims to determine the growth curve and chitinase activities of B. bassiana isolated from Helopeltis antonii insects after application. Method of measuring growth curve was done by dry cell period method, while for measurement of enzyme activity done by measuring absorbance at spectrophotometer. The results showed optimum growth time of B. bassiana with the highest cell count of 0.031 g on day 4 which was log phase, while the highest enzyme activity was 0,585 U / mL on the 4th day for 7 days incubation. Based on these results when correlated growth with enzyme production, chitinase enzyme products are produced in log phase and categorized as primary metabolism.

  12. When attempts at robbing prey turn fatal

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Corbara, Bruno; Azémar, Frédéric; Carpenter, James M.

    2012-07-01

    Because group-hunting arboreal ants spread-eagle insect prey for a long time before retrieving them, these prey can be coveted by predatory flying insects. Yet, attempting to rob these prey is risky if the ant species is also an effective predator. Here, we show that trying to rob prey from Azteca andreae workers is a fatal error as 268 out of 276 potential cleptobionts (97.1 %) were captured in turn. The ant workers hunt in a group and use the "Velcro®" principle to cling firmly to the leaves of their host tree, permitting them to capture very large prey. Exceptions were one social wasp, plus some Trigona spp. workers and flies that landed directly on the prey and were able to take off immediately when attacked. We conclude that in this situation, previously captured prey attract potential cleptobionts that are captured in turn in most of the cases.

  13. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects.

    PubMed

    Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob

    2015-04-01

    Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. © 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  14. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success.

    PubMed

    Bauer, Austin A; Clayton, Murray K; Brunet, Johanne

    2017-05-01

    The ability to attract pollinators is crucial to plants that rely on insects for pollination. We contrasted the roles of floral display size and flower color in attracting three bee species and determined the relationships between plant attractiveness (number of pollinator visits) and seed set for each bee species. We recorded pollinator visits to plants, measured plant traits, and quantified plant reproductive success. A zero-inflated Poisson regression model indicated plant traits associated with pollinator attraction. It identified traits that increased the number of bee visits and traits that increased the probability of a plant not receiving any visits. Different components of floral display size were examined and two models of flower color contrasted. Relationships between plant attractiveness and seed set were determined using regression analyses. Plants with more racemes received more bee visits from all three bee species. Plants with few racemes were more likely not to receive any bee visits. The role of flower color varied with bee species and was influenced by the choice of the flower color model. Increasing bee visits increased seed set for all three bee species, with the steepest slope for leafcutting bees, followed by bumble bees, and finally honey bees. Floral display size influenced pollinator attraction more consistently than flower color. The same plant traits affected the probability of not being visited and the number of pollinator visits received. The impact of plant attractiveness on female reproductive success varied, together with pollinator effectiveness, by pollinator species. © 2017 Bauer et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  15. Monitoring and Detecting the Cigarette Beetle (Coleoptera: Anobiidae) Using Ultraviolet (LED) Direct and Reflected Lights and/or Pheromone Traps in a Laboratory and a Storehouse.

    PubMed

    Miyatake, Takahisa; Yokoi, Tomoyuki; Fuchikawa, Taro; Korehisa, Nobuyoshi; Kamura, Toru; Nanba, Kana; Ryouji, Shinsuke; Kamioka, Nagisa; Hironaka, Mantaro; Osada, Midori; Hariyama, Takahiko; Sasaki, Rikiya; Shinoda, Kazutaka

    2016-12-01

    The cigarette beetle, Lasioderma serricorne (F.), is an important stored-product pest worldwide because it damages dry foods. Detection and removal of the female L. serricorne will help to facilitate the control of the insect by removal of the egg-laying populations. In this manuscript, we examined the responses by L. serricorne to direct and reflected light in transparent cube (50 m3) set in a chamber (200 m3) and a stored facility with both direct and reflected UV-LED lights. The study also examined the responses by the beetles to light in the presence or absence of pheromone in traps that are placed at different heights. Reflected light attracted more beetles than the direct light in the experimental chamber, but the direct light traps attracted more beetles than the reflected light traps in the storehouse. Pheromone traps attracted only males; UV-LED traps attracted both sexes. The UV-LED traps with a pheromone, i.e., combined trap, attracted more males than UV-LED light traps without a pheromone, whereas the attraction of UV-LED traps with and without the pheromone was similar in females. The results suggest that UV-LED light trap combined with a sex pheromone is the best solution for monitoring and controlling L. serricorne. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Novel nanoscale pheromone dispenser for more accurate evaluation of Grapholita molesta (Lepidoptera: Tortricidae) attract-and-kill strategies in the laboratory.

