USDA-ARS?s Scientific Manuscript database
Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...
Radar, Insect Population Ecology, and Pest Management
NASA Technical Reports Server (NTRS)
Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)
1979-01-01
Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.
Strategies for Enhanced Crop Resistance to Insect Pests.
Douglas, Angela E
2018-04-29
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of vegetable crops grown commercially in Massachusetts. It contains general information on insects and specific descriptions of the major pests, their life cycles, and the damage they cause. The topics…
Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke
2015-01-01
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287
NASA Technical Reports Server (NTRS)
Polhemus, J. T.
1980-01-01
Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.
Double strand RNA delivery system for plant-sap-feeding insects
Ghosh, Saikat Kumar B.; Hunter, Wayne B.; Park, Alexis L.; Gundersen-Rindal, Dawn E.
2017-01-01
Double-stranded RNA (dsRNA)-mediated gene silencing, also known as RNA interference (RNAi), has been a breakthrough technology for functional genomic studies and represents a potential tool for the management of insect pests. Since the inception of RNAi numerous studies documented successful introduction of exogenously synthesized dsRNA or siRNA into an organism triggering highly efficient gene silencing through the degradation of endogenous RNA homologous to the presented siRNA. Managing hemipteran insect pests, especially Halyomorpha halys (Stål) (Heteroptera: Pentatomidae), the brown marmorated stink bug (BMSB), is critical to food productivity. BMSB was recently introduced into North America where it is both an invasive agricultural pest of high value specialty, row, and staple crops, as well as an indoor nuisance pest. RNAi technology may serve as a viable tool to manage this voracious pest, but delivery of dsRNA to piercing-sucking insects has posed a tremendous challenge. Effective and practical use of RNAi as molecular biopesticides for biocontrol of insects like BMSB in the environment requires that dsRNAs be delivered in vivo through ingestion. Therefore, the key challenge for molecular biologists in developing insect-specific molecular biopesticides is to find effective and reliable methods for practical delivery of stable dsRNAs such as through oral ingestion. Here demonstrated is a reliable delivery system of effective insect-specific dsRNAs through oral feeding through a new delivery system to induce a significant decrease in expression of targeted genes such as JHAMT and Vg. This state-of-the-art delivery method overcomes environmental delivery challenges so that RNAi is induced through insect-specific dsRNAs orally delivered to hemipteran and other insect pests. PMID:28182760
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.
Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.
Beck, John J; Vannette, Rachel L
2017-01-11
Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.
Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis
Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.
2010-01-01
Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763
ERIC Educational Resources Information Center
Gesell, Stanley G.; And Others
This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…
Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert
2012-04-01
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.
Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert
2012-01-01
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market. PMID:22280344
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.
Personal Insect Repellents and Minimum Risk Pesticides
An exempt pesticide product may not bear claims to control rodent, insect or microbial pests in a way that links the pests with specific disease. We are considering a proposal to remove personal mosquito and tick repellents from the minimum risk exemption.
Murad, André M; Noronha, Eliane F; Miller, Robert N G; Costa, Fabio T; Pereira, Caroline D; Mehta, Angela; Caldas, Ruy A; Franco, Octávio L
2008-12-01
Crop improvement in agriculture generally focuses on yield, seed quality and nutritional characteristics, as opposed to resistance to biotic stresses. Consequently, natural antifeedant toxins are often rare in seed material, with commercial crops being prone to insect pest predation. In the specific case of cowpea (Vigna unguiculata), smallholder cropping is affected by insect pests that reproduce inside the stored seeds. Entomopathogenic organisms can offer an alternative to conventional pesticides for pest control, producing hydrolases that degrade insect exoskeleton. In this study, protein secretions of the ascomycete Metarhizium anisopliae, which conferred bioinsecticidal activity against Callosobruchus maculatus, were characterized via 2D electrophoresis and mass spectrometry. Proteases, reductases and acetyltransferase enzymes were detected. These may be involved in degradation and nutrient uptake from dehydrated C. maculatus. Proteins identified in this work allowed description of metabolic pathways. Their potential applications in biotechnology include both novel compound development and production of genetically modified plants resistant to insect pests.
RNA interference: Applications and advances in insect toxicology and insect pest management.
Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan
2015-05-01
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.
7 CFR 319.8 - Notice of quarantine.
Code of Federal Regulations, 2013 CFR
2013-01-01
....), the flag smut disease (Urocystis tritici Koern.), and other injurious plant diseases and insect pests... United States of said plant diseases and insect pests, which are new to or not heretofore widely... specific cases, when the public interests will permit, authorize such importation under conditions...
7 CFR 319.8 - Notice of quarantine.
Code of Federal Regulations, 2012 CFR
2012-01-01
....), the flag smut disease (Urocystis tritici Koern.), and other injurious plant diseases and insect pests... United States of said plant diseases and insect pests, which are new to or not heretofore widely... specific cases, when the public interests will permit, authorize such importation under conditions...
7 CFR 319.8 - Notice of quarantine.
Code of Federal Regulations, 2011 CFR
2011-01-01
....), the flag smut disease (Urocystis tritici Koern.), and other injurious plant diseases and insect pests... United States of said plant diseases and insect pests, which are new to or not heretofore widely... specific cases, when the public interests will permit, authorize such importation under conditions...
Kaur, Rimaljeet; Kaur, Narinder; Gupta, Anil Kumar
2014-11-01
α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of kairomone in biological control of crop pests-A review
USDA-ARS?s Scientific Manuscript database
Kairomones are inter-specific semiochemicals which mediate interactions beneficial to organisms that detect them. The use of kairomones for biocontrol of insect pests has been of interest for several decades due to the fundamental importance of host-plant selection by phytophagous insects, as well a...
Iowa Commercial Pesticide Applicator Manual, Category 1B: Agricultural Insect Control.
ERIC Educational Resources Information Center
Stockdale, Harold J.; Ryan, Stephen O.
This guide provides basic information to meet specific standards for pesticide applicators. The text is concerned with the control of economic insect pests on field and forage crops, especially corn, soybeans, and alfalfa. Full color photographs of the more destructive pests are provided to aid in identification of problems. Precautions and…
PsOr1, a potential target for RNA interference-based pest management.
Zhao, Y Y; Liu, F; Yang, G; You, M S
2011-02-01
Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.
Handler, Alfred M; Beeman, Richard W
2003-01-01
USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.
Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz
2014-01-01
Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.
Pest management in Douglas-fir seed orchards: a microcomputer decision method
James B. Hoy; Michael I. Haverty
1988-01-01
The computer program described provides a Douglas-fir seed orchard manager (user) with a quantitative method for making insect pest management decisions on a desk-top computer. The decision system uses site-specific information such as estimates of seed crop size, insect attack rates, insecticide efficacy and application costs, weather, and crop value. At sites where...
Insect Pests Occurring on Dacryodes edulis (Burseraceae) in Rural Areas in Gabon.
Poligui, R N; Mouaragadja, I; Vandereycken, A; Haubruge, E; Francis, F
2014-08-01
The inventory of pests occurring on Dacryodes edulis (Burseraceae) was carried out in rural areas in Gabon during 2009 and 2010. Yellow traps and visual observations were used to record weekly pests during the tree flowering stage, in five villages. Catches from yellow traps rose to 7,296 and 1,722 insect pests in 2009 and 2010, respectively, whereas records from visual observations corresponded to 1,812 and 171 insect pests in 2009 and 2010, respectively. During both years, abundance from traps and visual monitoring was significantly different between sampling sites (p < 0.05). The difference in pests' diversity between sampling sites was not significant (p > 0.05) according to traps, but significant (p ≤ 0.04) according to visual observations in 2010. Mecocorynus loripes Chevrolat (Coleoptera: Cucurlionidae) attacked the stem of D. edulis, while Oligotrophus sp. (Diptera: Cecidomyiidae), Pseudophacopteron serrifer Malenovsky and Burckhardt (Hemiptera: Phacopteronidae), and Selenothrips rubrocinctus Giard (Thysanopera: Thripidae) attacked leaves. Pseudonoorda edulis Maes and Poligui (Lepidoptera: Crambidae) and Lobesia aeolopa Meyrick (Lepidoptera: Tortricidae) infested fruits and inflorescences, respectively. These insects are specifically linked to plant patterns, and their identification provided the first basic information for developing suitable strategies to control pests of D. edulis in Gabon, as well as in neighboring central African countries.
Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng
2017-12-01
Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
The application of secondary metabolites in the study of sorghum insect resistance
NASA Astrophysics Data System (ADS)
Chunming, Bai; Yifei, Liu; Xiaochun, Lu
2018-03-01
Insect attack is one of the main factors for limiting the production of rice and sorghum. To improve resistance to pests of rice and sorghum will be of great significance for meliorating their production and quality. However, the source and material of anti-pest was scarce. In this study, we will study on the expression patterns of hydrocyanic acid biosynthesis relative genes in sorghum firstly. And we will also genetically transform them into rice and sorghum by specific and constitutive promoters and verify their pest-resistant ability. Finally, high pest-resistant genetically modified new sorghum cultivars will be bred with favorable comprehensive agronomic traits.
Crowder, David W; Carrière, Yves
2009-12-07
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
Oral delivery of dsRNA by microbes: Beyond pest control.
Abrieux, Antoine; Chiu, Joanna C
2016-01-01
RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our "yeast biopesticide" showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.
Elzen, Gary W; Hardee, Dick D
2003-01-01
Insecticide resistance has developed within many classes of pesticide, and over 500 species of insects and mites are resistant to one or more insecticides. Insecticide resistance and the consequent losses of food and fiber caused by failure to control insect and mite pests causes economic losses of several billion dollars worldwide each year. It is the goal of insect resistance management (IRM) to preserve useful pesticides by slowing, preventing or reversing development of resistance in pests. Important aspects of this goal are understanding the development of resistance and monitoring to determine ways to prevent its development. We describe programs specific to missions of the US Department of Agriculture, Agricultural Research Service, which are designed to characterize insecticide resistance in insects and mites with the goal of managing pests in an ecologically acceptable manner. Resistance management of cotton, potatoes, vegetables, melons, ornamentals, greenhouse crops, corn, stored grains, livestock, honeybees and mites, as well as management of transgenic crops are evaluated. We conclude that IRM is a vital part of stewardship of any pest management product and must be a combined effort of manufacturers, growers, consultants, extension services and grower organizations, working closely with regulators, to achieve logistically and economically feasible systems that prolong the effectiveness of all pest-control products.
Spatial Distribution and Site-Specific Spraying of Main Sucking Pests of Elm Trees.
Karimzadeh, R; Iranipour, S
2017-06-01
Elm trees are important landscape trees and sucking insects weaken the elm trees and produce large amounts of honeydew. The main objectives of this study were to identify main honeydew-producing pests of elm trees and do site-specific spraying against these pests. To map the spatial distribution of the sucking pests in the large scale, the study area was divided into 40 × 40 m grids and one tree was chosen randomly from each grid (a total of 55 trees). These trees were sampled twice a year in 2011 and 2012. Each sample was a 30-cm branch terminal. Eight samples were taken from each tree in four cardinal directions and two canopy levels. The number of sucking insects and leaves of each sample were counted and recorded. Spatial analysis of the data was carried out using geostatistics. Kriging was used for producing prediction maps. Insecticide application was restricted to the regions with populations higher than threshold. To identify within-tree distribution of the honeydew-producing pests, six and four elm trees were chosen in 2011 and 2012 respectively, and sampled weekly. These trees were sampled as described previously. European elm scale (EES), Gossyparia spuria (Modeer) and two species of aphids were the dominant honeydew-producing pests. The results revealed that the effects of direction, canopy level and their interactions on insect populations were not statistically significant (P < 0.05). Site-specific spraying decreased the amount of insecticides used by ca. 20%, while satisfactory control of the sucking pests and honeydew excretion was obtained. Considering the environmental and economic benefits of site-specific spraying, it is worth doing more complementary works in this area.
Chirosurveillance: The use of native bats to detect invasive agricultural pests.
Maslo, Brooke; Valentin, Rafael; Leu, Karen; Kerwin, Kathleen; Hamilton, George C; Bevan, Amanda; Fefferman, Nina H; Fonseca, Dina M
2017-01-01
Invasive insect pests cost the agricultural industry billions of dollars annually in crop losses. Timely detection of pests is critical for management efficiency. Innovative pest detection strategies, such as environmental DNA (eDNA) techniques, combined with efficient predators, maximize sampling resolution across space and time and may improve surveillance. We tested the hypothesis that temperate insectivorous bats can be important sentinels of agricultural insect pest surveillance. Specifically, we used a new high-sensitivity molecular assay for invasive brown marmorated stink bugs (Halyomorpha halys) to examine the extent to which big brown bats (Eptesicus fuscus) detect agricultural pests in the landscape. We documented consistent seasonal predation of stink bugs by big brown bats. Importantly, bats detected brown marmorated stink bugs 3-4 weeks earlier than the current standard monitoring tool, blacklight traps, across all sites. We highlight here the previously unrecognized potential ecosystem service of bats as agents of pest surveillance (or chirosurveillance). Additional studies examining interactions between other bat and insect pest species, coupled with comparisons of detectability among various conventional monitoring methods, are needed to verify the patterns extracted from this study. Ultimately, robust economic analyses will be needed to assess the cost-effectiveness of chirosurveillance as a standard strategy for integrated pest management.
Towards the elements of successful insect Ribonucleic acid interference (RNAi)
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...
Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.
ERIC Educational Resources Information Center
Gesell, Stanley G.
This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…
Ghosh, Saikat Kumar B; Hunter, Wayne B; Park, Alexis L; Gundersen-Rindal, Dawn E
2018-05-04
Phloem and plant sap feeding insects invade the integrity of crops and fruits to retrieve nutrients, in the process damaging food crops. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. The brown marmorated stink bug (BMSB), Halyomorpha halys (Heteroptera: Pentatomidae) and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae) are hemipteran insect pests introduced in North America, where they are an invasive agricultural pest of high-value specialty, row, and staple crops and citrus fruits, as well as a nuisance pest when they aggregate indoors. Insecticide resistance in many species has led to the development of alternate methods of pest management strategies. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a gene silencing mechanism for functional genomic studies that has potential applications as a tool for the management of insect pests. Exogenously synthesized dsRNA or small interfering RNA (siRNA) can trigger highly efficient gene silencing through the degradation of endogenous RNA, which is homologous to that presented. Effective and environmental use of RNAi as molecular biopesticides for biocontrol of hemipteran insects requires the in vivo delivery of dsRNAs through feeding. Here we demonstrate methods for delivery of dsRNA to insects: loading of dsRNA into green beans by immersion, and absorbing of gene-specific dsRNA with oral delivery through ingestion. We have also outlined non-transgenic plant delivery approaches using foliar sprays, root drench, trunk injections as well as clay granules, all of which may be essential for sustained release of dsRNA. Efficient delivery by orally ingested dsRNA was confirmed as an effective dosage to induce a significant decrease in expression of targeted genes, such as juvenile hormone acid O-methyltransferase (JHAMT) and vitellogenin (Vg). These innovative methods represent strategies for delivery of dsRNA to use in crop protection and overcome environmental challenges for pest management.
Precision phenotyping of epicuticular waxes associated with insect resistance
USDA-ARS?s Scientific Manuscript database
Accurate phenotyping is imperative for linkage mapping and association genetics. Amounts and types of epicuticular waxes on the leaf surface are important for plant-insect interactions. In onion, specific wax profiles are associated with resistance to the insect pest Thrips tabaci. Epicuticular wax ...
biocontrol agents of agricultural insect pests and medically important insect vectors. More specifically, mermithid nematodes appear to regulate natural...Mermithids comprise a family of nematodes which invariably kill/sterilize their insect host(s). These nematodes have considerable potential as
Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke
2015-07-16
Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli alone did not. These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.
Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.
ERIC Educational Resources Information Center
Spackman, Everett W.; Lawson, Fred A.
This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)
Behavior-based control of insect crop pests
USDA-ARS?s Scientific Manuscript database
Manipulation of insect behaviour can provide the foundation for effective strategies for control of insect crop pests. A detailed understanding of life cycles and the behavioural repertoires of insect pests is essential for development of this approach. A variety of strategies have been developed ...
Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.
Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram
2014-12-01
Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.
ERIC Educational Resources Information Center
Stockdale, Harold J., Ed.; And Others
This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…
Bridging conventional and molecular genetics of sorghum insect resistance
USDA-ARS?s Scientific Manuscript database
Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide,...
7 CFR 319.75-9 - Inspection and phytosanitary certificate of inspection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... is free from injurious plant diseases, injurious insect pests, and other plant pests shall be... determining whether such article is free of injurious plant diseases, injurious insect pests, and other plant... determining whether such article is free from injurious plant diseases, or injurious insect pests, and other...
Cross Reference Index for Bioenvironmental Engineer and Military Public Health Offices
1992-03-01
Food Recall AFR 161-42 DOD Hazardous Food and Nonprescription Drug Recall System Insects and Mite Pests in Food AGR-HB-655 Insects and Mite Pests in Food...Solution, 11 Hazard Communication, 12 Hazardous Energy Control, 21, 22 Hazardous Food Recall Program, 9 Hazardous Waste, 11, 26 Hazardous Materials...34Institutional Meat Purchase Specification" NAMPS "National Association of Meat Purveyor’s" DPSC Support DOD 4155.6 Subsistence Inspection Manual Hazardous
USDA-ARS?s Scientific Manuscript database
An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...
Qpais: A Web-Based Expert System for Assistedidentification of Quarantine Stored Insect Pests
NASA Astrophysics Data System (ADS)
Huang, Han; Rajotte, Edwin G.; Li, Zhihong; Chen, Ke; Zhang, Shengfang
Stored insect pests can seriously depredate stored products causing worldwide economic losses. Pests enter countries traveling with transported goods. Inspection and Quarantine activities are essential to prevent the invasion and spread of pests. Identification of quarantine stored insect pests is an important component of the China's Inspection and Quarantine procedure, and it is necessary not only to identify whether the species captured is an invasive species, but determine control procedures for stored insect pests. With the development of information technologies, many expert systems that aid in the identification of agricultural pests have been developed. Expert systems for the identification of quarantine stored insect pests are rare and are mainly developed for stand-alone PCs. This paper describes the development of a web-based expert system for identification of quarantine stored insect pests as part of the China 11th Five-Year National Scientific and Technological Support Project (115 Project). Based on user needs, textual knowledge and images were gathered from the literature and expert interviews. ASP.NET, C# and SQL language were used to program the system. Improvement of identification efficiency and flexibility was achieved using a new inference method called characteristic-select-based spatial distance method. The expert system can assist identifying 150 species of quarantine stored insect pests and provide detailed information for each species. The expert system has also been evaluated using two steps: system testing and identification testing. With a 85% rate of correct identification and high efficiency, the system evaluation shows that this expert system can be used in identification work of quarantine stored insect pests.
Use of habitat odour by host-seeking insects.
Webster, Ben; Cardé, Ring T
2017-05-01
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.
Ikegawa, Yusuke; Himuro, Chihiro
2017-05-21
The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.
Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario
2013-01-01
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Improving mycoinsecticides for insect biological control.
Ortiz-Urquiza, Almudena; Luo, Zhibing; Keyhani, Nemat O
2015-02-01
The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.
Pest Cockroaches May Overcome Environmental Restriction Due to Anthropization.
