ERIC Educational Resources Information Center
Kay, Robin H.; Knaack, Liesel
2009-01-01
Learning objects are interactive web-based tools that support the learning of specific concepts by enhancing, amplifying, and/or guiding the cognitive processes of learners. Research on the impact, effectiveness, and usefulness of learning objects is limited, partially because comprehensive, theoretically based, reliable, and valid evaluation…
ERIC Educational Resources Information Center
Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin
2014-01-01
This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study…
A Methodology for Developing Learning Objects for Web Course Delivery
ERIC Educational Resources Information Center
Stauffer, Karen; Lin, Fuhua; Koole, Marguerite
2008-01-01
This article presents a methodology for developing learning objects for web-based courses using the IMS Learning Design (IMS LD) specification. We first investigated the IMS LD specification, determining how to use it with online courses and the student delivery model, and then applied this to a Unit of Learning (UOL) for online computer science…
ERIC Educational Resources Information Center
Pense, Seburn L.; Calvin, Jennifer; Watson, Dennis G.; Wakefield, Dexter B.
2012-01-01
A quasi-experimental pilot study of curriculum re-design using Learning Objects (LO) to instruct agricultural education students with Specific Learning Disabilities (SLD) was conducted in five high schools in the federally designated economically distressed area, the Illinois Delta Region. Six LOs were developed based on a unit of instruction in…
An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies
ERIC Educational Resources Information Center
Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko
2006-01-01
Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…
Learning Objects for Educational Applications via PDA Technology
ERIC Educational Resources Information Center
Churchill, Daniel
2008-01-01
This article discusses an ongoing study into issues relevant to the design of learning objects for educational applications via portable digital assistant (PDA) technology. The specific areas of inquiry in this study are: the kinds of learning objects that are effective for PDA delivery; contexts for their effective educational applications; and…
Learning Objects Update: Review and Critical Approach to Content Aggregation
ERIC Educational Resources Information Center
Balatsoukas, Panos; Morris, Anne; O'Brien, Ann
2008-01-01
The structure and composite nature of a learning object is still open to interpretation. Although several theoretical studies advocate integrated approaches to the structure and aggregation level of learning objects, in practice, many content specifications, such as SCORM, IMS Content Packaging, and course authoring tools, do not explicitly state…
Design and Implementation of an Object Oriented Learning Activity System
ERIC Educational Resources Information Center
Lin, Huan-Yu; Tseng, Shian-Shyong; Weng, Jui-Feng; Su, Jun-Ming
2009-01-01
With the development of e-learning technology, many specifications of instructional design have been proposed to make learning activity sharable and reusable. With the specifications and sufficient learning resources, the researches further focus on how to provide learners more appropriate learning activities to improve their learning performance.…
Estimating learning outcomes from pre- and posttest student self-assessments: a longitudinal study.
Schiekirka, Sarah; Reinhardt, Deborah; Beißbarth, Tim; Anders, Sven; Pukrop, Tobias; Raupach, Tobias
2013-03-01
Learning outcome is an important measure for overall teaching quality and should be addressed by comprehensive evaluation tools. The authors evaluated the validity of a novel evaluation tool based on student self-assessments, which may help identify specific strengths and weaknesses of a particular course. In 2011, the authors asked 145 fourth-year students at Göttingen Medical School to self-assess their knowledge on 33 specific learning objectives in a pretest and posttest as part of a cardiorespiratory module. The authors compared performance gain calculated from self-assessments with performance gain derived from formative examinations that were closely matched to these 33 learning objectives. Eighty-three students (57.2%) completed the assessment. There was good agreement between performance gain derived from subjective data and performance gain derived from objective examinations (Pearson r=0.78; P<.0001) on the group level. The association between the two measures was much weaker when data were analyzed on the individual level. Further analysis determined a quality cutoff for performance gain derived from aggregated student self-assessments. When using this cutoff, the evaluation tool was highly sensitive in identifying specific learning objectives with favorable or suboptimal objective performance gains. The tool is easy to implement, takes initial performance levels into account, and does not require extensive pre-post testing. By providing valid estimates of actual performance gain obtained during a teaching module, it may assist medical teachers in identifying strengths and weaknesses of a particular course on the level of specific learning objectives.
Ontologies for Effective Use of Context in E-Learning Settings
ERIC Educational Resources Information Center
Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff
2007-01-01
This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-02-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.
ERIC Educational Resources Information Center
Bukach, Cindy M.; Bub, Daniel N.; Masson, Michael E. J.; Lindsay, D. Stephen
2004-01-01
Studies of patients with category-specific agnosia (CSA) have given rise to multiple theories of object recognition, most of which assume the existence of a stable, abstract semantic memory system. We applied an episodic view of memory to questions raised by CSA in a series of studies examining normal observers' recall of newly learned attributes…
Indexing Learning Objects: Vocabularies and Empirical Investigation of Consistency
ERIC Educational Resources Information Center
Kabel, Suzanne; De Hoog, Robert; Wielinga, Bob; Anjewierden, Anjo
2004-01-01
In addition to the LOM standard and instructional design specifications, as well as domain specific indexing vocabularies, a structured indexing vocabulary for the more elementary learning objects is advisable in order to support retrieval tasks of developers. Furthermore, because semantic indexing is seen as a difficult task, three issues…
Category learning increases discriminability of relevant object dimensions in visual cortex.
Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel
2013-04-01
Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.
A Selection System and Catalog for Instructional Media and Devices.
ERIC Educational Resources Information Center
Boucher, Brian G.; And Others
A system is presented which facilitates the selection of training media and devices based on the requirements of specific learning objectives. The system consists of the use of a set of descriptive parameters which are common to both learning objectives and media. The system allows the essential intent of learning objectives to be analyzed in…
Soulé, Jonathan; Penke, Zsuzsa; Kanhema, Tambudzai; Alme, Maria Nordheim; Laroche, Serge; Bramham, Clive R.
2008-01-01
Long-term recognition memory requires protein synthesis, but little is known about the coordinate regulation of specific genes. Here, we examined expression of the plasticity-associated immediate early genes (Arc, Zif268, and Narp) in the dentate gyrus following long-term object-place recognition learning in rats. RT-PCR analysis from dentate gyrus tissue collected shortly after training did not reveal learning-specific changes in Arc mRNA expression. In situ hybridization and immunohistochemistry were therefore used to assess possible sparse effects on gene expression. Learning about objects increased the density of granule cells expressing Arc, and to a lesser extent Narp, specifically in the dorsal blade of the dentate gyrus, while Zif268 expression was elevated across both blades. Thus, object-place recognition triggers rapid, blade-specific upregulation of plasticity-associated immediate early genes. Furthermore, Western blot analysis of dentate gyrus homogenates demonstrated concomitant upregulation of three postsynaptic density proteins (Arc, PSD-95, and α-CaMKII) with key roles in long-term synaptic plasticity and long-term memory. PMID:19190776
The Role of Professional Objects in Technology-Enhanced Learning Environments in Higher Education
ERIC Educational Resources Information Center
Zitter, Ilya; de Bruijn, Elly; Simons, Robert-Jan; ten Cate, Olle
2012-01-01
We study project-based, technology-enhanced learning environments in higher education, which should produce, by means of specific mechanisms, learning outcomes in terms of transferable knowledge and learning-, thinking-, collaboration- and regulation-skills. Our focus is on the role of objects from professional practice serving as boundary objects…
Layered Learning Design: Towards an Integration of Learning Design and Learning Object Perspectives
ERIC Educational Resources Information Center
Boyle, Tom
2010-01-01
The use of ICT to enhance teaching and learning depends on effective design, which operates at many levels of granularity from the small to the very large. This reflects the range of educational problems from course design down to the design of activities focused on specific learning objectives. For maximum impact these layers of design need to be…
The Essen Learning Model--A Step towards a Representation of Learning Objectives.
ERIC Educational Resources Information Center
Bick, Markus; Pawlowski, Jan M.; Veith, Patrick
The importance of the Extensible Markup Language (XML) technology family in the field of Computer Assisted Learning (CAL) can not be denied. The Instructional Management Systems Project (IMS), for example, provides a learning resource XML binding specification. Considering this specification and other implementations using XML to represent…
Visual learning in drosophila: application on a roving robot and comparisons
NASA Astrophysics Data System (ADS)
Arena, P.; De Fiore, S.; Patané, L.; Termini, P. S.; Strauss, R.
2011-05-01
Visual learning is an important aspect of fly life. Flies are able to extract visual cues from objects, like colors, vertical and horizontal distributedness, and others, that can be used for learning to associate a meaning to specific features (i.e. a reward or a punishment). Interesting biological experiments show trained stationary flying flies avoiding flying towards specific visual objects, appearing on the surrounding environment. Wild-type flies effectively learn to avoid those objects but this is not the case for the learning mutant rutabaga defective in the cyclic AMP dependent pathway for plasticity. A bio-inspired architecture has been proposed to model the fly behavior and experiments on roving robots were performed. Statistical comparisons have been considered and mutant-like effect on the model has been also investigated.
Perceptual Learning and Attention: Reduction of Object Attention Limitations with Practice
Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin
2012-01-01
Perceptual learning has widely been claimed to be attention driven; attention assists in choosing the relevant sensory information and attention may be necessary in many cases for learning. In this paper, we focus on the interaction of perceptual learning and attention – that perceptual learning can reduce or eliminate the limitations of attention, or, correspondingly, that perceptual learning depends on the attention condition. Object attention is a robust limit on performance. Two attributes of a single attended object may be reported without loss, while the same two attributes of different objects can exhibit a substantial dual-report deficit due to the sharing of attention between objects. The current experiments document that this fundamental dual-object report deficit can be reduced, or eliminated, through perceptual learning that is partially specific to retinal location. This suggests that alternative routes established by practice may reduce the competition between objects for processing resources. PMID:19796653
Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris
2011-01-01
The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading, spelling, and mathematics were examined in children with learning disabilities. As expected, the children with learning disabilities scored poorer on both the locomotor and object-control subtests than their typically developing peers. Furthermore, in children with learning disabilities a specific relationship was observed between reading and locomotor skills and a trend was found for a relationship between mathematics and object-control skills: the larger children's learning lag, the poorer their motor skill scores. This study stresses the importance of specific interventions facilitating both motor and academic abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Matatyaho, Dalit J.; Gogate, Lakshmi J.
2008-01-01
Mothers' use of specific types of object motion in synchrony with object naming was examined, along with infants' joint attention to the mother and object, as a predictor of word learning. During a semistructured 3-min play episode, mothers (N = 24) taught the names of 2 toy objects to their preverbal 6- to 8-month-old infants. The episodes were…
Quality Assurance for Digital Learning Object Repositories: Issues for the Metadata Creation Process
ERIC Educational Resources Information Center
Currier, Sarah; Barton, Jane; O'Beirne, Ronan; Ryan, Ben
2004-01-01
Metadata enables users to find the resources they require, therefore it is an important component of any digital learning object repository. Much work has already been done within the learning technology community to assure metadata quality, focused on the development of metadata standards, specifications and vocabularies and their implementation…
Word Learning by Preschoolers with SLI: Effect of Phonotactic Probability and Object Familiarity
ERIC Educational Resources Information Center
Gray, Shelley; Brinkley, Shara; Svetina, Dubravka
2012-01-01
Purpose: In this study, the authors investigated whether previous findings of a low phonotactic probability/unfamiliar object word-learning advantage in preschoolers could be replicated, whether this advantage would be apparent at different "stages" of word learning, and whether findings would differ for preschoolers with specific language…
Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang
2014-01-01
The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339
Perceptual Learning of Object Shape
Golcu, Doruk; Gilbert, Charles D.
2009-01-01
Recognition of objects is accomplished through the use of cues that depend on internal representations of familiar shapes. We used a paradigm of perceptual learning during visual search to explore what features human observers use to identify objects. Human subjects were trained to search for a target object embedded in an array of distractors, until their performance improved from near-chance levels to over 80% of trials in an object specific manner. We determined the role of specific object components in the recognition of the object as a whole by measuring the transfer of learning from the trained object to other objects sharing components with it. Depending on the geometric relationship of the trained object with untrained objects, transfer to untrained objects was observed. Novel objects that shared a component with the trained object were identified at much higher levels than those that did not, and this could be used as an indicator of which features of the object were important for recognition. Training on an object also transferred to the components of the object when these components were embedded in an array of distractors of similar complexity. These results suggest that objects are not represented in a holistic manner during learning, but that their individual components are encoded. Transfer between objects was not complete, and occurred for more than one component, regardless of how well they distinguish the object from distractors. This suggests that a joint involvement of multiple components was necessary for full performance. PMID:19864574
Credit assignment between body and object probed by an object transportation task.
Kong, Gaiqing; Zhou, Zhihao; Wang, Qining; Kording, Konrad; Wei, Kunlin
2017-10-17
It has been proposed that learning from movement errors involves a credit assignment problem: did I misestimate properties of the object or those of my body? For example, an overestimate of arm strength and an underestimate of the weight of a coffee cup can both lead to coffee spills. Though previous studies have found signs of simultaneous learning of the object and of the body during object manipulation, there is little behavioral evidence about their quantitative relation. Here we employed a novel weight-transportation task, in which participants lift the first cup filled with liquid while assessing their learning from errors. Specifically, we examined their transfer of learning when switching to a contralateral hand, the second identical cup, or switching both hands and cups. By comparing these transfer behaviors, we found that 25% of the learning was attributed to the object (simply because of the use of the same cup) and 58% of the learning was attributed to the body (simply because of the use of the same hand). The nervous system thus seems to partition the learning of object manipulation between the object and the body.
ERIC Educational Resources Information Center
Benson, Delwin E.; Manning, Jan
This publication contains objectives that range from basic shooting sports safety and proficiency to more specialized activities. They can be applied to hunter safety education, 4-H shooting sports, scouting, and club or community activities for youth or adults. The specific learning objectives in each list have been grouped into learning…
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Div. of Elementary Education.
The specific educational objectives or basic learning skills are listed for the Virginia elementary school grades. Minimum skills are listed in reading, communications, and mathematics. Terminal objectives for reading include skills in word identification or decoding, comprehension, and study skills. Communication skills include listening,…
Tian, Moqian; Grill-Spector, Kalanit
2015-01-01
Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454
Abstract numerical discrimination learning in rats.
Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko
2016-06-01
In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.
Learning viewpoint invariant perceptual representations from cluttered images.
Spratling, Michael W
2005-05-01
In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
Self-Organized Behavior Generation for Musculoskeletal Robots.
Der, Ralf; Martius, Georg
2017-01-01
With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics.
Self-Organized Behavior Generation for Musculoskeletal Robots
Der, Ralf; Martius, Georg
2017-01-01
With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors “waiting” to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics. PMID:28360852
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
ERIC Educational Resources Information Center
Aguilar, Jessica M.; Plante, Elena; Sandoval, Michelle
2018-01-01
Purpose: Variability in the input plays an important role in language learning. The current study examined the role of object variability for new word learning by preschoolers with specific language impairment (SLI). Method: Eighteen 4- and 5-year-old children with SLI were taught 8 new words in 3 short activities over the course of 3 sessions.…
Smith, Jay; Laskowski, Edward R; Newcomer-Aney, Karen L; Thompson, Jeffrey M; Schaefer, Michael P; Morfe, Erasmus G
2005-04-01
To develop and implement formal learning objectives during a physical medicine and rehabilitation sports medicine rotation and characterize resident experiences with the objectives over a 16-mo period. Prospective, including learning objective development, implementation, and postrotation survey. A total of 69 learning objectives were developed by physical medicine and rehabilitation staff physician consensus, including 39 core objectives. Eighteen residents completed 4-wk sports medicine rotations from January 2003 through April 2004. Residents completed an average of 31 total objectives (45%; range, 3-52), of which 24 (62%; range, 3-35) were core. Residents completed the highest percentage of knee (60%), shoulder (57%), and ankle-foot (57%) objectives and reported that objectives related to these areas were most effective to facilitate learning. In general, residents reported that objective content was good and that the objectives delineated important concepts to learn during the rotation. Seventeen of 18 residents indicated that the objectives should be permanently implemented into the sports rotation and that similar objectives should be developed for other rotations. Based on our experience and the recommendations of residents, the average resident should be able to complete approximately 30 objectives during a typical 4-wk rotation. Successful implementation of specific, consensus-derived learning objectives is possible within the context of a busy clinical practice. Our initial physician staff and resident experience with the objectives suggests that this model may be useful as a supplementary educational tool in physical medicine and rehabilitation residency programs.
Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning
Hassler, Uwe; Friese, Uwe; Gruber, Thomas
2012-01-01
The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558
Bottlenose dolphins can use learned vocal labels to address each other
King, Stephanie L.; Janik, Vincent M.
2013-01-01
In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin’s learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system. PMID:23878217
Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi
2014-02-01
This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.
Object Toolkit Version 4.3 User’s Manual
2016-12-31
unlimited. (OPS-17-12855 dtd 19 Jan 2017) 13. SUPPLEMENTARY NOTES 14. ABSTRACT Object Toolkit is a finite - element model builder specifically designed for...INTRODUCTION 1 What Is Object Toolkit? Object Toolkit is a finite - element model builder specifically designed for creating representations of spacecraft...Nascap-2k and EPIC, the user is not required to purchase or learn expensive finite element generators to create system models. Second, Object Toolkit
ERIC Educational Resources Information Center
Georgantaki, Stavroula C.; Retalis, Symeon D.
2007-01-01
"Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…
How to Achieve Learning Impact.
ERIC Educational Resources Information Center
Peterson, Bob
1978-01-01
Although learning can be defined in cognitive, affective, or behavioral terms, the specification of communication, planning, or evaluation skills in behavioral terms is most appropriate in management training. Learning objectives are most effectively reached in a closed rather than open loop learning design. In designs, the learner's reactions and…
Learning the 3-D structure of objects from 2-D views depends on shape, not format
Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit
2016-01-01
Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196
The lasting effects of process-specific versus stimulus-specific learning during infancy.
Hadley, Hillary; Pickron, Charisse B; Scott, Lisa S
2015-09-01
The capacity to tell the difference between two faces within an infrequently experienced face group (e.g. other species, other race) declines from 6 to 9 months of age unless infants learn to match these faces with individual-level names. Similarly, the use of individual-level labels can also facilitate differentiation of a group of non-face objects (strollers). This early learning leads to increased neural specialization for previously unfamiliar face or object groups. The current investigation aimed to determine whether early conceptual learning between 6 and 9 months leads to sustained behavioral advantages and neural changes in these same children at 4-6 years of age. Results suggest that relative to a control group of children with no previous training and to children with infant category-level naming experience, children with early individual-level training exhibited faster response times to human faces. Further, individual-level training with a face group - but not an object group - led to more adult-like neural responses for human faces. These results suggest that early individual-level learning results in long-lasting process-specific effects, which benefit categories that continue to be perceived and recognized at the individual level (e.g. human faces). © 2014 John Wiley & Sons Ltd.
Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P
2016-02-15
Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Frequency-specific hippocampal-prefrontal interactions during associative learning
Brincat, Scott L.; Miller, Earl K.
2015-01-01
Much of our knowledge of the world depends on learning associations (e.g., face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive/mnemonic abilities are akin to humans. Here, we show functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object-pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, while HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences, and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC, and increased with learning. Rapid object associative learning may occur in PFC, while HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands. PMID:25706471
Active and passive spatial learning in human navigation: acquisition of graph knowledge.
Chrastil, Elizabeth R; Warren, William H
2015-07-01
It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.
Khandoobhai, Anand; Leadon, Kim
2012-01-01
Objective. To determine whether a 2-year continuing professional development (CPD) training program improved first-year (P1) and second-year (P2) pharmacy students’ ability to write SMART (specific, measurable, achievable, relevant, and timed) learning objectives. Design. First-year students completed live or online CPD training, including creating portfolios and writing SMART objectives prior to their summer introductory pharmacy practice experience (IPPE). In year 2, P1 and P2 students were included. SMART learning objectives were graded and analyzed. Assessment. On several objectives, the 2011 P1 students (n = 130) scored higher than did the P2 cohort (n = 105). In 2011, P2 students outscored their own performance in 2010. In 2011, P1 students who had been trained in online modules performed the same as did live-session trainees with respect to SMART objectives. Conclusion. With focused online or live training, students are capable of incorporating principles of CPD by writing SMART learning objectives. PMID:22611277
Attribute conjunctions and the part configuration advantage in object category learning.
Saiki, J; Hummel, J E
1996-07-01
Five experiments demonstrated that in object category learning people are particularly sensitive to conjunctions of part shapes and relative locations. Participants learned categories defined by a part's shape and color (part-color conjunctions) or by a part's shape and its location relative to another part (part-location conjunctions). The statistical properties of the categories were identical across these conditions, as were the salience of color and relative location. Participants were better at classifying objects defined by part-location conjunctions than objects defined by part-color conjunctions. Subsequent experiments revealed that this effect was not due to the specific color manipulation or the role of location per se. These results suggest that the shape bias in object categorization is at least partly due to sensitivity to part-location conjunctions and suggest a new processing constraint on category learning.
On the Role of Concepts in Learning and Instructional Design
ERIC Educational Resources Information Center
Jonassen, David H.
2006-01-01
The field of instructional design has traditionally treated concepts as discrete learning outcomes. Theoretically, learning concepts requires correctly isolating and applying attributes of specific objects into their correct categories. Similarity views of concept learning are unable to account for all of the rules governing concept formation,…
Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.
Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies
2016-01-01
During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.
Sarigiannis, Amy N.; Boulton, Matthew L.
2012-01-01
Objectives. We evaluated the utility of a competency mapping process for assessing the integration of clinical and public health skills in a newly developed Community Health Center (CHC) rotation at the University of Michigan School of Public Health Preventive Medicine residency. Methods. Learning objectives for the CHC rotation were derived from the Accreditation Council for Graduate Medical Education core clinical preventive medicine competencies. CHC learning objectives were mapped to clinical preventive medicine competencies specific to the specialty of public health and general preventive medicine. Objectives were also mapped to The Council on Linkages Between Academia and Public Health Practice’s tier 2 Core Competencies for Public Health Professionals. Results. CHC learning objectives mapped to all 4 (100%) of the public health and general preventive medicine clinical preventive medicine competencies. CHC population-level learning objectives mapped to 32 (94%) of 34 competencies for public health professionals. Conclusions. Utilizing competency mapping to assess clinical–public health integration in a new CHC rotation proved to be feasible and useful. Clinical preventive medicine learning objectives for a CHC rotation can also address public health competencies. PMID:22690972
Learning Objects and the Development of Students' Key Competencies: A New Zealand School Experience
ERIC Educational Resources Information Center
Falloon, Garry
2010-01-01
This paper outlines a study investigating the impact of the use of learning objects on the development of two key competencies from the revised New Zealand Curriculum Framework (Ministry of Education, 2007). It specifically focuses on the key competencies of "thinking" and "relating to others", and explores how teachers in an…
Semantic Linking of Learning Object Repositories to DBpedia
ERIC Educational Resources Information Center
Lama, Manuel; Vidal, Juan C.; Otero-Garcia, Estefania; Bugarin, Alberto; Barro, Senen
2012-01-01
Large-sized repositories of learning objects (LOs) are difficult to create and also to maintain. In this paper we propose a way to reduce this drawback by improving the classification mechanisms of the LO repositories. Specifically, we present a solution to automate the LO classification of the Universia repository, a collection of more than 15…
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
Playground Exploration: An Opportunity for Incidental Learning of Mechanical Principles
ERIC Educational Resources Information Center
Lyons, Brian
2005-01-01
Play involves unstructured activity that is freely entered into and intrinsically rewarding. When children engage in play there is little intentional learning. There are no lesson plans. There are no daily objectives or specific learning outcomes. Incidental learning can cause relatively permanent changes in the way one thinks; accidental learning…
Developing a User Oriented Design Methodology for Learning Activities Using Boundary Objects
ERIC Educational Resources Information Center
Fragou, ?lga; Kameas, Achilles
2013-01-01
International Standards in High and Open and Distance Education are used for developing Open Educational Resources (OERs). Current issues in e-learning community are the specification of learning chunks and the definition of describing designs for different units of learning (activities, units, courses) in a generic though expandable format.…
Using AMLO to Improve the Quality of Teacher Education Outcomes
ERIC Educational Resources Information Center
Al-Shammari, Zaid
2012-01-01
This study aims to find ways to improve learning outcomes in teacher education courses by using an Analysis Model for Learning Outcomes (AMLO). It addresses the improvement of the quality of teacher education by analyzing learning outcomes and implementing curriculum modifications related to specific learning objectives and their effects on…
ERIC Educational Resources Information Center
Belenky, Daniel; Ringenberg, Michael; Olsen, Jennifer; Aleven, Vincent; Rummel, Nikol
2013-01-01
Dual eye-tracking measures enable novel ways to test predictions about collaborative learning. For example, the research project we are engaging in uses measures of gaze recurrence to help understand how collaboration may differ when students are completing various learning activities focused on different learning objectives. Specifically, we…
Cross-Sensory Transfer of Reference Frames in Spatial Memory
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Avraamides, Marios N.
2011-01-01
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…
ERIC Educational Resources Information Center
Makkonen, Reino; Tejwani, Jaclyn; Rodriguez, Fernando, Jr.