    PubMed

    Czarnobai De Jorge, Bruna; Bisotto-de-Oliveira, Ricardo; Pereira, Cláudio Nunes; Sant'Ana, Josué

    2017-09-01

    Nanotechnology has recently allowed the production of formulations for controlled release of active ingredients. In the present study, the electrospinning technique was used to produce nanoscale dispensers for attract-and-kill strategies. Non-woven nanofibres containing insecticide (cypermethrin) and (E)-8,(Z)-8-dodecenyl acetate and (Z)-8-dodecanol (0.87 mg L -1 ), the main components of Grapholita molesta (Lepidoptera: Tortricidae) (Busck) pheromone, were evaluated in laboratory experiments. Male electroantennographic (EAG) responses and mortality (tarsal-contact and attract-and-kill behavioural cages) bioassays were performed for nanofibres (with and without insecticide) exposed for different periods (21, 42, 63 and 84 days) in controlled and non-exposed conditions. There were no significant differences in G. molesta male EAG responses based on the time of exposure within treatments. Nanofibres with pheromone only and with pheromone plus insecticide elicited equal EAG responses. Mortality in tarsal-contact bioassays was greater than 87% after exposure for 84 days. In the attract-and-kill bioassays, mortality ranged from 28.4 to 56.6%, although no difference was observed on insect mortalities over time (24, 48 and 72 h). Incorporation of cypermethrin in nanofibres did not interfere with G. molesta attractiveness. Both aspects of the strategy, the attractant and killing effects, were recorded using innovative nanofibres, and long-term effects suggest a controlled release of pheromone and insecticide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes

    PubMed Central

    Mitterboeck, T. Fatima; Liu, Shanlin; Adamowicz, Sarah J.; Fu, Jinzhong; Zhang, Rui; Song, Wenhui; Meusemann, Karen

    2017-01-01

    Abstract The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects. PMID:29020740

  18. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes.

    PubMed

    Mitterboeck, T Fatima; Liu, Shanlin; Adamowicz, Sarah J; Fu, Jinzhong; Zhang, Rui; Song, Wenhui; Meusemann, Karen; Zhou, Xin

    2017-10-01

    The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects. © The Authors 2017. Published by Oxford University Press.

  19. A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland.

    PubMed

    Jochmann, Ralf; Lipkow, Erhard; Blanckenhorn, Wolf U

    2016-08-01

    Veterinary medical product residues can cause severe damage in the dung ecosystem. Depending on the manner of application and the time after treatment, the excreted concentration of a given pharmaceutical varies. The popular anthelmintic drug ivermectin can be applied to livestock in several different ways and is fecally excreted over a period of days to months after application. In a field experiment replicated in summer and autumn, the authors mixed 6 ivermectin concentrations plus a null control into fresh cow dung to assess the reaction of the dung insect community. Taxon richness of the insect dung fauna emerging from the dung, but not Hill diversity ((1) D) or the total number of individuals (abundance), decreased as ivermectin concentration increased. Corresponding declines in the number of emerging insects were found for most larger brachyceran flies and hymenopteran parasitoids, but not for most smaller nematoceran flies or beetles (except Hydrophilidae). Parallel pitfall traps recovered all major dung organism groups that emerged from the experimental dung, although at times in vastly different numbers. Ivermectin generally did not change the attractiveness of dung: differences in emergence therefore reflect differences in survival of coprophagous offspring of colonizing insects. Because sample size was limited to 6 replicates, the authors generally recommend more than 10 (seasonal) replicates and also testing higher concentrations than used in the present study as positive controls in future studies. Results accord with parallel experiments in which the substance was applied and passed through the cow's digestive system. In principle, therefore, the authors' experimental design is suitable for such higher-tier field tests of the response of the entire dung community to pharmaceutical residues, at least for ivermectin. Environ Toxicol Chem 2016;35:1947-1952. © 2015 SETAC. © 2015 SETAC.

  20. Multifaceted effects of host plants on entomopathogenic nematodes.

    PubMed

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016 Elsevier Inc. All rights reserved.

Top