Schapheer, Constanza; Sandoval, Gino; Villagra, Cristian A
2018-06-08
Our species have altered their surroundings since its early dispersion on Earth. Unfortunately, thanks to human-modified habitats, several pest organisms such as domiciliary insects have expanded their distributions. Moreover, pest-related microorganisms may also be aided by anthropization. Pest cockroaches are globally distributed and capable of carrying several diseases. We explored if urbanization may buffer environmental conditions allowing pest insects to expand their distribution. Specifically, we suggest that human settlements may generate suitable microhabitats for synanthropic cockroaches, helping them to survive and establish with disregard to overall climatic restrictions. To test this idea we studied the distribution of pest cockroaches spanning the length of Chilean territory. Chile, along its 4270 km length north to south extent, is a country offering a formidable sampling of Earth's climatic diversity accompanied by dense urbanizations. We studied entomological collections and spatially analyzed pest cockroach distribution found in Chile and discovered that synanthropic cockroach populations are consistently concentrated near most urban developed zones of the country and not limited by overall temperature. Furthermore, health-concern pest cockroach species were widely distributed in Chilean territory, found even in its most southern urban centers as well as Easter Island. Therefore, these disease vectors could exist even in isolated and extreme climatic zones as long as urbanization provides the adequate microhabitat. We discuss the need for further research in order to assess if these distributions can be extrapolated to the pathogenic strains these pest insects may be carrying as reported in other regions of the planet.
North Dakota Sunflower Insect Pest Survey, 2006-2008
USDA-ARS?s Scientific Manuscript database
The major insect pest species that cause economic losses to sunflower producers in North Dakota are banded sunflower moth (Cochylis hospes Walsingham), red sunflower seed weevil (Smicronyx fulvus Le Conte), and sunflower midge (Contarinia schulzi Gagne). New emerging insect pests include lygus bugs ...
Multiorganismal insects: diversity and function of resident microorganisms.
Douglas, Angela E
2015-01-07
All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
Multiorganismal Insects: Diversity and Function of Resident Microorganisms
Douglas, Angela E.
2015-01-01
All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109
Okonya, Joshua Sikhu; Mwanga, Robert Om; Syndikus, Katja; Kroschel, Jürgen
2014-01-01
Insect pests are among the most important constraints limiting sweetpotato (Ipomoea batatas) production in Africa. However, there is inadequate information about farmers' knowledge, perceptions and practices in the management of key insect pests. This has hindered development of effective pest management approaches for smallholder farmers. A standard questionnaire was used to interview individual sweetpotato farmers (n = 192) about their perception and management practices regarding insect pests in six major sweetpotato producing districts of Uganda. The majority (93%) of farmers perceived insect pests to be a very serious problem. With the exception of Masindi and Wakiso districts where the sweetpotato butterfly (Acraea acerata) was the number one constraint, sweetpotato weevils (Cylas puncticollis and C. brunneus) were ranked as the most important insect pests. Insecticide use in sweetpotato fields was very low being highest (28-38% of households) in districts where A. acerata infestation is the biggest problem. On average, 65% and 87% of the farmers took no action to control A. acerata and Cylas spp., respectively. Farmers were more conversant with the presence of and damage by A. acerata than of Cylas spp. as they thought that Cylas spp. root damage was brought about by a prolonged dry season. Different levels of field resistance (ability of a variety to tolerate damage) of sweetpotato landraces to A. acerata (eight landraces) and Cylas spp. (six landraces) were reported by farmers in all the six districts. This perceived level of resistance to insect damage by landraces needs to be investigated. To improve farmers' capabilities for sweetpotato insect pest management, it is crucial to train them in the basic knowledge of insect pest biology and control.
Forest Insect Pest Management and Forest Management in China: An Overview
NASA Astrophysics Data System (ADS)
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.
Forest insect pest management and forest management in China: an overview.
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.
Plant Tolerance: A Unique Approach to Control Hemipteran Pests.
Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam
2016-01-01
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.
Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose
2014-01-01
The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.
Ascochyta blight and insect pests of chickpeas in the Palouse
USDA-ARS?s Scientific Manuscript database
This newsletter article informs chickpea growers in the Palouse region about current disease and insect pest problems. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insect pests including loopers and armyworms were rampant. Appropriate management practices for t...
Plant Perception and Short-Term Responses to Phytophagous Insects and Mites.
Santamaria, M Estrella; Arnaiz, Ana; Gonzalez-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel
2018-05-03
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Fukutomi, Yuma; Kawakami, Yuji; Taniguchi, Masami; Saito, Akemi; Fukuda, Azumi; Yasueda, Hiroshi; Nakazawa, Takuya; Hasegawa, Maki; Nakamura, Hiroyuki; Akiyama, Kazuo
2012-01-01
Booklice (Liposcelis bostrichophila) are a common household insect pest distributed worldwide. Particularly in Japan, they infest 'tatami' mats and are the most frequently detected insect among all detectable insects, present at a frequency of about 90% in dust samples. Although it has been hypothesized that they are an important indoor allergen, studies on their allergenicity have been limited. To clarify the allergenicity of booklice and the cross-reactivity of this insect allergen with allergens of other insects, patients sensitized to booklice were identified from 185 Japanese adults with allergic asthma using skin tests and IgE-ELISA. IgE-inhibition analysis, immunoblotting and immunoblotting-inhibition analysis were performed using sera from these patients. Allergenic proteins contributing to specific sensitization to booklice were identified by two-dimensional electrophoresis and two-dimensional immunoblotting. The booklouse-specific IgE antibody was detected in sera from 41 patients (22% of studied patients). IgE inhibition analysis revealed that IgE reactivity to the booklouse allergen in the sera from one third of booklouse-sensitized patients was not inhibited by preincubation with extracts from any other environmental insects in this study. Immunoblotting identified a 26-kD protein from booklouse extract as the allergenic protein contributing to specific sensitization to booklice. The amino acid sequence of peptide fragments of this protein showed no homology to those of previously described allergenic proteins, indicating that this protein is a new allergen. Sensitization to booklice was relatively common and specific sensitization to this insect not related to insect panallergy was indicated in this population. Copyright © 2011 S. Karger AG, Basel.
The impact of Global Warming on global crop yields due to changes in pest pressure
NASA Astrophysics Data System (ADS)
Battisti, D. S.; Tewksbury, J. J.; Deutsch, C. A.
2011-12-01
A billion people currently lack reliable access to sufficient food and almost half of the calories feeding these people come from just three crops: rice, maize, wheat. Insect pests are among the largest factors affecting the yield of these three crops, but models assessing the effects of global warming on crops rarely consider changes in insect pest pressure on crop yields. We use well-established relationships between temperature and insect physiology to project climate-driven changes in pest pressure, defined as integrated population metabolism, for the three major crops. By the middle of this century, under most scenarios, insect pest pressure is projected to increase by more than 50% in temperate areas, while increases in tropical regions will be more modest. Yield relationships indicate that the largest increases in insect pest pressure are likely to occur in areas where yield is greatest, suggesting increased strain on global food markets.
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Zotti, M J; Smagghe, G
2015-06-01
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Miller, Douglass R.; Rung, Alessandra; Parikh, Grishma
2014-01-01
Abstract We provide a general overview of features and technical specifications of an online, interactive tool for the identification of scale insects of concern to the U.S.A. ports-of-entry. Full lists of terminal taxa included in the keys (of which there are four), a list of features used in them, and a discussion of the structure of the tool are provided. We also briefly discuss the advantages of interactive keys for the identification of potential scale insect pests. The interactive key is freely accessible on http://idtools.org/id/scales/index.php PMID:25152668
Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia
2012-01-01
Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.
Role of nanotechnology in agriculture with special reference to management of insect pests.
Rai, Mahendra; Ingle, Avinash
2012-04-01
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.
Bel, Yolanda; Sheets, Joel J; Tan, Sek Yee; Narva, Kenneth E; Escriche, Baltasar
2017-06-01
Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens ) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125 -iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. Copyright © 2017 Bel et al.
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
Framing the issues of resistance management in soybean
USDA-ARS?s Scientific Manuscript database
The soybean insect-pest complex consists of both long-established and new invasive pests. Management of these pests has been achieved by various means, but often relies heavily on the application of insecticides and the development of insect-resistant soybean varieties. Pest management practitione...
USDA-ARS?s Scientific Manuscript database
Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...
USDA-ARS?s Scientific Manuscript database
This presentation investigates an algorithm to fuse the Normalized Difference Vegetation Index (NDVI) with LiDAR elevation data to produce a map useful for the site-specific scouting and pest management (Willers et al. 1999; 2005; 2009) of the cotton insect pests, the tarnished plant bug (Lygus lin...
Nonmarket Economic Impacts of Forest Insect Pests: A Literature Review
Randall S. Rosenberger; Eric L. Smith
1997-01-01
This report summarizes the results of research on the nonmarket economic impacts of forest insect pests. The majority of the research reports are journal articles or fulfillment of three USDA Forest Service research contracts. This report also reviews the foundations for methodologies used and classifies the forest insect pests studied, the regions in which research...
USDA-ARS?s Scientific Manuscript database
Cowpea crops are widely cultivated and a major nutritional source of protein for indigenous human populations in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include Anoplocnemis curvipes, Aphis craccivora, Cl...
Improving detection probabilities for pests in stored grain.
Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant
2010-12-01
The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.
Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto
2017-12-01
Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Towards the elements of successful insect RNAi.
Scott, Jeffrey G; Michel, Kristin; Bartholomay, Lyric C; Siegfried, Blair D; Hunter, Wayne B; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E
2013-12-01
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Insect Control (1): Use of Pheromones
ERIC Educational Resources Information Center
Marx, Jean L.
1973-01-01
Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)
Coconut leaf bioactivity toward generalist maize insect pests
USDA-ARS?s Scientific Manuscript database
Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...
Srinivasa Rao, M.; Venkateswarlu, B.
2012-01-01
Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569
Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A; Mansoor, Shahid
2016-10-06
The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests.
Furlan, Lorenzo; Kreutzweiser, David
2015-01-01
Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.
Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii
USDA-ARS?s Scientific Manuscript database
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...
Gene-for-gene disease resistance: bridging insect pest and pathogen defense.
Kaloshian, Isgouhi
2004-12-01
Active plant defense, also known as gene-for-gene resistance, is triggered when a plant resistance (R) gene recognizes the intrusion of a specific insect pest or pathogen. Activation of plant defense includes an array of physiological and transcriptional reprogramming. During the past decade, a large number of plant R genes that confer resistance to diverse group of pathogens have been cloned from a number of plant species. Based on predicted protein structures, these genes are classified into a small number of groups, indicating that structurally related R genes recognize phylogenetically distinct pathogens. An extreme example is the tomato Mi-1 gene, which confers resistance to potato aphid (Macrosiphum euphorbiae), whitefly (Bemisia tabaci), and root-knot nematodes (Meloidogyne spp.). While Mi-1 remains the only cloned insect R gene, there is evidence that gene-for-gene type of plant defense against piercing-sucking insects exists in a number of plant species.
Insects, Food, and Hunger: The Paradox of Plenty for U.S. Entomology, 1920-1970.
ERIC Educational Resources Information Center
Perkins, John H.
1983-01-01
Explores the relationship between invention/innovation in pest control practices, food supply, and hunger in the United States from 1920-1970. Includes discussions of the nature, development, and use of insecticides, control of specific pests, and public arguments over the safety of residues leading to search for nonchemical methods of control.…
Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter
USDA-ARS?s Scientific Manuscript database
Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...
Exotic Forest Insect Pests and Their Impact on Forest Management
Therese M. Poland; Robert A. Haack
2003-01-01
More than 4500 exotic organisms are now established in the United States, of which over 400 are insects that feed on trees and shrubs. While most exotic insects cause little or no damage, a few have become serious pests and have greatly altered native forest ecosystems. Three of the most recently introduced exotic forest pests are the pine shoot beetle, the Asian...
Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor
2015-09-03
Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.
Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H
2016-12-23
Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.
Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.
Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda
2016-09-19
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.
Plant Tolerance: A Unique Approach to Control Hemipteran Pests
Koch, Kyle G.; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam
2016-01-01
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest’s physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented. PMID:27679643
NASA Technical Reports Server (NTRS)
Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent
2007-01-01
The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.
Predictive models of moth development
USDA-ARS?s Scientific Manuscript database
Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...
Knipling, E F
1976-01-01
Insects produce pheromones as a chemical communication system to facilitate reproduction. These highly active chemical attractants have been synthesized for some of the most important insect pests, including the boll weevil, gypsy moth, codling moth, tobacco budworm, European corn borer, and several bark beetles. While none of the synthetic sex attractants have yet been developed for use in insect control, they offer opportunities for the future both as control agents and to greatly improved insect detection. Investigations are underway on insect trapping systems employing the phermones and on air permeation techniques to disrupt insect reproduction. The pheromones are generally highly species-specific and are not likely to pose hazards to nontarget organisms in the environment. Toxicological studies indicate that they are low in toxicity to mammals, birds, and fish, but adequate toxicological data are necessary before they can be registered for use in insect control. Another new class of compounds called kaironomes has been discovered. These chemicals are involved in the detection of hosts or prey by insect parasites and predators. Kairomones may prove useful in manipulating natural or released biological agents for more effective biological control of insect pests. No information is yet available on the toxicology of these chemicals. PMID:789061
Harnessing insect-microbe chemical communications to control insect pest of agricultural systems
USDA-ARS?s Scientific Manuscript database
Insect pests have long been known to impose serious yield, economic, and food safety problems to managed crops worldwide, and are known to vector microbes, many of which are pathogenic or toxigenic. At the heart of many of these studies has been the vital understanding of the plant-insect interactio...
Insect pest management decisions in food processing facilities
USDA-ARS?s Scientific Manuscript database
Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...
Effects of effluent water on the abundance of cowpea insect pests.
Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad
2017-10-03
Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.
Gillet, François-Xavier; Garcia, Rayssa A.; Macedo, Leonardo L. P.; Albuquerque, Erika V. S.; Silva, Maria C. M.; Grossi-de-Sa, Maria F.
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests. PMID:28503153
Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.
Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S
2015-07-27
Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.
USDA-ARS?s Scientific Manuscript database
The navel orangeworm is the primary insect pest of almonds in California, and egg traps are the primary means of monitoring this pest. A previous study found that the current use of 2-4 traps per block usually is not sufficient to provide management information specifically for that block. In this s...
Climate Change and Insect Pests: Resistance Is Not Futile?
Johnson, Scott N; Züst, Tobias
2018-05-01
Chemical signals produced by plants when attacked by herbivores play a crucial role in efficient plant defence. A recent study suggests that herbivore-specific R-gene resistance may be enhanced by elevated atmospheric CO 2 concentrations. Understanding how climate change affects plant resistance to herbivorous pests could be essential for future food security. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Guide to Major Insects, Diseases, Air Pollution, Injury, and Chemical Injury of Sycamore
J.D. Solomon; A. Dan Wilson; N.M. Schiff
1999-01-01
This booklet will help nurserymen, forest woodland managers, pest control operators, and homeowners to identify and control pest problems on sycamore trees. The major insect and disease pests of sycamores in the Eastern United Stats are emphasized. Descriptions and illustrations of the pests and the damage they cause are provided to aid in identification. Brief notes...
Iowa Commercial Pesticide Applicator Manual, Category 4: Seed Treatment. CS-16.
ERIC Educational Resources Information Center
Epstein, Abraham H.; And Others
This manual provides information needed to meet specific standards for certification as a pesticide applicator. The text is concerned with the storage insects, soil insects and fungi which are the major kinds of seed pests. Chemical and nonchemical control measures and the labeling and coloring requirements for treated seed are also discussed.…
2009 Sunflower Insect Pest Problems and Insecticide Update
USDA-ARS?s Scientific Manuscript database
Sunflowers (Helianthus annuus L.) are native to North America and a number of insect pests cause economic losses to sunflower production. Head-infesting insects include the red sunflower seed weevil, Smicronyx fulvus LeConte, banded sunflower moth, Cochylis hospes Walsingham, sunflower moth, Homoeos...
Insect cadaver applications: pros and cons
USDA-ARS?s Scientific Manuscript database
Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...
Practical applications of insects' sexual development for pest control.
Koukidou, M; Alphey, L
2014-01-01
Elucidation of the sex differentiation pathway in insects offers an opportunity to understand key aspects of evolutionary developmental biology. In addition, it provides the understanding necessary to manipulate insects in order to develop new synthetic genetics-based tools for the control of pest insects. Considerable progress has been made in this, especially in improvements to the sterile insect technique (SIT). Large scale sex separation is considered highly desirable or essential for most SIT targets. This separation can be provided by genetic methods based on sex-specific gene expression. Investigation of sex determination by many groups has provided molecular components and methods for this. Though the primary sex determination signal varies considerably, key regulatory genes and mechanisms remain surprisingly similar. In most cases studied so far, a primary signal is transmitted to a basal gene at the bottom of the hierarchy (dsx) through an alternative splicing cascade; dsx is itself differentially spliced in males and females. A sex-specific alternative splicing system therefore offers an attractive route to achieve female-specific expression. Experience has shown that alternative splicing modules can be developed with cross-species function; modularity and standardisation and re-use of parts are key principles of synthetic biology. Both female-killing and sex reversal (XX females to phenotypic males) can in principle also be used as efficient alternatives to sterilisation in SIT-like methods. Sexual maturity is yet another area where understanding of sexual development may be applied to insect control programmes. Further detailed understanding of this crucial aspect of insect biology will undoubtedly continue to underpin innovative practical applications. © 2014 S. Karger AG, Basel.
Companion and refuge plants to control insect pests
USDA-ARS?s Scientific Manuscript database
Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...
Agricultural Plant Pest Control. Manual 93.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…
Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk
2015-09-01
As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.
Area-wide control of insects with screwworm as an example
USDA-ARS?s Scientific Manuscript database
Screwworms, Cochliomyia hominivorax (Coquerel), are devastating pests of warm blooded animals. They have been eradicated from continental North America using the sterile insect technique (SIT). Proper implementation of SIT is an example of the requirements of area-wide control of insect pests. Area-...
Roles of insect midgut cadherin in Bt intoxication and resistance
USDA-ARS?s Scientific Manuscript database
Genetically engineered crops producing Bacillus thuringiensis (Bt) proteins for insect control target major insect pests. Bt crops have improved yield and reduced risks associated with conventional insecticides; however, the evolution of resistance to Bt toxins by target pests threatens the long-ter...
Schoelitsz, Bruce; Poortvliet, P Marijn; Takken, Willem
2018-06-01
The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the relationships between personal factors and information-seeking behaviour. We combined IPM and RISP to determine important relationships between factors driving insect tolerance levels and information-seeking behaviour through an online survey and tested whether this model is valid and generally applicable. Relationships between variables from both IPM and RISP models were tested for seven insect species. Tolerance levels were measured with two factors: willingness to pay for pest control and whether insects are tolerated. Willingness to pay for control was positively affected by age, experience, risk perception, insect characteristics, and negative emotions and affected behavioural intention, by influencing information sufficiency and information-seeking behaviour. Tolerability was influenced by perception of insect characteristics and determines whether control measures are taken. It was possible to combine the RISP and IPM models. Relevant driving factors were a person's age, experience, risk perception, negative affective responses, tolerance levels, relevant channel beliefs about online forums, information sufficiency and information-seeking behaviour. There was, however, variation in important factors between different insects. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Optimizing pyramided transgenic Bt crops for sustainable pest management.
Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E
2015-02-01
Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.
USDA-ARS?s Scientific Manuscript database
In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. ...