2015-01-01
Approximately 30 states are now adopting teacher evaluation policies that include student learning objectives (SLOs), which are classroom-specific student test growth targets set by teachers and approved (and scored) by principals. Today state and district leaders are trying to determine the appropriate level of guidance and oversight to provide…
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Lee, Inah; Kim, Jangjin
2010-08-01
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in association with a shift in strategy during learning. We used an object-place paired-associate task in which a pair of objects was presented in two different arms of a radial maze. Each object was associated with reward only in one of the arms, thus requiring the rats to consider both object identity and its location in the maze. Hippocampal neurons recorded in CA1 displayed a dynamic transition in their firing patterns during the acquisition of the task across days, and this corresponded to a shift in strategy manifested in behavioral data. Specifically, before the rats learned the task, they chose an object that maintained a particular egocentric relationship with their body (response strategy) irrespective of the object identity. However, as the animal acquired the task, it chose an object according to both its identity and the associated location in the maze (object-in-place strategy). We report that CA1 neurons in the hippocampus changed their prospective firing correlates according to the dominant strategy (i.e., response versus object-in-place strategy) employed at a given stage of learning. The results suggest that neural firing pattern in the hippocampus is heavily influenced by the task demand hypothesized by the animal and the firing pattern changes flexibly as the perceived task demand changes.
Young Children's Fast Mapping and Generalization of Words, Facts, and Pictograms
ERIC Educational Resources Information Center
Deak, Gedeon O.; Toney, Alexis J.
2013-01-01
To test general and specific processes of symbol learning, 4- and 5-year-old children learned three kinds of abstract associates for novel objects: words, facts, and pictograms. To test fast mapping (i.e., one-trial learning) and subsequent learning, comprehension was tested after each of four exposures. Production was also tested, as was…
ERIC Educational Resources Information Center
Ariani, Mohsen Ghasemi; Ghafournia, Narjes
2016-01-01
The objective of this study is to explore the probable relationship between Iranian students' socioeconomic status, general language learning outcome, and their beliefs about language learning. To this end, 350 postgraduate students, doing English for specific courses at Islamic Azad University of Neyshabur participated in this study. They were…
Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course
ERIC Educational Resources Information Center
Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff
2010-01-01
Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…
Early Education of the Language-Learning Handicapped Child.
ERIC Educational Resources Information Center
Easter Seal Treatment Center of Montgomery County, Rockville, MD.
The brochure descrbies a demonstration program on the early education of the language learning handicapped preschool child. Discussed are symptoms of the language learning problem (such as misunderstanding what is said), a remedial approach based on specific disability intervention, the Easter Seal Treatment Center, project objectives (such as the…
Automatically Producing Accessible Learning Objects
ERIC Educational Resources Information Center
Di Iorio, Angelo; Feliziani, Antonio Angelo; Mirri, Silvia; Salomoni, Paola; Vitali, Fabio
2006-01-01
The "Anywhere, Anytime, Anyway" slogan is frequently associated to e-learning with the aim to emphasize the wide access offered by on-line education. Otherwise, learning materials are currently created to be used with a specific technology or configuration, leaving out from the virtual classroom students who have limited access capabilities and,…
Learning--Feeling--Doing: Designing Creative Learning Experiences for Elementary Health Education.
ERIC Educational Resources Information Center
Scott, Gwendolyn D.; Carlo, Mona W.
The dynamics of health education are encompassed in understanding human behavior (its causes and consequences), and this book seeks to outline learning experiences that will correspond to specific behavioral objectives relating to health education. The systematic planning and instructional design center around 11 concepts: (1) Growth and…
Implementation and Deployment of the IMS Learning Design Specification
ERIC Educational Resources Information Center
Paquette, Gilbert; Marino, Olga; De la Teja, Ileana; Lundgren-Cayrol, Karin; Lonard, Michel; Contamines, Julien
2005-01-01
Knowledge management in organizations, the learning objects paradigm, the advent of a new web generation, and the "Semantic Web" are major actual trends that reveal a potential for a renewed distance learning pedagogy. First and foremost is the use of educational modelling languages and instructional engineering methods to help decide…
(Re/Dis)assembling Learning Practices Online with Fluid Objects and Spaces
ERIC Educational Resources Information Center
Thompson, Terrie Lynn
2012-01-01
Actor network theory (ANT) is used to explore how work-learning is enacted in informal online communities and illustrates how researchers might use sociomaterial approaches to uncover complexities, uncertainties, and specificities of work-learning practices. Participants in this study were self-employed workers. The relational and material aspects…
Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning
Yee, Meagan; Jones, Susan S.; Smith, Linda B.
2012-01-01
Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso
2015-01-01
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457
Everyday objects of learning about health and healing and implications for science education
NASA Astrophysics Data System (ADS)
Gitari, Wanja
2006-02-01
The role of science education in rural development is of great interest to science educators. In this study I investigated how residents of rural Kirumi, Kenya, approach health and healing, through discussions and semistructured and in-depth interviews with 150 residents, 3 local herbalists, and 2 medical researchers over a period of 6 months. I constructed objects of learning by looking for similarities and differences within interpretive themes. Objects of learning found comprise four types of personal learning tools, three types of relational learning tools, three genres of moral obligation, and five genres of knowledge guarding. Findings show that rural people use (among other learning tools) inner sensing to engage thought processes that lead to health and healing knowledge. The sociocultural context is also an important component in learning. Inner sensing and residents' sociocultural context are not presently emphasized in Kenyan science teaching. I discuss the potential use of rural objects of learning in school science, with specific reference to a health topic in the Kenyan science curriculum. In addition, the findings add to the literature in the Science, Technology, Society, and Environment (STSE) approach to science education, and cross-cultural and global science education.
ERIC Educational Resources Information Center
Ring, Joshua
2017-01-01
Specifications Grading is a system of course-long student assessment based on the division of learning objectives into clearly defined skill tests or assignments. Each skill is evaluated at a mastery level, with opportunities for students to learn from their mistakes and then be re-evaluated for skill tests, or resubmit assignments. Specifications…
Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice
ERIC Educational Resources Information Center
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…
ERIC Educational Resources Information Center
Desjardins, Richard; Rubenson, Kjell; Milana, Marcella
2006-01-01
The purpose of this booklet is to document cross-national patterns of adult learning, and in particular the unequal chances to participate in adult learning. In so doing, an effort is made to identify important motivating factors for participating in adult learning. The specific objectives of the booklet are to: (1) make available the…
Rapid and long-lasting learning of feature binding
Yashar, Amit; Carrasco, Marisa
2016-01-01
How are features integrated (bound) into objects and how can this process be facilitated? Here we investigated the role of rapid perceptual learning in feature binding and its long-lasting effects. By isolating the contributions of individual features from their conjunctions between training and test displays, we demonstrate for the first time that training can rapidly and substantially improve feature binding. Observers trained on a conjunction search task consisting of a rapid display with one target-conjunction, then tested with a new target-conjunction. Features were the same between training and test displays. Learning transferred to the new target when its conjunction was presented as a distractor, but not when only its component features were presented in different conjunction distractors during training. Training improvement lasted for up to 16 months, but, in all conditions, it was specific to the trained target. Our findings suggest that with short training observers’ ability to bind two specific features into an object is improved, and that this learning effect can last for over a year. Moreover, our findings show that while the short-term learning effect reflects activation of presented items and their binding, long-term consolidation is task specific. PMID:27289484
Toward a unified model of face and object recognition in the human visual system
Wallis, Guy
2013-01-01
Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963
NASA Astrophysics Data System (ADS)
Fiorini, Rodolfo A.; Dacquino, Gianfranco
2005-03-01
GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.
More Limitations to Monolingualism: Bilinguals Outperform Monolinguals in Implicit Word Learning.
Escudero, Paola; Mulak, Karen E; Fu, Charlene S L; Singh, Leher
2016-01-01
To succeed at cross-situational word learning, learners must infer word-object mappings by attending to the statistical co-occurrences of novel objects and labels across multiple encounters. While past studies have investigated this as a learning mechanism for infants and monolingual adults, bilinguals' cross-situational word learning abilities have yet to be tested. Here, we compared monolinguals' and bilinguals' performance on a cross-situational word learning paradigm that featured phonologically distinct word pairs (e.g., BON-DEET) and phonologically similar word pairs that varied by a single consonant or vowel segment (e.g., BON-TON, DEET-DIT, respectively). Both groups learned the novel word-referent mappings, providing evidence that cross-situational word learning is a learning strategy also available to bilingual adults. Furthermore, bilinguals were overall more accurate than monolinguals. This supports that bilingualism fosters a wide range of cognitive advantages that may benefit implicit word learning. Additionally, response patterns to the different trial types revealed a relative difficulty for vowel minimal pairs than consonant minimal pairs, replicating the pattern found in monolinguals by Escudero et al. (2016) in a different English accent. Specifically, all participants failed to learn vowel contrasts differentiated by vowel height. We discuss evidence for this bilingual advantage as a language-specific or general advantage.
More Limitations to Monolingualism: Bilinguals Outperform Monolinguals in Implicit Word Learning
Escudero, Paola; Mulak, Karen E.; Fu, Charlene S. L.; Singh, Leher
2016-01-01
To succeed at cross-situational word learning, learners must infer word-object mappings by attending to the statistical co-occurrences of novel objects and labels across multiple encounters. While past studies have investigated this as a learning mechanism for infants and monolingual adults, bilinguals’ cross-situational word learning abilities have yet to be tested. Here, we compared monolinguals’ and bilinguals’ performance on a cross-situational word learning paradigm that featured phonologically distinct word pairs (e.g., BON-DEET) and phonologically similar word pairs that varied by a single consonant or vowel segment (e.g., BON-TON, DEET-DIT, respectively). Both groups learned the novel word-referent mappings, providing evidence that cross-situational word learning is a learning strategy also available to bilingual adults. Furthermore, bilinguals were overall more accurate than monolinguals. This supports that bilingualism fosters a wide range of cognitive advantages that may benefit implicit word learning. Additionally, response patterns to the different trial types revealed a relative difficulty for vowel minimal pairs than consonant minimal pairs, replicating the pattern found in monolinguals by Escudero et al. (2016) in a different English accent. Specifically, all participants failed to learn vowel contrasts differentiated by vowel height. We discuss evidence for this bilingual advantage as a language-specific or general advantage. PMID:27574513
ERIC Educational Resources Information Center
Kunkle, Wanda M.
2010-01-01
Many students experience difficulties learning to program. They find learning to program in the object-oriented paradigm particularly challenging. As a result, computing educators have tried a variety of instructional methods to assist beginning programmers. These include developing approaches geared specifically toward novices and experimenting…
Interactive Whiteboards for Teaching and Learning Science: Ascertaining Research
ERIC Educational Resources Information Center
Mata, Liliana; Lazar, Gabriel; Lazar, Iuliana
2016-01-01
The purpose of this paper is to analyze of latest research focused on the investigation of interactive whiteboards used in teaching and learning Science. In the theoretical framework the main objectives are: a) the identification of specific research regarding the integration of interactive whiteboards in teaching and learning Science and b) the…
Designing an Educational Game with Ten Steps to Complex Learning
ERIC Educational Resources Information Center
Enfield, Jacob
2012-01-01
Few instructional design (ID) models exist which are specific for developing educational games. Moreover, those extant ID models have not been rigorously evaluated. No ID models were found which focus on educational games with complex learning objectives. "Ten Steps to Complex Learning" (TSCL) is based on the four component instructional…
Linking actions and objects: Context-specific learning of novel weight priors.
Trewartha, Kevin M; Flanagan, J Randall
2017-06-01
Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gustafson, Brenda; Mahaffy, Peter; Martin, Brian
2015-01-01
This paper focuses on one Grade 5 class (9 females; 9 males) who worked in student-pairs to view five digital learning object (DLO) lessons created by the authors and meant to introduce students to the nature of models, the particle nature of matter, and physical change. Specifically, the paper focuses on whether DLO design elements could assist…
Specifications for an Advanced Instructional Design Advisor (AIDA) for Computer-Based Training
1991-05-01
student time under instruction o increased student comprehension and learning transfer o establishment of instruction standards o...strategies. 6. The nature of the cognitive task determines the learning objective. 7. Learning is internal; instruction is external. 12 Major...AIDAs and to its instructional products. Halff argued that cognitive structures have a role to play in instructional design. He maintained that learning
Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso
2017-01-01
SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522
Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus
2018-05-23
The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Adapting the Mathematical Task Framework to Design Online Didactic Objects
ERIC Educational Resources Information Center
Bowers, Janet; Bezuk, Nadine; Aguilar, Karen
2011-01-01
Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…
Sadofsky, Moshe; Knollmann-Ritschel, Barbara; Conran, Richard M; Prystowsky, Michael B
2014-03-01
Medical school education has evolved from department-specific memorization of facts to an integrated curriculum presenting knowledge in a contextual manner across traditional disciplines, integrating information, improving retention, and facilitating application to clinical practice. Integration occurs throughout medical school using live data-sharing technologies, thereby providing the student with a framework for lifelong active learning. Incorporation of educational teams during medical school prepares students for team-based patient care, which is also required for pay-for-performance models used in accountable care organizations. To develop learning objectives for teaching pathology to medical students. Given the rapid expansion of basic science knowledge of human development, normal function, and pathobiology, it is neither possible nor desirable for faculty to teach, and students to retain, this vast amount of information. Courses teaching the essentials in context and engaging students in the learning process enable them to become lifelong learners. An appreciation of pathobiology and the role of laboratory medicine underlies the modern practice of medicine. As such, all medical students need to acquire 3 basic competencies in pathology: an understanding of disease mechanisms, integration of mechanisms into organ system pathology, and application of pathobiology to diagnostic medicine. We propose the development of 3 specific competencies in pathology to be implemented nationwide, aimed at disease mechanisms/processes, organ system pathology, and application to diagnostic medicine. Each competency will include learning objectives and a means to assess acquisition, integration, and application of knowledge. The learning objectives are designed to be a living document managed (curated) by a group of pathologists representing Liaison Committee on Medical Education-accredited medical schools nationally. Development of a coherent set of learning objectives will assist medical students nationally to gain the basic competencies in pathology necessary for clinical practice. Having national standards for competencies preserves schools' independence in specific curriculum design while assuring all students meet the evolving needs of medical practice.
Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.
Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena
2017-03-01
Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
PELS: A Noble Architecture and Framework for a Personal E-Learning System (PELS)
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2014-01-01
This article presents a personal e-learning system architecture in the context of a social network environment. The main objective of a personal e-learning system is to develop individual skills on a specific subject and share resources with peers. The authors' system architecture defines the organisation and management of a personal learning…
Two Years into the Journey: AACSB Assessment of Learning in a "Principles of Marketing" Course
ERIC Educational Resources Information Center
Clinton, Steven R.; Marco, Gayle; Chu, Yun
2009-01-01
Using a "Principles of Marketing" course, the authors demonstrate how compliance with AACSB standards and assessment of learning has been undertaken at Robert Morris University over a two-year period. Learning goals and objectives are tied to a specific assessment instrument to provide an illustration of how broad conceptual ideas are…
ERIC Educational Resources Information Center
Johannes, Christine; Fendler, Jan; Seidel, Tina
2013-01-01
Despite the complexity of teaching, learning to teach in universities is often "learning by doing". To provide novice university teachers with pedagogic teaching knowledge and to help them develop specific teaching objectives, we created a structured, video-based, one-year training program. In focusing on the core features of…
ERIC Educational Resources Information Center
Simmons, Robin
2013-01-01
The objective of this study was to determine if Learning-Focused Strategies (LFS) implemented in high school science courses would affect student achievement and the pass rate of biology and physical science Common District Assessments (CDAs). The LFS, specific teaching strategies contained in the Learning-Focused Strategies Model (LFSM) Program…
Developing Health Literacy Knowledge and Skills Through Case-Based Learning
Lopez, Tina
2014-01-01
Objective. To evaluate the efficacy of case-based learning to teach pharmacy students health literacy concepts and skills in managing patients with limited health literacy. Design. A health literacy patient case was developed and incorporated into a case-based learning laboratory. The case involved a patient with limited health literacy and required students to evaluate and formulate a care plan. Assessment. A comparison of pretest and posttest scores demonstrated that students gained health literacy knowledge and skills through completion of the patient case. Students believed that the case-based exercise was successful in meeting specific learning objectives for the course. Conclusions. Addition of a case-based learning was effective in teaching pharmacy students health literacy concepts and skills. PMID:24558285
An object-based visual attention model for robotic applications.
Yu, Yuanlong; Mann, George K I; Gosine, Raymond G
2010-10-01
By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.
The Corporate University Model for Continuous Learning, Training and Development.
ERIC Educational Resources Information Center
El-Tannir, Akram A.
2002-01-01
Corporate universities typically convey corporate culture and provide systematic curriculum aimed at achieving strategic objectives. Virtual access and company-specific content combine to provide opportunities for continuous and active learning, a model that is becoming pervasive. (Contains 17 references.) (SK)
Measuring Student Engagement in a Flipped Athletic Training Classroom
ERIC Educational Resources Information Center
Thompson, Gayle A.; Ayers, Suzan F.
2015-01-01
Context: "Active learning" describes any instructional approach that fosters student engagement in the content and is believed to promote critical thinking more fully than do traditional lecture formats. Objective: Investigate student engagement, specifically professional relevance and peer interaction, with active learning techniques…
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
Integrating Prevention into Obstetrics/Gynecology.
ERIC Educational Resources Information Center
Carey, J. Christopher
2000-01-01
Discusses formats to teach preventive medicine in obstetrics and gynecology (including learning objectives, lectures/seminars, and rounds/office practice) and evaluation methods (oral examinations, computerized question banks, objective structured clinical examinations). Offers examples from specific programs at American medical schools, including…
Freundlieb, Nils; Ridder, Volker; Dobel, Christian; Enriquez-Geppert, Stefanie; Baumgaertner, Annette; Zwitserlood, Pienie; Gerloff, Christian; Hummel, Friedhelm C; Liuzzi, Gianpiero
2012-01-01
Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning to optimize therapeutic strategies.
Perera, Jennifer; Mohamadou, Galy; Kaur, Satpal
2010-05-01
Feedback is essential to guide students towards expected performance goals. The usefulness of teacher feedback on improving communication skills (CS) has been well documented. It has been proposed that self-assessment and peer-feedback has an equally important role to play in enhancing learning. This is the focus of this study. Objectively structured self-assessment and peer feedback (OSSP) was incorporated into small group CS teaching sessions of a group of semester one medical students who were learning CS for the first time, to minimise the influence of previous educational interventions. A control group matched for academic performance, gender and age was used to enable parallel evaluation of the innovation. A reflective log containing closed and open ended questions was used for OSSP. Facilitators and simulated patients provided feedback to students in both groups during CS learning as per routine practice. Student perceptions on OSSP and acceptability as a learning method were explored using a questionnaire. CS were assessed in both groups using objective structured clinical examination (OSCE) as per routine practice and assessors were blinded as to which group the student belonged. Mean total score and scores for specific areas of interview skills were significantly higher in the experimental group. Analysis of the questionnaire data showed that students gained fresh insights into specific areas such as empathy, addressing patients' concerns and interview style during OSSP which clearly corroborated the specific differences in scores. The free text comments were highly encouraging as to acceptability of OSSP, in spite of 67% being never exposed to formal self- and peer-assessment during pre-university studies. OSSP promotes effective CS learning and learner acceptability is high.
ERIC Educational Resources Information Center
Castro, Margarita, Ed.; Forero, Fanny, Ed.
This document provides a classification of educational objectives in the cognitive and affective domains, defines each objective, and offers examples. Special emphasis is not given to any particular objective; it is left to the teachers in a given program to determine the specific objectives to be derived in each learning experience within the…
Memory reactivation during rest supports upcoming learning of related content.
Schlichting, Margaret L; Preston, Alison R
2014-11-04
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face-object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal-neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal-neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes.
Memory reactivation during rest supports upcoming learning of related content
Schlichting, Margaret L.; Preston, Alison R.
2014-01-01
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face–object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal–neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal–neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes. PMID:25331890
Perceptual advantage for category-relevant perceptual dimensions: the case of shape and motion.
Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel
2014-01-01
Category learning facilitates perception along relevant stimulus dimensions, even when tested in a discrimination task that does not require categorization. While this general phenomenon has been demonstrated previously, perceptual facilitation along dimensions has been documented by measuring different specific phenomena in different studies using different kinds of objects. Across several object domains, there is support for acquired distinctiveness, the stretching of a perceptual dimension relevant to learned categories. Studies using faces and studies using simple separable visual dimensions have also found evidence of acquired equivalence, the shrinking of a perceptual dimension irrelevant to learned categories, and categorical perception, the local stretching across the category boundary. These later two effects are rarely observed with complex non-face objects. Failures to find these effects with complex non-face objects may have been because the dimensions tested previously were perceptually integrated. Here we tested effects of category learning with non-face objects categorized along dimensions that have been found to be processed by different areas of the brain, shape and motion. While we replicated acquired distinctiveness, we found no evidence for acquired equivalence or categorical perception.
Franz, A; Triesch, J
2010-12-01
The perception of the unity of objects, their permanence when out of sight, and the ability to perceive continuous object trajectories even during occlusion belong to the first and most important capacities that infants have to acquire. Despite much research a unified model of the development of these abilities is still missing. Here we make an attempt to provide such a unified model. We present a recurrent artificial neural network that learns to predict the motion of stimuli occluding each other and that develops representations of occluded object parts. It represents completely occluded, moving objects for several time steps and successfully predicts their reappearance after occlusion. This framework allows us to account for a broad range of experimental data. Specifically, the model explains how the perception of object unity develops, the role of the width of the occluders, and it also accounts for differences between data for moving and stationary stimuli. We demonstrate that these abilities can be acquired by learning to predict the sensory input. The model makes specific predictions and provides a unifying framework that has the potential to be extended to other visual event categories. Copyright © 2010 Elsevier Inc. All rights reserved.
Reilly, Jamie; Garcia, Amanda; Binney, Richard J.
2016-01-01
Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210
Machine learning-based coreference resolution of concepts in clinical documents
Ware, Henry; Mullett, Charles J; El-Rawas, Oussama
2012-01-01
Objective Coreference resolution of concepts, although a very active area in the natural language processing community, has not yet been widely applied to clinical documents. Accordingly, the 2011 i2b2 competition focusing on this area is a timely and useful challenge. The objective of this research was to collate coreferent chains of concepts from a corpus of clinical documents. These concepts are in the categories of person, problems, treatments, and tests. Design A machine learning approach based on graphical models was employed to cluster coreferent concepts. Features selected were divided into domain independent and domain specific sets. Training was done with the i2b2 provided training set of 489 documents with 6949 chains. Testing was done on 322 documents. Results The learning engine, using the un-weighted average of three different measurement schemes, resulted in an F measure of 0.8423 where no domain specific features were included and 0.8483 where the feature set included both domain independent and domain specific features. Conclusion Our machine learning approach is a promising solution for recognizing coreferent concepts, which in turn is useful for practical applications such as the assembly of problem and medication lists from clinical documents. PMID:22582205
Emberson, Lauren L.; Rubinstein, Dani
2016-01-01
The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1—dog1, bird2—dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1— dog_picture1, bird_picture2—dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual objects) and suggests that, at least with the current categories and type of learner, there are biases to pick up on statistical regularities between individual objects even when robust statistical information is present at other levels of abstraction. These findings speak directly to emerging theories about how systems supporting statistical learning and prediction operate in our structure-rich environments. Moreover, the theoretical implications of the current work across multiple domains of study is already clear: statistical learning cannot be assumed to be unconstrained even if statistical learning has previously been established at a given level of abstraction when that information is presented in isolation. PMID:27139779
Rules and construction effects in learning the argument structure of verbs.
Demuth, Katherine; Machobane, Malillo; Moloi, Francina
2003-11-01
Theorists of language acquisition have long debated the means by which children learn the argument structure of verbs (e.g. Bowerman, 1974, 1990; Pinker, 1984, 1989; Tomasello, 1992). Central to this controversy has been the possible role of verb semantics, especially in learning which verbs undergo dative-shift alternation in languages like English. The learning problem is somewhat simplified in Bantu double object constructions, where all applicative verbs show the same order of postverbal objects. However, Bantu languages differ as to what that order is, some placing the benefactive argument first, and others placing the animate argument first. Learning the language-specific word-order restrictions on Bantu double object applicative constructions is therefore more akin to setting a parameter (cf. Hyams, 1986). This study examined 100 three- to eight-year-old children's knowledge of word order restrictions in Sesotho double object applicatives. Performance on forced choice elicited production tasks found that four-year-olds showed evidence of rule learning, although eight-year-olds had not yet attained adult levels of performance. Further investigation found lexical construction effects for three-year-olds. These findings suggest that learning the argument structure of verbs, even when lexical semantics is not involved, may be more sensitive to lexical construction effects than previously thought.
Social pediatrics: weaving horizontal and vertical threads through pediatric residency.
van den Heuvel, Meta; Martimianakis, Maria Athina Tina; Levy, Rebecca; Atkinson, Adelle; Ford-Jones, Elizabeth; Shouldice, Michelle
2017-01-13
Social pediatrics teaches pediatric residents how to understand disease within their patients' social, environmental and political contexts. It's an essential component of pediatric residency training; however there is very little literature that addresses how such a broad-ranging topic can be taught effectively. The aim of this study was to determine and characterize social pediatric education in our pediatric residency training in order to identify strengths and gaps. A social pediatrics curriculum map was developed, attending to 3 different dimensions: (1) the intended curriculum as prescribed by the Objectives of Training for Pediatrics of the Royal College of Physicians and Surgeons of Canada (RCPSC), (2) the formal curriculum defined by rotation-specific learning objectives, and (3) the informal/hidden curriculum as reflected in resident and teacher experiences and perceptions. Forty-one social pediatric learning objectives were extracted from the RCPSC Objectives of Training for Pediatrics, most were listed in the Medical Expert (51%) and Health Advocate competencies (24%). Almost all RCPSC social pediatric learning objectives were identified in more than one rotation and/or seminar. Adolescent Medicine (29.2%), Pediatric Ambulatory Medicine (26.2%) and Developmental Pediatrics (25%) listed the highest proportion of social pediatric learning objectives. Four (10%) RCPSC social pediatric objectives were not explicitly named within learning objectives of the formal curriculum. The informal curriculum revealed that both teachers and residents viewed social pediatrics as integral to all clinical encounters. Perceived barriers to teaching and learning of social pediatrics included time constraints, particularly in a tertiary care environment, and the value of social pediatrics relative to medical expert knowledge. Despite the lack of an explicit thematic presentation of social pediatric learning objectives by the Royal College and residency training program, social pediatric topics are integrated, taught and learned throughout the entire curriculum. Special attention needs to be given to the hidden curriculum and system barriers that may impede social pediatric education.
ERIC Educational Resources Information Center
Carlile, Jan
This self-contained unit on the Paris Metro is intended for beginning students of French. The introduction to the teacher specifies the general goal (to be able to use the Metro for transportation), specific learning objectives, equipment needed, and the evaluation procedure. The student's learning activities are divided into four parts and…
Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine-learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different cross-layer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3.5 times for clear sky conditions and 6.8 times for rain conditions.
Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F
2014-08-01
Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.
Multi-Objective Reinforcement Learning for Cognitive Radio Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo; Paffenroth, Randy; Wyglinski, Alexander; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale John
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different crosslayer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3:5 times for clear sky conditions and 6:8 times for rain conditions.
Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus
Goh, Jinzhong Jeremy
2013-01-01
Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.
McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration
McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546
Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Freiwald, Winrich A; Poggio, Tomaso
2017-01-09
The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. Copyright © 2017 Elsevier Ltd. All rights reserved.
Econosense: A Common Sense Approach to the Study of Economics.
ERIC Educational Resources Information Center
McPheron, Linda
This student activity book and teacher's guide address specific economic terms and concepts correlated to specific student learning objectives. The concepts presented are those essential to any student developing a basic understanding of economics. Each lesson follows a specific format with a basic core of information, comprehension questions,…
Rapp, David E; Lyon, Mark B; Orvieto, Marcelo A; Zagaja, Gregory P
2005-10-01
The classical approach to the undergraduate medical clerkship has several limitations, including variability of clinical exposure and method of examination. As a result, the clerkship experience does not ensure exposure to and reinforcement of the fundamental concepts of a given specialty. This article reviews the classic approach to clerkship education within the undergraduate medical education. Specific attention is placed on clinical exposure and clerkship examination. We describe the introduction of the Core Learning Objective (CLO) educational model at the University of Chicago Section of Urology. This model is designed to provide an efficient exposure to and evaluation of core clerkship learning objectives. The CLO model has been successfully initiated, focusing on both technical and clinical skill sets. The proposed model has been introduced with positive initial results and should allow for an efficient approach to the teaching and evaluation of core objectives in clerkship education.
Learning Distance Functions for Exemplar-Based Object Recognition
2007-08-08
requires prior specific permission. Learning Distance Functions for Exemplar-Based Object Recognition by Andrea Lynn Frome B.S. ( Mary Washington...fantastic advisor and advocate when I was at Mary Washington College i and has since become a dear friend. Thank you, Dr. Bass, for continuing to stand...Antonio Torralba. 5 Chapter 1. Introduction 0 5 10 15 20 25 30 35 10 15 20 25 30 35 40 45 50 55 60 65 70 Number of training examples per class M ea n
Form Follows Function: Learning about Function Helps Children Learn about Shape
ERIC Educational Resources Information Center
Ware, Elizabeth A.; Booth, Amy E.
2010-01-01
Object functions help young children to organize new artifact categories. However, the scope of their influence is unknown. We explore whether functions highlight property dimensions that are relevant to artifact categories in general. Specifically, using a longitudinal training procedure, we assessed whether experience with functions highlights…
Supporting Content Learning for English Learners
ERIC Educational Resources Information Center
Bauer, Eurydice B.; Manyak, Patrick C.; Cook, Crystal
2010-01-01
In this column, the three authors address the teaching of ELs within the content areas. Specifically, they highlight the difference between having language and content objectives, utilizing small-group work to maximize involvement, and inclusion of beginning English speakers into the learning process. Currently there is a gap of 36 points between…
Instructional Systems for Student Learning: The Burlington County College Approach.
ERIC Educational Resources Information Center
Evans, N. Dean, Ed.
Since its inception in 1969, Burlington County College (New Jersey) has been dedicated to implementing a systematically designed approach to instruction and student learning. The core elements of the approach are as follows: (1) development of a basic college philosophy; (2) specification of general institutional objectives; (3) selection of…
Learning Portfolio Analysis and Mining for SCORM Compliant Environment
ERIC Educational Resources Information Center
Su, Jun-Ming; Tseng, Shian-Shyong; Wang, Wei; Weng, Jui-Feng; Yang, Jin Tan David; Tsai, Wen-Nung
2006-01-01
With vigorous development of the Internet, e-learning system has become more and more popular. Sharable Content Object Reference Model (SCORM) 2004 provides the Sequencing and Navigation (SN) Specification to define the course sequencing behavior, control the sequencing, selecting and delivering of course, and organize the content into a…
Alternate Learning Center. Abstracts of Inservice Training Programs.
ERIC Educational Resources Information Center
Rhode Island State Dept. of Education, Providence. Div. of Development and Operations.
This booklet is a collection of abstracts describing the 18 programs offered at the Alternate Learning Center of the Rhode Island Teacher Center which has as its Primary function school based inservice training for local teachers and administrators. Each project is described in detail, including course goals, specific objectives, training…
Teacher Candidates' Views of Digital Games as Learning Devices
ERIC Educational Resources Information Center
Sardone, Nancy B.; Devlin-Scherer, Roberta
2009-01-01
The objective of this research study was to explore teacher candidate views toward digital learning games using an immersive strategy. Specifically, we were interested in finding out what game use in classroom settings taught candidates about the role of teacher as facilitator of instruction. The procedures first focused teacher candidate…
ERIC Educational Resources Information Center
Paulus, Markus
2011-01-01
In two experiments, it was investigated how preverbal infants perceive the relationship between a person and an object she is looking at. More specifically, it was examined whether infants interpret an adult's object-directed gaze as a marker of an intention to act or whether they relate the person and the object via a mechanism of associative…
Blair, K. S.; Otero, M.; Teng, C.; Geraci, M.; Lewis, E.; Hollon, N.; Blair, R. J. R.; Ernst, Monique; Grillon, C.; Pine, D. S.
2016-01-01
Background Social anxiety disorder involves fear of social objects or situations. Social referencing may play an important role in the acquisition of this fear and could be a key determinant in future biomarkers and treatment pathways. However, the neural underpinnings mediating such learning in social anxiety are unknown. Using event-related functional magnetic resonance imaging, we examined social reference learning in social anxiety disorder. Specifically, would patients with the disorder show increased amygdala activity during social reference learning, and further, following social reference learning, show particularly increased response to objects associated with other people’s negative reactions? Method A total of 32 unmedicated patients with social anxiety disorder and 22 age-, intelligence quotient- and gender-matched healthy individuals responded to objects that had become associated with others’ fearful, angry, happy or neutral reactions. Results During the social reference learning phase, a significant group × social context interaction revealed that, relative to the comparison group, the social anxiety group showed a significantly greater response in the amygdala, as well as rostral, dorsomedial and lateral frontal and parietal cortices during the social, relative to non-social, referencing trials. In addition, during the object test phase, relative to the comparison group, the social anxiety group showed increased bilateral amygdala activation to objects associated with others’ fearful reactions, and a trend towards decreased amygdala activation to objects associated with others’ happy and neutral reactions. Conclusions These results suggest perturbed observational learning in social anxiety disorder. In addition, they further implicate the amygdala and dorsomedial prefrontal cortex in the disorder, and underscore their importance in future biomarker developments. PMID:27476529
Sensorimotor memory of object weight distribution during multidigit grasp.
Albert, Frederic; Santello, Marco; Gordon, Andrew M
2009-10-09
We studied the ability to transfer three-digit force sharing patterns learned through consecutive lifts of an object with an asymmetric center of mass (CM). After several object lifts, we asked subjects to rotate and translate the object to the contralateral hand and perform one additional lift. This task was performed under two weight conditions (550 and 950 g) to determine the extent to which subjects would be able to transfer weight and CM information. Learning transfer was quantified by measuring the extent to which force sharing patterns and peak object roll on the first post-translation trial resembled those measured on the pre-translation trial with the same CM. We found that the overall gain of fingertip forces was transferred following object rotation, but that the scaling of individual digit forces was specific to the learned digit-object configuration, and thus was not transferred following rotation. As a result, on the first post-translation trial there was a significantly larger object roll following object lift-off than on the pre-translation trial. This suggests that sensorimotor memories for weight, requiring scaling of fingertip force gain, may differ from memories for mass distribution.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning
2016-01-01
Abstract The coordinate system in which humans learn novel motor skills is controversial. The representation of sensorimotor skills has been extensively studied by examining generalization after learning perturbations specifically designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not represented in any simple coordinate system and can potentially be accounted for by a mixed representation. Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects performed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand (i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation to at least two natural coordinate systems but is impaired when the representation of the task does not correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its representation through experience to match those of natural tasks. PMID:27588304
Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.
Boteanu, Adrian; St Clair, Aaron; Mohseni-Kabir, Anahita; Saldanha, Carl; Chernova, Sonia
2016-12-01
This work seeks to leverage semantic networks containing millions of entries encoding assertions of commonsense knowledge to enable improvements in robot task execution and learning. The specific application we explore in this project is object substitution in the context of task adaptation. Humans easily adapt their plans to compensate for missing items in day-to-day tasks, substituting a wrap for bread when making a sandwich, or stirring pasta with a fork when out of spoons. Robot plan execution, however, is far less robust, with missing objects typically leading to failure if the robot is not aware of alternatives. In this article, we contribute a context-aware algorithm that leverages the linguistic information embedded in the task description to identify candidate substitution objects without reliance on explicit object affordance information. Specifically, we show that the task context provided by the task labels within the action structure of a task plan can be leveraged to disambiguate information within a noisy large-scale semantic network containing hundreds of potential object candidates to identify successful object substitutions with high accuracy. We present two extensive evaluations of our work on both abstract and real-world robot tasks, showing that the substitutions made by our system are valid, accepted by users, and lead to a statistically significant reduction in robot learning time. In addition, we report the outcomes of testing our approach with a large number of crowd workers interacting with a robot in real time.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
Lehmann, Susan W; Brooks, William B; Popeo, Dennis; Wilkins, Kirsten M; Blazek, Mary C
2017-10-01
America is aging as the population of older adults increases. The shortage of geriatric mental health specialists means that most geriatric mental healthcare will be provided by physicians who do not have specialty training in geriatrics. The Institute of Medicine Report of 2012 highlighted the urgent need for development of national competencies and curricula in geriatric mental health for all clinicians. Virtually all physicians can expect to treat older patients with mental health symptoms, yet currently there are no widely accepted learning objectives in geriatric mental health specific for medical students. The authors describe the development of a set of such learning objectives that all medical students should achieve by graduation. The iterative process included initial drafting by content experts from five medical schools with input and feedback from a wider group of geriatric psychiatrists, geriatricians, internists, and medical educators. The final document builds upon previously published work and includes specific knowledge, attitudes and skills in six key domains: Normal Aging, Mental Health Assessment of the Geriatric Patient, Psychopharmacology, Delirium, Depression, and Dementia. These objectives address a pressing need, providing a framework for national standards and curriculum development. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
A survey on object detection in optical remote sensing images
NASA Astrophysics Data System (ADS)
Cheng, Gong; Han, Junwei
2016-07-01
Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.
ERIC Educational Resources Information Center
National Commission on Work-Based Learning (DOL), Washington, DC.
This document contains minutes of the fifth meeting of the National Advisory Commission on Work-Based Learning. The meeting's stated objective was to produce a set of specific action steps for the U.S. Department of Labor to promote work-based learning. A summary of introductory remarks (Jack MacAllister) is followed by a description of the…
ERIC Educational Resources Information Center
Fazarro, Dominick E.; Pannkuk, Tim; Pavelock, Dwayne; Hubbard, Darcy
2009-01-01
This study was conducted to research learning style preferences of agriculture students. Specifically, the objectives which guided the study were: (1) to determine the learning style preferences of undergraduate agricultural students enrolled in a given Soil Science course and (2) to ascertain if there were differences in the students' course…
Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning
Wise, Richard J.S.; Geranmayeh, Fatemeh; Hampshire, Adam
2017-01-01
It is well established that networks within multiple-demand cortex (MDC) become active when diverse skills and behaviors are being learnt. However, their causal role in learning remains to be established. In the present study, we first performed functional magnetic resonance imaging on healthy female and male human participants to confirm that MDC was most active in the initial stages of learning a novel vocabulary, consisting of pronounceable nonwords (pseudowords), each associated with a picture of a real object. We then examined, in healthy female and male human participants, whether repetitive transcranial magnetic stimulation of a frontal midline node of the cingulo-opercular MDC affected learning rates specifically during the initial stages of learning. We report that stimulation of this node, but not a control brain region, substantially improved both accuracy and response times during the earliest stage of learning pseudoword–object associations. This stimulation had no effect on the processing of established vocabulary, tested by the accuracy and response times when participants decided whether a real word was accurately paired with a picture of an object. These results provide evidence that noninvasive stimulation to MDC nodes can enhance learning rates, thereby demonstrating their causal role in the learning process. We propose that this causal role makes MDC candidate target for experimental therapeutics; for example, in stroke patients with aphasia attempting to reacquire a vocabulary. SIGNIFICANCE STATEMENT Learning a task involves the brain system within which that specific task becomes established. Therefore, successfully learning a new vocabulary establishes the novel words in the language system. However, there is evidence that in the early stages of learning, networks within multiple-demand cortex (MDC), which control higher cognitive functions, such as working memory, attention, and monitoring of performance, become active. This activity declines once the task is learnt. The present study demonstrated that a node within MDC, located in midline frontal cortex, becomes active during the early stage of learning a novel vocabulary. Importantly, noninvasive brain stimulation of this node improved performance during this stage of learning. This observation demonstrated that MDC activity is important for learning. PMID:28676576
Instructional Strategy: Didactic Media Presentation to Optimize Student Learning
ERIC Educational Resources Information Center
Schilling, Jim
2017-01-01
Context: Subject matter is presented to athletic training students in the classroom using various modes of media. The specific type of mode and when to use it should be considered to maximize learning effectiveness. Other factors to consider in this process include a student's knowledge base and the complexity of material. Objective: To introduce…
Repetition across Successive Sentences Facilitates Young Children's Word Learning
ERIC Educational Resources Information Center
Schwab, Jessica F.; Lew-Williams, Casey
2016-01-01
Young children who hear more child-directed speech (CDS) tend to have larger vocabularies later in childhood, but the specific characteristics of CDS underlying this link are currently underspecified. The present study sought to elucidate how the structure of language input boosts learning by investigating whether repetition of object labels in…
University-Community Engagement: A Case Study Using Popular Theatre
ERIC Educational Resources Information Center
Feagan, Robert; Rossiter, Katherine
2011-01-01
Purpose: The purpose of this paper is to examine the use of popular theatre (PT) as a pedagogical tool around which a community service learning (CSL) senior undergraduate course was oriented, specifically assessing the university student learning experience from this work relative to PT processes and CSL objectives. Design/methodology/approach:…
Lean Six Sigma and Assurance of Learning: Challenges and Opportunities
ERIC Educational Resources Information Center
Rexeisen, Richard J.; Owens, Ernest L., Jr.; Garrison, Michael J.
2018-01-01
The importance, and associated challenges, of faculty ownership and engagement in the assurance of learning (AoL) process are well documented in the literature. The authors demonstrate how schools can further their AoL objectives by encouraging and subsequently supporting organic, faculty-led initiatives. Specifically, we present a case study of a…
ERIC Educational Resources Information Center
Mustafa, Hassan M. H.; Tourkia, Fadhel Ben; Ramadan, Ramadan Mohamed
2017-01-01
The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which is associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of elearning performance considering…
A Time for Change: Advocating for STSE Education through Professional Learning Communities
ERIC Educational Resources Information Center
Pedretti, Erminia; Bellomo, Katherine
2013-01-01
New science curricula in Ontario position science, technology, society, and environment (STSE) objectives at the fore of all science courses. A professional learning community (PLC) consisting of 24 elementary teachers and a facilitation team was established to assist teachers in meeting the challenges of STSE education. Specifically, we examine…
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
The nursing educator's role in e-learning: a literature review.
Koch, Lee F
2014-11-01
e-Learning is becoming more commonplace in nursing and healthcare professional education. Research has shown that e-learning can be just as effective at helping students achieve cognitive learning objectives as traditional face-to-face courses, provided that certain quality criteria are met. However, the decentralized, asynchronous nature of e-learning precludes spontaneous, personal interaction between the instructor and the learner. In addition to this, learning objectives in nursing and other healthcare professions are not only within the cognitive, but also within the affective and psychomotor domains. This article seeks to answer the following question: How does e-learning transform the role of nurse educators? Narrative literature review. A comprehensive database search was conducted using the English and German key words "teacher," "educator," "role," "e-learning," and "nursing" to identify literature that examined the role of (nurse) educators in e-learning. The search strategy resulted in the inclusion of 40 sources. The majority of the literature is expert opinion and examines the educator's role in e-learning from a theoretical point of view (n=30). There is a paucity of empirical research pertaining directly to the educator's role (n=10). Only four sources deal specifically with the nurse educator's role. The literature agrees on the need for a new role definition in light of e-learning. This role is more complex than the educator's traditional role. The literature does not provide any indication of how the educator's role can be adapted to the specific needs of online nurse education. There is a need for more empirical research on this subject. Copyright © 2014 Elsevier Ltd. All rights reserved.
Medical students’ perceptions and understanding of their specific learning difficulties
Abbott, Stephen; Bevere, Grazia; Roberts, Christopher M.
2013-01-01
Objectives The purpose of this study is to explore how medical students with Specific Learning Difficulties perceive and understand their Specific Learning Difficulty and how it has impacted on their experience of medical training. Method A purposive sample of fifteen students from one medical school was interviewed. Framework Analysis was used to identify and organise themes emerging from the data. An interpretation of the data was made capturing the essence of what had been learned. The concept of ‘reframing’ was then used to re-analyse and organise the data. Results Students reported having found ways to cope with their Specific Leaning Difficulty in the past, some of which proved inadequate to deal with the pressures of medical school. Diagnosis was a mixed experience: many felt relieved to understand their difficulties better, but some feared discrimination. Practical support was available in university but not in placement. Students focused on the impact of their Specific Learning Difficulty on their ability to pass undergraduate exams. Most did not contemplate difficulties post-qualification. Conclusions The rigours of the undergraduate medical course may reveal undisclosed Specific Learning Difficulties. Students need help to cope with such challenges, psychologically and practically in both classroom and clinical practice. University services for students with Specific Learning Difficulties should become familiar with the challenges of clinical placements, and ensure that academic staff has access to information about the needs of these students and how these can be met.
Assessment of Student Academic Achievement.
ERIC Educational Resources Information Center
Neosho County Community Coll., Chanute, KS.
Neosho Community College (NCC) in Kansas developed an assessment program to measure changes in student learning and progress in courses and programs. The specific objectives of student assessment at NCC are to determine readiness for regular college courses; to determine proper placement; to assist students in meeting personal objectives; and to…
Introduction to CAD/Computers. High-Technology Training Module.
ERIC Educational Resources Information Center
Lockerby, Hugh
This learning module for an eighth-grade introductory technology course is designed to help teachers introduce students to computer-assisted design (CAD) in a communications unit on graphics. The module contains a module objective and five specific objectives, a content outline, suggested instructor methodology, student activities, a list of six…
Prescription Drug Abuse Information in D.A.R.E.
ERIC Educational Resources Information Center
Morris, Melissa C.; Cline, Rebecca J. Welch; Weiler, Robert M.; Broadway, S. Camille
2006-01-01
This investigation was designed to examine prescription drug-related content and learning objectives in Drug Abuse Resistance Education (D.A.R.E.) for upper elementary and middle schools. Specific prescription-drug topics and context associated with content and objectives were coded. The coding system for topics included 126 topics organized…
Rural Workplace Literacy Demonstration Project. Welding Curriculum. Dorsey Trailers, Inc.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum guide contains workplace-specific instructional materials developed for use in a rural workplace literacy demonstration project, specifically with welders. Contents include a student assessment form, instructional objectives, pre- and posttests, learning activities (some locally developed and some selected from commercially…
[Systemic learning planification for medical students during oncology clinical rotation].
Gonçalves, Anthony; Viens, Patrice; Gilabert, Marine; Turrini, Olivier; Lambaudie, Eric; Prebet, Thomas; Farnault, Bertrand; Eisinger, François; Gorincour, Guillaume; Bertucci, François
2011-12-01
The expected increase in cancer incidence emphasizes the need for specific training in this area, including either family physician or specialized oncologists. In France, the fourth to sixth years of medical teaching include both theoretical classes at the university and daily actual practice at the hospital. Thus, clinical rotations are thought to play a major role in the training of medical students and also largely participate to the choice of the student of his/her final specialty. Pedagogic quality of these rotations is dependent on multiple parameters, including a rigorous planification of the expected learning. Here, we reported a systemic planification of learning activities for medical students during an oncology rotation at the Paoli-Calmettes Institute in Marseille, France, a regional comprehensive cancer center. This planification includes an evaluation of learning requirements, definition of learning objectives, selection of learning methods and choice of methods of assessment of the students' achievement of these objectives as well as the learning activity itself.
Voss, Joel L; Galvan, Ashley; Gonsalves, Brian D
2011-12-01
Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during retrieval. For example, learning in non-laboratory settings generally involves active exploration of memoranda, thus requiring the generation of action plans for behavior and the use of strategies deployed to improve subsequent memory performance. Is information pertaining to action planning and strategic processing retained and reactivated during retrieval? To address this question, we compared ERP correlates of memory retrieval for objects that had been studied in an active manner involving action planning and strategic processing to those for objects that had been studied passively. Memory performance was superior for actively studied objects, and unique ERP retrieval correlates for these objects were identified when subjects remembered the specific spatial locations at which objects were studied. Early-onset frontal shifts in ERP correlates of retrieval were noted for these objects, which parallel the recruitment of frontal cortex during learning object locations previously identified using fMRI with the same paradigm. Notably, ERPs during recall for items studied with a specific viewing strategy localized to the same supplementary motor cortex region previously identified with fMRI when this strategy was implemented during study, suggesting rapid reactivation of regions directly involved in strategic action planning. Collectively, these results implicate neural populations involved in learning in important retrieval functions, even for those populations involved in strategic control and action planning. Notably, these episodic features are not generally reported during recollective experiences, suggesting that reactivation is a more general property of memory retrieval that extends beyond those fragments of perceptual information that might be needed to re-live the past. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S
2013-09-01
A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.
Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.
Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237
Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models
Najnin, Shamima; Banerjee, Bonny
2018-01-01
Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The “novel words to novel objects” language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task. PMID:29441027
Neuronal Reward and Decision Signals: From Theories to Data
Schultz, Wolfram
2015-01-01
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341
Impaired Value Learning for Faces in Preschoolers With Autism Spectrum Disorder.
Wang, Quan; DiNicola, Lauren; Heymann, Perrine; Hampson, Michelle; Chawarska, Katarzyna
2018-01-01
One of the common findings in autism spectrum disorder (ASD) is limited selective attention toward social objects, such as faces. Evidence from both human and nonhuman primate studies suggests that selection of objects for processing is guided by the appraisal of object values. We hypothesized that impairments in selective attention in ASD may reflect a disruption of a system supporting learning about object values in the social domain. We examined value learning in social (faces) and nonsocial (fractals) domains in preschoolers with ASD (n = 25) and typically developing (TD) controls (n = 28), using a novel value learning task implemented on a gaze-contingent eye-tracking platform consisting of value learning and a selective attention choice test. Children with ASD performed more poorly than TD controls on the social value learning task, but both groups performed similarly on the nonsocial task. Within-group comparisons indicated that value learning in TD children was enhanced on the social compared to the nonsocial task, but no such enhancement was seen in children with ASD. Performance in the social and nonsocial conditions was correlated in the ASD but not in the TD group. The study provides support for a domain-specific impairment in value learning for faces in ASD, and suggests that, in ASD, value learning in social and nonsocial domains may rely on a shared mechanism. These findings have implications both for models of selective social attention deficits in autism and for identification of novel treatment targets. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
McKinstry, Jeffrey L.; Fleischer, Jason G.; Chen, Yanqing; Gall, W. Einar; Edelman, Gerald M.
2016-01-01
Mental imagery occurs “when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived.” How does the capability to perform mental imagery arise? Extending the idea that imagery arises from learned associations, we propose that mental rotation, a specific form of imagery, could arise through the mechanism of sequence learning–that is, by learning to regenerate the sequence of mental images perceived while passively observing a rotating object. To demonstrate the feasibility of this proposal, we constructed a simulated nervous system and embedded it within a behaving humanoid robot. By observing a rotating object, the system learns the sequence of neural activity patterns generated by the visual system in response to the object. After learning, it can internally regenerate a similar sequence of neural activations upon briefly viewing the static object. This system learns to perform a mental rotation task in which the subject must determine whether two objects are identical despite differences in orientation. As with human subjects, the time taken to respond is proportional to the angular difference between the two stimuli. Moreover, as reported in humans, the system fills in intermediate angles during the task, and this putative mental rotation activates the same pathways that are activated when the system views physical rotation. This work supports the proposal that mental rotation arises through sequence learning and the idea that mental imagery aids perception through learned associations, and suggests testable predictions for biological experiments. PMID:27653977
Teaching and learning apheresis medicine: The Bermuda Triangle in Education.