Plant tolerance: A unique approach to control hemipteran pests
USDA-ARS?s Scientific Manuscript database
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through g...
USDA-ARS?s Scientific Manuscript database
Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... program, including, but not limited to: (i) Measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) Measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
Pest protection conferred by A Beta vulgaris serine proteinase inhibitor gene
USDA-ARS?s Scientific Manuscript database
Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Indep...
Gene disruption technologies have the potential to transform stored product insect pest control
USDA-ARS?s Scientific Manuscript database
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...
Automated pattern analysis: A newsilent partner in insect acoustic detection studies
USDA-ARS?s Scientific Manuscript database
This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...
NASA Astrophysics Data System (ADS)
Blasius, Bernd
2014-09-01
Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.
Strategic and tactical use of movement information in pest management
NASA Technical Reports Server (NTRS)
Knipling, E. F.
1979-01-01
Several insect movement problems are discussed. Much more information is needed to make a better appraisal of the practical significance of the insect dispersal problem. Data on the time, rate, and extent of movement of insects are provided. Better techniques for measuring insect movement are developed. A better understanding of the importance of insect movement in the development and implementation of more effective and ecologically acceptable pest management strategies and tactics was proved.
ERIC Educational Resources Information Center
Epstein, Abraham H.; And Others
This manual provides information needed to meet specific standards for certification as a pesticide applicator. The major weed and insect pests of fruits and vegetables are pictured and discussed. Suggested methods for control by utilizing herbicides and pesticides are presented with attention given to safety considerations for both humans and the…
Jose F. Negron
2011-01-01
RMRS research on insect pests focuses mostly on conifer pests. There is a long history of invasive insects causing significant impacts, mortality, and changes in forest ecosystem structure in North America. Perhaps the most evident example is the introduction of the gypsy moth, Lymantria dispar, into eastern North America in the 1860s (Forbush and Frenald 1896)....
Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins
Lucena, Wagner A.; Pelegrini, Patrícia B.; Martins-de-Sa, Diogo; Fonseca, Fernando C. A.; Gomes, Jose E.; de Macedo, Leonardo L. P.; da Silva, Maria Cristina M.; Oliveira, Raquel S.; Grossi-de-Sa, Maria F.
2014-01-01
Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity. PMID:25123558
Senthilraja, Govindasamy; Anand, Theerthagiri; Mohankumar, Subbarayalu; Raguchander, Thiruvengadam; Samiyappan, Ramasamy
2018-03-01
Beauveria bassiana is a broad spectrum microbial bioagent used for the control of agriculturally important insect pests. However, in our experiments, two virulent isolates of B. bassiana (B2 and B10) showed specific preference toward Maruca vitrata and Helicoverpa armigera of pigeonpea. To better understand this feature, we developed a qPCR assay to quantify the chitinase (virulence factor) of B. bassiana during the infection process. Isolates of B. bassiana were grown on insect cuticle amended medium and minimal medium (without insect cuticle) to assess the induction of chitinase. Our results revealed a positive correlation between expression of chitinase by B. bassiana and the substrates (with or without cuticles of M. vitrata and H. armigera) used. This study showcases the methodology to quantify the chitinase and analysis of variation in virulence of B. bassiana (B2 and B10) against M. vitrata and H. armigera. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protection of shortleaf pine from insects and disease
F. H. Tainter
1986-01-01
All major and potentially serious insect and disease pests of shortleaf pine are briefly presented and discussed. Major emphasis of discussion is that losses can be minimized by selection and application of appropriate pest management systems. With some pests, integrated control can be supplemented with and economic analysis to further assist selection of management...
Agricultural Plant Pest Control. Bulletin 763.
ERIC Educational Resources Information Center
French, John C.; And Others
This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…
USDA-ARS?s Scientific Manuscript database
Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...
Evaluating mustard and arugula volatiles and refuge plants for sustainable control of insect pests
USDA-ARS?s Scientific Manuscript database
Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arugu...
Ornamental and Turf Pest Control. Bulletin 764.
ERIC Educational Resources Information Center
Bowyer, Timothy H.; And Others
This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…
Landscape changes have greater effects than climate changes on six insect pests in China.
Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng
2016-06-01
In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.
Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?
Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique
2017-01-01
Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
Toxins for Transgenic Resistance to Hemipteran Pests
Chougule, Nanasaheb P.; Bonning, Bryony C.
2012-01-01
The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455
Insects of whitebark pine with emphasis on mountain pine beetle
Dale L. Bartos; Kenneth E. Gibson
1990-01-01
Few insects that live on whitebark pine (Pinus albicaulis) are considered pests or potential pests. Those that inhabit cones can cause reductions in reproduction of the tree by destroying seed crops. Decreases in food for animals ranging from squirrels to grizzly bears may also result. A single insect species, mountain pine beetle (Dendroctonus...
USDA-ARS?s Scientific Manuscript database
Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...
Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis)
Chaoyang Zhao; Miguel A. Alvarez Gonzales; Therese M. Poland; Omprakash Mittapalli
2015-01-01
The RNA interference (RNAi) technology has been widely used in insect functional genomics research and provides an alternative approach for insect pest management. To understand whether the emerald ash borer (Agrilus planipennis), an invasive and destructive coleopteran insect pest of ash tree (Fraxinus spp.), possesses a strong...
[Effect of transgenic insect-resistant rice on biodiversity].
Zhang, Lei; Zhu, Zhen
2011-05-01
Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.
Phylogeny of economically important insect pests that infesting several crops species in Malaysia
NASA Astrophysics Data System (ADS)
Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah
2014-09-01
This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.
Microbial management of arthropod pests of tea: current state and prospects.
Roy, Somnath; Muraleedharan, Narayanannair
2014-06-01
Sustainable tea cultivation will rely increasingly on alternatives to conventional chemical insecticides for pest management that are environment-friendly and reduce the amount of pesticide residues in made tea. Entomopathogens can provide effective control, conserve biodiversity, and serve as alternatives to chemical insecticides under several conditions. Due to their specificity for insects, these pathogens including viruses, bacteria, and fungi are ideal candidates for incorporation in the integrated pest management strategies for tea where their effects on other natural enemies will be minimal. Biological and ecological characteristics of several dominant natural entomopathogenic microorganisms have been well documented throughout the tea-growing countries particularly China, Japan, and India. But research to convert them to microbial insecticide formulations for tea pest control by evolving suitable techniques for production, standardization, formulation, and application has not progressed well except in Japan and China to some extent. Increased use of microbial control will depend on a variety of factors including improvements in the pathogens' virulence, formulation, delivery, etc. and an increased awareness of their attributes by growers and the general public. In this review, we provide an overview of microbial control of the key insect pests of tea and also the scope for future studies for their better utilization.
Weather-based pest forecasting for efficient crop protection
Rabiu Olatinwo; Gerrit Hoogenboom
2014-01-01
Although insects, pathogens, mites, nematodes, weeds, vertebrates, and arthropods are different in many ways, they are regarded as pests. They are a major constraint to crop productivity and profitability around the world caused by direct and indirect damage to valuable crops. Insect pests, pathogens, and weeds account for an estimated 45% of pre- and post-harvest...
Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2018-05-31
To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.
NASA Astrophysics Data System (ADS)
Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.
2016-08-01
Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.
Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K
2014-05-01
Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.
Chang, Hao-Xun; Hartman, Glen L.
2017-01-01
Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs) to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA), have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB), potato leafhopper (PLH), SBA, soybean looper (SBL), velvetbean caterpillar (VBC), and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP) polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects. PMID:28555141
E.T. Nebeker; Theodor D. Leininger; J.S. Meadows
1998-01-01
Abstract - The relationship between stand modification and pest organisms (insects and diseases) has been noted in general with few specific studies to evaluate this relationship in the southern hardwoods. As a prerequisite to making the best improvement cut prescription, it is essential to have a perspective on thinning impacts that at present can...
Benelli, Giovanni
2015-07-01
Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions). © 2015 Society of Chemical Industry.
A Floral Fragrance, Methyl Benzoate, is An Efficient Green Pesticide
NASA Astrophysics Data System (ADS)
Feng, Yan; Zhang, Aijun
2017-02-01
Over-reliance on synthetic pesticides in insect pest control has caused widespread public and scientific concerns for human health and the environment, especially since many insect pests have already developed resistances to conventional pesticides and Bt products. For this reason, there is a considerable interest in development of alternative control methods for insect pest management. Based on laboratory studies, we report that methyl benzoate (MB), a naturally-occurring compound in many plants, may possess toxicity against various stages of a variety of insect pests, including the brown marmorated stinkbug, Halyomorpha halys, diamondback moth, Plutella xylostella, and tobacco hornworm, Manduca sexta, as well as the spotted wing drosophila, Drosophila suzukii. Based on our laboratory toxicity data, MB was at least 5 to 20 times more toxic than the conventional pyrethroid (β-cyfluthrin), sulfur & pyrethrin mixture, and some organic commercial products available on the market against H. halys, P. xylostella, and M. sexta, eggs. Because MB is considered an environment-friendly, it has great potential to be used as an alternative tool to synthetic pesticide for insect pest management in crop production, thereby, reducing threats to natural ecosystems and human health caused by over-application of conventional synthetic pesticides.
Poortvliet, P Marijn; Takken, Willem
2018-01-01
Abstract BACKGROUND The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the relationships between personal factors and information‐seeking behaviour. We combined IPM and RISP to determine important relationships between factors driving insect tolerance levels and information‐seeking behaviour through an online survey and tested whether this model is valid and generally applicable. RESULTS Relationships between variables from both IPM and RISP models were tested for seven insect species. Tolerance levels were measured with two factors: willingness to pay for pest control and whether insects are tolerated. Willingness to pay for control was positively affected by age, experience, risk perception, insect characteristics, and negative emotions and affected behavioural intention, by influencing information sufficiency and information‐seeking behaviour. Tolerability was influenced by perception of insect characteristics and determines whether control measures are taken. CONCLUSION It was possible to combine the RISP and IPM models. Relevant driving factors were a person's age, experience, risk perception, negative affective responses, tolerance levels, relevant channel beliefs about online forums, information sufficiency and information‐seeking behaviour. There was, however, variation in important factors between different insects. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29274106
OfftargetFinder: a web tool for species-specific RNAi design.
Good, R T; Varghese, T; Golz, J F; Russell, D A; Papanicolaou, A; Edwards, O; Robin, C
2016-04-15
RNA interference (RNAi) technology is being developed as a weapon for pest insect control. To maximize the specificity that such an approach affords we have developed a bioinformatic web tool that searches the ever-growing arthropod transcriptome databases so that pest-specific RNAi sequences can be identified. This will help technology developers finesse the design of RNAi sequences and suggests which non-target species should be assessed in the risk assessment process. http://rnai.specifly.org crobin@unimelb.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Papanicolaou, Alexie; Schetelig, Marc F; Arensburger, Peter; Atkinson, Peter W; Benoit, Joshua B; Bourtzis, Kostas; Castañera, Pedro; Cavanaugh, John P; Chao, Hsu; Childers, Christopher; Curril, Ingrid; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Dugan, Shannon; Friedrich, Markus; Gasperi, Giuliano; Geib, Scott; Georgakilas, Georgios; Gibbs, Richard A; Giers, Sarah D; Gomulski, Ludvik M; González-Guzmán, Miguel; Guillem-Amat, Ana; Han, Yi; Hatzigeorgiou, Artemis G; Hernández-Crespo, Pedro; Hughes, Daniel S T; Jones, Jeffery W; Karagkouni, Dimitra; Koskinioti, Panagiota; Lee, Sandra L; Malacrida, Anna R; Manni, Mosè; Mathiopoulos, Kostas; Meccariello, Angela; Munoz-Torres, Monica; Murali, Shwetha C; Murphy, Terence D; Muzny, Donna M; Oberhofer, Georg; Ortego, Félix; Paraskevopoulou, Maria D; Poelchau, Monica; Qu, Jiaxin; Reczko, Martin; Robertson, Hugh M; Rosendale, Andrew J; Rosselot, Andrew E; Saccone, Giuseppe; Salvemini, Marco; Savini, Grazia; Schreiner, Patrick; Scolari, Francesca; Siciliano, Paolo; Sim, Sheina B; Tsiamis, George; Ureña, Enric; Vlachos, Ioannis S; Werren, John H; Wimmer, Ernst A; Worley, Kim C; Zacharopoulou, Antigone; Richards, Stephen; Handler, Alfred M
2016-09-22
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.
Chattopadhyay, Pritam; Banerjee, Goutam; Mukherjee, Sayantan
2017-05-01
Food security and safety are the major concern in ever expanding human population on the planet earth. Each and every year insect pests cause a serious damage in agricultural field that cost billions of dollars annually to farmers. The loss in term of productivity and high cost of chemical pesticides enhance the production cost. Irrespective use of chemical pesticides (such as Benzene hexachloride, Endosulfan, Aldicarb, and Fenobucarb) in agricultural field raised several types of environmental issues. Furthermore, continuous use of chemical pesticides creates a selective pressure which helps in emerging of resistance pest. These excess chemical pesticide residues also contaminate the environment including the soil and water. Therefore, the biological control of insect pest in the agricultural field gains more importance due to food safety and environment friendly nature. In this regard, bacterial insecticides offer better alternative to chemical pesticides. It not only helps to establish food security through fighting against insect pests but also ensure the food safety. In this review, we have categorized insect pests and the corresponding bacterial insecticides, and critically analyzed the importance and mode of action of bacterial pesticides. We also have summarized the use of biopesticides in integrated pest management system. We have tried to focus the future research area in this field for the upcoming scientists.
ERIC Educational Resources Information Center
Schuder, Donald L.
This guide presents information on controlling insect pests of ornamental trees and shrubs. It is organized for easy reference by nurserymen, arborists, and others desirous of controlling insect damage. General information given includes notes on spraying and sprayers, insecticides, general purpose sprays, phytotoxicity, and health precautions.…
Biology and Control of Insect and Related Pests of Livestock in Wyoming. MP-23.
ERIC Educational Resources Information Center
Lloyd, John E.
This document provides information that a potential insecticide applicator can utilize to safely and effectively control insects and related pests of livestock. The first section of the manual discusses the general methods of preparation and application of insecticides. The second section concerns itself with the recognition of insect problems,…
USDA-ARS?s Scientific Manuscript database
Phloem and plant sap feeding insect pests invade the integrity of crops and fruits to retrieve nutrients in the process damaging food productivity. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. Halyomorpha hal...
ERIC Educational Resources Information Center
Gentile, A. G.; Scanlon, D. T.
This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of floricultural crops grown commercially in glass and plastic houses in Massachusetts. The publication consists of two sections. The first section presents a description of the major pests of…
Sycamore Pests: A Guide to Major Insects, Diseases, and Air Pollution
T. H. Filer; J. D. Solomon; F. I. McCracken; F. L. Oliveria; R. Lewis; M. J. Weiss; T. J. Rogers
1977-01-01
This booklet will help nurserymen, forest woodland managers and homeowners to identify and control pest problems. Major insects and diseases are illustrated. Brief mention is made of other pests of local or sporadic concern. A list of registered chemical controls is included. This list is subject to change as new chemicals are approved. Revisions will be made available...
USDA-ARS?s Scientific Manuscript database
Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...
Rapid evolution in insect pests: the importance of space and time in population genomics studies.
Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D
2018-04-01
Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.
Richards, Elaine H; Wontner-Smith, Tim; Bradish, Hannah; Dani, M Paulina; Cotterill, Jane V
2015-09-01
The objective was to develop an environmentally favourable microcapsule suitable for delivery of proteinaceous bioactive agents ('bioinsecticides') to pest insects. Utilising feeding bioassays, we determined that microspheres made of alginate can be produced in a variety of sizes and are palatable and non-toxic to larvae of the lepidopteran pest Lacanobia oleracea. Dehydrated microspheres were also readily ingested by larvae. Using a novel feeding bioassay and alginate microspheres containing a fluorescent marker material (coumarin 7 encapsulated in styrene maleic anhydride beads), we determined that the microspheres successfully deliver the marker to the insect gut. Moreover, the alginate microspheres rapidly break down in the alkaline conditions of the insect gut and release their contents, the beads passing through the gut in 2-3 h. Using bovine serum albumin as a test protein and western blotting, it was determined that alginate can successfully encapsulate protein, and that the microspheres can be stored in a CaCl2 solution for up to 24 days without extensive leakage. Importantly, it was also determined that alginate and the microsphere-making procedure developed do not inactivate rVPr1 (an insect immunosuppressive protein and potential bioinsecticide). An alginate-based microsphere has potential to deliver the proteinaceous bioactive rVPr1 to pest insects. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceja-Navarro, Javier
2015-05-06
Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.
Ceja-Navarro, Javier
2018-01-16
Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.
Chardonnet, Floriane; Capdevielle-Dulac, Claire; Chouquet, Bastien; Joly, Nicolas; Harry, Myriam; Le Ru, Bruno; Silvain, Jean-François; Kaiser, Laure
2014-10-01
The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management. © 2014. Published by The Company of Biologists Ltd.
Insects of the Luquillo Mountains, Puerto Rico. Forest Service general technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, J.A.
1994-07-01
In this review of the literature on forest entomology in Puerto Rico, emphasis is given to research conducted in the Luquillo Experimental Forest (LEF). This review should serve as an introduction to the insects inhabiting the LEF for researchers and as a guide for the identification of possible insect pests. There are three sections to this review. The first deals with basic insect ecology; the second, forest insect pests; and the third, insect attacks on dry wood and during wood seasoning. The reference section and appendices contain information on the systematics and taxonomy of different insect orders found in Puertomore » Rico.« less
1978 Insect Pest Management Guide: Home, Yard, and Garden. Circular 900.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This publication lists certain insecticides to control insect pests of food, fabrics, structures, man and animals, lawns, shrubs, trees, flowers and vegetables. Suggestions are given for selection, dosage and application of insecticides to combat infestation. (CS)
Code of Federal Regulations, 2010 CFR
2010-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Integrated Insect Control May Alter Pesticide Use Pattern
ERIC Educational Resources Information Center
Worthy, Ward
1973-01-01
Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)
da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima
2013-09-20
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen
2010-09-06
Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Fiuza, Lidia Mariana
2014-01-01
The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans. PMID:24575310
Hamshou, Mohamad; Van Damme, Els J M; Caccia, Silvia; Cappelle, Kaat; Vandenborre, Gianni; Ghesquière, Bart; Gevaert, Kris; Smagghe, Guy
2013-03-01
Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 μM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 μM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the physiological effects of RSA. Copyright © 2012 Elsevier Ltd. All rights reserved.
J.D. Podgwaite; H.M. Mazzone
1981-01-01
Biological control, one component of integrated pest management, encompasses the use of several types of biological agents to control insect pest populations. Of these biological control agents, the insect viruses appear to offer one logical alternative to the chemical insecticides. One such virus, the nucleopolyhedrosis virus of the gypsy moth, Lymantria...
Can Prunus serotina be genetically engineered for reproductive sterility and insect pest resistance?
Ying Wang; Paula M. Pijut
2014-01-01
Black cherry (Prunus serotina) is a valuable hardwood timber species, and its value highly depends on the wood quality which is often threatened by insect pests. Transgenic black cherry plants that are more resistant to cambial-mining insects may reduce the occurrence of gummosis and have great economic benefits to landowners and the forest products...