Crookston, Kendall P; Richter, Deana M
2010-01-01
Apheresis Medicine has evolved markedly due to an explosion of knowledge and technology, whereas the time available for training has shrunk as curricula have become increasingly overloaded. Apheresis teaching has inherited a strong clinical context where real patient problems are used in a hands-on environment. To optimize instruction, those involved in the education of apheresis professionals need to have (1) knowledge of how clinical laboratory medicine education has developed as a field, (2) an understanding of what is known from theory and research about how people learn, and (3) the skills to design teaching/learning activities in ways consistent with literature-based principles of adult education. These developments in education provide a context for curriculum projects currently underway by the American Society for Apheresis. Teachers must determine which competencies are central to the essence of a trained professional. Specific, robust, learning objectives targeted toward the development of higher levels of thinking, professional attitudes, and requisite skills are formulated to guide the learner toward mastering those competencies. Curriculum is developed for each objective, consisting of content and the best teaching/learning methods to help learners attain the objective. Appropriate assessment strategies are identified to determine whether the objective is being achieved. The integration of objectives, curriculum, and assessment creates The Bermuda Triangle of Education (Richter, The Circle of Learning and Bermuda Triangle in Education, University of New Mexico School of Medicine, 2004). When educators do not effectively navigate The Bermuda Triangle of Education, learning may disappear into the murky depths of confusion and apathy. When successfully navigated, the result will be a significant learning experience that leads to transformation through education. 2010 Wiley-Liss, Inc.
Physics Learning Styles in Higher Education
NASA Astrophysics Data System (ADS)
Loos, Rebecca; Ward, James
2012-03-01
Students in Physics learn in a variety ways depending on backgrounds and interests. This study proposes to evaluate how students in Physics learn using Howard Gardner's Theory of Multiple Intelligences. Physics utilizes numbers, conceptualization of models, observations and visualization skills, and the ability to understand and reflect on specific information. The main objective is to evaluate how Physics students learn specifically using spatial, visual and sequential approaches. This will be assessed by conducting a learning style survey provided by North Carolina State University (NCSU). The survey is completed online by the student after which the results are sent to NCSU. Students will print out the completed survey analysis for further evaluation. The NCSU results categorize students within five of ten learning styles. After the evaluation of Howard Gardner's Theory of Multiple Intelligences and the NCSU definitions of the ten learning styles, the NCSU sensing and visual learning styles will be defined as the Gardener's spatial, visual learning styles. NCSU's sequential learning style will be looked at separately. With the survey results, it can be determined if Physics students fall within the hypothesized learning styles.
FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri
2015-02-17
To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.
Four- and Six-Year-Olds Use Pragmatic Competence to Guide Word Learning
ERIC Educational Resources Information Center
Vazquez, Maria D.; Delisle, Sarah S.; Saylor, Megan M.
2013-01-01
The present study investigates whether four- and six-year-old children use pragmatic competence as a criterion for learning from someone else. Specifically, we ask whether children use others' adherence to Gricean maxims to determine whether they will offer valid labels for novel objects. Six-year-olds recognized adherence to the maxims of…
ERIC Educational Resources Information Center
Leaf, Ann; Odhiambo, George
2017-01-01
Purpose: The purpose of this paper is to report on a study examining the perceptions of secondary principals, deputies and teachers, of deputy principal (DP) instructional leadership (IL), as well as deputies' professional learning (PL) needs. Framed within an interpretivist approach, the specific objectives of this study were: to explore the…
Using Blogs to Enhance Student Engagement and Learning in the Health Sciences
ERIC Educational Resources Information Center
Zinger, Lana; Sinclair, Alicia
2013-01-01
Teaching in a diverse, urban community college, it has become apparent that students spend most of their free (and classroom) time participating in social media. In response, we decided to incorporate social media, blogs specifically, as a way to increase student engagement, retention and achievement. The learning objective was for our students to…
A Peer-Assisted Learning Program and Its Effect on Student Skill Demonstration
ERIC Educational Resources Information Center
Carr, W. David; Volberding, Jennifer; Vardiman, Phillip
2011-01-01
Objective: To explore the effect of an intentional Peer-Assisted Learning (PAL) program on peer-tutors and peer-tutees for performance on specific psychomotor skills. Design and Setting: Randomized, pretest-posttest experimental design. Participants: Undergraduate students (N = 69, 42 females and 27 males, all participants were 18 to 22 years old,…
Digital and Online Learning in Vocational Education and Training in Serbia: A Case Study
ERIC Educational Resources Information Center
Brolpito, Alessandro; Lightfoot, Michael; Radišic, Jelena; Šcepanovic, Danijela
2016-01-01
This case study aims to identify relevant policies and practices for digital and online learning (DOL) in vocational education and training (VET) in Serbia, with a focus on initial VET (IVET). The study was commissioned by the European Training Foundation (ETF) with the following specific objectives: (1) gather information and analyse DOL…
Learning in the Knowledge Economy: The Role of Technology
ERIC Educational Resources Information Center
Jaffrin, Manuel
2003-01-01
Internet is not the panacea for every problem in education but we must realize that this is a great tool that can help us empower every student and elevate each individual to new levels of intellectual capacity and skills. Combined with specifics learning objectives, it will definitely change the face of education. Technology is becoming an…
Identifying Affordances of 3D Printed Tangible Models for Understanding Core Biological Concepts
ERIC Educational Resources Information Center
Davenport, Jodi L.; Silberglitt, Matt; Boxerman, Jonathan; Olson, Arthur
2014-01-01
3D models derived from actual molecular structures have the potential to transform student learning in biology. We share findings related to our research questions: 1) what types of interactions with a protein folding kit promote specific learning objectives?, and 2) what features of the instructional environment (e.g., peer interactions, teacher…
Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals
ERIC Educational Resources Information Center
Alinier, Guillaume
2011-01-01
The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…
Feature Integration in the Mapping of Multi-Attribute Visual Stimuli to Responses
Ishizaki, Takuya; Morita, Hiromi; Morita, Masahiko
2015-01-01
In the human visual system, different attributes of an object, such as shape and color, are separately processed in different modules and then integrated to elicit a specific response. In this process, different attributes are thought to be temporarily “bound” together by focusing attention on the object; however, how such binding contributes to stimulus-response mapping remains unclear. Here we report that learning and performance of stimulus-response tasks was more difficult when three attributes of the stimulus determined the correct response than when two attributes did. We also found that spatially separated presentations of attributes considerably complicated the task, although they did not markedly affect target detection. These results are consistent with a paired-attribute model in which bound feature pairs, rather than object representations, are associated with responses by learning. This suggests that attention does not bind three or more attributes into a unitary object representation, and long-term learning is required for their integration. PMID:25762010
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex.
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-11-23
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that Object A, but not Object B, was rewarded in Place 1, but not in Place 2 (vice versa for Object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (1) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (2) spiking activities in both regions were more phase locked to theta rhythms, and (3) CA1-medial PFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event.
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-01-01
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that object A, but not object B, was rewarded in place 1, but not in place 2 (vice versa for object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (i) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (ii) spiking activities in both regions were more phase-locked to theta rhythms, (iii) CA1-mPFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event. PMID:22114269
Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries
ERIC Educational Resources Information Center
Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han
2009-01-01
The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…
U.S. History for the Gifted and Talented.
ERIC Educational Resources Information Center
Zola, John; And Others
The major objective of this teaching guide is to help high school classroom teachers of United States history develop and implement curriculum for gifted and talented students. Specifically, it presents objectives for gifted students in the area of social studies, offers a structure upon which discussion questions and learning activities can be…
Peden, M E; Okely, A D; Eady, M J; Jones, R A
2018-05-31
The purpose of this systematic review was to investigate professional learning models (length, mode, content) offered as part of objectively measured physical childcare-based interventions. A systematic review of eight electronic databases was conducted to June 2017. Only English, peer-reviewed studies that evaluated childcare-based physical activity interventions, incorporated professional learning and reported objectively measured physical activity were included. Study designs included randomized controlled trails, cluster randomized trials, experimental or pilot studies. The search identified 11 studies. Ten studies objectively measured physical activity using accelerometers; five studies used both accelerometer and direct observation tools and one study measured physical activity using direct observation only. Seven of these studies reported statistically significant intervention effects. Only six studies described all components of professional learning, but only two studies reported specific professional learning outcomes and physical activity outcomes. No patterns were identified between the length, mode and content of professional learning and children's physical activity outcomes in childcare settings. Educators play a critical role in modifying children's levels of physical activity in childcare settings. The findings of this review suggest that professional learning offered as part of a physical activity intervention that potentially impacts on children's physical activity outcomes remains under-reported. © 2018 World Obesity Federation.
Contour-based object orientation estimation
NASA Astrophysics Data System (ADS)
Alpatov, Boris; Babayan, Pavel
2016-04-01
Real-time object orientation estimation is an actual problem of computer vision nowadays. In this paper we propose an approach to estimate an orientation of objects lacking axial symmetry. Proposed algorithm is intended to estimate orientation of a specific known 3D object, so 3D model is required for learning. The proposed orientation estimation algorithm consists of 2 stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. It minimizes the training image set. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy (mean error value less than 6°) in all case studies. The real-time performance of the algorithm was also demonstrated.
The Family Learning Project - Phase I. Project Report.
ERIC Educational Resources Information Center
Heffner, Elaine; Platt, Elizabeth Balliett
Written to meet four objectives, this document (1) reviews the use of media in parent education, (2) evaluates the format and content of existing approaches, (3) formulates a philosophy to guide the development of new materials, and (4) makes specific recommendations regarding future parent education materials. Specific recommendations concerning…
Secondary Art: Arkansas Public School Course Content Guide.
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock.
Designed as a framework upon which secondary school curriculum can be developed, this Arkansas state curriculum guide provides specific guidelines for middle school/junior high school art programs and for a basic high school art course. Specific student learning objectives are presented in three instructional tracks that include: (1) basic skills…
Label consistent K-SVD: learning a discriminative dictionary for recognition.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2013-11-01
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
Place preference and vocal learning rely on distinct reinforcers in songbirds.
Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H
2018-04-30
In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.
Do capuchin monkeys (Cebus apella) diagnose causal relations in the absence of a direct reward?
Edwards, Brian J; Rottman, Benjamin M; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R
2014-01-01
We adapted a method from developmental psychology to explore whether capuchin monkeys (Cebus apella) would place objects on a "blicket detector" machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects' causal properties based on whether each object "activated" the machine. In Experiments 1-3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning's sake.
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
Theta oscillations promote temporal sequence learning.
Crivelli-Decker, Jordan; Hsieh, Liang-Tien; Clarke, Alex; Ranganath, Charan
2018-05-17
Many theoretical models suggest that neural oscillations play a role in learning or retrieval of temporal sequences, but the extent to which oscillations support sequence representation remains unclear. To address this question, we used scalp electroencephalography (EEG) to examine oscillatory activity over learning of different object sequences. Participants made semantic decisions on each object as they were presented in a continuous stream. For three "Consistent" sequences, the order of the objects was always fixed. Activity during Consistent sequences was compared to "Random" sequences that consisted of the same objects presented in a different order on each repetition. Over the course of learning, participants made faster semantic decisions to objects in Consistent, as compared to objects in Random sequences. Thus, participants were able to use sequence knowledge to predict upcoming items in Consistent sequences. EEG analyses revealed decreased oscillatory power in the theta (4-7 Hz) band at frontal sites following decisions about objects in Consistent sequences, as compared with objects in Random sequences. The theta power difference between Consistent and Random only emerged in the second half of the task, as participants were more effectively able to predict items in Consistent sequences. Moreover, we found increases in parieto-occipital alpha (10-13 Hz) and beta (14-28 Hz) power during the pre-response period for objects in Consistent sequences, relative to objects in Random sequences. Linear mixed effects modeling revealed that single trial theta oscillations were related to reaction time for future objects in a sequence, whereas beta and alpha oscillations were only predictive of reaction time on the current trial. These results indicate that theta and alpha/beta activity preferentially relate to future and current events, respectively. More generally our findings highlight the importance of band-specific neural oscillations in the learning of temporal order information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Young children's fast mapping and generalization of words, facts, and pictograms.
Deák, Gedeon O; Toney, Alexis J
2013-06-01
To test general and specific processes of symbol learning, 4- and 5-year-old children learned three kinds of abstract associates for novel objects: words, facts, and pictograms. To test fast mapping (i.e., one-trial learning) and subsequent learning, comprehension was tested after each of four exposures. Production was also tested, as was children's tendency to generalize learned items to new objects in the same taxon. To test for a bias toward mutually exclusive associations, children learned either one-to-one or many-to-many mappings. In Experiment 1, children learned words, facts (with or without incidental novel words), or pictograms. In Experiment 2, children learned words or pictograms. In both of these experiments, children learned words slower than facts and pictograms. Pictograms and facts were generalized more systematically than words, but only in Experiment 1. Children learned one-to-one mappings faster only in Experiment 2, when cognitive load was increased. In Experiment 3, 3- and 4-year-olds were taught facts (with novel words), words, and pictograms. Children learned facts faster than words; however, they remembered all items equally well a week later. The results suggest that word learning follows non-specialized memory and associative learning processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Application of Problem Based Learning ((PBL) in a Course on Financial Accounting Principles
ERIC Educational Resources Information Center
Manaf, Nor Aziah Abdul; Ishak, Zuaini; Hussin, Wan Nordin Wan
2011-01-01
Purpose: This paper aims to share experiences in teaching a Financial Accounting Principles course using a hybrid problem based learning (PBL) method. The three specific objectives of this paper are to document how the PBL project for this course was developed and managed in class, to compare the academic performance of PBL students with non-PBL…
ERIC Educational Resources Information Center
Su, Ya-Chen
2011-01-01
Learning about foreign language (FL) cultures is becoming an important objective in the FL curricula and national standards of different countries throughout the world. The purposes of the study were to examine the effects of the cultural portfolio project on (1) students' specific aspects of development of cultural knowledge and change in…
English- and Mandarin-Learning Infants' Discrimination of Actions and Objects in Dynamic Events
ERIC Educational Resources Information Center
Chen, Jie; Tardif, Twila; Pulverman, Rachel; Casasola, Marianella; Zhu, Liqi; Zheng, Xiaobei; Meng, Xiangzhi
2015-01-01
The present studies examined the role of linguistic experience in directing English and Mandarin learners' attention to aspects of a visual scene. Specifically, they asked whether young language learners in these 2 cultures attend to differential aspects of a word-learning situation. Two groups of English and Mandarin learners, 6-8-month-olds (n =…
vPELS: An E-Learning Social Environment for VLSI Design with Content Security Using DRM
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2014-01-01
This article provides a proposal for personal e-learning system (vPELS [where "v" stands for VLSI: very large scale integrated circuit])) architecture in the context of social network environment for VLSI Design. The main objective of vPELS is to develop individual skills on a specific subject--say, VLSI--and share resources with peers.…
Toward a Set of Measures of Student Learning Outcomes in Higher Education: Evidence from Brazil
ERIC Educational Resources Information Center
Melguizo, Tatiana; Wainer, Jacques
2016-01-01
The main objective of this study was to work toward the development of a number of measures of student learning outcomes (SLOs) in higher education. Specifically, we used data from "Exame Nacional de Desempenho dos Estudantes" (ENADE), a college-exit examination developed and used in Brazil. The fact that Brazil administered the ENADE to…
ERIC Educational Resources Information Center
Morales, Erik E.
2014-01-01
Utilizing resilience theory and original research conducted on fifty academically resilient low socioeconomic status students of color, this article presents specific objectives and values institutions of higher learning can adopt and emphasize to increase the retention and graduation of their most statistically at-risk students. Major findings…
ERIC Educational Resources Information Center
Correiro, Elizabeth E.; Griffin, Leanne R.; Hart, Peter E.
2008-01-01
A laboratory exercise is presented that incorporates constructivist principles into a learning experience designed for upper-level university biology courses. The specific objectives for this exercise are as follows: (1) To introduce students to cancer biology and to the regulation of programmed cell death as part of the cell cycle; (2) To engage…
Fallon, K E; Trevitt, A C
2006-01-01
Objectives To investigate issues of curriculum in the context of a postgraduate sports medicine training programme, specifically in the field of clinical biochemistry and haematology. Methods Following the Delphi methodology, a series of sequential questionnaires was administered to curriculum developers, clinical teachers, examiners, and registrars. Results Agreement on a core syllabus for this subject with an indication of the core aims and objectives of teaching and learning in this field and the associated required skills and competencies. An indication of current and ideal teaching and learning methods and reasons for these preferences. A consensus of key features of a teaching module for this field and of appropriate methods of examination. Conclusions The data derived from this study, as well as the experience of engaging in it, will better inform curriculum developers, teachers, and students of one another's perceptions as to what is important in and appropriate to teaching and learning in this field of sports medicine. Engagement in the exercise and broader consideration of the outcomes by those who develop the curriculum, teach, and formulate the examination process will facilitate attainment of the ideal of well aligned teaching, learning, and examination in this specific field. PMID:16432001
Criscione-Schreiber, Lisa G; Bolster, Marcy B; Jonas, Beth L; O'Rourke, Kenneth S
2013-06-01
American Council on Graduate Medical Education program requirements mandate that rheumatology training programs have written goals, objectives, and performance evaluations for each learning activity. Since learning activities are similar across rheumatology programs, we aimed to create competency-based goals and objectives (CBGO) and evaluations that would be generalizable nationally. Through an established collaboration of the 4 training programs' directors in North Carolina and South Carolina, we collaboratively composed CBGO and evaluations for each learning activity for rheumatology training programs. CBGO and linked evaluations were written using appropriate verbs based on Bloom's taxonomy. Draft documents were peer reviewed by faculty at the 4 institutions and by members of the American College of Rheumatology (ACR) Clinician Scholar Educator Group. We completed templates of CBGO for core and elective rotations and conferences. Templates detail progressive fellow performance improvement appropriate to educational level. Specific CBGO are mirrored in learning activity evaluations. Templates are easily modified to fit individual program attributes, have been successfully implemented by our 4 programs, and have proven their value in 4 residency review committee reviews. We propose adoption of these template CBGO by the ACR, with access available to all rheumatology training programs. Evaluation forms that exactly reflect stated objectives ensure that trainees are assessed using standardized measures and that trainees are aware of the learning expectations. The objectives mirrored in the evaluations closely align with the proposed milestones for internal medicine training, and will therefore be a useful starting point for creating these milestones in rheumatology. Copyright © 2013 by the American College of Rheumatology.
Biased Competition in Visual Processing Hierarchies: A Learning Approach Using Multiple Cues.
Gepperth, Alexander R T; Rebhan, Sven; Hasler, Stephan; Fritsch, Jannik
2011-03-01
In this contribution, we present a large-scale hierarchical system for object detection fusing bottom-up (signal-driven) processing results with top-down (model or task-driven) attentional modulation. Specifically, we focus on the question of how the autonomous learning of invariant models can be embedded into a performing system and how such models can be used to define object-specific attentional modulation signals. Our system implements bi-directional data flow in a processing hierarchy. The bottom-up data flow proceeds from a preprocessing level to the hypothesis level where object hypotheses created by exhaustive object detection algorithms are represented in a roughly retinotopic way. A competitive selection mechanism is used to determine the most confident hypotheses, which are used on the system level to train multimodal models that link object identity to invariant hypothesis properties. The top-down data flow originates at the system level, where the trained multimodal models are used to obtain space- and feature-based attentional modulation signals, providing biases for the competitive selection process at the hypothesis level. This results in object-specific hypothesis facilitation/suppression in certain image regions which we show to be applicable to different object detection mechanisms. In order to demonstrate the benefits of this approach, we apply the system to the detection of cars in a variety of challenging traffic videos. Evaluating our approach on a publicly available dataset containing approximately 3,500 annotated video images from more than 1 h of driving, we can show strong increases in performance and generalization when compared to object detection in isolation. Furthermore, we compare our results to a late hypothesis rejection approach, showing that early coupling of top-down and bottom-up information is a favorable approach especially when processing resources are constrained.
Fetal Alcohol Syndrome and Fetal Alcohol and Other Drug Effects. A Guide for Teachers.
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton. Div. of General Academic Education.
This curriculum guide on Fetal Alcohol Syndrome (FAS) is intended to help meet New Jersey secondary-level learning objectives in the area of chemical health education. The guide is organized into six sections, each with a conceptual statement, content outline, specific objectives, and lesson plans. The six sections and corresponding major concepts…
ERIC Educational Resources Information Center
General Learning Corp., Washington, DC.
Objective cost estimates for planning and operating systems should be made after an assessment of administrative factors (school environment) and instructional factors (learning objectives, type of presentation). Specification of appropriate sensory stimuli and the design of alternative systems also precede cost estimations for production,…
Going beyond the Evidence: Abstract Laws and Preschoolers' Responses to Anomalous Data
ERIC Educational Resources Information Center
Schulz, Laura E.; Goodman, Noah D.; Tenenbaum, Joshua B.; Jenkins, Adrianna C.
2008-01-01
Given minimal evidence about novel objects, children might learn only relationships among the specific entities, or they might make a more abstract inference, positing classes of entities and the relations that hold among those classes. Here we show that preschoolers (mean: 57 months) can use sparse data about perceptually unique objects to infer…
Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin
2016-05-01
Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45.2% over the state-of-the-art. To our knowledge, this is the first successful demonstration of the DL potential to detection and segmentation in full 3D data with parametrized representations.
Teaching Compound Nouns in ESP: Insights from Cognitive Semantics
ERIC Educational Resources Information Center
Fries, Marie-Hélène
2017-01-01
The objective of this chapter is to explore the relevance of cognitive linguistics for teaching [noun] + [noun] constructions to French learners of English for Specific Purposes (ESP), and more specifically, for process engineering. After a review of research on Compound Nouns (CNs) and explicit versus implicit learning, three basic tenets of…
Fast Low-Rank Shared Dictionary Learning for Image Classification.
Tiep Huu Vu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.
Fast Low-Rank Shared Dictionary Learning for Image Classification
NASA Astrophysics Data System (ADS)
Vu, Tiep Huu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image datasets establish the advantages of our method over state-of-the-art dictionary learning methods.
Bohbot, Véronique D.; Allen, John J. B.; Dagher, Alain; Dumoulin, Serge O.; Evans, Alan C.; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus. PMID:26283949
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
NASA Astrophysics Data System (ADS)
Ban, Sang-Woo; Lee, Minho
2008-04-01
Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.
NASA Astrophysics Data System (ADS)
Sajda, Paul
2017-05-01
As we move through an environment, we are constantly making assessments, judgments, and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions - our implicit "labeling" of the world. In this talk I will describe our work using physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3-D environment. Specifically, we record electroencephalographic (EEG), saccadic, and pupillary data from subjects as they move through a small part of a 3-D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to those that are labelled. Finally, the system plots an efficient route so that subjects visit similar objects of interest. We show that by exploiting the subjects' implicit labeling, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3-D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality
2016-01-01
Background One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Objective Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Methods Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Results Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Conclusions Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data. PMID:27185366
Salanova, Marisa; Lorente, Laura; Martínez, Isabel M
2012-11-01
The objective of this study is to analyze the different role that efficacy beliefs play in the prediction of learning, innovative and risky performances. We hypothesize that high levels of efficacy beliefs in learning and innovative performances have positive consequences (i.e., better academic and innovative performance, respectively), whereas in risky performances they have negative consequences (i.e., less safety performance). To achieve this objective, three studies were conducted, 1) a two-wave longitudinal field study among 527 undergraduate students (learning setting), 2) a three-wave longitudinal lab study among 165 participants performing innovative group tasks (innovative setting), and 3) a field study among 228 construction workers (risky setting). As expected, high levels of efficacy beliefs have positive or negative consequences on performance depending on the specific settings. Unexpectedly, however, we found no time x self-efficacy interaction effect over time in learning and innovative settings. Theoretical and practical implications within the social cognitive theory of A. Bandura framework are discussed.
Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J
2005-01-01
A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be combined with other approaches to enhance and enliven classroom discussions in the veterinary curriculum.
ERIC Educational Resources Information Center
Udeani, U. N.; Atagana, H. I.; Esiobu, G. O.
2016-01-01
The main objective of the study was to implement an action research strategy to improve the teaching and learning of biology in senior secondary schools in Nigeria. Specifically the following research questions were raised: (1) What are the levels of intellectual challenge included in the activities used for classroom and laboratory instructions?…
Unintended knowledge learnt in primary science practical lessons
NASA Astrophysics Data System (ADS)
Park, Jisun; Abrahams, Ian; Song, Jinwoong
2016-11-01
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.
Alnes, Rigmor Einang; Kirkevold, Marit; Skovdahl, Kirsti
2013-01-01
To identify factors that affected the learning outcomes from Marte Meo counselling (MMC). Although MMC has shown promising results regarding learning outcomes for staff working in dementia-specific care units, the outcomes differ. Twelve individual interviews and four focus group interviews with staff who had participated in MMC were analysed through a qualitative content analysis. The learning climate has considerable significance for the experienced benefit of MMC and indicate that this learning climate depends on three conditions: establishing a common understanding of the content and form of MMC, ensuring staff's willingness to participate and the opportunity to do so, and securing an arena in the unit for discussion and interactions. Learning outcomes from MMC in dementia-specific care units appear to depend on the learning climate in the unit. Implication for nursing management The learning climate needs attention from the nursing management when establishing Marte Meo intervention in nursing homes. The learning climate can be facilitated through building common understandings in the units regarding why and how this intervention should take place, and by ensuring clarity in the relationship between the intervention and the organization's objectives. © 2012 Blackwell Publishing Ltd.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
The Washington grade 4-6 mathematics curriculum is organized according to the Small Schools Materials format which lists the sequence of learning objectives related to a specific curriculum area, recommends a teaching and mastery grade placement, and identifies activities, monitoring procedures and possible resources used in teaching to the…
Two-stage perceptual learning to break visual crowding.
Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang
2016-01-01
When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).
van Berkel-van Hoof, Lian; Hermans, Daan; Knoors, Harry; Verhoeven, Ludo
2016-12-01
Augmentative signs may facilitate word learning in children with vocabulary difficulties, for example, children who are Deaf/Hard of Hearing (DHH) and children with Specific Language Impairment (SLI). Despite the fact that augmentative signs may aid second language learning in populations with a typical language development, empirical evidence in favor of this claim is lacking. We aim to investigate whether augmentative signs facilitate word learning for DHH children, children with SLI, and typically developing (TD) children. Whereas previous studies taught children new labels for familiar objects, the present study taught new labels for new objects. In our word learning experiment children were presented with pictures of imaginary creatures and pseudo words. Half of the words were accompanied by an augmentative pseudo sign. The children were tested for their receptive word knowledge. The DHH children benefitted significantly from augmentative signs, but the children with SLI and TD age-matched peers did not score significantly different on words from either the sign or no-sign condition. These results suggest that using Sign-Supported speech in classrooms of bimodal bilingual DHH children may support their spoken language development. The difference between earlier research findings and the present results may be caused by a difference in methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Learning to Link Visual Contours
Li, Wu; Piëch, Valentin; Gilbert, Charles D.
2008-01-01
SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036
NASA Astrophysics Data System (ADS)
Hilsenbeck-Fajardo, Jacqueline L.
2009-08-01
The research described herein is a multi-dimensional attempt to measure student's abilities to recall, conceptualize, and transfer fundamental and dynamic protein structure concepts as revealed by their own diagrammatic (pictorial) representations and written self-explanations. A total of 120 participants enrolled in a 'Fundamentals of Biochemistry' course contributed to this mixed-methodological study. The population of interest consisted primarily of pre-nursing and sport and exercise science majors. This course is typically associated with a high (<30%) combined drop/failure rate, thus the course provided the researcher with an ideal context in which to apply novel transfer assessment strategies. In the past, students within this population have reported very little chemistry background. In the following study, student-generated diagrammatic representations and written explanations were coded thematically using a highly objective rubric that was designed specifically for this study. Responses provided by the students were characterized on the macroscopic, microscopic, molecular-level, and integrated scales. Recall knowledge gain (i.e., knowledge that was gained through multiple-choice questioning techniques) was quantitatively correlated to learning style preferences (i.e., high-object, low-object, and non-object). Quantitative measures revealed that participants tended toward an object (i.e., snapshot) -based visualization preference, a potentially limiting factor in their desire to consider dynamic properties of fundamental biochemical contexts such as heat-induced protein denaturation. When knowledge transfer was carefully assessed within the predefined context, numerous misconceptions pertaining to the fundamental and dynamic nature of protein structure were revealed. Misconceptions tended to increase as the transfer model shifted away from the context presented in the original learning material. Ultimately, a fundamentally new, novel, and unique measure of knowledge transfer was developed as a main result of this study. It is envisioned by the researcher that this new measure of learning is applicable specifically to physical and chemical science education-based research in the form of deep transfer on the atomic-level scale.
Macedo, Nayana Damiani; Buzin, Aline Rodrigues; de Araujo, Isabela Bastos Binotti Abreu; Nogueira, Breno Valentim; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho; Lenz, Dominik
2017-02-01
The current study proposes an automated machine learning approach for the quantification of cells in cell death pathways according to DNA fragmentation. A total of 17 images of kidney histological slide samples from male Wistar rats were used. The slides were photographed using an Axio Zeiss Vert.A1 microscope with a 40x objective lens coupled with an Axio Cam MRC Zeiss camera and Zen 2012 software. The images were analyzed using CellProfiler (version 2.1.1) and CellProfiler Analyst open-source software. Out of the 10,378 objects, 4970 (47,9%) were identified as TUNEL positive, and 5408 (52,1%) were identified as TUNEL negative. On average, the sensitivity and specificity values of the machine learning approach were 0.80 and 0.77, respectively. Image cytometry provides a quantitative analytical alternative to the more traditional qualitative methods more commonly used in studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deciphering mirror neurons: rational decision versus associative learning.
Khalil, Elias L
2014-04-01
The rational-decision approach is superior to the associative-learning approach of Cook et al. at explaining why mirror neurons fire or do not fire - even when the stimulus is the same. The rational-decision approach is superior because it starts with the analysis of the intention of the organism, that is, with the identification of the specific objective or goal that the organism is trying to maximize.
ERIC Educational Resources Information Center
Costes-Onishi, Pamela
2016-01-01
The objective of this study is to address the important questions raised in literature on the intersections between formal and informal learning. Specifically, this will be discussed within the concept of "productive dissonance" and the pedagogical tensions that arise in the effort of experienced teachers to transition from the formal to…
Root, James C; Ryan, Elizabeth; Barnett, Gregory; Andreotti, Charissa; Bolutayo, Kemi; Ahles, Tim
2015-05-01
While forgetfulness is widely reported by breast cancer survivors, studies documenting objective memory performance yield mixed, largely inconsistent, results. Failure to find consistent, objective memory issues may be due to the possibility that cancer survivors misattribute their experience of forgetfulness to primary memory issues rather than to difficulties in attention at the time of learning. To clarify potential attention issues, factor scores for Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory were analyzed for the California Verbal Learning Test-Second Edition (CVLT-II) in 64 clinically referred breast cancer survivors with self-reported cognitive complaints; item analysis was conducted to clarify specific contributors to observed effects, and contrasts between learning and recall trials were compared with normative data. Performance on broader cognitive domains is also reported. The Attention Span factor, but not Learning Efficiency, Delayed Memory, or Inaccurate Memory factors, was significantly affected in this clinical sample. Contrasts between trials were consistent with normative data and did not indicate greater loss of information over time than in the normative sample. Results of this analysis suggest that attentional dysfunction may contribute to subjective and objective memory complaints in breast cancer survivors. These results are discussed in the context of broader cognitive effects following treatment for clinicians who may see cancer survivors for assessment. Copyright © 2014 John Wiley & Sons, Ltd.
Kim, Bumhwi; Ban, Sang-Woo; Lee, Minho
2013-10-01
Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Task analysis in curriculum design: a hierarchically sequenced introductory mathematics curriculum1
Resnick, Lauren B.; Wang, Margaret C.; Kaplan, Jerome
1973-01-01
A method of systematic task analysis is applied to the problem of designing a sequence of learning objectives that will provide an optimal match for the child's natural sequence of acquisition of mathematical skills and concepts. The authors begin by proposing an operational definition of the number concept in the form of a set of behaviors which, taken together, permit the inference that the child has an abstract concept of “number”. These are the “objectives” of the curriculum. Each behavior in the defining set is then subjected to an analysis that identifies hypothesized components of skilled performance and prerequisites for learning these components. On the basis of these analyses, specific sequences of learning objectives are proposed. The proposed sequences are hypothesized to be those that will best facilitate learning, by maximizing transfer from earlier to later objectives. Relevant literature on early learning and cognitive development is considered in conjunction with the analyses and the resulting sequences. The paper concludes with a discussion of the ways in which the curriculum can be implemented and studied in schools. Examples of data on individual children are presented, and the use of such data for improving the curriculum itself, as well as for examining the effects of other treatment variables, is considered. PMID:16795452
ERIC Educational Resources Information Center
Lehman, Rosemary
2007-01-01
This chapter looks at the development and nature of learning objects, meta-tagging standards and taxonomies, learning object repositories, learning object repository characteristics, and types of learning object repositories, with type examples. (Contains 1 table.)
Learning-based stochastic object models for characterizing anatomical variations
NASA Astrophysics Data System (ADS)
Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua
2018-03-01
It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.
ERIC Educational Resources Information Center
Lee, Inah; Kim, Jangjin
2010-01-01
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in…
ERIC Educational Resources Information Center
JOHNSON, BYRON LAMAR
THE SYSTEMS APPROACH TO INSTRUCTION INVOLVES A CAREFUL SPECIFICATION OF LEARNING OBJECTIVES IN BEHAVIORAL AND MEASURABLE FORM, FOLLOWED BY A SUCCESSION OF EVALUATION-REVISION CYCLES IN THE INSTRUCTIONAL PROCESS, UNTIL NEW STUDENTS EXPOSED TO THE PROCESS ACHIEVE THE DESIRED OBJECTIVES. SEVEN MAJOR PAPERS WERE PRESENTED AT THE CONFERENCE--(1) THE…
Cybernetics and Education (Special Issue)
ERIC Educational Resources Information Center
Kopstein, Felix F., Ed.
1977-01-01
This is a special issue examining the potential of cybernetics in educational technology. Articles discuss: cybernetic methods, algorithms, feedback learning theory, a structural approach to behavioral objectives and criterion-referenced testing, task specifications and diagnosis, teacher-child interaction, educational development, teaching…
Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko
2014-01-01
The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637
Mere exposure alters category learning of novel objects.
Folstein, Jonathan R; Gauthier, Isabel; Palmeri, Thomas J
2010-01-01
We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.
Mere Exposure Alters Category Learning of Novel Objects
Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.
2010-01-01
We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning. PMID:21833209
What Is Instrumented Learning? Part 1
ERIC Educational Resources Information Center
Blake, Robert; Mouton, Jane
1972-01-01
Although article is directed specifically towards improving sales techniques through self evaluation, it discusses various autoinstructional aids that could be applied to other fields. These include self-ranking against an objectives" grid, forced and multiple choice quizzes and the sentence-completion approach. (PD)
The Educative Leadership Project.
ERIC Educational Resources Information Center
Duignan, P. A.; Macpherson, R. J. S.
This paper reports on the objectives and specifications of an "educative leadership" project that aims to synthesize experience, research, and theory and to develop complementary inservice and postgraduate learning materials. Researchers and theorists are now addressing the lack of philosophical machinery in educational administration.…
ERIC Educational Resources Information Center
Miller, Sandra K.
The individualized learning package for secondary consumer education deals with consumer buying as influenced by advertising. The teacher's section of the package contains a statement of purpose and instructional objectives. Equipment and materials (specific textbooks, audiovisual aids, and sources for sample post-test advertisements) needed for…
Busanello, F H; da Silveira, P F; Liedke, G S; Arús, N A; Vizzotto, M B; Silveira, H E D; Silveira, H L D
2015-11-01
Studies have shown that inappropriate therapeutic strategies may be adopted if crown and root changes are misdiagnosed, potentially leading to undesirable consequences. Therefore, the aim of this study was to evaluate a digital learning object, developed to improve skills in diagnosing radiographic dental changes. The object was developed using the Visual Basic Application (VBA) software and evaluated by 62 undergraduate students (male: 24 and female: 38) taking an imaging diagnosis course. Participants were divided in two groups: test group, which used the object and control group, which attended conventional classes. After 3 weeks, students answered a 10-question test and took a practice test to diagnose 20 changes in periapical radiographs. The results show that test group performed better that control group in both tests, with statistically significant difference (P = 0.004 and 0.003, respectively). In overall, female students were better than male students. Specific aspects of object usability were assessed using a structured questionnaire based on the System Usability Scale (SUS), with a score of 90.5 and 81.6 by male and female students, respectively. The results obtained in this study suggest that students who used the DLO performed better than those who used conventional methods. This suggests that the DLO may be a useful teaching tool for dentistry undergraduates, on distance learning courses and as a complementary tool in face-to-face teaching. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework
Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil
2015-01-01
Background Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. Objective This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs’ rational use of antibiotics. Methods The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. Results The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories—situated, experiential, and transformative learning—provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners’ personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners’ personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. Conclusions This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework. PMID:27731839
NASA Astrophysics Data System (ADS)
Holzinger, Andreas; Stickel, Christian; Fassold, Markus; Ebner, Martin
Interface consistency is an important basic concept in web design and has an effect on performance and satisfaction of end users. Consistency also has significant effects on the learning performance of both expert and novice end users. Consequently, the evaluation of consistency within a e-learning system and the ensuing eradication of irritating discrepancies in the user interface redesign is a big issue. In this paper, we report of our experiences with the Shadow Expert Technique (SET) during the evaluation of the consistency of the user interface of a large university learning management system. The main objective of this new usability evaluation method is to understand the interaction processes of end users with a specific system interface. Two teams of usability experts worked independently from each other in order to maximize the objectivity of the results. The outcome of this SET method is a list of recommended changes to improve the user interaction processes, hence to facilitate high consistency.
Weis, Robert; Dean, Emily L; Osborne, Karen J
2016-09-01
Clinicians uniformly recommend accommodations for college students with learning disabilities; however, we know very little about which accommodations they select and the validity of their recommendations. We examined the assessment documentation of a large sample of community college students receiving academic accommodations for learning disabilities to determine (a) which accommodations their clinicians recommended and (b) whether clinicians' recommendations were supported by objective data gathered during the assessment process. In addition to test and instructional accommodations, many clinicians recommended that students with learning disabilities should have different educational expectations, standards, and methods of evaluation (i.e., grading) than their nondisabled classmates. Many of their recommendations for accommodations were not supported by objective evidence from students' history, diagnosis, test data, and current functioning. Furthermore, clinicians often recommended accommodations that were not specific to the student's diagnosis or area of disability. Our findings highlight the need for individually selected accommodations matched to students' needs and academic contexts. © Hammill Institute on Disabilities 2014.
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Wright, Matthew J; Woo, Ellen; Schmitter-Edgecombe, Maureen; Hinkin, Charles H; Miller, Eric N; Gooding, Amanda L
2009-10-01
In the current study, we introduce the Item-Specific Deficit Approach (ISDA), a novel method for characterizing memory process deficits in list-learning data. To meet this objective, we applied the ISDA to California Verbal Learning Test (CVLT) data collected from a sample of 132 participants (53 healthy participants and 79 neurologically compromised participants). Overall, the ISDA indices measuring encoding, consolidation, and retrieval deficits demonstrated advantages over some traditional indices and indicated acceptable reliability and validity. Currently, the ISDA is intended for experimental use, although further research may support its utility for characterizing memory impairments in clinical assessments.
Communicating shared knowledge in infancy.
Egyed, Katalin; Király, Ildikó; Gergely, György
2013-07-01
Object-directed emotion expressions provide two types of information: They can convey the expressers' person-specific subjective disposition toward objects, or they can be used communicatively as referential symbolic devices to convey culturally shared valence-related knowledge about referents that can be generalized to other individuals. By presenting object-directed emotion expressions in communicative versus noncommunicative contexts, we demonstrated that 18-month-olds can flexibly assign either a person-centered interpretation or an object-centered interpretation to referential emotion displays. When addressed by ostensive signals of communication, infants generalized their object-centered interpretation of the emotion display to other individuals as well, whereas in the noncommunicative emotion-expression context, they attributed to the emoting agent a person-specific subjective dispositional attitude without generalizing this attribution as relevant to other individuals. The findings indicate that, as proposed by natural pedagogy theory, infants are prepared to learn shared cultural knowledge from nonverbal communicative demonstrations addressed to them at a remarkably early age.
Interoperability Gap Challenges for Learning Object Repositories & Learning Management Systems
ERIC Educational Resources Information Center
Mason, Robert T.
2011-01-01
An interoperability gap exists between Learning Management Systems (LMSs) and Learning Object Repositories (LORs). Learning Objects (LOs) and the associated Learning Object Metadata (LOM) that is stored within LORs adhere to a variety of LOM standards. A common LOM standard found in LORs is the Sharable Content Object Reference Model (SCORM)…
Passenger baggage object database (PBOD)
NASA Astrophysics Data System (ADS)
Gittinger, Jaxon M.; Suknot, April N.; Jimenez, Edward S.; Spaulding, Terry W.; Wenrich, Steve A.
2018-04-01
Detection of anomalies of interest in x-ray images is an ever-evolving problem that requires the rapid development of automatic detection algorithms. Automatic detection algorithms are developed using machine learning techniques, which would require developers to obtain the x-ray machine that was used to create the images being trained on, and compile all associated metadata for those images by hand. The Passenger Baggage Object Database (PBOD) and data acquisition application were designed and developed for acquiring and persisting 2-D and 3-D x-ray image data and associated metadata. PBOD was specifically created to capture simulated airline passenger "stream of commerce" luggage data, but could be applied to other areas of x-ray imaging to utilize machine-learning methods.
Artificial intelligent e-learning architecture
NASA Astrophysics Data System (ADS)
Alharbi, Mafawez; Jemmali, Mahdi
2017-03-01
Many institutions and university has forced to use e learning, due to its ability to provide additional and flexible solutions for students and researchers. E-learning In the last decade have transported about the extreme changes in the distribution of education allowing learners to access multimedia course material at any time, from anywhere to suit their specific needs. In the form of e learning, instructors and learners live in different places and they do not engage in a classroom environment, but within virtual universe. Many researches have defined e learning based on their objectives. Therefore, there are small number of e-learning architecture have proposed in the literature. However, the proposed architecture has lack of embedding intelligent system in the architecture of e learning. This research argues that unexplored potential remains, as there is scope for e learning to be intelligent system. This research proposes e-learning architecture that incorporates intelligent system. There are intelligence components, which built into the architecture.
Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302
NASA Astrophysics Data System (ADS)
Babayan, Pavel; Smirnov, Sergey; Strotov, Valery
2017-10-01
This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
Detect2Rank: Combining Object Detectors Using Learning to Rank.
Karaoglu, Sezer; Yang Liu; Gevers, Theo
2016-01-01
Object detection is an important research area in the field of computer vision. Many detection algorithms have been proposed. However, each object detector relies on specific assumptions of the object appearance and imaging conditions. As a consequence, no algorithm can be considered universal. With the large variety of object detectors, the subsequent question is how to select and combine them. In this paper, we propose a framework to learn how to combine object detectors. The proposed method uses (single) detectors like Deformable Part Models, Color Names and Ensemble of Exemplar-SVMs, and exploits their correlation by high-level contextual features to yield a combined detection list. Experiments on the PASCAL VOC07 and VOC10 data sets show that the proposed method significantly outperforms single object detectors, DPM (8.4%), CN (6.8%) and EES (17.0%) on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10. We show with an experiment that there are no constraints on the type of the detector. The proposed method outperforms (2.4%) the state-of-the-art object detector (RCNN) on VOC07 when Regions with Convolutional Neural Network is combined with other detectors used in this paper.
Desantis, Andrea; Haggard, Patrick
2016-01-01
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events. PMID:27982063
Desantis, Andrea; Haggard, Patrick
2016-12-16
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events.
Basic steps in establishing effective small group teaching sessions in medical schools.
Meo, Sultan Ayoub
2013-07-01
Small-group teaching and learning has achieved an admirable position in medical education and has become more popular as a means of encouraging the students in their studies and enhance the process of deep learning. The main characteristics of small group teaching are active involvement of the learners in entire learning cycle and well defined task orientation with achievable specific aims and objectives in a given time period. The essential components in the development of an ideal small group teaching and learning sessions are preliminary considerations at departmental and institutional level including educational strategies, group composition, physical environment, existing resources, diagnosis of the needs, formulation of the objectives and suitable teaching outline. Small group teaching increases the student interest, teamwork ability, retention of knowledge and skills, enhance transfer of concepts to innovative issues, and improve the self-directed learning. It develops self-motivation, investigating the issues, allows the student to test their thinking and higher-order activities. It also facilitates an adult style of learning, acceptance of personal responsibility for own progress. Moreover, it enhances student-faculty and peer-peer interaction, improves communication skills and provides opportunity to share the responsibility and clarify the points of bafflement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong
Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant declinemore » on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.« less
Student Goals: Psychological Perspectives
ERIC Educational Resources Information Center
Muirhead, Brent; Little, Jennifer
2008-01-01
The paper will discuss research insights into student academic goals. Cognitive psychologists have found that effective goal setting procedures involves establishing specific and challenging learning objectives. Students who set difficult goals must be persistent while facing the risk of potential failure that could diminish their intrinsic…
ERIC Educational Resources Information Center
Collisson, Beverly Anne; Grela, Bernard; Spaulding, Tammie; Rueckl, Jay G.; Magnuson, James S.
2015-01-01
We investigated whether preschool children with specific language impairment (SLI) exhibit the shape bias in word learning: the bias to generalize based on shape rather than size, color, or texture in an object naming context ("This is a wek; find another wek") but not in a non-naming similarity classification context ("See this?…
ERIC Educational Resources Information Center
Omito, Ouma
2016-01-01
The study was aimed at investigating the students' ability to use technology for distance education with specific reference to the University of Nairobi's External Degree Program. To achieve this, one specific objective was formulated: To find out the student teacher's readiness to accept and utilize technology for learning purposes in relation to…
Learning-dependent plasticity with and without training in the human brain.
Zhang, Jiaxiang; Kourtzi, Zoe
2010-07-27
Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.
Genome annotation in a community college cell biology lab.
Beagley, C Timothy
2013-01-01
The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Learning style and concept acquisition of community college students in introductory biology
NASA Astrophysics Data System (ADS)
Bobick, Sandra Burin
This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.
Grossberg, Stephen; Vladusich, Tony
2010-01-01
How does an infant learn through visual experience to imitate actions of adult teachers, despite the fact that the infant and adult view one another and the world from different perspectives? To accomplish this, an infant needs to learn how to share joint attention with adult teachers and to follow their gaze towards valued goal objects. The infant also needs to be capable of view-invariant object learning and recognition whereby it can carry out goal-directed behaviors, such as the use of tools, using different object views than the ones that its teachers use. Such capabilities are often attributed to "mirror neurons". This attribution does not, however, explain the brain processes whereby these competences arise. This article describes the CRIB (Circular Reactions for Imitative Behavior) neural model of how the brain achieves these goals through inter-personal circular reactions. Inter-personal circular reactions generalize the intra-personal circular reactions of Piaget, which clarify how infants learn from their own babbled arm movements and reactive eye movements how to carry out volitional reaches, with or without tools, towards valued goal objects. The article proposes how intra-personal circular reactions create a foundation for inter-personal circular reactions when infants and other learners interact with external teachers in space. Both types of circular reactions involve learned coordinate transformations between body-centered arm movement commands and retinotopic visual feedback, and coordination of processes within and between the What and Where cortical processing streams. Specific breakdowns of model processes generate formal symptoms similar to clinical symptoms of autism. Copyright © 2010 Elsevier Ltd. All rights reserved.
King, Gillian; Shepherd, Tracy A; Servais, Michelle; Willoughby, Colleen; Bolack, Linda; Strachan, Deborah; Moodie, Sheila; Baldwin, Patricia; Knickle, Kerry; Parker, Kathryn; Savage, Diane; McNaughton, Nancy
2016-10-01
To describe the creation and validation of six simulations concerned with effective listening and interpersonal communication in pediatric rehabilitation. The simulations involved clinicians from various disciplines, were based on clinical scenarios related to client issues, and reflected core aspects of listening/communication. Each simulation had a key learning objective, thus focusing clinicians on specific listening skills. The article outlines the process used to turn written scenarios into digital video simulations, including steps taken to establish content validity and authenticity, and to establish a series of videos based on the complexity of their learning objectives, given contextual factors and associated macrocognitive processes that influence the ability to listen. A complexity rating scale was developed and used to establish a gradient of easy/simple, intermediate, and hard/complex simulations. The development process exemplifies an evidence-based, integrated knowledge translation approach to the teaching and learning of listening and communication skills.
Mathematics education and learning disabilities in Spain.
Casas, Ana Miranda; Castellar, Rosa García
2004-01-01
In the first part of this article, we describe the basic objectives of the math curriculum in Spain as well as the basic contents, teacher resources, and obstacles perceived in mathematics instruction. Second, we briefly describe the concept of learning disabilities (LD) as they are currently defined in Spain. As stated in the recent educational reform, a student with LD is any student with special educational needs. The emphasis is placed on the educational resources that these students need in order to achieve the curricular objectives that correspond to their age group or grade. Third, we comment specifically on the educational services model and the evaluation and instructional procedures for students with math learning disabilities. Finally, we describe some lines of research that have appeared in the last few years in Spain that have led to the development of new evaluation and intervention procedures for students with LD in computation and problem solving.
Inferring difficulty: Flexibility in the real-time processing of disfluency
Heller, Daphna; Arnold, Jennifer E.; Klein, Natalie M.; Tanenhaus, Michael K.