B. M. Tkacz; H. H. Burdsall; G. A. DeNitto; A. Eglitis; J. B. Hanson; J. T. Kliejunas; W. E. Wallner; J. G. O`Brien; E. L. Smith
1998-01-01
The unmitigated pest risk potential for the importation of Pinus and Abies logs from all states of Mexico into the United States was assessed by estimating the probability and consequences of establishment of representative insects and pathogens of concern. Twenty-two individual pest risk assessments were prepared for Pinus logs, twelve dealing with insects and ten...
John T. Kliejunas; Harold H. Burdsall; Gregg A. DeNitto; Andris Eglitis; Dennis A. Haugen; William E. Wallner
2001-01-01
In this report, we assess the unmitigated pest risk potential of importing Eucalyptus logs and chips from South America into the United States. To do this, we estimated the likelihood and consequences of introducing representative insects and pathogens of concern. Nineteen individual pest risk assessments were prepared, eleven dealing with insects and eight with...
Summary Factsheets for Pesticide Permittees
Summaries of the 2016 Pesticide General Permit (PGP) requirements and provisions covering mosquito and other flying insect pest control; weed and algae pest control; animal pest control; and forest canopy pest control.
Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei
2015-05-01
Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth. Copyright © 2015 Elsevier Inc. All rights reserved.
Seirin Lee, S; Baker, R E; Gaffney, E A; White, S M
2013-08-21
The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A novel approach to evaluation of pest insect abundance in the presence of noise.
Embleton, Nina; Petrovskaya, Natalia
2014-03-01
Evaluation of pest abundance is an important task of integrated pest management. It has recently been shown that evaluation of pest population size from discrete sampling data can be done by using the ideas of numerical integration. Numerical integration of the pest population density function is a computational technique that readily gives us an estimate of the pest population size, where the accuracy of the estimate depends on the number of traps installed in the agricultural field to collect the data. However, in a standard mathematical problem of numerical integration, it is assumed that the data are precise, so that the random error is zero when the data are collected. This assumption does not hold in ecological applications. An inherent random error is often present in field measurements, and therefore it may strongly affect the accuracy of evaluation. In our paper, we offer a novel approach to evaluate the pest insect population size under the assumption that the data about the pest population include a random error. The evaluation is not based on statistical methods but is done using a spatially discrete method of numerical integration where the data obtained by trapping as in pest insect monitoring are converted to values of the population density. It will be discussed in the paper how the accuracy of evaluation differs from the case where the same evaluation method is employed to handle precise data. We also consider how the accuracy of the pest insect abundance evaluation can be affected by noise when the data available from trapping are sparse. In particular, we show that, contrary to intuitive expectations, noise does not have any considerable impact on the accuracy of evaluation when the number of traps is small as is conventional in ecological applications.
Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings
Querner, Pascal
2015-01-01
Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them. PMID:26463205
Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.
Querner, Pascal
2015-06-16
Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.
Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J
2014-04-01
Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.
Greenstone, M H; Tillman, P G; Hu, J S
2014-06-01
The kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae),is a newly invasive exotic insect found primarily on kudzu, but also on soybean, in the southeastern United States. We used molecular gut-content analysis to document predation on this pest by insects and spiders in soybean, and to detect remains of crop-specific alternative prey in predators' guts as markers of predator migration between soybean and adjacent cotton. M. cribraria was found exclusively on soybean. Eight native generalist predators over both crops screened positive by specific PCR for DNA of the pest: Geocoris punctipes (Say), Geocoris uliginosus (Say), Orius insidiosus (Say), Podisus maculicentris (Say), Hippodamia convergens Guérin-Méneville, Zelus renardii (Kolenati), Oxyopes salticus Hentz, and Peucetia viridans (Hentz); a ninth predator, the exotic Solenopsis invicta Buren, also screened positive for M. cribraria DNA. P. viridans was the only arthropod that tested positive for DNA of this invasive pest in only one crop, cotton. Two plant-feeding pentatomid species, Piezodorus guildinii (Westwood) and Thyanta custator (F.), were found exclusively on soybean, and another, Euschistus tristigmus (Say), was specific to cotton in the context of this study. Detection of predation on a combination of M. cribraria and P. guildinii and T. custator in cotton and M. cribraria and E. tristigmus in soybean demonstrated that these predators dispersed between crops. These results strongly support the use of soybean habitats adjacent to cotton as part of a conservation biological control strategy against M. cribraria. This is the first report documenting predation on this exotic pest in the field via molecular gut-content analysis.
Barbosa, Aulus E A D; Albuquerque, Erika V S; Silva, Maria C M; Souza, Djair S L; Oliveira-Neto, Osmundo B; Valencia, Arnubio; Rocha, Thales L; Grossi-de-Sa, Maria F
2010-06-17
Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an alpha-amylase inhibitor gene (alpha-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. We transformed C. arabica with the alpha-amylase inhibitor-1 gene (alpha-AI1) from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L). The presence of the alpha-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against alpha-AI1 inhibitor showed a maximum alpha-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the alpha-AI1 protein against H. hampei alpha-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.
2010-01-01
Background Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. Results We transformed C. arabica with the α-amylase inhibitor-1 gene (α-AI1) from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L). The presence of the α-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against α-AI1 inhibitor showed a maximum α-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the α-AI1 protein against H. hampei α-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. Conclusions This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee. PMID:20565807
Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy
NASA Astrophysics Data System (ADS)
Zocca, Alessia; Zanini, Corrado; Aimi, Andrea; Frigimelica, Gabriella; La Porta, Nicola; Battisti, Andrea
2008-05-01
The Mediterranean cypress ( Cupressus sempervirens) is a multi-purpose tree widely used in the Mediterranean region. An anthropogenic range expansion of cypress has taken place at the northern margin of the range in Italy in recent decades, driven by ornamental planting in spite of climatic constraints imposed by low winter temperature. The expansion has created new habitats for pathogens and pests, which strongly limit tree survival in the historical (core) part of the range. Based on the enemy release hypothesis, we predicted that damage should be lower in the expansion area. By comparing tree and seed cone damage by pathogens and pests in core and expansion areas of Trentino, a district in the southern Alps, we showed that tree damage was significantly higher in the core area. Seed cones of C. sempervirens are intensively colonized by an aggressive and specific pathogen (the canker fungus Seiridium cardinale, Coelomycetes), associated with seed insect vectors Megastigmus wachtli (Hymenoptera Torymidae) and Orsillus maculatus (Heteroptera Lygaeidae). In contrast, we observed lower tree damage in the expansion area, where a non-aggressive fungus ( Pestalotiopsis funerea, Coelomycetes) was more frequently associated with the same insect vectors. Our results indicate that both insect species have a great potential to reach the range margin, representing a continuous threat of the arrival of fungal pathogens to trees planted at extreme sites. Global warming may accelerate this process since both insects and fungi profit from increased temperature. In the future, cypress planted at the range margin may then face similar pest and pathogen threats as in the historical range.
Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2013-01-01
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.
Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2013-01-01
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750
Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed
2017-12-01
The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George
2009-01-01
In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.
NASA Astrophysics Data System (ADS)
Tyson, Rebecca C.
2014-09-01
Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].
Game theory as a conceptual framework for managing insect pests.
Brown, Joel S; Staňková, Kateřina
2017-06-01
For over 100 years it has been recognized that insect pests evolve resistance to chemical pesticides. More recently, managers have advocated restrained use of pesticides, crop rotation, the use of multiple pesticides, and pesticide-free sanctuaries as resistance management practices. Game theory provides a conceptual framework for combining the resistance strategies of the insects and the control strategies of the pest manager into a unified conceptual and modelling framework. Game theory can contrast an ecologically enlightened application of pesticides with an evolutionarily enlightened one. In the former case the manager only considers ecological consequences whereas the latter anticipates the evolutionary response of the pests. Broader applications of this game theory approach include anti-biotic resistance, fisheries management and therapy resistance in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Noda, Hiroaki; Kawai, Sawako; Koizumi, Yoko; Matsui, Kageaki; Zhang, Qiang; Furukawa, Shigetoyo; Shimomura, Michihiko; Mita, Kazuei
2008-03-03
The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.
Insect Pests of Field Crops. MP-28.
ERIC Educational Resources Information Center
Burkhardt, Chris C.
This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…
Insect pests and yield potential of vegetable soybean (Endamame) produced in Georgia
USDA-ARS?s Scientific Manuscript database
A series of replicated field experiments was conducted with vegetable soybean (edamame), Glycine max (L.) Merrill, to assess the impacts of cultivars, planting dates, and insecticidal controls on insect pest abundance, crop damage and yield potential. The velvetbean caterpillar, Anticarsia gemmatali...
USDA-ARS?s Scientific Manuscript database
Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...
Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.
2016-01-01
RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800
Reisenman, Carolina E; Lei, Hong; Guerenstein, Pablo G
2016-01-01
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Reisenman, Carolina E.; Lei, Hong; Guerenstein, Pablo G.
2016-01-01
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies. PMID:27445858
Industrial and Institutional Pest Control. Sale Publication 4073.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…
Chemical environment manipulation for pest insects control
NASA Astrophysics Data System (ADS)
Greenblatt, J. A.; Lewis, W. J.
1983-01-01
The chemical environment of pest species may be considered a habitat susceptible to management Management may be by means of manipulation of the environment of the pest for population suppression or for enhancement of natural enemies Examples of each are reviewed here Chemical stimuli influencing the behavior of phytophagous insects include host plant originated stimuli and pheromones The latter, especially sex pheromones, have proved most successful as tools for manipulation of pest population dynamics Factors influencing search behavior of natural enemies include habitat characteristics such as crop, associated plants and plant assemblages, host plant characteristics, influence of associated organisms, and characteristics of the searching entomophage Recent studies have shown potential for simultaneous management of a pest species and enhancement of natural enemies using pest pheromones
Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.
Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W
2016-06-17
A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.
Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.
Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun
2018-05-11
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tree crops: Advances in insects and disease management
USDA-ARS?s Scientific Manuscript database
Advances in next-generation sequencing have enabled genome sequencing to be fast and affordable. Thus today researchers and industries can address new methods in pest and pathogen management. Biological control of insect pests that occur in large areas, such as forests and farming systems of fruit t...
Insect pest management in stored grain
USDA-ARS?s Scientific Manuscript database
Stored grain is vulnerable to attach by a variety of insect pests, that can generally be classified as external or internal feeders. Infestations primarily occur after grain is stored, though there is some evidence that infestations can occur in the field right before harvest. There are a variety of...
Plant-microbe relationship that influences an insect pest of Califronia tree nuts
USDA-ARS?s Scientific Manuscript database
California produces a large portion of the worldwide supply of pistachios. The navel orangeworm is considered a major insect pest of California pistachios, and causes significant damage to pistachio kernels in addition to introducing aflatoxigenic fungi. Despite the development of semiochemical-base...
Pheromone lure and trap color affects bycatch in agricultural landscapes of Utah
USDA-ARS?s Scientific Manuscript database
Aerial traps, using combinations of color and attractive lures, are a critical tool for detecting and managing insect pest populations. Yet, despite improvements in trap efficacy, collection of non-target species (“bycatch”) plagues many insect pest surveys. Bycatch can influence survey effectivenes...
Recent advances in fumigation for control of insect pests in dried fruits and nuts
USDA-ARS?s Scientific Manuscript database
United States agricultural industries are facing, with increasing frequency, environmental and pest-related food safety requirements that are fundamentally difficult to balance. Failure to properly disinfest commodities in trade and marketing channels can result in insect- and microbial-derived dam...
USDA-ARS?s Scientific Manuscript database
Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...
Insect pathogens as biological control agents: Back to the future.
Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S
2015-11-01
The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens combine the advantages of chemical pesticides and MCAs: they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control. Copyright © 2015 Elsevier Inc. All rights reserved.
Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.
Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra
2017-12-18
Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.
Lima, Daniele Cristina de Oliveira; Ramos, Marcelo Alves; da Silva, Henrique Costa Hermenegildo; Alves, Angelo Giuseppe Chaves
2016-03-01
The rapid assessment of biodiversity making use of surveys of local knowledge has been successful for different biological taxa. However, there are no reports on the testing of such tools for sampling insect fauna. The present study aimed to evaluate the efficiency of different ethnobiological techniques for rapid sampling of insect fauna. Field research for the conventional survey of insect fauna was conducted on a private farm (9 ° 43'38.95 "S, 37 ° 45'11.97" W) , where there was intensive cultivation of okra (Abelmoschus esculentus L. (Moench)). The survey of local entomological knowledge was conducted among all the producers of okra living in the rural villages Pereira, Santa Luzia, and Nassau de Souza, within the Jacaré Curituba irrigated settlement scheme. The combined use of the techniques "free list" and projective interviews was analyzed, using two types of visual stimuli: stock photos and an entomological box. During the conventional survey of insect fauna, the species Bemisia tabaci biotype B, Aphis gossypii, Phenacoccus sp., Icerya purchasi and Lagria villosa were the primary pests found in the okra crop. Regarding the survey of insect pests, the results were convergent in both techniques (conventional sampling and free list). Comparing the interview with visual stimuli (pictures) and specimen witnesses (entomological box) revealed that the latter was more effective. Techniques based on the recording and analysis of local knowledge about insects are effective for quick sampling of pest insects, but ineffective in sampling predator insects. The utilization of collected insects, infested branches, or photos of the symptoms of damage caused by pests in projective interviews is recommended.
Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L
2017-10-01
RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T 0 and T 1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.
Do Refuge Plants Favour Natural Pest Control in Maize Crops?
Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander
2017-01-01
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835
Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis
USDA-ARS?s Scientific Manuscript database
Vibrational communication is widespread in insects, particularly in leafhoppers where the pair formation process is mediated by species-specific vibrational signals. One important pest using vibrational communication, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a vector of Xylella...
Frequency and abundance of selected early season insect pests of cotton
USDA-ARS?s Scientific Manuscript database
The use of insecticides at planting has been a common crop management practice in cotton for several decades. Historically, U.S. cotton growers relied on in-furrow applications of insecticides, such as aldicarb, to control early season insect pests. In-furrow applications have largely been replaced ...
Big-Eyed Bugs Have Big Appetite for Pests
USDA-ARS?s Scientific Manuscript database
Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Geocoris spp., commonly known as big-eyed bugs, are among the most abundant insect predators in field c...
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) has been demonstrated as an effective fumigant against various insect pests on postharvest products under ultralow oxygen (ULO) conditions. NO showed efficacy against all life stages of insect pests with varied fumigation time and temperature, and had feasible cost-effectiveness to...
Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee
USDA-ARS?s Scientific Manuscript database
The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide. It infests crops in most coffee producing countries, and is of particular concern in developing countries where coffee comprises a significant component of gross domestic product. Of more than 850 i...
Nuke 'Em! Library Pest Control Using a Microwave.
ERIC Educational Resources Information Center
Brezner, Jerome; Luner, Philip
1989-01-01
Discusses the threats to books and periodicals posed by such insects as book lice, termites, cockroaches, silverfish, firebrats, and beetles; reviews past methods of pest control; and describes a technique for insect control using microwaves. The results of tests of microwave effects on publications are reported, necessary precautions are…
Population dynamics of stored maize insect pests in warehouses in two districts of Ghana
USDA-ARS?s Scientific Manuscript database
Understanding what insect species are present and their temporal and spatial patterns of distribution is important for developing a successful integrated pest management strategy for food storage in warehouses. Maize in many countries in Africa is stored in bags in warehouses, but little monitoring ...
Advances in organic insect pest management in pecan
USDA-ARS?s Scientific Manuscript database
Pecans are economically the most important native nut crop in the USA. The market for organic pecans has been growing. However, in the Southeastern USA, there are a number of insect pests and plant diseases that challenge the ability of growers to produce organic pecans in an economically sound ma...
Dark side of predation: Blind side in biocontrol research
USDA-ARS?s Scientific Manuscript database
Predation of pests by arthopod predators (insects and spiders) occurs around the clock. Yet little effort has been made to characterize the 24-hour pattern of predation on insect pests in the field, particularly events that occur nocturnally. The few round-the-clock observations in various ecosyst...
Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems.
Brevik, Kristian; Lindström, Leena; McKay, Stephanie D; Chen, Yolanda H
2018-04-01
Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests. Copyright © 2018 Elsevier Inc. All rights reserved.
Young, Stephen L
2017-08-01
Integrated pest management (IPM) is a broad-based approach for addressing pests that negatively affect human and environmental health and economic profitability. Weeds, insects and disease-causing pathogens (diseases) are the pests most often associated with IPM. A systematic review, widely used in other scientific disciplines, was employed to determine the most commonly studied IPM topics and summarize the reasons for these trends and the gaps. In a field synopsis of the literature, 1679 relevant published papers were identified and categorized into one of the following five broad areas: IPM and organic (organic), climate change and pests (climate), rural and urban IPM (rural and urban), next-generation education (education) and advanced production systems (technology). Papers were examined in greater detail for at least one of the three main pests in a systematic review. A majority (85%) of IPM papers have been in the area of rural and urban IPM, primarily addressing agriculture (78%). Professionals, landowners and the general public were the focus of a majority (95%) of IPM papers on education. Technology is an increasing area of focus in the literature. Over the past 40 years, IPM papers have primarily (75%) addressed insects and been limited mostly to rural and urban settings. Climate change, technology and education specific to pest management studies are increasingly being published and will help broaden the focus that could result in increased adoption and development of IPM. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hopper, Keith R
2003-01-01
During 1999-2001, ARS scientists published over 100 papers on more than 30 species of insect pest and 60 species of predator and parasitoid. These papers address issues crucial to the three strategies of biological control: conservation, augmentation and introduction. Conservation biological control includes both conserving extant populations of natural enemies by using relatively non-toxic pesticides and increasing the abundance of natural enemies in crops by providing or improving refuges for population growth and dispersal into crops. ARS scientists have been very active in determining the effects of pesticides on beneficial arthropods and in studying movement of natural enemies from refuges into crops. Augmentation involves repeated releases of natural enemies in the field, which can be inoculative or inundative. Inoculative releases are used to initiate self-propagating populations at times or in places where they would be slow to colonize. ARS scientists have studied augmentative biological control of a variety of pest insects. The targets are mostly pests in annual crops or other ephemeral habitats, where self-reproducing populations of natural enemies are not sufficiently abundant early enough to keep pest populations in check. ARS research in augmentative biological control centers on methods for rearing large numbers of healthy, effective natural enemies and for releasing them where and when they are needed at a cost less than the value of the reduction in damage to the crop. ARS scientists have researched various aspects of introductions of exotic biological control agents against a diversity of pest insects. The major issues in biological control introductions are accurate identification and adequate systematics of both natural enemies and target pests, exploration for natural enemies, predicting the success of candidates for introduction and the likelihood of non-target impacts, quarantine and rearing methods, and post-introduction evaluation of establishment, control and non-target impacts. ARS scientists have published research on several general issues in biological control. Among the most important are the mechanisms affecting mate- and host-finding and host specificity.
Mensah, Robert K.; Young, Alison; Rood-England, Leah
2015-01-01
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189
USDA-ARS?s Scientific Manuscript database
Generalist insect predators play an essential role at regulating populations of Bemisia tabaci and other pests in agricultural systems, but face depredations due to insecticide applications. Evaluation of insecticide compatibility with specific predator species can provide a basis for making treatme...
Forest Pest Control. Sale Publication 4072.
ERIC Educational Resources Information Center
Stimmann, M. W., Ed.
The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)
Agunbiade, Tolulope A.; Sun, Weilin; Coates, Brad S.; Djouaka, Rousseau; Tamò, Manuele; Ba, Malick N.; Binso-Dabire, Clementine; Baoua, Ibrahim; Olds, Brett P.; Pittendrigh, Barry R.