2015-01-01
Upon hearing a disfluent referring expression, listeners expect the speaker to refer to an object that is previously-unmentioned, an object that does not have a straightforward label, or an object that requires a longer description. Two visual-world eye-tracking experiments examined whether listeners directly associate disfluency with these properties of objects, or whether disfluency attribution is more flexible and involves situation-specific inferences. Since in natural situations reference to objects that do not have a straightforward label or that require a longer description is correlated with both production difficulty and with disfluency, we used a mini artificial lexicon to dissociate difficulty from these properties, building on the fact that recently-learned names take longer to produce than existing words in one’s mental lexicon. The results demonstrate that disfluency attribution involves situation-specific inferences; we propose that in new situations listeners spontaneously infer what may cause production difficulty. However, the results show that these situation-specific inferences are limited in scope: listeners assessed difficulty relative to their own experience with the artificial names, and did not adapt to the assumed knowledge of the speaker. PMID:26677642
Oristrell, J; Oliva, J C; Casanovas, A; Comet, R; Jordana, R; Navarro, M
2014-01-01
The Computer Book of the Internal Medicine resident (CBIMR) is a computer program that was validated to analyze the acquisition of competences in teams of Internal Medicine residents. To analyze the characteristics of the rotations during the Internal Medicine residency and to identify the variables associated with the acquisition of clinical and communication skills, the achievement of learning objectives and resident satisfaction. All residents of our service (n=20) participated in the study during a period of 40 months. The CBIMR consisted of 22 self-assessment questionnaires specific for each rotation, with items on services (clinical workload, disease protocolization, resident responsibilities, learning environment, service organization and teamwork) and items on educational outcomes (acquisition of clinical and communication skills, achievement of learning objectives, overall satisfaction). Associations between services features and learning outcomes were analyzed using bivariate and multivariate analysis. An intense clinical workload, high resident responsibilities and disease protocolization were associated with the acquisition of clinical skills. High clinical competence and teamwork were both associated with better communication skills. Finally, an adequate learning environment was associated with increased clinical competence, the achievement of educational goals and resident satisfaction. Potentially modifiable variables related with the operation of clinical services had a significant impact on the acquisition of clinical and communication skills, the achievement of educational goals, and resident satisfaction during the specialized training in Internal Medicine. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Analysis of experts' perception of the effectiveness of teaching methods
NASA Astrophysics Data System (ADS)
Kindra, Gurprit S.
1984-03-01
The present study attempts to shed light on the perceptions of business educators regarding the effectiveness of six methodologies in achieving Gagné's five learning outcomes. Results of this study empirically confirm the oft-stated contention that no one method is globally effective for the attainment of all objectives. Specifically, business games, traditional lecture, and case study methods are perceived to be most effective for the learning of application, knowledge acquisition, and analysis and application, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, N.C.; Lancaster, D.E.
1995-07-01
The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.
Collective behaviour across animal species.
DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M; Porfiri, Maurizio
2014-01-16
We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.
Saffran, Jenny R.; Kirkham, Natasha Z.
2017-01-01
Perception involves making sense of a dynamic, multimodal environment. In the absence of mechanisms capable of exploiting the statistical patterns in the natural world, infants would face an insurmountable computational problem. Infant statistical learning mechanisms facilitate the detection of structure. These abilities allow the infant to compute across elements in their environmental input, extracting patterns for further processing and subsequent learning. In this selective review, we summarize findings that show that statistical learning is both a broad and flexible mechanism (supporting learning from different modalities across many different content areas) and input specific (shifting computations depending on the type of input and goal of learning). We suggest that statistical learning not only provides a framework for studying language development and object knowledge in constrained laboratory settings, but also allows researchers to tackle real-world problems, such as multilingualism, the role of ever-changing learning environments, and differential developmental trajectories. PMID:28793812
Learning and Socializing Preferences in Hong Kong Chinese Children.
Chen, Eva E; Corriveau, Kathleen H; Lai, Veronica K W; Poon, Sze Long; Gaither, Sarah E
2018-04-30
The impact of social group information on the learning and socializing preferences of Hong Kong Chinese children were examined. Specifically, the degree to which variability in racial out-group exposure affects children's use of race to make decisions about unfamiliar individuals (Chinese, White, Southeast Asian) was investigated. Participants (N = 212; M age = 60.51 months) chose functions for novel objects after informants demonstrated their use; indicated with which peer group member to socialize; and were measured on racial group recognition, preference, and identification. Overall, children preferred in-group members, though out-group exposure and the relative social status of out-groups mattered as well. At a young age, children's specific experiences with different races influence how they learn and befriend others across racial group lines. © 2018 Society for Research in Child Development.
Intelligent Discovery for Learning Objects Using Semantic Web Technologies
ERIC Educational Resources Information Center
Hsu, I-Ching
2012-01-01
The concept of learning objects has been applied in the e-learning field to promote the accessibility, reusability, and interoperability of learning content. Learning Object Metadata (LOM) was developed to achieve these goals by describing learning objects in order to provide meaningful metadata. Unfortunately, the conventional LOM lacks the…
Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory
Wilson, Charles R E; Gaffan, David; Mitchell, Anna S; Baxter, Mark G
2007-01-01
Disconnection of the frontal lobe from the inferotemporal cortex produces deficits in a number of cognitive tasks that require the application of memory-dependent rules to visual stimuli. The specific regions of frontal cortex that interact with the temporal lobe in performance of these tasks remain undefined. One capacity that is impaired by frontal–temporal disconnection is rapid learning of new object-in-place scene problems, in which visual discriminations between two small typographic characters are learned in the context of different visually complex scenes. In the present study, we examined whether neurotoxic lesions of ventrolateral prefrontal cortex in one hemisphere, combined with ablation of inferior temporal cortex in the contralateral hemisphere, would impair learning of new object-in-place scene problems. Male macaque monkeys learned 10 or 20 new object-in-place problems in each daily test session. Unilateral neurotoxic lesions of ventrolateral prefrontal cortex produced by multiple injections of a mixture of ibotenate and N-methyl-d-aspartate did not affect performance. However, when disconnection from inferotemporal cortex was completed by ablating this region contralateral to the neurotoxic prefrontal lesion, new learning was substantially impaired. Sham disconnection (injecting saline instead of neurotoxin contralateral to the inferotemporal lesion) did not affect performance. These findings support two conclusions: first, that the ventrolateral prefrontal cortex is a critical area within the frontal lobe for scene memory; and second, the effects of ablations of prefrontal cortex can be confidently attributed to the loss of cell bodies within the prefrontal cortex rather than to interruption of fibres of passage through the lesioned area. PMID:17445247
Hung, Wan-Yu; Patrycia, Ferninda; Yow, W. Q.
2015-01-01
Past research has investigated how children use different sources of information such as social cues and word-learning heuristics to infer referential intents. The present research explored how children weigh and use some of these cues to make referential inferences. Specifically, we examined how switching between languages known (familiar) or unknown (unfamiliar) to a child would influence his or her choice of cue to interpret a novel label in a challenging disambiguation task, where a pointing cue was pitted against the mutual exclusivity (ME) principle. Forty-eight 3-and 4-years-old English–Mandarin bilingual children listened to a story told either in English only (No-Switch), English and Mandarin (Familiar-Switch), English and Japanese (Unfamiliar-Switch), or English and English-sounding nonsense sentences (Nonsense-Switch). They were then asked to select an object (from a pair of familiar and novel objects) after hearing a novel label paired with the speaker’s point at the familiar object, e.g., “Can you give me the blicket?” Results showed that children in the Familiar-Switch condition were more willing to relax ME to follow the speaker’s point to pick the familiar object than those in the Unfamiliar-Switch condition, who were more likely to pick the novel object. No significant differences were found between the other conditions. Further analyses revealed that children in the Unfamiliar-Switch condition looked at the speaker longer than children in the other conditions when the switch happened. Our findings suggest that children weigh speakers’ referential cues and word-learning heuristics differently in different language contexts while taking into account their communicative history with the speaker. There are important implications for general education and other learning efforts, such as designing learning games so that the history of credibility with the user is maintained and how learning may be best scaffolded in a helpful and trusting environment. PMID:26113836
Curriculum Development: Teacher Involvement in Curriculum Development
ERIC Educational Resources Information Center
Alsubaie, Merfat Ayesh
2016-01-01
In order for curriculum development to be effective and schools to be successful, teachers must be involved in the development process. An effective curriculum should reflect the philosophy, goals, objectives, learning experiences, instructional resources, and assessments that comprise a specific educational program ("Guide to curriculum…
Tutor Handbook. Reading Effectiveness Program.
ERIC Educational Resources Information Center
Indiana State Dept. of Public Instruction, Indianapolis. Div. of Reading Effectiveness.
The five sections of this handbook contain reading tutor training materials, with each section listing behavioral learning objectives specific to a particular instructional situation. The first section defines the role of the tutor, sets forth general principles for successful tutoring, presents examples of interest inventories for elementary and…
Social Constructivism and Case-Writing for an Integrated Curriculum
ERIC Educational Resources Information Center
Doubleday, Alison F.; Brown, Blase; Patston, Philip A.; Jurgens-Toepke, Pamela; Strotman, Meaghan Driscoll; Koerber, Anne; Haley, Colin; Briggs, Charlotte; Knight, G. William
2015-01-01
Case-writing within an integrated, systems-based health professions education curriculum presents many unique challenges. Specifically, case-writing in this context must consider integration of multidisciplinary learning objectives and synthesis of biomedical and clinical sciences. Establishing an effective process for content integration and…
The Refrigeration System; Appliance Repair--Advanced: 9027.01.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This course outline provides students with an understanding of the observation of basic refrigeration system components, the techniques used in working with copper tubing, and practice demonstrations to show what they have learned. Course content includes specific block objectives, orientation, refrigeration components (evaporator, compressor,…
South Carolina Guide for Introduction to Marketing.
ERIC Educational Resources Information Center
Vaughan, Ellen C.; Elliott, Ronald T.
This introduction to marketing guide addresses the three domains of learning: psychomotor, cognitive, and affective. The guide contains suggestions for specific classroom activities for each domain. Each unit or task in this guide contains a competency statement followed by performance objectives, job-relevant instructional activities,…
Learning Outcomes in Affective Domain within Contemporary Architectural Curricula
ERIC Educational Resources Information Center
Savic, Marko; Kashef, Mohamad
2013-01-01
Contemporary architectural education has shifted from the traditional focus on providing students with specific knowledge and skill sets or "inputs" to outcome based, student-centred educational approach. Within the outcome based model, students' performance is assessed against measureable objectives that relate acquired knowledge…
More than Solutions: Empowering Students to Think Strategically and Tactically
ERIC Educational Resources Information Center
Del Gandio, Jason
2017-01-01
Courses: Communication Activism; Public Advocacy; Social Movements; Public Speaking; Persuasion; Argumentation; Public Sphere. Objectives: This semester-long activity helps students implement a solutions--strategies--tactics framework into their advocacy work. More specifically, students learn to (1) designate, research, and assess the causes of…
Object Classification With Joint Projection and Low-Rank Dictionary Learning.
Foroughi, Homa; Ray, Nilanjan; Hong Zhang
2018-02-01
For an object classification system, the most critical obstacles toward real-world applications are often caused by large intra-class variability, arising from different lightings, occlusion, and corruption, in limited sample sets. Most methods in the literature would fail when the training samples are heavily occluded, corrupted or have significant illumination or viewpoint variations. Besides, most of the existing methods and especially deep learning-based methods, need large training sets to achieve a satisfactory recognition performance. Although using the pre-trained network on a generic large-scale data set and fine-tune it to the small-sized target data set is a widely used technique, this would not help when the content of base and target data sets are very different. To address these issues simultaneously, we propose a joint projection and low-rank dictionary learning method using dual graph constraints. Specifically, a structured class-specific dictionary is learned in the low-dimensional space, and the discrimination is further improved by imposing a graph constraint on the coding coefficients, that maximizes the intra-class compactness and inter-class separability. We enforce structural incoherence and low-rank constraints on sub-dictionaries to reduce the redundancy among them, and also make them robust to variations and outliers. To preserve the intrinsic structure of data, we introduce a supervised neighborhood graph into the framework to make the proposed method robust to small-sized and high-dimensional data sets. Experimental results on several benchmark data sets verify the superior performance of our method for object classification of small-sized data sets, which include a considerable amount of different kinds of variation, and may have high-dimensional feature vectors.
Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review
Jin, Jun
2014-01-01
Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. Conclusions This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education. PMID:25498126
Grassmann, Susanne; Schulze, Cornelia; Tomasello, Michael
2015-01-01
When children are learning a novel object label, they tend to exclude as possible referents familiar objects for which they already have a name. In the current study, we wanted to know if children would behave in this same way regardless of how well they knew the name of potential referent objects, specifically, whether they could only comprehend it or they could both comprehend and produce it. Sixty-six monolingual German-speaking 2-, 3-, and 4-year-old children participated in two experimental sessions. In one session the familiar objects were chosen such that their labels were in the children’s productive vocabularies, and in the other session the familiar objects were chosen such that their labels were only in the children’s receptive vocabularies. Results indicated that children at all three ages were more likely to exclude a familiar object as the potential referent of the novel word if they could comprehend and produce its name rather than comprehend its name only. Indeed, level of word knowledge as operationalized in this way was a better predictor than was age. These results are discussed in the context of current theories of word learning by exclusion. PMID:26322005
Enhancing learning in geosciences and water engineering via lab activities
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Cheng, Ming
2016-04-01
This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.
Liberating Learning Object Design from the Learning Style of Student Instructional Designers
ERIC Educational Resources Information Center
Akpinar, Yavuz
2007-01-01
Learning objects are a new form of learning resource, and the design of these digital environments has many facets. To investigate senior instructional design students' use of reflection tools in designing learning objects, a series of studies was conducted using the Reflective Action Instructional Design and Learning Object Review Instrument…
Learning Objects and Gerontology
ERIC Educational Resources Information Center
Weinreich, Donna M.; Tompkins, Catherine J.
2006-01-01
Virtual AGE (vAGE) is an asynchronous educational environment that utilizes learning objects focused on gerontology and a learning anytime/anywhere philosophy. This paper discusses the benefits of asynchronous instruction and the process of creating learning objects. Learning objects are "small, reusable chunks of instructional media" Wiley…
Zack, Elizabeth; Gerhardstein, Peter; Meltzoff, Andrew N.; Barr, Rachel
2012-01-01
Infants have difficulty transferring information between 2D and 3D sources. The current study extends Zack et al.’s (2009) touch screen imitation task to examine whether the addition of specific language cues significantly facilitates 15-month-olds’ transfer of learning between touch screens and real-world 3D objects. The addition of two kinds of linguistic cues (object label plus verb or nonsense name) did not elevate action imitation significantly above levels observed when such language cues were not used. Language cues hindered infants’ performance in the 3D→2D direction of transfer, but only for the object label plus verb condition. The lack of a facilitative effect of language is discussed in terms of competing cognitive loads imposed by conjointly transferring information across dimensions and processing linguistic cues in an action imitation task at this age. PMID:23121508
Does learning style influence academic performance in different forms of assessment?
Wilkinson, Tracey; Boohan, Mairead; Stevenson, Michael
2014-03-01
Educational research on learning styles has been conducted for some time, initially within the field of psychology. Recent research has widened to include more diverse disciplines, with greater emphasis on application. Although there are numerous instruments available to measure several different dimensions of learning style, it is generally accepted that styles differ, although the qualities of more than one style may be inherent in any one learner. But do these learning styles have a direct effect on student performance in examinations, specifically in different forms of assessment? For this study, hypotheses were formulated suggesting that academic performance is influenced by learning style. Using the Honey and Mumford Learning Style Questionnaire, learning styles of a cohort of first year medical and dental students at Queen's University Belfast were assessed. Pearson correlation was performed between the score for each of the four learning styles and the student examination results in a variety of subject areas (including anatomy) and in different types of assessments - single best answer, short answer questions and Objective Structured Clinical Examinations. In most of the analyses, there was no correlation between learning style and result and in the few cases where the correlations were statistically significant, they generally appeared to be weak. It seems therefore from this study that although the learning styles of students vary, they have little effect on academic performance, including in specific forms of assessment. © 2013 Anatomical Society.
ERIC Educational Resources Information Center
Werenicz, Aline; Christoff, Raissa R.; Blank, Martina; Jobim, Paulo F. C.; Pedroso, Thiago R.; Reolon, Gustavo K.; Schroder, Nadja; Roesler, Rafael
2012-01-01
Here we show that administration of the phosphodiesterase type 4 (PDE4) inhibitor rolipram into the basolateral complex of the amygdala (BLA) at a specific time interval after training enhances memory consolidation and induces memory persistence for novel object recognition (NOR) in rats. Intra-BLA infusion of rolipram immediately, 1.5 h, or 6 h…
NASA Astrophysics Data System (ADS)
Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery
2016-10-01
This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
Benefits of an Electronic Consultation-Liaison Note System: Better Notes Faster
ERIC Educational Resources Information Center
Sola, Christopher L.; Bostwick, J. Michael; Sampson, Shirlene
2007-01-01
Objective: The authors determined the efficiency of electronic documentation in consultation-liaison psychiatry. METHOD: An electronic note system was customized for a psychiatric consultation note. Specific attention given to common diagnoses permitted rapid documentation. Results: Residents learned the system quickly. The standardized nature of…
Special Machines; Apparel Manufacturing: 9377.10.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This course allows students who are interested in careers in apparel manufacturing to learn the techniques for operating the various types of special machines used for finishing garments professionally and for specialty work. Course content includes goals, specific objectives, orientation, safety practices, special machines, assembling a child's…
V-TECS Guide for Farm Equipment Mechanic.
ERIC Educational Resources Information Center
McClimon, Hugh P.; And Others
This curriculum guide for a vocational agriculture course in farm equipment mechanics addresses the three domains of learning (psychomotor, cognitive, and affective) while providing job-relevant tasks and suggestions for specific classroom activities for each identified task. This guide provides performance objectives for the following 13 tasks:…
ERIC Educational Resources Information Center
Blanchette, Judith
2012-01-01
The purpose of this empirical study was to determine the extent to which three different objective analytical methods--sequence analysis, surface cohesion analysis, and lexical cohesion analysis--can most accurately identify specific characteristics of online interaction. Statistically significant differences were found in all points of…
Helping Students Develop Learning Strategies: Some Theoretical and Practical Considerations.
ERIC Educational Resources Information Center
Harrison, Ian D.
The collaborative curriculum development process in a postsecondary language education program in Japan is described, looking specifically at the work of five curriculum development teams, or focus groups: needs assessment; curriculum aims, goals, and objectives; cognitive development and learner strategies; materials development; and learner…
Planning and Producing Audiovisual Materials.
ERIC Educational Resources Information Center
Kemp, Jerrold E.
The first few chapters of this book are devoted to an examination of the changing character of audiovisual materials; instructional design and the selection of media to serve specific objectives; and principles of perception, communication, and learning. Relevant research findings in the field are reviewed. The basic techniques of planning…
Seven Steps to Responsible Software Selection. ERIC Digest.
ERIC Educational Resources Information Center
Komoski, P. Kenneth; Plotnick, Eric
Microcomputers in schools contribute significantly to the learning process, and software selection is taken as seriously as the selection of text books. The seven step process for responsible software selection are: (1) analyzing needs, including the differentiation between needs and objectives; (2) specification of requirements; (3) identifying…
Collective behaviour across animal species
DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M.; Porfiri, Maurizio
2014-01-01
We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment. PMID:24430561
Autonomous physics-based color learning under daylight
NASA Astrophysics Data System (ADS)
Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.
1999-09-01
An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.
Do Capuchin Monkeys (Cebus apella) Diagnose Causal Relations in the Absence of a Direct Reward?
Edwards, Brian J.; Rottman, Benjamin M.; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R.
2014-01-01
We adapted a method from developmental psychology [1] to explore whether capuchin monkeys (Cebus apella) would place objects on a “blicket detector” machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects’ causal properties based on whether each object “activated” the machine. In Experiments 1–3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning’s sake. PMID:24586347
Pharmacists' Perceptions of Facilitators and Barriers to Lifelong Learning
Bruskiewitz, Ruth H.; DeMuth, James E.
2007-01-01
Objectives To reevaluate facilitators of and barriers to pharmacists' participation in lifelong learning previously examined in a 1990 study. Methods A survey instrument was mailed to 274 pharmacists who volunteered to participate based on a prior random sample survey. Data based on perceptions of facilitators and barriers to lifelong learning, as well as self-perception as a lifelong learner, were analyzed and compared to a similar 1990 survey. Results The response rate for the survey was 88%. The top 3 facilitators and barriers to lifelong learning from the 2003 and the 1990 samples were: (1) personal desire to learn; (2) requirement to maintain professional licensure; and (3) enjoyment/relaxation provided by learning as change of pace from the “routine.” The top 3 barriers were: (1) job constraints; (2) scheduling (location, distance, time) of group learning activities; and (3) family constraints (eg, spouse, children, personal). Respondents' broad self-perception as lifelong learners continued to be highly positive overall, but remained less positive relative to more specific lifelong learning skills such as the ability to identify learning objectives as well as to evaluate learning outcomes. Conclusions Little has changed in the last decade relative to how pharmacists view themselves as lifelong learners, as well as what they perceive as facilitators and barriers to lifelong learning. To address factors identified as facilitators and barriers, continuing education (CE) providers should focus on pharmacists' time constraints, whether due to employment, family responsibilities, or time invested in the educational activity itself, and pharmacists' internal motivations to learn (personal desire, enjoyment), as well as external forces such as mandatory CE for relicensure. PMID:17786254
A neurocomputational account of taxonomic responding and fast mapping in early word learning.
Mayor, Julien; Plunkett, Kim
2010-01-01
We present a neurocomputational model with self-organizing maps that accounts for the emergence of taxonomic responding and fast mapping in early word learning, as well as a rapid increase in the rate of acquisition of words observed in late infancy. The quality and efficiency of generalization of word-object associations is directly related to the quality of prelexical, categorical representations in the model. We show how synaptogenesis supports coherent generalization of word-object associations and show that later synaptic pruning minimizes metabolic costs without being detrimental to word learning. The role played by joint-attentional activities is identified in the model, both at the level of selecting efficient cross-modal synapses and at the behavioral level, by accelerating and refining overall vocabulary acquisition. The model can account for the qualitative shift in the way infants use words, from an associative to a referential-like use, for the pattern of overextension errors in production and comprehension observed during early childhood and typicality effects observed in lexical development. Interesting by-products of the model include a potential explanation of the shift from prototype to exemplar-based effects reported for adult category formation, an account of mispronunciation effects in early lexical development, and extendability to include accounts of individual differences in lexical development and specific disorders such as Williams syndrome. The model demonstrates how an established constraint on lexical learning, which has often been regarded as domain-specific, can emerge from domain-general learning principles that are simultaneously biologically, psychologically, and socially plausible.
Evidence-based decision-making as a practice-based learning skill: a pilot study.
Falzer, Paul R; Garman, D Melissa
2012-03-01
As physicians are being trained to adapt their practices to the needs and experience of patients, initiatives to standardize care have been gaining momentum. The resulting conflict can be addressed through a practice-based learning and improvement (PBL) program that develops competency in using treatment guidelines as decision aids and incorporating patient-specific information into treatment recommendations. This article describes and tests a program that is consistent with the ACGME's multilevel competency-based approach, targets students at four levels of training, and features progressive learning objectives and assessments. The program was pilot-tested with 22 paid volunteer psychiatric residents and fellows. They were introduced to a schizophrenia treatment guideline and reviewed six case vignettes of varying complexity. PBL assessments were based on how treatment recommendations were influenced by clinical and patient-specific factors. The task permitted separate assessments of learning objectives all four training levels. Among the key findings at each level, most participants found the treatment guideline helpful in making treatment decisions. Recommendations were influenced by guideline-based assessment criteria and other clinical features. They were also influenced by patients' perceptions of their illness, patient-based progress assessments, and complications such as stressors and coping patterns. Recommendations were strongly influenced by incongruence between clinical facts and patient experience. Practical understanding of how patient experience joins with clinical knowledge can enhance the use of treatment guidelines as decision tools and enable clinicians to appreciate more fully how and why patients' perceptions of their illness should influence treatment recommendations. This PBL program can assist training facilities in preparing students to cope with contradictory demands to both standardize and adapt their practice. The program can be modified to accommodate various disorders and a range of clinical factors and patient-specific complications.
ERIC Educational Resources Information Center
Wanapu, Supachanun; Fung, Chun Che; Kerdprasop, Nittaya; Chamnongsri, Nisachol; Niwattanakul, Suphakit
2016-01-01
The issues of accessibility, management, storage and organization of Learning Objects (LOs) in education systems are a high priority of the Thai Government. Incorporating personalized learning or learning styles in a learning object management system to improve the accessibility of LOs has been addressed continuously in the Thai education system.…
Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Eldridge, J. Charles
2013-01-01
Purpose A process evaluation was conducted to assess whether the newly developed Problem-Based Learning (PBL) curriculum designed to teach professionalism and ethics to biomedical graduate students was achieving its objectives. The curriculum was chosen to present realistic cases and issues in the practice of science, to promote skill development and to acculturate students to professional norms of science. Method The perception to which the objectives for the curriculum and courses were being reached was assessed using 5-step Likert-scaled questions, open-ended questions and interviews of students and facilitators. Results Process evaluation indicated that both facilitators and students perceived course objectives were being met. For example, active learning was preferred over lectures; both faculty and students percieved that the curriculum increased their understanding of norms, role obligations, and responsibilities of professional scientists; their ability to identify ethical situations was increased; skills in moral reasoning and effective group work were developed. Conclusions Information gathered was used to improve course implementation and instructional material. For example, a negative perception as an “ethics” course was addressed by redesigning case debriefing activities that reinforced learning objectives and important skills. Cases were refined to be more engaging and relevant for students, and facilitators were given more specific training and resources for each case. The PBL small group strategy can stimulate an environment more aware of ethical implications of science and increase socialization and open communication about professional behavior. PMID:20663754
Billot, Dominique
2007-01-01
The article presents the evolution of a health promotion and health education training module within the contexts of the development of a new on-line learning programme. Relying upon validated theoretical models, each step of the module's development is explicitly described, from the needs assessment phase to the experimental one. A detailed needs assessment brings to light the limitations of a traditional distance-learning module with regard to the very specific needs of students. The learning objectives were formulated to catch up with and be more in sync with the skills and competencies held and carried out by the educators in the field. The teaching methods were selected for their attributes of being more active and more diverse. Formative evaluation is introduced and certificatory evaluation aims to corroborate with the teaching objectives. Immediate results from experimentation done in these early stages gives prominence to the added value of this new on-line module, which appears to be much more adapted to the students' needs.