2013-01-01
Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa. PMID:24278221
Warming and drought combine to increase pest insect fitness on urban trees
Frank, Steven D.
2017-01-01
Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests. PMID:28278206
Plant lectins as defense proteins against phytophagous insects.
Vandenborre, Gianni; Smagghe, Guy; Van Damme, Els J M
2011-09-01
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
Kumar, Sandeep; Dhillon, Mukesh K
2015-03-01
In order to better understand the biochemical interactions and to identify new biomarkers for plant resistance against insects, we proposed a suitable lipophilic profiling method for insects and their host plants. The critical components of GC-MS based analysis are: sample amount, extraction, derivatization, temperature gradient, run time, and identification of peaks. For lipophilic metabolite profiling of maize and sorghum, and their insect pest, spotted stem borer larvae, we recommend 100 mg sample weight for seeds and insect samples (whole insect body), and 200 mg for seedlings. Maize and sorghum seeds required less time for fat extraction in comparison to their seedlings and the pest fed on these seedlings. GC-MS was standardized for better separation and intensity of peaks using different temperature gradients in the range of 180-300 C. A total of 48 lipophilic compounds encompassing various classes based on their functional groups such as fatty acids, fatty alcohols, hydrocarbons, sterols and terpenoids, vitamin derivative, etc. were separated in the seedlings (30), seeds (14), and the pest (26) in the retention time range of 3.22 to 29.41 min. This method could be useful to study nutritional aspects of different field crops in relation to various stresses apart from the analysis of lipophilic compounds for better understanding of insect-plant interactions.
Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A. P.; Skinner, Margaret; Parker, Bruce L.
2013-01-01
Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment. PMID:26462527
USDA-ARS?s Scientific Manuscript database
Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of vi...
USDA-ARS?s Scientific Manuscript database
Delayed planting is recommended to reduce damage from sunflower insect pests in the United States, including the sunflower moth, Homoeosoma electellum (Hulst) and banded sunflower moth, Cochylis hospes Walsingham. However, in some locations, planting earlier or growing later-maturing hybrids could i...
Historical Accumulation of Nonindigenous Forest Pests in the Continental United States
J.E. Aukema; D.G. McCullough; B.V. Holle; A.M. Liebhold; S.J. Frankel
2010-01-01
Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...
USDA-ARS?s Scientific Manuscript database
The stem borer, Diatraea saccharalis (F.), is an important insect pest of sugarcane in Louisiana. Growing resistant varieties is a component of the Integrated Pest Management Program as practiced in Louisiana for managing this insect; however, the release of stem borer resistant varieties is intermi...
USDA-ARS?s Scientific Manuscript database
The coffee berry borer (Hypothenemus hampei (Ferrari); Coleoptera: Curculionidae: Scolytinae) is the most important insect pest of coffee worldwide, and due to the cryptic life habit of the insect inside coffee berries, effective pest management strategies have been difficult to develop. In this pap...
Historical accumulation of nonindigenous forest pests in the Continental United States
J.E. Aukema; D.G. McCullough; B. Von Holle; Andrew Liebhold; Kerry Britton; S.J. Frankel
2010-01-01
Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...
USDA-ARS?s Scientific Manuscript database
Coffee Berry Borer (CBB) is the most devastating insect pest for coffee crops worldwide. We developed a scientific monitoring protocol aimed at capturing and quantifying the dynamics and impact of this invasive insect pest as well as the development of its host plant across a heterogeneous landscape...
Performance of transform against selected cotton insects in laboratory and field studies
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has become a major pest of cotton, Gossypium hirsutum (L.), within the Mid-Southern United States over the last several years. Tarnished plant bug has become the target of more insecticide applications than any other insect pest of c...
Area-wide management approach for tarnished plant bug in the Mississippi Delta
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the major insect pest of cotton, Gossypium hirsutum (L.), within the Mid-South region. From 2001 to 2012, the tarnished plant bug has been the number one insect pest of cotton in Louisiana and Mississippi in eleven and nine of those...
40 CFR 158.2000 - Biochemical pesticides definition and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...
40 CFR 158.2000 - Biochemical pesticides definition and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...
40 CFR 158.2000 - Biochemical pesticides definition and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... history; and (iii) Has a non-toxic mode of action to the target pest(s). (2) A Pheromone is a compound... compounds, modifies the behavior of other individuals of the same species. (i) An Arthropod Pheromone is a... to: (1) Semiochemicals (insect pheromones and kairomones), (2) Natural plant and insect regulators...
Farkas, Timothy E
2015-01-01
An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038
Farkas, Timothy E
2015-10-01
An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.
Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W; Eyun, Seong-Il; Noriega, Daniel D; Siegfried, Blair
2016-01-01
The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.
Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W.; Eyun, Seong-il; Noriega, Daniel D.; Siegfried, Blair
2016-01-01
The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest. PMID:26949943
Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar
2018-03-12
Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.
Information on Pests in Schools and Their Control
Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.
2013-01-01
Background The interaction between insect pests and their host plants is a never-ending race of evolutionary adaption. Plants have developed an armament against insect herbivore attacks, and attackers continuously learn how to address it. Using a combined transcriptomic and metabolomic approach, we investigated the molecular and biochemical differences between Quercus robur L. trees that resisted (defined as resistant oak type) or were susceptible (defined as susceptible oak type) to infestation by the major oak pest, Tortrix viridana L. Results Next generation RNA sequencing revealed hundreds of genes that exhibited constitutive and/or inducible differential expression in the resistant oak compared to the susceptible oak. Distinct differences were found in the transcript levels and the metabolic content with regard to tannins, flavonoids, and terpenoids, which are compounds involved in the defence against insect pests. The results of our transcriptomic and metabolomic analyses are in agreement with those of a previous study in which we showed that female moths prefer susceptible oaks due to their specific profile of herbivore-induced volatiles. These data therefore define two oak genotypes that clearly differ on the transcriptomic and metabolomic levels, as reflected by their specific defensive compound profiles. Conclusions We conclude that the resistant oak type seem to prefer a strategy of constitutive defence responses in contrast to more induced defence responses of the susceptible oaks triggered by feeding. These results pave the way for the development of biomarkers for an early determination of potentially green oak leaf roller-resistant genotypes in natural pedunculate oak populations in Europe. PMID:24160444
Noda, Hiroaki; Kawai, Sawako; Koizumi, Yoko; Matsui, Kageaki; Zhang, Qiang; Furukawa, Shigetoyo; Shimomura, Michihiko; Mita, Kazuei
2008-01-01
Background The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. Results More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. Conclusion The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest. PMID:18315884
Preface: Insect Pathology, 2nd ed
USDA-ARS?s Scientific Manuscript database
Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...
ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.
Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V
2014-01-01
A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects during our study.
Main predators of insect pests: screening and evaluation through comprehensive indices.
Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian
2017-11-01
Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Pest Management Strategies Against the Coffee Berry Borer (Coleoptera: Curculionidae: Scolytinae).
Infante, Francisco
2018-03-22
Coffee ( Coffea arabica and C. canephora) is one of the most widely traded agricultural commodities and the main cash crop in ∼80 tropical countries. Among the factors that limit coffee production, the coffee berry borer, Hypothenemus hampei (Ferrari) has been considered the main insect pest, causing losses of over U.S. $500 million dollars annually. Control of this pest has been hindered by two main factors: the cryptic nature of the insect (i.e., protected inside the coffee berry) and the availability of coffee berries in the field allowing the survival of the pest from one generation to the next. Coffee berry borer control has primarily been based on the use of synthetic insecticides. Management strategies have focused on the use of African parasitoids ( Cephalonomia stephanoderis, Prorops nasuta, and Phymastichus coffea), fungal entomopathogens ( Beauveria bassiana), and insect traps. These approaches have had mixed results. Recent work on the basic biology of the insect has provided novel insights that might be useful in developing novel pest management strategies. For example, the discovery of symbiotic bacteria responsible for caffeine breakdown as part of the coffee berry borer microbiome opens new possibilities for pest management via the disruption of these bacteria. Some chemicals with repellent propieties have been identified, and these have a high potential for field implementation. Finally, the publication of the CBB genome has provided insights on the biology of the insect that will help us to understand why it has been so successful at exploiting the coffee plant. Here I discuss the tools we now have against the CBB and likely control strategies that may be useful in the near future.
Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng
2012-01-01
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.
A cascade of destabilizations: Combining Wolbachia and Allee effects to eradicate insect pests.
Blackwood, Julie C; Vargas, Roger; Fauvergue, Xavier
2018-01-01
The management of insect pests has long been dominated by the use of chemical insecticides, with the aim of instantaneously killing enough individuals to limit their damage. To minimize unwanted consequences, environmentally friendly approaches have been proposed that utilize biological control and take advantage of intrinsic demographic processes to reduce pest populations. We address the feasibility of a novel pest management strategy based on the release of insects infected with Wolbachia, which causes cytoplasmic incompatibilities in its host population, into a population with a pre-existing Allee effect. We hypothesize that the transient decline in population size caused by a successful invasion of Wolbachia can bring the population below its Allee threshold and, consequently, trigger extinction. We develop a stochastic population model that accounts for Wolbachia-induced cytoplasmic incompatibilities in addition to an Allee effect arising from mating failures at low population densities. Using our model, we identify conditions under which cytoplasmic incompatibilities and Allee effects successfully interact to drive insect pest populations towards extinction. Based on our results, we delineate control strategies based on introductions of Wolbachia-infected insects. We extend this analysis to evaluate control strategies that implement successive introductions of two incompatible Wolbachia strains. Additionally, we consider methods that combine Wolbachia invasion with mating disruption tactics to enhance the pre-existing Allee effect. We demonstrate that Wolbachia-induced cytoplasmic incompatibility and the Allee effect act independently from one another: the Allee effect does not modify the Wolbachia invasion threshold, and cytoplasmic incompatibilities only have a marginal effect on the Allee threshold. However, the interaction of these two processes can drive even large populations to extinction. The success of this method can be amplified by the introduction of multiple Wolbachia cytotypes as well as the addition of mating disruption. Our study extends the existing literature by proposing the use of Wolbachia introductions to capitalize on pre-existing Allee effects and consequently eradicate insect pests. More generally, it highlights the importance of transient dynamics, and the relevance of manipulating a cascade of destabilizatons for pest management. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.
Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less
Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.
2015-01-06
Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less
Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming
2016-02-01
Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.
The insect ecdysone receptor is a good potential target for RNAi-based pest control.
Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing
2014-01-01
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.
Physiological Studies and Pest Control
ERIC Educational Resources Information Center
Philogene, Bernard J. R.
1972-01-01
In the light of new knowledge about insecticides, future research should be conducted by plant and insect physiologists together. Plant physiologists should explain what characteristics in plants attract insects and insect physiologists should study adaptive patterns of insects and combine their knowledge to control insects. (PS)
Quantifying dispersal of southern pine beetles with mark-recapture experiments and a diffusion model
P. Turchin; W.T. Thoeny
1993-01-01
Pest management decisions should take into consideration quantitative information on dispersal of insect pests, but such information is often lacking.The goal of this study was to measure intraforest dispersal in the southern pine beetle (SPB).We developed an analytical formula for interpreting data from mark-recapture studies of insect dispersal.The proposed...
Nonmarket economic values of forest insect pests: An updated literature review
Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric. L. Smith
2012-01-01
This report updates the literature review and synthesis of economic valuation studies on the impacts of forest insect pests by Rosenberger and Smith (1997). A conceptual framework is presented to establish context for the studies. This report also discusses the concept of ecosystem services; identifies key elements of each study; examines areas of future research; and...
USDA-ARS?s Scientific Manuscript database
RNAi-mediated knockdown of target transcripts offers great potential, both in terms of insect functional genomics and the development of novel insect pest management strategies. Frequently, dsRNAs targeting transcripts of interest are introduced orally to the target organism via feeding. This delive...
USDA-ARS?s Scientific Manuscript database
Moisture content, insect pest infestation and mycotoxin contamination of maize are challenges to food safety and security, especially in the tropics where maize is a staple grain. However, very little documentation is available on the impact of these factors on maize in Ghana. This study focused on ...
USDA-ARS?s Scientific Manuscript database
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and male annihilation technique (MAT) based on traps baited with a synthetic analogue of raspberry ketone (RK) are two of the most effe...
Exotic pests: major threats to forest health
J. Robert Bridges
1995-01-01
Over 360 exotic forest insects and about 20 exotic diseases have become established in the U.S. Many of these organisms have become serious pests, causing great economic impacts and irreversible ecological harm. Despite efforts to exclude exotic species, forest insects and disease organisms continue to be introduced at a rather rapid rate. In the last few years, one...
USDA-ARS?s Scientific Manuscript database
Analyzing genes that can be used for improving sugar beet resistance to the sugar beet root maggot (SBRM, Tetanops myopaeformis Roder), one of the most destructive insect pests of sugar beet in North America, was a major goal in our investigation. We report on the expression patterns of a sugar beet...
USDA-ARS?s Scientific Manuscript database
The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide, causing millions of dollars in yearly losses to coffee growers. We present the third genomic analysis for a Coleopteran species, a draft genome of female coffee berry borers. The genome s...
de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F
2016-01-01
Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.
de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.
2016-01-01
Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081
Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest
2013-01-01
Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049
Introduction to 2009 Symposium on Alternative Methods of Controlling Pests and Diseases
USDA-ARS?s Scientific Manuscript database
Numerous pests and diseases limit potato productivity, and control of weeds, insects and pathogens remains a costly part of potato production. Although conventional agrichemical pest control is amazingly effective, interest in non-synthetic chemical and integrated methods of pest management is drive...
Vegetable Crop Pests. MEP 311.
ERIC Educational Resources Information Center
Kantzes, James G.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…
Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima
2013-01-01
Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.
Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima
2013-01-01
Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449
Microsporidian entomopathogens
USDA-ARS?s Scientific Manuscript database
Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect population dynamics, managed insect disease, and biological control of insect pests. Hosts are infected when spores are i...
Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance
Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar
2013-01-01
Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989
Threat of invasive pests from within national borders.
Paini, Dean R; Worner, Susan P; Cook, David C; De Barro, Paul J; Thomas, Matthew B
2010-11-16
Predicting and ranking potential invasive species present significant challenges to researchers and biosecurity agencies. Here we analyse a worldwide database of pest species assemblages to generate lists of the top 100 insect pests most likely to establish in the United States and each of its 48 contiguous states. For the United States as a whole, all of the top 100 pest species have already established. Individual states however tend to have many more 'gaps' with most states having at least 20 species absent from their top 100 list. For all but one state, every exotic pest species currently absent from a state's top 100 can be found elsewhere in the contiguous United States. We conclude that the immediate threat from known invasive insect pests is greater from within the United States than without. Our findings have potentially significant implications for biosecurity policy, emphasizing the need to consider biosecurity measures beyond established national border interventions.
ERIC Educational Resources Information Center
Weaver, Leslie O.; And Others
As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…
USDA-ARS?s Scientific Manuscript database
Some of the effects of contemporary climate change and agricultural practices include increased pest ranges and thermotolerances and phonological mismatches between pest insects and their natural enemies. The brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a serious pest ...
Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe
2014-01-01
In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118
Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos
2014-01-01
Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412
USDA-ARS?s Scientific Manuscript database
The sterile insect technique is a proven effective control tactic against lepidopteran pests when applied in an area-wide integrated pest management programme. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of ster...
USDA-ARS?s Scientific Manuscript database
The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...
USDA-ARS?s Scientific Manuscript database
Crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage a number of insect pests. The evolution of Bt resistance diminishes the capacity of Bt crops to manage insect pests. Fitness costs of Bt resistance occur in the absence of Bt toxins when i...
USDA-ARS?s Scientific Manuscript database
The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...
USDA-ARS?s Scientific Manuscript database
The toxicity of Steward, a formulation of indoxacarb, was studied for the tarnished plant bug [Lygus lineolaris (Palisot de Beauvois)], a pest of cotton, and the big-eyed insect [Geocoris punctipes (Say)], a predator of pests in cotton. Both insects responded similarly to Steward in topical, tarsal ...
USDA-ARS?s Scientific Manuscript database
The kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae), is a newly-invasive exotic insect found primarily on kudzu, but also on soybean, in the southeastern United States. We used molecular gut-content analysis to document predation on this pest by insects and spiders in soybean; and to d...
Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena
2018-04-01
One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.
Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao
2018-05-07
Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.
Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect.
Guo, Hui-Min; Li, Hai-Chao; Zhou, Shi-Rong; Xue, Hong-Wei; Miao, Xue-Xia
2014-11-01
The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Potential applications of insect symbionts in biotechnology.
Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin
2016-02-01
Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.
McKee, Gregory J; Goodhue, Rachael E; Zalom, Frank G; Carter, Colin A; Chalfant, James A
2009-01-01
In agriculture, relatively few efficacious control measures may be available for an invasive pest. In the case of a new insect pest, insecticide use decisions are affected by regulations associated with its registration, insect population dynamics, and seasonal market price cycles. We assess the costs and benefits of environmental regulations designed to regulate insecticide applications on an invasive species. We construct a bioeconomic model, based on detailed scientific data, of management decisions for a specific invasion: greenhouse whiteflies in California-grown strawberries. The empirical model integrates whitefly population dynamics, the effect of whitefly feeding on strawberry yields, and weekly strawberry price. We use the model to assess the optimality of alternative treatment programs on a simulated greenhouse whitefly population. Our results show that regulations may lead growers to "under-spray" when placed in an economic context, and provide some general lessons about the design of optimal invasive species control policies.
Slowing and Combating Pest Resistance to Pesticides
Pesticides can be used to control a variety of pests, such as insects, weeds, rodents, bacteria, fungi, etc. Over time many pesticides have gradually lost effectiveness because pests develop resistance. Learn what EPA is doing to address resistance issues.
Albrecht, Matthias
2016-01-01
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304
Sutter, Louis; Albrecht, Matthias
2016-02-10
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).
Ghosh, Swapan Kr; Pal, Sujoy
2016-01-01
The widespread use of chemical pesticides in agriculture has led to the pollution of environmental systems and has caused various health disorders in animals and humans. Biological pest control is one of the most environmentally friendly methods in modern agriscience. Such methods protect crops from pests and do not pollute the environment. A strain of Trichoderma longibrachiatum was isolated and identified from the soil environment of the North 24 Parganas District, eastern India. A spore suspension of this fungus was used to treat Leucinodes orbonalis, one of the major pests of brinjal (eggplant, Solanum melongena). In an in vitro system, fungal antagonism was determined by median lethal dose (LD50) and median lethal time (LT50) tests against insect larvae. The LD50 and LT50 of T. longibrachiatum were 2.87 × 10(7) spores ml(-1) and 11.7 days, respectively. T. longibrachiatum was formulated into a biopesticide, and its performance was evaluated in brinjal field trials in 2012 and 2013. In the field trials, brinjal treated with three spray applications of T. longibrachiatum (10(8) spores/ml) at 15-day intervals showed a 56.02 % higher crop yield than that of the control. This treatment showed similar efficacy to that of the pesticide malathion in the field trials. The results of this study indicate that this formulation may replace malathion to control the insect pest L. orbonalis in brinjal crops. This is the first report of the entomopathogenic property of T. longibrachiatum and its evaluation against an insect pest in field trials.
Opportunities for microbial control of pulse crop pests
USDA-ARS?s Scientific Manuscript database
The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...
Sparks, A N; Gadal, L; Ni, X
2015-08-01
The primary Lepidoptera pests of sweet corn (Zea mays L. convar. saccharata) in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). Management of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers frequently spraying daily. This level of insecticide use presents problems for small growers, particularly for "pick-your-own" operations. Injection of oil into the corn ear silk channel 5-8 days after silking initiation has been used to suppress damage by these insects. Initial work with this technique in Georgia provided poor results. Subsequently, a series of experiments was conducted to evaluate the efficacy of silk channel injections as an application methodology for insecticides. A single application of synthetic insecticide, at greatly reduced per acre rates compared with common foliar applications, provided excellent control of Lepidoptera insects attacking the ear tip and suppressed damage by sap beetles (Nitidulidae). While this methodology is labor-intensive, it requires a single application of insecticide at reduced rates applied ∼2 wk prior to harvest, compared with potential daily applications at full rates up to the day of harvest with foliar insecticide applications. This methodology is not likely to eliminate the need for foliar applications because of other insect pests which do not enter through the silk channel or are not affected by the specific selective insecticide used in the silk channel injection, but would greatly reduce the number of applications required. This methodology may prove particularly useful for small acreage growers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Urban warming trumps natural enemy regulation of herbivorous pests.
Dale, Adam G; Frank, Steven D
Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor, natural enemy abundance, in regulating the abundance of an urban forest pest, the gloomy scale, (Melanaspis tenebricosa). We used a map of surface temperature to select red maple trees (Acer rubrum) at warmer and cooler sites in Raleigh, North Carolina, USA. We quantified habitat complexity by measuring impervious surface cover, local vegetation structural complexity, and landscape scale vegetation cover around each tree. Using path analysis, we determined that impervious surface (the most important habitat variable) increased scale insect abundance by increasing tree canopy temperature, rather than by reducing natural enemy abundance or percent parasitism. As a mechanism for this response, we found that increasing temperature significantly increases scale insect fecundity and contributes to greater population increase. Specifically, adult female M. tenebricosa egg sets increased by approximately 14 eggs for every 1°C increase in temperature. Climate change models predict that the global climate will increase by 2–3°C in the next 50–100 years, which we found would increase scale insect abundance by three orders of magnitude. This result supports predictions that urban and natural forests will face greater herbivory in the future, and suggests that a primary cause could be direct, positive effects of warming on herbivore fitness rather than altered trophic interactions.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Lipman, Stefan A; Burt, Sara A
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.
Lipman, Stefan A.
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047
de Carvalho Barbosa Negrisoli, Carla Ruth; Negrisoli Júnior, Aldomario Santo; Bernardi, Daniel; Garcia, Mauro Silveira
2013-07-01
Stored product pests are responsible for losses that can amount 10% during cereal storage in the world. Aiming to find an alternative method to the chemicals used for the stored-product pests, eight strains of entomopathogenic nematodes (EPNs) were tested against five species of stored product pests. The bioassays were conducted in microtubes containing paper, inoculated with EPNs and insect diet. All the insect species were susceptible to the EPNs strains. Anagasta kuehniella and Tenebrio molitor larvae and Acanthoscelides obtectus adults were highly sensitive to the higher doses with most species and/or strains of EPNs. Adults of Sitophilus oryzae and Sitophilus zeamais were relatively less sensitive to all EPNs. Therefore, EPNs show as potential control agents for stored products pests in prophylactic applications in warehouses. Copyright © 2013 Elsevier Inc. All rights reserved.
Using new technology and insect behavior in novel terrestrial and flying insect traps
USDA-ARS?s Scientific Manuscript database
Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...
A highly aggregated geographical distribution of forest pest invasions in the USA
Andrew M. Liebhold; Deborah G. McCullough; Laura M. Blackburn; Susan J. Frankel; Betsy Von Holle; Juliann E. Aukema
2013-01-01
Geographical variation in numbers of established non-native species provides clues to the underlying processes driving biological invasions. Specifically, this variation reflects landscape characteristics that drive non-native species arrival, establishment and spread. Here, we investigate spatial variation in damaging non-native forest insect and pathogen species to...
Live plant imports: the major pathway for forest insect and pathogen invasions of the US
Andrew M. Liebhold; Eckehard G. Brockerhoff; Lynn J. Garrett; Jennifer L. Parke
2012-01-01
Trade in live plants has been recognized worldwide as an important invasion pathway for non-native plant pests. Such pests can have severe economic and ecological consequences. Nearly 70% of damaging forest insects and pathogens established in the US between 1860 and 2006 most likely entered on imported live plants. The current regulation of plant imports is outdated...
Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon
2017-11-01
The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It could be used as an active food packaging system to protect grain products from insect pest contamination. © 2017 Institute of Food Technologists®.
Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice
Way, Michael O.; Pearson, Rebecca A.; Stout, Michael J.
2017-01-01
Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety. PMID:28805707
A modelling methodology to assess the effect of insect pest control on agro-ecosystems.
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-04-23
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was "applying frequency vibration lamps and environment-friendly insecticides 8 times" (0.80) < "applying trap devices and environment-friendly insecticides 9 times" (0.83) < "applying common insecticides 14 times" (1.08). The treatment "applying frequency vibration lamps and environment-friendly insecticides 8 times" was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-01-01
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199
Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.
Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J
2017-08-13
Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.
How Insects Survive Winter in the Midwest
USDA-ARS?s Scientific Manuscript database
Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...
Applications of acoustics in insect pest management
USDA-ARS?s Scientific Manuscript database
Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...
Symbiont-mediated RNA interference in insects
Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.
2016-01-01
RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963
The use and manipulation of insect reproductive molecules for controlling insect populations
USDA-ARS?s Scientific Manuscript database
The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...
1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)
RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases
USDA-ARS?s Scientific Manuscript database
Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...
Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.
Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C
2007-08-01
Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.
Numerical and functional responses of forest bats to a major insect pest in pine plantations.
Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé
2014-01-01
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.
Anti-insect potential of lectins from Arisaema species towards Bactrocera cucurbitae.
Kaur, Manpreet; Singh, Kuljinder; Rup, Pushpinder J; Kamboj, Sukhdev Singh; Singh, Jatinder
2009-11-01
Bactrocera cucurbitae (Coquillett), also known as melon fruit fly, is one of the major insect pests of cucurbits in several parts of Asia, Africa and Pacific. In the present investigation, effect of lectins from two sources i.e. Arisaema intermedium Blume and Arisaema wallichianum Hook f. (Family-Araceae) has been studied on the development of second instar larvae of melon fruit fly. The lectins were incorporated separately in artificial diet at a concentration of 10 to 160 microg ml(-1) and fed adlibitum to the second instar larvae. Both the lectins were found to prolong the development period and significantly inhibited the pupation and emergence in a dose dependent manner. Total development period was found to be prolonged by 3.5 and 2.3 days in case of larvae fed on artificial diet containing A. intermedium (AIL) and A. wallichianum (AWL), respectively. LC50 values calculated on the basis of adult emergence came out to be 32.8 and 29 microg ml(-1) for AIL and AWL, respectively. Both the lectins tested, were found to increase the activity of esterases as larvae proceeded from 24 to 72 hr of treatment. The activity of acid phosphatase decreased significantly in larvae reared on diet containing LC50 of AIL, while in case of AWL significant decrease was observed only at 72 hr of treatment. Alkaline phosphatase activity decreased significantly on treatment with both of these lectins. These results showed that AIL and AWL have promising anti-insect potential. So, lectin gene/s from either of these species can be cloned and subsequently can be employed to develop transgenics to control melon fruit flies specifically and insect pests in general. This approach could be used as a part of Integrated pest management (IPM) strategies.
NASA Astrophysics Data System (ADS)
Rojas, Marcela; Malard, Julien; Adamowski, Jan; Carrera, Jaime Luis; Maas, Raúl
2017-04-01
While it is known that climate change will impact future plant-pest population dynamics, potentially affecting crop damage, agroforestry with its enhanced biodiversity is said to reduce the outbreaks of pest insects by providing natural enemies for the control of pest populations. This premise is known in the literature as the natural enemy hypothesis and has been widely studied qualitatively. However, disagreement still exists on whether biodiversity enhancement reduces pest outbreaks, showing the need of quantitatively understanding the mechanisms behind the interactions between pests and natural enemies, also known as trophic interactions. Crop pest models that study insect population dynamics in agroforestry contexts are very rare, and pest models that take trophic interactions into account are even rarer. This may be due to the difficulty of representing complex food webs in a quantifiable model. There is therefore a need for validated food web models that allow users to predict the response of these webs to changes in climate in agroforestry systems. In this study we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web models; the program uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. Tiko'n was run using coffee leaf miner (Leucoptera coffeella) and associated parasitoid data from a shaded coffee plantation, showing the mechanisms of insect population dynamics within a tri-trophic food web in an agroforestry system.
ScaleNet: A literature-based model of scale insect biology and systematics
USDA-ARS?s Scientific Manuscript database
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found in all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis, and plant-insect i...
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Vegetable Pests.
ERIC Educational Resources Information Center
Cress, D.; And Others
This manual is intended to assist pesticide applicators in vegetable crops prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on vegetable pest control. The three sections presented describe: (1) Insect pests of vegetable crops; (2) Weed pests of vegetable crops; and (3) Causes of…
Repressed Beauveria bassiana Infections in Delia antiqua due to Associated Microbiota.
Zhou, Fangyuan; Wu, Xiaoqing; Xu, Letian; Guo, Shuhai; Chen, Guanhong; Zhang, Xinjian
2018-05-23
Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers for entomopathogen-dependent pest biocontrol. Thus, by using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium, and Stenotrophomonas maltophilia, frequently isolated from larvae suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium, and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Insect pest management for raw commodities during storage
USDA-ARS?s Scientific Manuscript database
This book chapter provides an overview of the pest management decision-making process during grain storage. An in-depth discussion of sampling methods, cost-benefit analysis, expert systems, consultants and the use of computer simulation models is provided. Sampling is essential to determine if pest...
Training for Certification: Forest Pest Control.
ERIC Educational Resources Information Center
Parker, Robert C., Comp.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on forest pest control, this publication examines plant and animal pest control practices for southern tree species. Contents include: (1) identification of insects, diseases, and weed tree species;…
Temperature-mediated growth thresholds of Acrobasis vaccinii (Lepidoptera: Pyralidae)
USDA-ARS?s Scientific Manuscript database
Degree-day models link ambient temperature to the development of insects, making such models valuable tools in integrated pest management. Phenology models increase management efficacy by quantifying and predicting pest phenology. In Wisconsin, the top pest of cranberry production is the cranberry f...
T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson
2015-01-01
As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....
Rabhi, Kaouther K.; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia
2016-01-01
Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. PMID:26842577
Ratnadass, Alain; Wink, Michael
2012-01-01
The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190
Ratnadass, Alain; Wink, Michael
2012-11-30
The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a "miracle tree", particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the "boom" in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed.
Garcia, A G; Godoy, W A C
2017-06-01
Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.
Njoroge, A W; Smith, B W; Baributsa, D
2017-01-01
Abstract Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of visual movement were recorded from replicates of 25, 50, and 100 adult Sitophilus oryzae (L.) (Coleoptera: Curculionidae) hermetically sealed in 500- and 1,000-ml glass jars. Recordings were done for 28 d; twice daily for the first 6 d and twice weekly thereafter. Insect sounds were analyzed as short bursts (trains) of impulses with spectra that matched average spectra (profiles) of previously verified insect sound impulses. Oxygen consumption was highest in treatments of 100 insects/500-ml jar and lowest in 25/1000-ml jars. The rates of bursts per insect, number of impulses per burst, and rates of burst impulses per insect decreased as the residual oxygen levels decreased in each treatment. Activity rates <0.02 bursts s−1, the acoustic detection threshold, typically occurred as oxygen fell below 5%. Mortality was observed at 2% levels. The time to obtain these levels of insect activity and oxygen depletion ranged from 3–14 d depending on initial infestation levels. Acoustic detection made it possible to estimate the duration required for reduction of insect activity to levels resulting in negligible damage to the stored product under hermetic conditions. Such information is of value to farmers and warehouse managers attempting to reduce pest damage in stored crops. PMID:29045682
Agricultural applications of insect ecological genomics
USDA-ARS?s Scientific Manuscript database
Agricultural entomology is poised to benefit from the application of ecological genomics, in particular the fields of biofuels generation and pest insect control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and other insects, and transcriptomic approa...
Genetically Engineering Entomopathogenic Fungi.
Zhao, H; Lovett, B; Fang, W
2016-01-01
Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.
Avocado pests in Florida: Not what you expected
USDA-ARS?s Scientific Manuscript database
Avocado, Persea americana Mill., is Florida's second most important fruit crop after citrus. Until recently, the complex of spider mite and insect pests that affected avocado in south Florida was under a 20 year Integrated Pest Management (IPM) program. The recent invasion of avocado orchards by a...
Prospects for repellent in pest control: current developments and future challenges
USDA-ARS?s Scientific Manuscript database
The overall interest for environmentally safe pest control methods and the increased frequency of insecticide resistance in pest populations have stimulated research on insect repellents in the recent decades in medical and agricultural entomology. However, there remains a great deal of work to be ...
Phenology of the Hemlock Woolly Adelgid (Hemiptera: Adelgidae) in Northern Georgia
Shimar V. Joseph; Albert E. Mayfield; Mark J. Dalusky; Christopher Asaro; C. Wayne. Berisford
2011-01-01
Understanding the seasonal phenology of an insect pest in a specific geographic region is essential for optimizing the timing of management actions or research activities. We examined the phenology of hemlock woolly adelgid, Adelges tsugae Annand, near the southern limit of the range of eastern hemlock, Tsuga canadensis (L.) Carriere, in the Appalachians of northern...
A false positive food chain error associated with a generic predator gut content ELISA
USDA-ARS?s Scientific Manuscript database
Conventional prey-specific gut content ELISA and PCR assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of ...
Upadhyay, Santosh Kumar; Singh, Seema; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna Kumar
2012-03-01
δ-Endotoxins produced by Bacillus thuringiensis (Bt) have been used as bio-pesticides for the control of lepidopteran insect pests. Garlic (Allium sativum L.) leaf agglutinin (ASAL), being toxic to several sap-sucking pests and some lepidopteran pests, may be a good candidate for pyramiding with δ-endotoxins in transgenic plants for enhancing the range of resistance to insect pests. Since ASAL shares the midgut receptors with Cry1Ac in Helicoverpa armigera, there is possibility of antagonism in their toxicity. Our study demonstrated that ASAL increased the toxicity of Cry1Ac against H. armigera while Cry1Ac did not alter the toxicity of ASAL against cotton aphids. The two toxins interacted and increased binding of each other to brush border membrane vesicle (BBMV) proteins and to the two important receptors, alkaline phosphatase (ALP) and aminopeptidase N (APN). The results indicated that the toxins had different binding sites on the ALP and APN but influenced mutual binding. We conclude that ASAL can be safely employed with Cry1Ac for developing transgenic crops for wider insect resistance.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is designed to assist pest control operators to prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on home, institutional, and structural pest control. The ten sections included describe: (1) Insect control; (2) Rodent control; (3) Special situation pest control; (4)…
USDA-ARS?s Scientific Manuscript database
Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...
Problem prevention and holistic pest management [Chapter 14
Thomas D. Landis; Tara Luna; R. Kasten Dumroese; Kim M. Wilkinson
2014-01-01
As any experienced grower knows only too well, nursery management is a continuous process of solving problems. One recurring problem is pests. In the past, nursery managers waited for an insect or disease to appear and then sprayed some toxic chemical to wipe out the pest or disease. This approach, however, also wipes out natural predators of the pest, resulting in an...
Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor
2015-01-01
Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway. PMID:25941826
Overview of the status and global strategy for neonicotinoids.
Jeschke, Peter; Nauen, Ralf; Schindler, Michael; Elbert, Alfred
2011-04-13
In recent years, neonicotinoid insecticides have been the fastest growing class of insecticides in modern crop protection, with widespread use against a broad spectrum of sucking and certain chewing pests. As potent agonists, they act selectively on insect nicotinic acetylcholine receptors (nAChRs), their molecular target site. The discovery of neonicotinoids can be considered as a milestone in insecticide research and greatly facilitates the understanding of functional properties of the insect nAChRs. In this context, the crystal structure of the acetylcholine-binding proteins provides the theoretical foundation for designing homology models of the corresponding receptor ligand binding domains within the nAChRs, a useful basis for virtual screening of chemical libraries and rational design of novel insecticides acting on these practically relevant channels. Because of the relatively low risk for nontarget organisms and the environment, the high target specificity of neonicotinoid insecticides, and their versatility in application methods, this important class has to be maintained globally for integrated pest management strategies and insect resistance management programs. Innovative concepts for life-cycle management, jointly with the introduction of generic products, have made neonicotinoids the most important chemical class for the insecticide market.
Complementarity among natural enemies enhances pest suppression.
Dainese, Matteo; Schneider, Gudrun; Krauss, Jochen; Steffan-Dewenter, Ingolf
2017-08-15
Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.
[Insect pests dissemination by extruded starch packages].
Fraga, Felipe B; Alencar, Isabel D C C; Tavares, Marcelo T
2009-01-01
We observed the viability of extruded starch products used as impact protector for fragile packing as a food source of the following stored grains pests: Cryptolestes ferrugineus (Stephens), Lasioderma serricorne (Fabr.), Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.), Tribolium castaneum (Herbst) (Coleoptera) and Plodia interpunctella (Hübner) (Lepidoptera). Cryptolestes ferrugineus, L. serricorne and T. castaneum were found in these products, which are used by them as shelter and food. Under experimentation, we observed the development of O. surinamensis, S. oryzae and P. interpunctella feeding on this food source. Thus, it is recorded the viability of such material to be a potential dispersal vehicle to spread insect pests.
Determining host suitability of pecan for stored-product insects
USDA-ARS?s Scientific Manuscript database
A no-choice test was performed to determine survival and reproductive capacity of stored-product insect pests on pecan, Carya illinoensis (Wangenheim) Koch. Insects used were Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); sawtoothed grain beetle, Oryzaephilus surinamensis...
NASA Astrophysics Data System (ADS)
Alves, Tavvs Micael
Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).
Boullis, Antoine; Francis, Frederic; Verheggen, François J
2015-04-01
Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant-insect and insect-insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pheromone-based pest management in china: past, present and future prospects
USDA-ARS?s Scientific Manuscript database
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...
Nitric oxide fumigation for postharvest pest control
USDA-ARS?s Scientific Manuscript database
Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...
USDA-ARS?s Scientific Manuscript database
Crawling or running, scraping or shuffling, and wriggling activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanic...
New developments in bait stations for control of pest Tephritids
USDA-ARS?s Scientific Manuscript database
Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...
Wheat pests: Rodents, nematodes, insects and mites
USDA-ARS?s Scientific Manuscript database
Wheat is one of the most important cereal crops in the world and its production is constantly under threat from various pests and diseases. While wheat diseases were overviewed in other chapter of this book, the major wheat pests, which differ from diseases and weeds in being animals, were reviewed ...
USDA-ARS?s Scientific Manuscript database
Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...
Future trends and needs in stored product entomology-pest management
USDA-ARS?s Scientific Manuscript database
Insect pest management in stored products, and in particular the concept of integrated pest management (IPM), has different meanings depending on one's viewpoint of IPM. One of the difficulties in stored products is adequately sampling large bulk bins or silos of raw stored grain or large milling an...