Scripting Scenarios for the Human Patient Simulator
NASA Technical Reports Server (NTRS)
Bacal, Kira; Miller, Robert; Doerr, Harold
2004-01-01
The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.
Shehata, Yasser; Ross, Michael; Sheikh, Aziz
2007-02-01
Concerns have been raised about the adequacy of allergy teaching in UK undergraduate medical curricula. Our previous work, which involved undertaking a systematic analysis of the documented curricular learning objectives relating to allergy teaching in a UK medical school, found references to allergy teaching in each of the five years of study but also identified some apparent omissions in allergy teaching. These may represent actual gaps in relation to allergy training, or alternatively may reflect dissonance between the described and delivered curricula. To compare the described and delivered undergraduate curricula on allergy and allergy-related topics in a UK medical school. We identified and e-mailed the individuals responsible for each of the 43 modules in the five-year undergraduate medical programme at the University of Edinburgh, enquiring about the delivery of allergy-related teaching within their modules. We then compared these responses with the results of the previous study mapping allergy-related teaching across the undergraduate curriculum. Fifty-one individuals were identified as being responsible for leading the 43 modules in the curriculum. Forty-nine (96%) of these module organisers responded to our enquiry; these individuals represented 41 of the 43 modules (95%). Module organisers reported that allergy-related teaching and learning was delivered in 14 modules (33%), was absent in 13 (30%) modules, and may occur to varying degrees within a further 10 (23%) modules. Module organisers' responses about the delivered curriculum on allergy were consistent with the findings from documented learning objectives in 21 (49%) modules. They also reported allergy teaching and learning in modules which had not been identified by examination of the learning objectives; however, there were still important gaps in the allergy-related curriculum. Information gathered from teaching staff confirms that specific teaching and learning on allergic disorders is currently being delivered in all five years of the undergraduate curriculum. However, comparison between the described and delivered curricula on allergy revealed discrepancies highlighting the complex nature of the undergraduate curriculum and the difficulties involved in mapping specific teaching themes within them. This assessment has revealed gaps in allergy training which need to be addressed.
Daily Living Skills: A Manual for Educating Visually Impaired Students.
ERIC Educational Resources Information Center
Lieberman, Gail, Ed.
The manual contains rationales, general approaches, and specific procedures for educators and parents to use in teaching daily living skills to visually impaired students. Detailed suggestions are given with regard to learning objectives for blind or partially sighted children, age levels, and instructional adaptations for developing competency in…
Strategies for Learners with Special Needs in Marketing and Distributive Education.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Missouri LINC.
This Vocational Instructional Management System (VIMS) module addresses general information related to the instructional/teaching strategies and cognitive/learning strategies for special needs students in marketing and distributive education. In addition, specific strategies are suggested as they relate to Access Skills objectives for some of the…
Particularity, Presence, Art Teaching, and Learning
ERIC Educational Resources Information Center
Kellman, Julia
2007-01-01
This manuscript explores the interplay of the concepts of "thisness" and singularity with art making. It explores the particularity of the individual--person, object, animal, plant, place, event; the clarity and joyousness of "thisness" or specificity; the exquisite presence of now; and the relationship of these qualities to contemplation and art…
South Carolina Guide for Small Business Management.
ERIC Educational Resources Information Center
Vaughan, Ellen C.; Elliott, Ronald T.
This guide for small business management in South Carolina addresses the three domains of learning: psychomotor, cognitive, and affective. The guide contains suggestions for specific classroom activities for each domain. Each of the 11 units or tasks in the guide contains a competency statement followed by performance objectives, job-relevant…
How to Individualize Mathematics Successfully: With Materials for Implementation.
ERIC Educational Resources Information Center
Vinskey, Mildred L.
Presented is a method for individualizing mathematics which utilizes the "Learning Activities Package" (LAP). LAP is a self-contained unit based on specific behavioral objectives which contains a pretest, a posttest, examples, explanations, and activities. The topics covered include but are not limited to: multiplication and division by powers of…
Teaching Quality Object-Oriented Programming
ERIC Educational Resources Information Center
Feldman, Yishai A.
2005-01-01
Computer science students need to learn how to write high-quality software. An important methodology for achieving quality is design-by-contract, in which code is developed together with its specification, which is given as class invariants and method pre- and postconditions. This paper describes practical experience in teaching design-by-contract…
RTI and Other Approaches to SLD Identification under the IDEA: A Legal Update
ERIC Educational Resources Information Center
Zirkel, Perry A.
2017-01-01
This article provides a concise and objective synthesis of the federal legislation, regulations, and agency policy interpretations; state laws; and case law, including hearing officer and complaint investigation decisions, concerning specific learning disability (SLD) identification since the 2006 IDEA regulations. The results reveal wide latitude…
Designing Educational Software for Tomorrow.
ERIC Educational Resources Information Center
Harvey, Wayne
Designed to address the management and use of computer software in education and training, this paper explores both good and poor software design, calling for improvements in the quality of educational software by attending to design considerations that are based on general principles of learning rather than specific educational objectives. This…
Vous Desirez? (What Would You Like?).
ERIC Educational Resources Information Center
Carlile, Jan
This self-instructional unit about cafes in France is intended for beginning students of French. The introduction to the teacher specifies the general goals, specific learner objectives, evaluation process, and equipment needed. The student's learning activities are divided into four parts, three of which are followed by a written self-quiz and…
Activity Specificity, Physical and Psychosocial Dimensions.
ERIC Educational Resources Information Center
Hatfield, Frederick C.
The position is taken that the physical parameters of one's involvement in activity learning depend in large measure upon the objectives of the participant. General comments regarding the physical parameters of most activity classes are made. Underlying commonalities existing among these parameters are identified as: (1) freedom from disease; (2)…
Modelling Conceptual Development: A computational Account of Conservation Learning
1990-02-28
6 year-old age range are unable to obtain specific quantitative values for larger sets of objects e.g. (Gelman & Gallistel , 1978). 3. Children who...Piagetian concepts. In J.H. Flavell & E.M. Markman (Eds.), Handbook of Child Psychology(Fourth ed.). New York: Wiley. Gelman, R. & Gallistel , R.C. (1978
Achieving Competency in Electroconvulsive Therapy: A Model Curriculum
ERIC Educational Resources Information Center
Dolenc, Tamara J.; Philbrick, Kemuel L.
2007-01-01
Objective: This article illustrates a model electroconvulsive therapy (ECT) curriculum with specific parameters of both practice-based learning and medical knowledge. Method: The authors review the recommendations of the APA Task Force on ECT as they relate to training in ECT in psychiatry residency programs, and discuss diverse educational…
Pinto, Marcos Di; Conklin, Heather M.; Li, Chenghong; Merchant, Thomas E.
2012-01-01
Purpose The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test–Children’s Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions This study did not reveal any impairment or decline in learning after CRT in over-all aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients. PMID:22867897
ERIC Educational Resources Information Center
Paulsson, Fredrik; Naeve, Ambjorn
2006-01-01
Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…
Erdogan, Goker; Yildirim, Ilker; Jacobs, Robert A.
2015-01-01
People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model’s percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects’ ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception. PMID:26554704
Alger, Sara E; Payne, Jessica D
2016-12-01
Relational memories are formed from shared components between directly learned memory associations, flexibly linking learned information to better inform future judgments. Sleep has been found to facilitate both direct associative and relational memories. However, the impact of incorporating emotionally salient information into learned material and the interaction of emotional salience and sleep in facilitating both types of memory is unknown. Participants encoded two sets of picture pairs, with either emotionally negative or neutral objects paired with neutral faces. The same objects were present in both sets, paired with two different faces across the sets. Baseline memory for these directly paired associates was tested immediately after encoding, followed by either a 90-min nap opportunity or wakefulness. Five hours after learning, a surprise test assessed relational memory, the indirect association between two faces paired with the same object during encoding, followed by a retest of direct associative memory. Overall, negative information was remembered better than neutral for directly learned pairs. A nap facilitated both preservation of direct associative memories and formation of relational memories, compared to remaining awake. Interestingly, however, this sleep benefit was observed specifically for neutral directly paired associates, while both neutral and negative relational associations benefitted from a nap. Finally, REM sleep played opposing roles in neutral direct and relational associative memory formation, with more REM sleep leading to forgetting of direct associations but promoting relational associations, suggesting that, while not benefitting memory consolidation for directly learned details, REM sleep may foster the memory reorganization needed for relational memory.
System safety management lessons learned from the US Army acquisition process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piatt, J.A.
1989-05-01
The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They aremore » broadly applicable and supportive of the Army structure and acquisition objectives. Pacific Northwest Laboratory (PNL) was given the task of conducting an independent, objective appraisal of the Army's system safety program in the context of the Army materiel acquisition process by focusing on four fielded systems which are products of that process. These systems included the Apache helicopter, the Bradley Fighting Vehicle (BFV), the Tube Launched, Optically Tracked, Wire Guided (TOW) Missile and the High Mobility Multipurpose Wheeled Vehicle (HMMWV). The objective of this study was to develop system safety management lessons learned associated with the acquisition process. The first step was to identify residual hazards associated with the selected systems. Since it was impossible to track all residual hazards through the acquisition process, certain well-known, high visibility hazards were selected for detailed tracking. These residual hazards illustrate a variety of systemic problems. Systemic or process causes were identified for each residual hazard and analyzed to determine why they exist. System safety management lessons learned were developed to address related systemic causal factors. 29 refs., 5 figs.« less
Good Features to Correlate for Visual Tracking
NASA Astrophysics Data System (ADS)
Gundogdu, Erhan; Alatan, A. Aydin
2018-05-01
During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.
ERIC Educational Resources Information Center
Lau, Siong-Hoe; Woods, Peter C.
2009-01-01
Many organisations and institutions have integrated learning objects into their e-learning systems to make the instructional resources more efficient. Like any other information systems, this trend has made user acceptance of learning objects an increasingly critical issue as a high level of learner satisfaction and acceptance reflects that the…
Brain STAT5 signaling modulates learning and memory formation.
Furigo, Isadora C; Melo, Helen M; Lyra E Silva, Natalia M; Ramos-Lobo, Angela M; Teixeira, Pryscila D S; Buonfiglio, Daniella C; Wasinski, Frederick; Lima, Eliana R; Higuti, Eliza; Peroni, Cibele N; Bartolini, Paolo; Soares, Carlos R J; Metzger, Martin; de Felice, Fernanda G; Donato, Jose
2018-06-01
The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.
NASA Astrophysics Data System (ADS)
Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena
2017-08-01
Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.
Learned filters for object detection in multi-object visual tracking
NASA Astrophysics Data System (ADS)
Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David
2016-05-01
We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pinto, Marcos; Conklin, Heather M.; Li, Chenghong
Purpose: The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials: Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test-Children's Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 monthsmore » later, and then yearly for a total of 5 years. Results: No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions: This study did not reveal any impairment or decline in learning after CRT in overall aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients.« less
Wang, Hongkai; Zhou, Zongwei; Li, Yingci; Chen, Zhonghua; Lu, Peiou; Wang, Wenzhi; Liu, Wanyu; Yu, Lijuan
2017-12-01
This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18 F-FDG PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity standard deviation. The four classical machine learning methods included random forests, support vector machines, adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN). The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each classical method, different input features were compared to select the optimal feature set. Based on the optimal feature set, the classical methods were compared with CNN, as well as with human doctors from our institute. For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were significantly higher than the results of texture features. CNN's sensitivity, specificity, ACC, and AUC were 84, 88, 86, and 0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning methods had higher sensitivities but lower specificities than human doctors. The present study shows that the performance of CNN is not significantly different from the best classical methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. Because CNN does not need tumor segmentation or feature calculation, it is more convenient and more objective than the classical methods. However, CNN does not make use of the import diagnostic features, which have been proved more discriminative than the texture features for classifying small-sized lymph nodes. Therefore, incorporating the diagnostic features into CNN is a promising direction for future research.
Neurally and ocularly informed graph-based models for searching 3D environments
NASA Astrophysics Data System (ADS)
Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul
2014-08-01
Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.
Cultural transmission through infant signs: Objects and actions in U.S. and Taiwan.
Wang, Wen; Vallotton, Claire
2016-08-01
Infant signs are intentionally taught/learned symbolic gestures which can be used to represent objects, actions, requests, and mental state. Through infant signs, parents and infants begin to communicate specific concepts earlier than children's first spoken language. This study examines whether cultural differences in language are reflected in children's and parents' use of infant signs. Parents speaking East Asian languages with their children utilize verbs more often than do English-speaking mothers; and compared to their English-learning peers, Chinese children are more likely to learn verbs as they first acquire spoken words. By comparing parents' and infants' use of infant signs in the U.S. and Taiwan, we investigate cultural differences of noun/object versus verb/action bias before children's first language. Parents reported their own and their children's use of first infant signs retrospectively. Results show that cultural differences in parents' and children's infant sign use were consistent with research on early words, reflecting cultural differences in communication functions (referential versus regulatory) and child-rearing goals (independent versus interdependent). The current study provides evidence that intergenerational transmission of culture through symbols begins prior to oral language. Copyright © 2016 Elsevier Inc. All rights reserved.
Supervised multimedia categorization
NASA Astrophysics Data System (ADS)
Aldershoff, Frank; Salden, Alfons H.; Iacob, Sorin M.; Kempen, Masja
2003-01-01
Static multimedia on the Web can already be hardly structured manually. Although unavoidable and necessary, manual annotation of dynamic multimedia becomes even less feasible when multimedia quickly changes in complexity, i.e. in volume, modality, and usage context. The latter context could be set by learning or other purposes of the multimedia material. This multimedia dynamics calls for categorisation systems that index, query and retrieve multimedia objects on the fly in a similar way as a human expert would. We present and demonstrate such a supervised dynamic multimedia object categorisation system. Our categorisation system comes about by continuously gauging it to a group of human experts who annotate raw multimedia for a certain domain ontology given a usage context. Thus effectively our system learns the categorisation behaviour of human experts. By inducing supervised multi-modal content and context-dependent potentials our categorisation system associates field strengths of raw dynamic multimedia object categorisations with those human experts would assign. After a sufficient long period of supervised machine learning we arrive at automated robust and discriminative multimedia categorisation. We demonstrate the usefulness and effectiveness of our multimedia categorisation system in retrieving semantically meaningful soccer-video fragments, in particular by taking advantage of multimodal and domain specific information and knowledge supplied by human experts.
CircleBoard-Pro: Concrete manipulative-based learning cycle unit for learning geometry
NASA Astrophysics Data System (ADS)
Jamhari, Wongkia, Wararat
2018-01-01
Currently, a manipulative is commonly used in mathematics education as a supported tool for teaching and learning. With engaging natural interaction of a concrete manipulative and advantages of a learning cycle approach, we proposed the concrete manipulative-based learning cycle unit to promote mathematics learning. Our main objectives are to observe possibilities on the use of a concrete manipulative in learning geometry, and to assess students' understanding of a specific topic, angle properties in a circle, of secondary level students. To meet the first objective, the concrete manipulative, called CricleBoard-Pro, was designed. CircleBoard-Pro is built for easy to writing on or deleting from, accurate angle measurement, and flexible movement. Besides, learning activities and worksheets were created for helping students to learn angle properties in a circle. Twenty eighth graders on a lower secondary school in Indonesia were voluntarily involved to learn mathematics using CircleBoard-Pro with the designed learning activities and worksheets. We informally observed students' performance by focusing on criteria of using manipulative tools in learning mathematics while the learning activities were also observed in terms of whether they work and which step of activities need to be improved. The results of this part showed that CircleBoard-Pro complied the criteria of the use of the manipulative in learning mathematics. Nevertheless, parts of learning activities and worksheets need to be improved. Based on the results of the observation, CircleBoard-Pro, learning activities, and worksheets were merged together and became the CircleBoardPro embedded on 5E (Engage - Explore - Explain - Elaborate - Evaluate) learning cycle unit. Then, students understanding were assessed to reach the second objective. Six ninth graders from an Indonesian school in Thailand were recruited to participate in this study. Conceptual tests for both pre-and post-test, and semi-structured interview were used. Students' pre-and post-test answers were analyzed not only by descriptive statistics but also in qualitatively discussion. The dialogues between the interviewer and interviewees were transcribed and analyzed to find in-depth understanding. Finally, we can conclude that the participated students had better comprehension of angle properties in a circle even they could not perform proof by themselves. For further study, we will focus on how we can help students to develop their geometric thinking.
The influence of personality on neural mechanisms of observational fear and reward learning
Hooker, Christine I.; Verosky, Sara C.; Miyakawa, Asako; Knight, Robert T.; D’Esposito, Mark
2012-01-01
Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning. PMID:18573512
Improving Cognitive Abilities and e-Inclusion in Children with Cerebral Palsy
NASA Astrophysics Data System (ADS)
Martinengo, Chiara; Curatelli, Francesco
Besides overcoming the motor barriers for accessing to computers and Internet, ICT tools can provide a very useful, and often necessary, support for the cognitive development of motor-impaired children with cerebral palsy. In fact, software tools for computation and communication allow teachers to put into effect, in a more complete and efficient way, the learning methods and the educational plans studied for the child. In the present article, after a brief analysis of the general objectives to be pursued for favouring the learning for children with cerebral palsy, we take account of some specific difficulties in the logical-linguistic and logical-mathematical fields, and we show how they can be overcome using general ICT tools and specifically implemented software programs.
Classifying Structures in the ISM with Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Beaumont, Christopher; Goodman, A. A.; Williams, J. P.
2011-01-01
The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.
Image, text and Observatio: the Codex Kentmanus.
Kusukawa, Sachiko
2009-01-01
This paper examines the inter-relationship between image, text and object in the Codex Kentmanus, which is one of the earliest records of the plants in the botanical garden at Padua, studied by Johannes Kentmann (1518-77). The manuscript shows that "observation" for Kentmann involved a gradual process of assimilating knowledge from other physicians, apothecaries, and books in order to make the plants which were originally encountered at a specific time and place into a more generalised object of study for learned physicians.
Strategies for teaching object-oriented concepts with Java
NASA Astrophysics Data System (ADS)
Sicilia, Miguel-Ángel
2006-03-01
A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to overcome them, are addressed. Concretely, practical issues regarding associations, interfaces, genericity and exceptions are described. These issues suggest that more emphasis is required on presenting Java programs as derivations of conceptual models, in order to guarantee that a thorough design of the object structure actually precedes implementation issues. In addition, common student misunderstandings about the uses of interfaces and exceptions point to the necessity of introducing both specific design philosophies and also a clear distinction between design-for-reuse and more specific implementation issues.
Haebig, Eileen; Saffran, Jenny R; Ellis Weismer, Susan
2017-11-01
Word learning is an important component of language development that influences child outcomes across multiple domains. Despite the importance of word knowledge, word-learning mechanisms are poorly understood in children with specific language impairment (SLI) and children with autism spectrum disorder (ASD). This study examined underlying mechanisms of word learning, specifically, statistical learning and fast-mapping, in school-aged children with typical and atypical development. Statistical learning was assessed through a word segmentation task and fast-mapping was examined in an object-label association task. We also examined children's ability to map meaning onto newly segmented words in a third task that combined exposure to an artificial language and a fast-mapping task. Children with SLI had poorer performance on the word segmentation and fast-mapping tasks relative to the typically developing and ASD groups, who did not differ from one another. However, when children with SLI were exposed to an artificial language with phonemes used in the subsequent fast-mapping task, they successfully learned more words than in the isolated fast-mapping task. There was some evidence that word segmentation abilities are associated with word learning in school-aged children with typical development and ASD, but not SLI. Follow-up analyses also examined performance in children with ASD who did and did not have a language impairment. Children with ASD with language impairment evidenced intact statistical learning abilities, but subtle weaknesses in fast-mapping abilities. As the Procedural Deficit Hypothesis (PDH) predicts, children with SLI have impairments in statistical learning. However, children with SLI also have impairments in fast-mapping. Nonetheless, they are able to take advantage of additional phonological exposure to boost subsequent word-learning performance. In contrast to the PDH, children with ASD appear to have intact statistical learning, regardless of language status; however, fast-mapping abilities differ according to broader language skills. © 2017 Association for Child and Adolescent Mental Health.
Abdul Ghaffar Al-Shaibani, Tarik A; Sachs-Robertson, Annette; Al Shazali, Hafiz O; Sequeira, Reginald P; Hamdy, Hosam; Al-Roomi, Khaldoon
2003-07-01
A problem-based learning strategy is used for curriculum planning and implementation at the Arabian Gulf University, Bahrain. Problems are constructed in a way that faculty-set objectives are expected to be identified by students during tutorials. Students in small groups, along with a tutor functioning as a facilitator, identify learning issues and define their learning objectives. We compared objectives identified by student groups with faculty-set objectives to determine extent of congruence, and identified factors that influenced students' ability at identifying faculty-set objectives. Male and female students were segregated and randomly grouped. A faculty tutor was allocated for each group. This study was based on 13 problems given to entry-level medical students. Pooled objectives of these problems were classified into four categories: structural, functional, clinical and psychosocial. Univariate analysis of variance was used for comparison, and a p > 0.05 was considered significant. The mean of overall objectives generated by the students was 54.2%, for each problem. Students identified psychosocial learning objectives more readily than structural ones. Female students identified more psychosocial objectives, whereas male students identified more of structural objectives. Tutor characteristics such as medical/non-medical background, and the years of teaching were correlated with categories of learning issues identified. Students identify part of the faculty-set learning objectives during tutorials with a faculty tutor acting as a facilitator. Students' gender influences types of learning issues identified. Content expertise of tutors does not influence identification of learning needs by students.
Imitation Learning Errors Are Affected by Visual Cues in Both Performance and Observation Phases.
Mizuguchi, Takashi; Sugimura, Ryoko; Shimada, Hideaki; Hasegawa, Takehiro
2017-08-01
Mechanisms of action imitation were examined. Previous studies have suggested that success or failure of imitation is determined at the point of observing an action. In other words, cognitive processing after observation is not related to the success of imitation; 20 university students participated in each of three experiments in which they observed a series of object manipulations consisting of four elements (hands, tools, object, and end points) and then imitated the manipulations. In Experiment 1, a specific intially observed element was color coded, and the specific manipulated object at the imitation stage was identically color coded; participants accurately imitated the color coded element. In Experiment 2, a specific element was color coded at the observation but not at the imitation stage, and there were no effects of color coding on imitation. In Experiment 3, participants were verbally instructed to attend to a specific element at the imitation stage, but the verbal instructions had no effect. Thus, the success of imitation may not be determined at the stage of observing an action and color coding can provide a clue for imitation at the imitation stage.
MacLeod, Sheona
2009-07-01
As the requirements for the revalidation of general practitioners (GPs) unfold, there is an increasing emphasis on demonstrating effective continued medical education (CME) based on identified learning needs. This qualitative study aimed to promote understanding of how GPs currently approach their learning. The behaviour of one group of GPs was studied to explore how they assessed and met individual learning needs. The GPs studied showed a pragmatic approach, valuing learning that gave them practical advice and instant access to information for patient-specific problems. The main driver for the GPs' learning was discomfort during their daily work if a possible lack of knowledge or skills was perceived. However, some learning benchmarked current good practice or ensured continued expertise. Learning purely for interest was also described. The GPs in this study all demonstrated a commitment to personal learning, although they were not yet thinking about demonstrating the effectiveness of this for revalidation. The GPs prioritised their learning needs and were beginning to use some objective assessment methods to do this and the GP appraisal process was found to have a mainly positive effect on learning.
Dynamic Learning Objects to Teach Java Programming Language
ERIC Educational Resources Information Center
Narasimhamurthy, Uma; Al Shawkani, Khuloud
2010-01-01
This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…
A Framework for the Flexible Content Packaging of Learning Objects and Learning Designs
ERIC Educational Resources Information Center
Lukasiak, Jason; Agostinho, Shirley; Burnett, Ian; Drury, Gerrard; Goodes, Jason; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper presents a platform-independent method for packaging learning objects and learning designs. The method, entitled a Smart Learning Design Framework, is based on the MPEG-21 standard, and uses IEEE Learning Object Metadata (LOM) to provide bibliographic, technical, and pedagogical descriptors for the retrieval and description of learning…
Information based universal feature extraction
NASA Astrophysics Data System (ADS)
Amiri, Mohammad; Brause, Rüdiger
2015-02-01
In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.