USDA-ARS?s Scientific Manuscript database
A number of studies have now reported increased levels of non Bt-targeted secondary pests in Bt crops. Although pesticide reduction plays a role, interactions between the secondary pests and the targeted primary pest may also be important. Feeding preference—attractiveness (selection behavior, acce...
USDA-ARS?s Scientific Manuscript database
With the expansion of transgenic Bt cotton cultivation in the southeast US, stink bugs, particularly Nezara viridula and Euschistus servus [Hemiptera: Pentatomidae], have become serious cotton pests, resulting in continued high insecticide use. Whereas Bt cotton provides effective control of the ca...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...
Biology and ecology of the Western Flower Thrips. The making of a pest
USDA-ARS?s Scientific Manuscript database
In the past 30 years, the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) has become one of the most important agricultural pests worldwide. Certain biological attributes of this insect predispose it to be a direct pest across a wide range of crops. In additio...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...
Compendium of sunflower disease and insect pests
USDA-ARS?s Scientific Manuscript database
The Compendium of Sunflower Diseases and Pests is a new addition to the popular APS Press series of plant disease compendia. This will be the most comprehensive guide to sunflower diseases and pests in the world. The introduction contains brief histories of sunflower use and production, botany of th...
USDA-ARS?s Scientific Manuscript database
Rough sweetpotato weevil, Blosyrus asellus (Olivier), is a new quarantine pest of Hawaii sweetpotatoes. Currently, sweetpotatoes can be exported from Hawaii to the U.S. mainland using a postharvest irradiation treatment of 150 Gy to control three other regulated insect pests. Studies were conducted...
76 FR 65988 - Importation of Mangoes From Australia
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... irradiation to mitigate the risk of insect pests. The mangoes would also have to be accompanied by a... and adults of the order Lepidoptera, with irradiation in accordance with 7 CFR part 305, which..., which lists minimum absorbed irradiation doses for plant pests and classes of plant pests, includes a...
Training for Certification: Ornamental & Turf Pest Control.
ERIC Educational Resources Information Center
Mississippi State Univ., State College. Cooperative Extension Service.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on ornamental and turf plant pest control, this publication examines the control of plant diseases, insects, and weeds. The contents are divided into a section on ornamental pest control and one on…
Sugar beet cell wall protein confers fungal and pest resistance in genetically engineered plants
USDA-ARS?s Scientific Manuscript database
Sugar beet biomass and sugar yield are reduced by diseases caused by microbial pathogens and insect pest infestations. Since disease and pest control measures continue to rely on harmful chemical fungicides and insecticides, biotechnological approaches offer an alternate approach for disease and pe...
Applications of biological control in resistant host-pathogen systems.
White, Steven M; White, K A Jane
2005-09-01
Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.
USDA-ARS?s Scientific Manuscript database
Pyriproxyfen and hydroprene are insect growth regulators (IGRs) that have been evaluated to control insect pests of field crops, but there are limited reports of efficacy against stored-product insects. A laboratory study was conducted to determine residual efficacy of pyriproxyfen and hydroprene on...
Evaluation of dry-fleshed sweetpotato genotypes for resistance to soil insect pests, 2012
USDA-ARS?s Scientific Manuscript database
An insect susceptible check cultivar (‘SC1149 19’), an insect resistant check cultivar (‘Ruddy’), 20 advanced dry-fleshed genotypes, and five dry-fleshed cultivars (‘Bonita’, ‘Liberty’, ‘NC Japanese’, ‘Picadito’, and ‘Sumor’) were evaluated for insect resistance in replicated field trials at Charles...
ScaleNet: a literature-based model of scale insect biology and systematics
García Morales, Mayrolin; Denno, Barbara D.; Miller, Douglass R.; Miller, Gary L.; Ben-Dov, Yair; Hardy, Nate B.
2016-01-01
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found on all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis and plant-insect interactions. ScaleNet was launched in 1995 to provide insect identifiers, pest managers, insect systematists, evolutionary biologists and ecologists efficient access to information about scale insect biological diversity. It provides comprehensive information on scale insects taken directly from the primary literature. Currently, it draws from 23 477 articles and describes the systematics and biology of 8194 valid species. For 20 years, ScaleNet ran on the same software platform. That platform is no longer viable. Here, we present a new, open-source implementation of ScaleNet. We have normalized the data model, begun the process of correcting invalid data, upgraded the user interface, and added online administrative tools. These improvements make ScaleNet easier to use and maintain and make the ScaleNet data more accurate and extendable. Database URL: http://scalenet.info PMID:26861659
RNA Interference in Insect Vectors for Plant Viruses.
Kanakala, Surapathrudu; Ghanim, Murad
2016-12-12
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
RNA Interference in Insect Vectors for Plant Viruses
Kanakala, Surapathrudu; Ghanim, Murad
2016-01-01
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446
Li, Jianwei; Handler, Alfred M
2017-09-28
Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.
The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae).
Schellhorn, N A; Glatz, R V; Wood, G M
2010-10-01
Interactions among insect pests, crops and weeds are well recognised. In fact, the elimination of weed hosts outside of the crop is a common practice to control many insect-vectored viruses. However, little is known about interactions among insect pests, crops and native vegetation, and whether native plants may be used to revegetate areas where weed hosts have been eliminated as part of horticultural management regimes. We used the Northern Adelaide Plains horticultural region (South Australia, Australia) as a model system to study the potential of various plant taxa in hosting four pest thrips (three exotic, one native; Frankliniella occidentalis, F. schultzei, Thrips tabaci and T. imaginis) when located adjacent to, and distant from, horticultural crops. Flower funnels were used for standardised sampling of thrips on flowers from 19 exotic weed and 12 native plant species, representing 13 and three families, respectively. Flowers were sampled monthly over a year, and statistical analyses were performed to identify significant determinants of probability of thrips occurrence and density. Plant family was found to significantly influence both measures for each thrips species. In addition, crop proximity influenced the probability of occurrence for the two Frankliniella species (but only influenced density of the key pest F. occidentalis), and season influenced density of all four pest thrips. All native plant species tested had a low likelihood of hosting the three exotic thrips species. Overall, results suggest that judicious choice of surrounding vegetation has potential to be an important component of integrated pest management (IPM) while increasing biodiversity conservation.
NASA Astrophysics Data System (ADS)
Trisnawati, Indah; Azis, Abdul
2017-06-01
Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field. Three specific predator species were found on habitat modification field, i.e.: Crocothemis servilia, Orthetrum sabina and Paratrechina sp., as well as specific parasitoid species, i.e.: Polistes sp. (vegetative stage), Chloromyia sp., Theronia sp., Sarcophaga sp. and Cletus sp (generative stage), Condylodtylus sp., Trichogramma sp. (reproductive stage). Trends in predator abundance toward parasitoid insects were indicated a positive linear trend, with the abundance of predator on habitat modification field has an influence on the level of 67.1% parasitoid.
Leach, Heather; Isaacs, Rufus
2018-06-06
Berry crops are increasingly produced in high tunnels, which provide growers with the opportunity to extend their production season. This is particularly beneficial for the northern region of the United States with short and unpredictable growing seasons and where rainfall limits fruit quality. However, little is known about the effect of high tunnels on the community of pests, natural enemies, or pollinators, especially in berry crops, and there are few reports of the insect community in raspberries in this region. We compared the abundance of these insects during two growing seasons in field-grown and tunnel-grown floricane and primocane producing raspberries through direct observation and trapping at five sites in southwestern and central Michigan. We found eight key pests, including spotted wing Drosophila, leafhoppers, and thrips, and seven key natural enemies including parasitoid wasps, spiders, and lacewings, that were common across all sites. Pest populations were up to 6.6 times higher in tunnels, and pests typical of greenhouse systems became more dominant in this environment. Natural enemies observed on plants under tunnels were also more abundant than in the field, but this trend was reversed for natural enemies trapped on yellow sticky cards. There was also a reduction of both honey bees and wild bees under the high tunnels, which was balanced by use of commercial bumble bees. These data not only provide much-needed information on the phenology of the insect community on raspberry plantings, they also highlight the entomological implications of protected raspberry culture.
Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing
2017-07-01
Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Ecology and IPM of Insects at Grain Elevators
USDA-ARS?s Scientific Manuscript database
Cost-effectiveness of insect pest management depends upon its integration with other elevator operations. Successful integration may require consideration of insect ecology. Field infestation has not been observed for grain received at elevators. Grain may be infested during harvest by residual inse...
Promise for plant pest control: root-associated pseudomonads with insecticidal activities
Kupferschmied, Peter; Maurhofer, Monika; Keel, Christoph
2013-01-01
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework. PMID:23914197
A Review of Bioinsecticidal Activity of Solanaceae Alkaloids
Chowański, Szymon; Adamski, Zbigniew; Marciniak, Paweł; Rosiński, Grzegorz; Büyükgüzel, Ender; Büyükgüzel, Kemal; Falabella, Patrizia; Scrano, Laura; Ventrella, Emanuela; Lelario, Filomena; Bufo, Sabino A.
2016-01-01
Only a small percentage of insect species are pests. However, pest species cause significant losses in agricultural and forest crops, and many are vectors of diseases. Currently, many scientists are focused on developing new tools to control insect populations, including secondary plant metabolites, e.g., alkaloids, glycoalkaloids, terpenoids, organic acids and alcohols, which show promise for use in plant protection. These compounds can affect insects at all levels of biological organization, but their action generally disturbs cellular and physiological processes, e.g., by altering redox balance, hormonal regulation, neuronal signalization or reproduction in exposed individuals. Secondary plant metabolites cause toxic effects that can be observed at both lethal and sublethal levels, but the most important effect is repellence. Plants from the Solanaceae family, which contains numerous economically and ecologically important species, produce various substances that affect insects belonging to most orders, particularly herbivorous insects and other pests. Many compounds possess insecticidal properties, but they are also classified as molluscides, acaricides, nematocides, fungicides and bactericides. In this paper, we present data on the sublethal and lethal toxicity caused by pure metabolites and crude extracts obtained from Solanaceae plants. Pure substances as well as water and/or alcohol extracts cause lethal and sublethal effects in insects, which is important from the economical point of view. We discuss the results of our study and their relevance to plant protection and management. PMID:26938561
Responses of Crop Pests and Natural Enemies to Wildflower Borders Depends on Functional Group.
McCabe, Ellie; Loeb, Gregory; Grab, Heather
2017-07-25
Increased homogeneity of agricultural landscapes in the last century has led to a loss of biodiversity and ecosystem services. However, management practices such as wildflower borders offer supplementary resources to many beneficial arthropods. There is evidence that these borders can increase beneficial arthropod abundance, including natural enemies of many pests. However, this increase in local habitat diversity can also have effects on pest populations, and these effects are not well-studied. In this study, we investigated how wildflower borders affect both natural enemies and pests within an adjacent strawberry crop. Significantly more predators were captured in strawberry plantings with wildflower borders versus plantings without wildflowers, but this effect depended on sampling method. Overall, herbivore populations were lower in plots with a wildflower border; however, responses to wildflower borders varied across specific pest groups. Densities of Lygus lineolaris (Tarnished Plant Bug), a generalist pest, increased significantly in plots that had a border, while Stelidota geminata (Strawberry Sap Beetle) decreased in strawberry fields with a wildflower border. These results suggest that wildflower borders may support the control of some pest insects; however, if the pest is a generalist and can utilize the resources of the wildflower patch, their populations may increase within the crop.
Yang, Shiyong; Cao, Depan; Wang, Guirong; Liu, Yang
2017-09-20
Perception of environmental and habitat cues is of significance for insect survival and reproduction. Odor detection in insects is mediated by a number of proteins in antennae such as odorant receptors (ORs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), sensory neuron membrane proteins (SNMPs) and odorant degrading enzymes. In this study, we sequenced and assembled the adult male and female antennal transcriptomes of a destructive agricultural pest, the diamondback moth Plutella xyllostella. In these transcriptomes, we identified transcripts belonging to 6 chemoreception gene families related to ordor detection, including 54 ORs, 16 IRs, 7 gustatory receptors (GRs), 15 CSPs, 24 OBPs and 2 SNMPs. Semi-quantitative reverse transcription PCR analysis of expression patterns indicated that some of these ORs and IRs have clear sex-biased and tissue-specific expression patterns. Our results lay the foundation for future characterization of the functions of these P. xyllostella chemosensory receptors at the molecular level and development of novel semiochemicals for integrated control of this agricultural pest.
Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie
2015-01-01
Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931
Exploitation of insect vibrational signals reveals a new method of pest management.
Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio
2012-01-01
Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.
Impacts of 2 species of predatory Reduviidae on bagworms in oil palm plantations.
Jamian, Syari; Norhisham, Ahmad; Ghazali, Amal; Zakaria, Azlina; Azhar, Badrul
2017-04-01
Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Ribonucleic acid interference (RNAi) and control of citrus pests
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...
Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N
2017-03-01
Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.
The potential and prospects of proximal remote sensing of arthropod pests.
Nansen, Christian
2016-04-01
Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Suppressing Resistance to Bt Cotton with Sterile Insect Releases
USDA-ARS?s Scientific Manuscript database
Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) are grown widely to control pests, but evolution of insect resistance can reduce their efficacy. The predominant strategy for delaying insect resistance to Bt crops requires refuges of non-Bt host plants to provide s...
Biological control: Insect pathogens, parasitoids, and predators
USDA-ARS?s Scientific Manuscript database
This book chapter provides an overview of biological control of insect pests of stored grain and stored products. The advantages and disadvantages of biological control for stored-product insect control are discussed. There are several species of protozoa, viruses, and bacteria that could be used to...
USDA-ARS?s Scientific Manuscript database
If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)
USDA-ARS?s Scientific Manuscript database
Empirical studies on the ecological causes of agricultural pest outbreaks have focused primarily on two biotic factors—release from natural enemies and changes in host plant quality. Release from competition, on the other hand, has been theorized as a potential cause but never tested. With the exp...
USDA-ARS?s Scientific Manuscript database
Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host) . In terms of ...
Study on Integrated Pest Management for Libraries and Archives.
ERIC Educational Resources Information Center
Parker, Thomas A.
This study addresses the problems caused by the major insect and rodent pests and molds and mildews in libraries and archives; the damage they do to collections; and techniques for their prevention and control. Guidelines are also provided for the development and initiation of an Integrated Pest Management program for facilities housing library…
Forest nursery pest management in Cuba
Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi
2002-01-01
A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...
Biology and Ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The Making of a Pest
USDA-ARS?s Scientific Manuscript database
In the past 30 years, the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) has become one of the most important agricultural pests worldwide. Certain biological attributes of this insect predispose it to be a direct pest across a wide range of crops. In additio...
USDA-ARS?s Scientific Manuscript database
The coffee berry borer (CBB), Hypothenemus hampei, is the most significant insect pest of coffee worldwide. Since CBB was detected in Puerto Rico in 2007 and Hawaii in 2010, coffee growers from these islands are facing increased costs, reduced coffee quality, and increased pest management challenges...
Pest Control For Container-Grown Longleaf Pine
Scott Enebak; Bill Carey
2002-01-01
Several insect, weed, and disease pests are discussed that have been observed affecting container-grown longleaf pine (Pinus palustris Mill.) seedlings. The available tools to minimize the effects of these pests are limited to a few select insecticides, herbicides, and fungicides. Extreme care should be taken to ensure that the chemical chosen is...
Gulzar, Asim; Wright, Denis J
2015-11-01
The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.
Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.
Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique
2010-10-01
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Reddy, Gadi V P
2011-08-01
Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.
Isozyme studies of forest insect populations
Molly W. Stock
1981-01-01
Data from isozyme analyses are being used to help answer many basic biological questions about forest insect pests and to provide information for a variety of other purposes as well. This paper summarizes the uses of isozymes in quality control of laboratory insect colonies, in studies of insecticide response, as markers of insect parasitoids, and in investigations of...
Evaluation of dry-fleshed sweetpotato genotypes for resistance to soil insect pests, 2011
USDA-ARS?s Scientific Manuscript database
Two insect susceptible check cultivars (‘Beauregard” and ‘SC1149 19’), an insect resistant check cultivar (‘Ruddy’), 23 advanced dry-fleshed genotypes, and five dry-fleshed cultivars (‘Liberty’, ‘NC Japanese’, ‘Okinawa 100’, ‘Sumor’, and ‘Xushu-18’) were evaluated for insect resistance in replicate...
Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.
2018-01-01
For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests. PMID:29261729
Tuell, Julianna K; Isaacs, Rufus
2010-06-01
Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.
Assessing the integrated pest management practices of southeastern US ornamental nursery operations.
LeBude, Anthony V; White, Sarah A; Fulcher, Amy F; Frank, Steve; Klingeman Iii, William E; Chong, Juang-Horng; Chappell, Matthew R; Windham, Alan; Braman, Kris; Hale, Frank; Dunwell, Winston; Williams-Woodward, Jean; Ivors, Kelly; Adkins, Craig; Neal, Joe
2012-09-01
The Southern Nursery Integrated Pest Management (SNIPM) working group surveyed ornamental nursery crop growers in the southeastern United States to determine their pest management practices. Respondents answered questions about monitoring practices for insects, diseases and weeds, prevention techniques, intervention decisions, concerns about IPM and educational opportunities. Survey respondents were categorized into three groups based on IPM knowledge and pest management practices adopted. The three groups differed in the use of standardized sampling plans for scouting pests, in monitoring techniques, e.g. sticky cards, phenology and growing degree days, in record-keeping, in the use of spot-spraying and in the number of samples sent to a diagnostic clinic for identification and management recommendation. Stronger emphasis is needed on deliberate scouting techniques and tools to monitor pest populations to provide earlier pest detection and greater flexibility of management options. Most respondents thought that IPM was effective and beneficial for both the environment and employees, but had concerns about the ability of natural enemies to control insect pests, and about the availability and effectiveness of alternatives to chemical controls. Research and field demonstration is needed for selecting appropriate natural enemies for augmentative biological control. Two groups utilized cooperative extension almost exclusively, which would be an avenue for educating those respondents. Copyright © 2012 Society of Chemical Industry.
Mittapalli, Omprakash; Bai, Xiaodong; Mamidala, Praveen; Rajarapu, Swapna Priya; Bonello, Pierluigi; Herms, Daniel A
2010-10-28
The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.
Carruthers, Raymond I
2003-01-01
Invasive pests cause huge losses both to agricultural production systems and to the natural environment through displacing native species and decreasing biodiversity. It is now estimated that many thousand exotic insect, weed and pathogen species have been established in the USA and that these invasive species are responsible for a large portion of the $130 billion losses estimated to be caused by pests each year. The Agricultural Research Service (ARS) has responded with extensive research and action programs aimed at understanding these problems and developing new management approaches for their control. This paper provides an overview of some of the ARS research that has been conducted on invasive species over the past few years and addresses both different categories of research and some specific pest systems of high interest to the US Department of Agriculture.
NASA Astrophysics Data System (ADS)
Zhu, Shiming; Malmqvist, Elin; Li, Wansha; Jansson, Samuel; Li, Yiyun; Duan, Zheng; Svanberg, Katarina; Feng, Hongqiang; Song, Ziwei; Zhao, Guangyu; Brydegaard, Mikkel; Svanberg, Sune
2017-07-01
Effective monitoring of flying insects is of major societal importance in view of the role of insects as indispensable pollinators, destructive disease vectors and economically devastating agricultural pests. The present paper reports on monitoring of flying agricultural pests using a continuous-wave lidar system in a rice-field location in Southern China. Using a Scheimpflug arrangement, range resolution over several 100 m long observational paths was achieved. The system operates with two perpendicularly polarized near-infrared lasers, which are activated intermittently, and back-scattered radiation from insects was recorded by a linear array detector placed after a linear polarizer. Our polarization sensitive system was used to monitor the flying insect diurnal activity and also the influence of changes in weather conditions, e.g., the occurrence of rain. Activity strongly peaked at dusk and rose again, although to a lower extent, just before dawn. At the onset of rainfall, a strong increase in insect counts occurred which was interpreted as the rain-induced bringing down of high-altitude migrant insects.
Behavioral Sabotage of Plant Defenses by Insect Folivores.
Dussourd, David E
2017-01-31
Plant susceptibility to herbivore attack is determined not just by the suite of defenses present in different tissues of the plant, but also by the capabilities of the herbivore for tolerating, circumventing, or disarming the defenses. This article reviews the elaborate behaviors exhibited by leaf-chewing insects that appear to function specifically to deactivate hostplant defenses. Shortcomings in our understanding and promising areas for future research are highlighted. Behaviors covered include vein cutting, trenching, girdling, leaf clipping, and application of fluids from exocrine glands. Many of these behaviors have a widespread distribution, having evolved independently in multiple insect lineages. Insects utilizing the behaviors include significant agricultural, horticultural, and forestry pests, as well as numerous species important in natural ecosystems. Behavioral, ecological, and phylogenetic studies have documented the importance of the behaviors and their ancient history, but the molecular analysis of how the behaviors affect plant physiology has scarcely begun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Fernando E.; Brown, Stuart M.; Chen, Hao
The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complexmore » polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. We find the draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.« less
Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; Shen, Eric; Nair, Mridul B.; Ceja-Navarro, Javier A.; Brodie, Eoin L.; Infante, Francisco; Dowd, Patrick F.; Pain, Arnab
2015-01-01
The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies. PMID:26228545
Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; ...
2015-07-31
The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complexmore » polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. We find the draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.« less
Amiri, Azam; Bandani, Ali Reza; Alizadeh, Houshang
2016-04-01
Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting. © 2015 Wiley Periodicals, Inc.
Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie
2018-02-01
Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests. These two proteins should be able to be used for integrated hemipteran pest management. Copyright © 2018 American Society for Microbiology.
Conceptual framework and rationale
Robinson, Alan S; Knols, Bart GJ; Voigt, Gabriella; Hendrichs, Jorge
2009-01-01
The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme. PMID:19917070
IPM for fresh-market lettuce production in the desert southwest: the produce paradox.
Palumbo, John C; Castle, Steven J
2009-12-01
In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest management in desert lettuce crops. (c) 2009 Society of Chemical Industry.
Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.
Lee, Kwang-Zin; Vilcinskas, Andreas
2017-09-01
The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.
ERIC Educational Resources Information Center
Brunner, J.; And Others
This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…
Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.
ERIC Educational Resources Information Center
Allen, W. A.; And Others
This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and e...
Phenological prediction of forest pest-defoliators
Valentina Meshkova
2003-01-01
The methodology for predicting phenological events are useful for predicting the seasonal development of insects in the current year, for analyzing terms and rate variation of insect population development in different years, and for comparing different geographical and ecological insect populations after terms and rate of different stages of seasonal development....
Intraplant communication in maize contributes to defense against insects
USDA-ARS?s Scientific Manuscript database
The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Fur...
USDA-ARS?s Scientific Manuscript database
A three-year study was conducted to compare temperature profiles in the headspace and in the bulk mass of wheat aerated through pressure aeration and suction aeration. Insect pitfall traps were used to measure naturally-occurring populations of stored product insects. Results show uniform distributi...
USDA-ARS?s Scientific Manuscript database
Despite their fundamental importance for growth, the mechanisms that regulate food intake are poorly understood. Our previous work demonstrated that insect sulfakinin (SK) signaling is involved in inhibiting feeding in an important model and pest insect, the red flour beetle Tribolium castaneum. B...
Forest insect & disease conditions in the Northeast - 1956
W. E. Waters; Alma M. Waterman
1957-01-01
This annual report on forest pest conditions in the Northeast combines, for the first time, information about both the major forest insects and the major forest diseases in the region. It was prepared as an aid to those who have a concern for protecting our forests from insect and disease attacks.
Forest Pest Control. Manual 94.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in forest pest control. The text discusses disease problems, insects, and herbicide use in both established forests and nurseries. (CS)
Zhang, Yu-Juan; Hao, Youjin; Si, Fengling; Ren, Shuang; Hu, Ganyu; Shen, Li; Chen, Bin
2014-01-01
The onion maggot Delia antiqua is a major insect pest of cultivated vegetables, especially the onion, and a good model to investigate the molecular mechanisms of diapause. To better understand the biology and diapause mechanism of the insect pest species, D. antiqua, the transcriptome was sequenced using Illumina paired-end sequencing technology. Approximately 54 million reads were obtained, trimmed, and assembled into 29,659 unigenes, with an average length of 607 bp and an N50 of 818 bp. Among these unigenes, 21,605 (72.8%) were annotated in the public databases. All unigenes were then compared against Drosophila melanogaster and Anopheles gambiae. Codon usage bias was analyzed and 332 simple sequence repeats (SSRs) were detected in this organism. These data represent the most comprehensive transcriptomic resource currently available for D. antiqua and will facilitate the study of genetics, genomics, diapause, and further pest control of D. antiqua. PMID:24615268
When ecosystem services interact: crop pollination benefits depend on the level of pest control
Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo
2013-01-01
Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852
Zhang, Jiang; Khan, Sher Afzal; Hasse, Claudia; Ruf, Stephanie; Heckel, David G; Bock, Ralph
2015-02-27
Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides. Copyright © 2015, American Association for the Advancement of Science.
ScaleNet: a literature-based model of scale insect biology and systematics.
García Morales, Mayrolin; Denno, Barbara D; Miller, Douglass R; Miller, Gary L; Ben-Dov, Yair; Hardy, Nate B
2016-01-01
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found on all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis and plant-insect interactions. ScaleNet was launched in 1995 to provide insect identifiers, pest managers, insect systematists, evolutionary biologists and ecologists efficient access to information about scale insect biological diversity. It provides comprehensive information on scale insects taken directly from the primary literature. Currently, it draws from 23,477 articles and describes the systematics and biology of 8194 valid species. For 20 years, ScaleNet ran on the same software platform. That platform is no longer viable. Here, we present a new, open-source implementation of ScaleNet. We have normalized the data model, begun the process of correcting invalid data, upgraded the user interface, and added online administrative tools. These improvements make ScaleNet easier to use and maintain and make the ScaleNet data more accurate and extendable. Database URL: http://scalenet.info. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-06
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148
P. White; A. Kramer; G. Hudler
2010-01-01
The Sanitary and Phytosanitary Agreement of the World Trade Organisation specifies that countries cannot regulate against unknown pests, yet many alien invasive forest pests are unknown to science prior to discovery in a new land. Many of these pests are introduced via nursery stock, but lack of pest information makes this pathway difficult to mitigate. Botanic gardens...
A CRISPR-Cas9 sex-ratio distortion system for genetic control
Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea
2016-01-01
Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623
An Integrated Molecular Database on Indian Insects.
Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil
2018-01-01
MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.
Haavik, Laurel J.; Dodds, Kevin J.; Allison, Jeremy D.
2015-01-01
Sirex noctilio F. (Hymenoptera: Siricidae) is an introduced pest of pines (Pinus spp.) in several countries in the Southern Hemisphere. Although S. noctilio is established in North America (first discovered in 2004), it has not been a destructive pest there so far, where forest communities more closely resemble those in its native Eurasian range—where it is not a pest. To investigate the influence of the existing community of associated insects (competitors + natural enemies) and fungi (vectored by insects) on S. noctilio survival in North America, we examined stage-specific mortality factors and their relative importance, generating life tables drawn from experimentally-manipulated and natural cohorts of Sirex spp. (mostly S. noctilio, but some native S. nigricornis F.). For both natural and experimentally-manipulated cohorts, factors which acted during the earliest Sirex life stages, most likely tree resistance and/or competition among fungal associates, were paramount in dictating woodwasp survival. Experimentally-manipulated life tables revealed that protection from the community of associates resulted in a significantly, and substantially larger (>15x) S. noctilio F1 generation than exposure to it. Seventy percent of generation mortality in the exposed cohort was due to tree resistance or unknown causes early in larval development, which could have included competition among other bark- or wood-inhabiting insects and/or their fungal associates. Only 46% of generation mortality in the protected cohort was due to tree resistance and/or unknown causes. Parasitoids, particularly endoparasitoids (Ibalia spp.), showed limited ability to control S. noctilio, and reduced the experimentally-established cohort by only 11%, and natural cohorts an average of 3.4%. The relative importance of tree resistance vs. competition with bark- and wood-borers in reducing S. noctilio survival remains unclear. Tree resistance and/or competition likely contribute more than natural enemies in maintaining the S. noctilio population in North America below damaging levels. PMID:26447845
Coccinellids and the Modern Pest Management
ERIC Educational Resources Information Center
Hodek, Ivo
1970-01-01
Discusses the concept of integrated pest control combining chemical and biological methods. Describes many examples of the successful use of coccinellids beetles to control other insects. Cites ecological and physiological research studies related to predator prey relationships involving coccinellids. (EB)
NASA Astrophysics Data System (ADS)
Kuntz, Cody Daniel
The composition and complexity of agro-ecosystems are important factors influencing the population dynamics of insect pests. Understanding these interactions may improve our ability to predict the spatial occurrence of pest outbreaks, thereby informing scouting and management decisions. In 2012 and 2013, two concurrent studies were conducted to examine the relationship between landscapes surrounding Iowa soybean, Glycine max [L.] Merrill, fields and two polyphagous pest groups; Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), and stink bugs (Hemiptera: Pentatomidae). Population densities were monitored in soybean within simple and complex agricultural landscapes to determine the response of these pests to landscape complexity. Results revealed P. japonica populations were significantly greater in soybean fields within complex landscapes and were positively associated with area of uncultivated land. The specific compositions of surrounding landscapes were also analyzed to determine the landscape features that explain the greatest variation in P. japonica and stink bug population densities. Results suggested that the area of wooded and grass habitat around fields accounted for the greatest variation in P. japonica populations; however, no discernable relationships were observed with stink bug populations. Sampling also sought to survey the community of stink bugs present in Iowa soybean. The community was predominantly comprised of stink bugs in the genus Euschistus, comprising a combined 91.04% of all captures. Additional species included the green stink bug, Acrosternum hilare (Say) (4.48%); spined soldier bug, Podisus maculiventris (Say) (2.99%); and red shouldered stink bug, Thyanta custator accerra (McAtee) (1.49%). Future work will be needed to determine if the landscape effects on P. japonica in soybean reported here are representative of other similar polyphagous pests of soybean and if they extend to other host plants as well. Furthermore, additional comprehensive surveys will be needed to better characterize the existing community of stink bug species present in Iowa field crops.
Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa
2014-08-01
Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.
Insect growth regulators and insect control: a critical appraisal.
Siddall, J B
1976-01-01
Insect growth regulators (IGRs) of the juvenile hormone type alter physiological processes essential to insect development and appear to act specifically on insects. Three natural juvenile hormones have been found in insects but not in other organisms. Future use of antagonists or inhibitors of hormone synthesis may be technically possible as an advantageous extension of pest control by IGRs. A documented survey of the properties, metabolism, toxicology, and uses of the most commercially advanced chemical, methoprene, shows it to be environmentally acceptable and toxicologically innocuous. Derivation of its current use patterns is discussed and limitations on these are noted. Residue levels and their measurement in the ppb region have allowed exemption from the requirement of tolerances in the EPA registered use of methoprene for mosquito control. Tolerances for foods accompany its fully approved use for control of manure breeding flies through a cattle feed supplement. The human health effects of using this chemical appear to be purely beneficial, but further advances through new IGR chemicals appear unlikely without major changes in regulatory and legislative policy. PMID:976222
Insect Ferritins: typical or atypical?
Pham, Daphne Q. D.; Winzerling, Joy J.
2010-01-01
Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field—especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters—quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences. PMID:20230873
High tunnels: protection for rather than from insect pests?
Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E
2017-12-01
High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Analysis of area-wide management of insect pests based on sampling
David W. Onstad; Mark S. Sisterson
2011-01-01
The control of invasive species greatly depends on area-wide pest management (AWPM) in heterogeneous landscapes. Decisions about when and where to treat a population with pesticide are based on sampling pest abundance. One of the challenges of AWPM is sampling large areas with limited funds to cover the cost of sampling. Additionally, AWPM programs are often confronted...
Insect management in deciduous orchard ecosystems: Habitat manipulation
NASA Astrophysics Data System (ADS)
Tedders, W. L.
1983-01-01
Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented
Macedo, Maria L R; de Oliveira, Caio F R; Costa, Poliene M; Castelhano, Elaine C; Silva-Filho, Marcio C
2015-01-01
The overwhelming demand for food requires the application of technology on field. An important issue that limits the productivity of crops is related to insect attacks. Hence, several studies have evaluated the application of different compounds to reduce the field losses, especially insecticide compounds from plant sources. Among them, plant protease inhibitors (PIs) have been studied in both basic and applied researches, displaying positive results in control of some insects. However, certain species are able to bypass the insecticide effects exerted by PIs. In this review, we disclosed the adaptive mechanisms showed by lepidopteran and coleopteran insects, the most expressive insect orders related to crop predation. The structural aspects involved in adaptation mechanisms are presented as well as the newest alternatives for pest control. The application of biotechnological tools in crop protection will be mandatory in agriculture, and it will be up to researchers to find the best candidates for effective control in long-term.
USDA-ARS?s Scientific Manuscript database
As baits, fermented food products are generally attractive to many types of insects, making it difficult to sort through nontarget insects to monitor a pest species of interest. We test the hypothesis that a chemically simpler and more defined attractant developed for a target insect is more specifi...
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, Lygus lineolaris (Palisot De Beauvois) is a highly polyphagous insect that feeds on numerous wild and cultivated host plants. Although transgenic crops expressing insecticidal toxins have been available for approximately 20 years for some insect crop pests, none have been d...
Geographic variation in diapause induction: The grape berry moth (Lepidoptera: Tortricidae)
Jody Timer; Patrick C. Tobin; Michael C. Saunders
2010-01-01
Diapause in insects occurs in response to environmental cues, such as changes in photoperiod, and it is a major adaptation by which insects synchronize their activity with biotic resources and environmental constraints. For multivoltine agricultural insect pests, diapause initiation is an important consideration in management decisions, particularly toward the end of...
USDA-ARS?s Scientific Manuscript database
Management of insects that cause economic damage to yields of soybean mainly rely on insecticide application. Sources of resistance in soybean plant introduction (PIs) to different insect pests have been reported, and some of these resistance sources, like for the soybean aphid (SBA) have been used ...
Insect and Disease Pests of Southern Hardwoods
L. P. Abrahamson; F. I. McCracken
1971-01-01
Insects and diseases seldom kill southern hardwood trees in managed stands, but they cause major economic losses by lowering wood quality and reducing tree growth. In discussing the most important insects and diseases of southern hardwoods, let us consider first those that attack natural hardwood stands and then those associated with plantation culture.
ERIC Educational Resources Information Center
Sutherland, Karen
2009-01-01
They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…
USDA-ARS?s Scientific Manuscript database
Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...
USDA-ARS?s Scientific Manuscript database
Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...
USDA-ARS?s Scientific Manuscript database
The flowers of milkweed species can produce a rich supply of nectar, and therefore, planting an insecticide-free milkweed habitat in agricultural farmscapes could possibly conserve monarch butterflies, bees and other insect pollinators, as well as enhance parasitism of insect pests. In peanut-cotton...
Dietary silver nanoparticles reduce fitness in a beneficial, but not, pest insect species
USDA-ARS?s Scientific Manuscript database
Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often ...
A digestive prolyl carboxypeptidase in Tenebrio molitor larvae.
Goptar, Irina A; Shagin, Dmitry A; Shagina, Irina A; Mudrik, Elena S; Smirnova, Yulia A; Zhuzhikov, Dmitry P; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N
2013-06-01
Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer. The cDNA of PRCP was cloned and sequenced, and the predicted protein was identical to the proteomic sequences of the purified enzyme. The substrate specificity and kinetic parameters of the enzyme were determined. The T. molitor PRCP participates in the hydrolysis of the insect's major dietary proteins, gliadins, and is the first PRCP to be ascribed a digestive function. Our collective data suggest that the evolutionary enrichment of the digestive peptidase complex in insects with an area of acidic to neutral pH in the midgut is a result of the incorporation of lysosomal peptidases, including PRCP. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
Ornamental perennial grasses are becoming increasingly popular in the landscape due to their beauty and ease of care. Although few pest problems are encountered in ornamental grasses, they are not immune to insects and disease. Two lined spittlebugs (Prosapia bicincta) can cause damage to ornament...
USDA-ARS?s Scientific Manuscript database
Nezara viridula is a historically global pest of high value cash crops. Chapter 7 is a comprehensive report of the biology, global distribution, insect/host plant associations, higher systematics, semiochemistry, and management of this pest. This report will be a cornerstone resource for future re...
Lawn and Turf Pest Control: A Guide for Commercial Applicators.
ERIC Educational Resources Information Center
Khan, M. S.
This manual is designed for use in training commercial pesticide applicators. It gives identification and control information for common lawn and turf diseases, insects, nematodes, weeds, and vertebrate pests. It also discusses phytotoxicity, environmental concerns, and application methods. (BB)
Roques, Alain; Fan, Jian-Ting; Courtial, Béatrice; Zhang, Yan-Zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-Hua
2015-01-01
Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This situation could be improved by the development of molecular databases.
Roques, Alain; Fan, Jian-ting; Courtial, Béatrice; Zhang, Yan-zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-hua
2015-01-01
Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This situation could be improved by the development of molecular databases. PMID:25993342
Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee
Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; Hao, Zhao; Jenkins, Stefan; Lim, Hsiao Chien; Kosina, Petr; Infante, Francisco; Northen, Trent R.; Brodie, Eoin L.
2015-01-01
The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role. PMID:26173063
Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R
1996-04-01
We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.
Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar
2016-10-01
Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.
Deng, Xi-le; Kai, Zhen-Peng; Chamberlin, Mary E; Horodyski, Frank M; Yang, Xin-Ling
2016-11-01
The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium. The full characteristic of the AIT inhibition capacity of Manse-AT is essential to assay. In this study, AIT inhibition across the M. sexta midgut by Manse-AT and its analogues in a range of concentrations was assayed. The structure-activity relationship of Manse-AT was also studied by truncated and alanine-replacement strategies. Our results identified three residues, Thr4, Arg6 and Phe8, as the most important components for activity on the midgut. Replacement of Glu1, Met2 and Met3 reduced the potency of the analogues. The conservative substitution of Gly7 with alanine had little effect on the potency of the analogues. We demonstrated for the first time that Manse-AT (10-13) behaves as a potent antagonist in vitro on active ion transport across the epithelium of the posterior midgut in M. sexta. Structure-activity studies of Manse-AT are useful in developing lead compounds for the design and testing of synthetic antagonists, ultimately to develop potent and specific pest control strategies. Manse-AT (10-13) has been discovered as the first Manse-AT antagonist, with a significant effect and a short sequence compared with other insect neuropeptides. It may be a new potential pest control agent in the future. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming
2016-02-22
Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.