Hylton, Ann C.; Justice, Michael
2016-01-01
Objective. To identify and address areas for curricular improvement by evaluating student achievement of expected learning outcomes and competencies on annual milestone examinations. Design. Students were tested each professional year with a comprehensive milestone examination designed to evaluate student achievement of learning outcomes and professional competencies using a combination of multiple-choice questions, standardized patient assessments (SPAs), and objective structured clinical examination (OSCE) questions. Assessment. Based on student performance on milestone examinations, curricular changes were instituted, including an increased emphasis on graded comprehensive cases, OSCE skills days, and use of patient simulation in lecture and laboratory courses. After making these changes, significant improvements were observed in second and third-year pharmacy students’ grades for the therapeutic case and physician interaction/errors and omissions components of the milestone examinations. Conclusion. Results from milestone examinations can be used to identify specific areas in which curricular improvements are needed to foster student achievement of learning outcomes and professional competencies. PMID:28090108
Vandeweerd, Jean-Michel E F; Davies, John C; Pinchbeck, Gina L; Cotton, Jo C
2007-01-01
Case-based e-learning may allow effective teaching of veterinary radiology in the field of equine orthopedics. The objective of this study was to investigate the effectiveness of a new case-based e-learning tool, compared with a standard structured tutorial, in altering students' knowledge and skills about interpretation of radiographs of the digit in the horse. It was also designed to assess students' attitudes toward the two educational interventions. A randomized, single-blinded, controlled trial of 96 fourth-year undergraduate veterinary students, involving an educational intervention of either structured tutorial or case-based e-learning, was performed. A multiple-choice examination based on six learning outcomes was carried out in each group after the session, followed by an evaluation of students' attitudes toward their session on a seven-point scale. Text blanks were available to students to allow them to comment on the educational interventions and on their learning outcomes. Students also rated, on a Likert scale from 1 to 7, their performance for each specific learning outcome and their general ability to use a systematic approach in interpreting radiographs. Data were analyzed using the Mann-Whitney test, the t-test, and the equivalence test. There was no significant difference in student achievement on course tests. The results of the survey suggest positive student attitudes toward the e-learning tool and illustrate the difference between objective ratings and subjective assessments by students in testing a new educational intervention.
Object Oriented Learning Objects
ERIC Educational Resources Information Center
Morris, Ed
2005-01-01
We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…
Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons.
Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K
2007-10-01
Selective deletion of glycine transporter 1 (GlyT1) in forebrain neurons enhances N-methyl-D-aspartate receptor (NMDAR)-dependent neurotransmission and facilitates associative learning. These effects are attributable to increases in extracellular glycine availability in forebrain neurons due to reduced glycine re-uptake. Using a forebrain- and neuron-specific GlyT1-knockout mouse line (CamKIIalphaCre; GlyT1tm1.2fl/fI), the authors investigated whether this molecular intervention can affect recognition memory. In a spontaneous object recognition memory test, enhanced preference for a novel object was demonstrated in mutant mice relative to littermate control subjects at a retention interval of 2 hr, but not at 2 min. Furthermore, mutants were responsive to a switch in the relative spatial positions of objects, whereas control subjects were not. These potential procognitive effects were demonstrated against a lack of difference in contextual novelty detection: Mutant and control subjects showed equivalent preference for a novel over a familiar context. Results therefore extend the possible range of potential promnesic effects of specific forebrain neuronal GlyT1 deletion from associative learning to recognition memory and further support the possibility that mnemonic functions can be enhanced by reducing GlyT1 function. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
ERIC Educational Resources Information Center
Niemann, Katja; Wolpers, Martin
2015-01-01
In this paper, we introduce a new way of detecting semantic similarities between learning objects by analysing their usage in web portals. Our approach relies on the usage-based relations between the objects themselves rather then on the content of the learning objects or on the relations between users and learning objects. We then take this new…
Mau, Wilfried; Liebl, Max Emanuel; Deck, Ruth; Lange, Uwe; Smolenski, Ulrich Christian; Walter, Susanne; Gutenbrunner, Christoph
2017-12-01
Since the first publication of learning objectives for the interdisciplinary subject "Rehabilitation, Physical Medicine, Naturopathic Treatment" in undergraduate medical education in 2004 a revision is reasonable due to heterogenous teaching programmes in the faculties and the introduction of the National Competence Based Catalogue of Learning Objectives in Medicine as well as the "Masterplan Medical Education 2020". Therefore the German Society of Rehabilitation Science and the German Society of Physical Medicine and Rehabilitation started a structured consensus process using the DELPHI-method to reduce the learning objectives and arrange them more clearly. Objectives of particular significance are emphasised. All learning objectives are assigned to the cognitive and methodological level 1 or to the action level 2. The learning objectives refer to the less detailed National Competence Based Catalogue of Learning Objectives in Medicine. The revised learning objectives will contribute to further progress in competence based and more homogenous medical teaching in core objectives of Rehabilitation, Physical Medicine, and Naturopathic Treatment in the faculties. © Georg Thieme Verlag KG Stuttgart · New York.
Yardley, Sarah; Brosnan, Caragh; Richardson, Jane; Hays, Richard
2013-12-01
This paper addresses the question 'what are the variables influencing social interactions and learning during Authentic Early Experience (AEE)?' AEE is a complex educational intervention for new medical students. Following critique of the existing literature, multiple qualitative methods were used to create a study framework conceptually orientated to a socio-cultural perspective. Study participants were recruited from three groups at one UK medical school: students, workplace supervisors, and medical school faculty. A series of intersecting spectra identified in the data describe dyadic variables that make explicit the parameters within which social interactions are conducted in this setting. Four of the spectra describe social processes related to being in workplaces and developing the ability to manage interactions during authentic early experiences. These are: (1) legitimacy expressed through invited participation or exclusion; (2) finding a role-a spectrum from student identity to doctor mindset; (3) personal perspectives and discomfort in transition from lay to medical; and, (4) taking responsibility for 'risk'-moving from aversion to management through graded progression of responsibility. Four further spectra describe educational consequences of social interactions. These spectra identify how the reality of learning is shaped through social interactions and are (1) generic-specific objectives, (2) parallel-integrated-learning, (3) context specific-transferable learning and (4) performing or simulating-reality. Attention to these variables is important if educators are to maximise constructive learning from AEE. Application of each of the spectra could assist workplace supervisors to maximise the positive learning potential of specific workplaces.
Hybrid Multiagent System for Automatic Object Learning Classification
NASA Astrophysics Data System (ADS)
Gil, Ana; de La Prieta, Fernando; López, Vivian F.
The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.
Extended Relation Metadata for SCORM-Based Learning Content Management Systems
ERIC Educational Resources Information Center
Lu, Eric Jui-Lin; Horng, Gwoboa; Yu, Chia-Ssu; Chou, Ling-Ying
2010-01-01
To increase the interoperability and reusability of learning objects, Advanced Distributed Learning Initiative developed a model called Content Aggregation Model (CAM) to describe learning objects and express relationships between learning objects. However, the suggested relations defined in the CAM can only describe structure-oriented…
Global engineering education programs: More than just international experiences
NASA Astrophysics Data System (ADS)
McNeill, Nathan J.
Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication skills.
Budgeting in Higher Education (Teaching Module).
ERIC Educational Resources Information Center
Emery, Rebecca A.
A teaching module or student-oriented learning outline on budgeting in higher education is presented. The module is designed for either group or individual student use and is specifically for the study of higher education. Objectives of the unit are as follows: define "budget," list and describe several types of budgets, cite the three phases of…
Pedagogical Tools to Address Clinical Anatomy and Athletic Training Student Learning Styles
ERIC Educational Resources Information Center
Mazerolle, Stephanie; Yeargin, Susan
2010-01-01
Context: A thorough knowledge of anatomy is needed in four of the six domains of athletic training: prevention, injury/condition recognition, immediate care, and treatment/rehabilitation. Students with a solid foundation can achieve competency in these specific domains. Objective: To provide educators with pedagogical tools to promote a deeper…
Children's Disclosures of Sexual Abuse: Learning from Direct Inquiry
ERIC Educational Resources Information Center
Schaeffer, Paula; Leventhal, John M.; Asnes, Andrea Gottsegen
2011-01-01
Objectives: Published protocols for forensic interviewing for child sexual abuse do not include specific questions about what prompted children to tell about sexual abuse or what made them wait to tell. We, therefore, aimed to: (1) add direct inquiry about the process of a child's disclosure to a forensic interview protocol; (2) determine if…
Multiplicity in public health supply systems: a learning agenda.
Bornbusch, Alan; Bates, James
2013-08-01
Supply chain integration-merging products for health programs into a single supply chain-tends to be the dominant model in health sector reform. However, multiplicity in a supply system may be justified as a risk management strategy that can better ensure product availability, advance specific health program objectives, and increase efficiency.
Use of KWLs in the Online Classroom as It Correlates to Increased Participation
ERIC Educational Resources Information Center
Steele, John; Dyer, Thomas
2014-01-01
Measuring student success is a top priority to ensure the best possible student outcomes. The objective of this present study was to investigate whether classroom assessment techniques (CATs), specifically KWLs, which is the acronym for "what you know," "what you want to know," and "what you learned," increase student…
Preservice Physical Education Teachers' Technological Pedagogical Content Knowledge
ERIC Educational Resources Information Center
Scrabis-Fletcher, Kristin; Juniu, Susana; Zullo, Eric
2016-01-01
Effective technology integration within all areas of education is an objective in most schools given the amount of time students are using technology personally and at school. PE teachers have been challenged to find innovative ways to integrate technology to enhance student learning. A specific type of knowledge is necessary for integration…
Immersion francaise precoce: Francais I (Early French Immersion: French I).
ERIC Educational Resources Information Center
Burt, Andy; And Others
This manual for first grade French instruction accompanies the early French immersion program. It is based on general and specific learning objectives for the four language skills the child needs to develop (listening, speaking, reading, and writing). The introduction to the manual provides an overview of the program for the primary grades and…
The Effects of the "Groups of Four" Program on Student Achievement.
ERIC Educational Resources Information Center
Johnson, Lizbeth Champagne
The objective of this study was to evaluate the effectiveness of the "Groups of Four" program, examining the impact of the cooperative learning strategy on students' achievement in mathematical problem solving. Effects of three specific independent variables in the program were examined in terms of gender, group assignment, and ability,…
Teaching Case: Adapting the Access Northwind Database to Support a Database Course
ERIC Educational Resources Information Center
Dyer, John N.; Rogers, Camille
2015-01-01
A common problem encountered when teaching database courses is that few large illustrative databases exist to support teaching and learning. Most database textbooks have small "toy" databases that are chapter objective specific, and thus do not support application over the complete domain of design, implementation and management concepts…
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
ERIC Educational Resources Information Center
Tzivinikou, S.; Papoutsaki, K.
2016-01-01
Teaching objectives in special education are different from those in the ordinary classroom. Educational programmes for special needs students are focused on individual learning, achievement and progress. Thus, the instruction in special education classrooms and resource rooms in inclusive schools has to be specific, directed and individualised.…
Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…
Linear Multimedia Benefits To Enhance Students' Ability To Comprehend Complex Subjects.
ERIC Educational Resources Information Center
Handal, Gilbert A.; Leiner, Marie A.; Gonzalez, Carlos; Rogel, Erika
The main objective of this program was to produce animated educational material to stimulate students' interest and learning process related to the sciences and to measure their impact. The program material was designed to support middle school educators with an effective, accessible, and novel didactic tool produced specifically to enhance and…
Individualized Instruction and Unipacs.
ERIC Educational Resources Information Center
Kohut, Sylvester, Jr.
Individualized instruction is an educational program in which grade levels and time units are designed to permit the student to work at his own pace and level with the use of unipacs. The unipac, a "unique package," is a specially designed group of learning activities based on specific behavioral objectives chosen by the student. Unipacs consist…
Machine Shop. Instructor Key. Supplementary Units.
ERIC Educational Resources Information Center
Walden, Charles; Cole, Phyllis
These supplementary units are designed to help students with special needs learn and apply machine shop skills. Nine competencies that are difficult for special needs students to grasp or that would help them get a future job in the field were chosen from the regular machine shop curriculum. Specific objectives for these competencies are listed at…
ERIC Educational Resources Information Center
Hartwell, Laura M.; Jacques, Marie-Paule
2012-01-01
Both reading and writing abstracts require specific language skills and conceptual capacities, which may challenge advanced learners. This paper draws explicitly upon the "Emergence" and "Scientext" research projects which focused on the lexis of scientific texts in French and English. The teaching objective of the project…
ERIC Educational Resources Information Center
Ramani, Esther; And Others
1988-01-01
Argues for an ethnographic reorientation to needs analysis and syllabus design in English for specific purposes in advanced postgraduate centers of science and technology. The seven-stage framework (specify learners, analyze needs, specify enabling objectives, select materials, identify teaching/learning activities, evaluate, and revise) used to…
iLab 20M: A Large-scale Controlled Object Dataset to Investigate Deep Learning
2016-07-01
and train) and anno - tate them with rotation labels. Alexnet is fine tuned on the training set. We set the learning rate for all the layers to 0.001...Azizpour, A. Razavian, J . Sullivan, A. Maki, and S. Carls- son. From generic to specific deep representations for visual recognition. In CVPR...113–120. IEEE, 2014. 2 [5] J . Bromley, J . W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah. Signature verifica- tion using
Age-related impairments in active learning and strategic visual exploration.
Brandstatt, Kelly L; Voss, Joel L
2014-01-01
Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.
Learning while Babbling: Prelinguistic Object-Directed Vocalizations Indicate a Readiness to Learn
ERIC Educational Resources Information Center
Goldstein, Michael H.; Schwade, Jennifer; Briesch, Jacquelyn; Syal, Supriya
2010-01-01
Two studies illustrate the functional significance of a new category of prelinguistic vocalizing--object-directed vocalizations (ODVs)--and show that these sounds are connected to learning about words and objects. Experiment 1 tested 12-month-old infants' perceptual learning of objects that elicited ODVs. Fourteen infants' vocalizations were…
Gruson, Damien; Faure, Gilbert; Gouget, Bernard; Haliassos, Alexandre; Kisikuchin, Darya; Reguengo, Henrique; Topic, Elizabeta; Blaton, Victor
2013-04-01
The progress of information and communication technologies has strongly influenced changes in healthcare and laboratory medicine. E-learning, the learning or teaching through electronic means, contributes to the effective knowledge translation in medicine and healthcare, which is an essential element of a modern healthcare system and for the improvement of patient care. E-learning also represents a great vector for the transfer knowledge into laboratory practice, stimulate multidisciplinary interactions, enhance continuing professional development and promote laboratory medicine. The European Federation of Laboratory Medicine (EFLM) has initiated a distance learning program and the development of a collaborative network for e-learning. The EFLM dedicated working group encourages the organization of distance education programs and e-learning courses as well as critically evaluate information from courses, lectures and documents including electronic learning tools. The objectives of the present paper are to provide some specifications for distance learning and be compatible with laboratory medicine practices.
Assessment of the core learning objectives curriculum for the urology clerkship.
Rapp, David E; Gong, Edward M; Reynolds, W Stuart; Lucioni, Alvaro; Zagaja, Gregory P
2007-11-01
The traditional approach to the surgical clerkship has limitations, including variability of clinical exposure. To optimize student education we developed and introduced the core learning objectives curriculum, which is designed to allow students freedom to direct their learning and focus on core concepts. We performed a prospective, randomized, controlled study to compare the efficacy of core learning objectives vs traditional curricula through objective and subjective measures. Medical students were randomly assigned to the core learning objectives or traditional curricula during the 2-week urology clerkship. Faculty was blinded to student assignment. Upon rotation completion all students were given a 20-question multiple choice examination covering basic urology concepts. In addition, students completed a questionnaire addressing subjective clerkship satisfaction, comprising 15 questions. Between June 2005 and January 2007, 10 core learning objectives students and 10 traditional students completed the urology clerkship. The average +/- SEM multiple choice examination score was 12.1 +/- 0.87 and 9.8 +/- 0.59 for students assigned to the core learning objectives and traditional curricula, respectively (p <0.05). Subjective scores were higher in the core learning objectives cohort, although this result did not attain statistical significance (124.9 +/- 3.72 vs 114.3 +/- 4.96, p = 0.1). Core learning objectives students reported higher satisfaction in all 15 assessed subjective end points. Our experience suggests that the core learning objectives model may be an effective educational tool to help students achieve a broad and directed exposure to the core urological concepts.
NASA Astrophysics Data System (ADS)
Andriani, Ade; Dewi, Izwita; Halomoan, Budi
2018-03-01
In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.
Primary prevention: educational approaches to enhance social and emotional learning.
Elias, M J; Weissberg, R P
2000-05-01
The 1995 publication of Goleman's Emotional Intelligence triggered a revolution in mental health promotion. Goleman's examination of Gardner's work on multiple intelligences and current brain research, and review of successful programs that promoted emotional health, revealed a common objective among those working to prevent specific problem behaviors: producing knowledgeable, responsible, nonviolent, and caring individuals. Advances in research and field experiences confirm that school-based programs that promote social and emotional learning (SEL) in children can be powerful in accomplishing these goals. This article reviews the work of the Collaborative to Advance Social and Emotional Learning (CASEL), its guidelines for promoting mental health in children and youth based on SEL, key principles, and examples of exemplary programs.
CAN-Care: an innovative model of practice-based learning.
Raines, Deborah A
2006-01-01
The "Collaborative Approach to Nursing Care" (CAN-Care) Model of practice-based education is designed to meet the unique learning needs of the accelerated nursing program student. The model is based on a synergistic partnership between the academic and service settings, the vision of which is to create an innovative practice-based learning model, resulting in a positive experience for both the student and unit-based nurse. Thus, the objectives of quality outcomes for both the college and Health Care Organization are fulfilled. Specifically, the goal is the education of nurses ready to meet the challenges of caring for persons in the complex health care environment of the 21st century.
Neurally and ocularly informed graph-based models for searching 3D environments.
Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul
2014-08-01
As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z; Folkert, M; Wang, J
2016-06-15
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less
Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano
2009-02-01
Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.
A Data Mining Approach to Improve Re-Accessibility and Delivery of Learning Knowledge Objects
ERIC Educational Resources Information Center
Sabitha, Sai; Mehrotra, Deepti; Bansal, Abhay
2014-01-01
Today Learning Management Systems (LMS) have become an integral part of learning mechanism of both learning institutes and industry. A Learning Object (LO) can be one of the atomic components of LMS. A large amount of research is conducted into identifying benchmarks for creating Learning Objects. Some of the major concerns associated with LO are…
Inferring Interaction Force from Visual Information without Using Physical Force Sensors.
Hwang, Wonjun; Lim, Soo-Chul
2017-10-26
In this paper, we present an interaction force estimation method that uses visual information rather than that of a force sensor. Specifically, we propose a novel deep learning-based method utilizing only sequential images for estimating the interaction force against a target object, where the shape of the object is changed by an external force. The force applied to the target can be estimated by means of the visual shape changes. However, the shape differences in the images are not very clear. To address this problem, we formulate a recurrent neural network-based deep model with fully-connected layers, which models complex temporal dynamics from the visual representations. Extensive evaluations show that the proposed learning models successfully estimate the interaction forces using only the corresponding sequential images, in particular in the case of three objects made of different materials, a sponge, a PET bottle, a human arm, and a tube. The forces predicted by the proposed method are very similar to those measured by force sensors.
Zack, Elizabeth; Gerhardstein, Peter; Meltzoff, Andrew N; Barr, Rachel
2013-02-01
Infants have difficulty transferring information between 2D and 3D sources. The current study extends Zack, Barr, Gerhardstein, Dickerson & Meltzoff's (2009) touch screen imitation task to examine whether the addition of specific language cues significantly facilitates 15-month-olds' transfer of learning between touch screens and real-world 3D objects. The addition of two kinds of linguistic cues (object label plus verb or nonsense name) did not elevate action imitation significantly above levels observed when such language cues were not used. Language cues hindered infants' performance in the 3D→2D direction of transfer, but only for the object label plus verb condition. The lack of a facilitative effect of language is discussed in terms of competing cognitive loads imposed by conjointly transferring information across dimensions and processing linguistic cues in an action imitation task at this age. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
Query construction, entropy, and generalization in neural-network models
NASA Astrophysics Data System (ADS)
Sollich, Peter
1994-05-01
We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
High-order distance-based multiview stochastic learning in image classification.
Yu, Jun; Rui, Yong; Tang, Yuan Yan; Tao, Dacheng
2014-12-01
How do we find all images in a larger set of images which have a specific content? Or estimate the position of a specific object relative to the camera? Image classification methods, like support vector machine (supervised) and transductive support vector machine (semi-supervised), are invaluable tools for the applications of content-based image retrieval, pose estimation, and optical character recognition. However, these methods only can handle the images represented by single feature. In many cases, different features (or multiview data) can be obtained, and how to efficiently utilize them is a challenge. It is inappropriate for the traditionally concatenating schema to link features of different views into a long vector. The reason is each view has its specific statistical property and physical interpretation. In this paper, we propose a high-order distance-based multiview stochastic learning (HD-MSL) method for image classification. HD-MSL effectively combines varied features into a unified representation and integrates the labeling information based on a probabilistic framework. In comparison with the existing strategies, our approach adopts the high-order distance obtained from the hypergraph to replace pairwise distance in estimating the probability matrix of data distribution. In addition, the proposed approach can automatically learn a combination coefficient for each view, which plays an important role in utilizing the complementary information of multiview data. An alternative optimization is designed to solve the objective functions of HD-MSL and obtain different views on coefficients and classification scores simultaneously. Experiments on two real world datasets demonstrate the effectiveness of HD-MSL in image classification.
How New Caledonian crows solve novel foraging problems and what it means for cumulative culture.
Logan, Corina J; Breen, Alexis J; Taylor, Alex H; Gray, Russell D; Hoppitt, William J E
2016-03-01
New Caledonian crows make and use tools, and tool types vary over geographic landscapes. Social learning may explain the variation in tool design, but it is unknown to what degree social learning accounts for the maintenance of these designs. Indeed, little is known about the mechanisms these crows use to obtain information from others, despite the question's importance in understanding whether tool behavior is transmitted via social, genetic, or environmental means. For social transmission to account for tool-type variation, copying must utilize a mechanism that is action specific (e.g., pushing left vs. right) as well as context specific (e.g., pushing a particular object vs. any object). To determine whether crows can copy a demonstrator's actions as well as the contexts in which they occur, we conducted a diffusion experiment using a novel foraging task. We used a nontool task to eliminate any confounds introduced by individual differences in their prior tool experience. Two groups had demonstrators (trained in isolation on different options of a four-option task, including a two-action option) and one group did not. We found that crows socially learn about context: After observers see a demonstrator interact with the task, they are more likely to interact with the same parts of the task. In contrast, observers did not copy the demonstrator's specific actions. Our results suggest it is unlikely that observing tool-making behavior transmits tool types. We suggest it is possible that tool types are transmitted when crows copy the physical form of the tools they encounter.
ERIC Educational Resources Information Center
Guler, Cetin; Altun, Arif
2010-01-01
Learning objects (LOs) can be defined as resources that are reusable, digital with the aim of fulfilling learning objectives (or expectations). Educators, both at the individual and institutional levels, are cautioned about the fact that LOs are to be processed through a proper development process. Who should be involved in the LO development…
Patterns of Learning Object Reuse in the Connexions Repository
ERIC Educational Resources Information Center
Duncan, S. M.
2009-01-01
Since the term "learning object" was first published, there has been either an explicit or implicit expectation of reuse. There has also been a lot of speculation about why learning objects are, or are not, reused. This study quantitatively examined the actual amount and type of learning object use, to include reuse, modification, and translation,…
Writing objectives and evaluating learning in the affective domain.
Maier-Lorentz, M M
1999-01-01
Staff educators recognize the importance of affective competency for effective nursing practice. Inservice programs must include affective learning with objectives stated in measurable terms. Staff educators often express frustration in developing affective objectives and evaluating the learning outcome because attitudes and feelings are usually inferred from observations. This article presents affective learning objectives for a gerontological nursing inservice program and a rating scale that measures attitudes to evaluate the learning outcome.
Learning to learn causal models.
Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B
2010-09-01
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.
Remembering Math: The Design of Digital Learning Objects to Spark Professional Learning
ERIC Educational Resources Information Center
Halverson, Richard; Wolfenstein, Moses; Williams, Caroline C.; Rockman, Charles
2009-01-01
This article describes how the design of digital learning objects can spark professional learning. The challenge was to build learning objects that would help experienced special education teachers, who had been teaching in math classes, to demonstrate their proficiency in middle and secondary school mathematics on the PRAXIS examination. While…
Collaborative Production of Learning Objects on French Literary Works Using the LOC Software
ERIC Educational Resources Information Center
Penman, Christine
2015-01-01
This case study situates the collaborative design of learning objects (interactive online learning material) using the LOC (Learning Object Creator) software in the context of language activities external to the core learning activities of language students at a UK university. It describes the creative and pedagogical processes leading to the…
Learning Objects and Virtual Learning Environments Technical Evaluation Criteria
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Dagiene, Valentina
2009-01-01
The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…
A Case Study: Developing Learning Objects with an Explicit Learning Design
ERIC Educational Resources Information Center
Watson, Julie
2010-01-01
In learning object design an emphasis on visual attractiveness and high technological impact has seemed to persist while content frequently reflects a lack of clear pedagogical basis for the application of learning objects for online learning. Most apparent is the absence of supportive scaffolding for the student user; interactivity built on an…
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
Object instance recognition using motion cues and instance specific appearance models
NASA Astrophysics Data System (ADS)
Schumann, Arne
2014-03-01
In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.
Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M
2011-09-01
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.
Retracted: Design Education in the Global Era
NASA Astrophysics Data System (ADS)
de Lobo, Theresa
The aim of this paper is to show the collaboration of design disciplines to instill a broader sense of design for students through intercultural service learning projects. While there are programs that are reinventing their curriculum, there are still several that follow the classic structure of a first year art foundation program with the final years concentrating on the desired discipline. The interactions at a global scale, has heightened the need for graduates to learn to interact more effectively with people from different cultures. This approach combines the concern of addressing a need for design in a real world situation, with learning how to understand culture, place, and experience through a collaborative project. Referencing a specific international service learning project, and drawing from literature on internationalization of education, this paper explores key concepts, learning objectives, methods, and challenges faced in addressing the need to prepare students for practice in an increasingly integrated workplace.
Brain-Emulating Cognition and Control Architecture (BECCA) v. 0.2 beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROHRER, BRANDON; & MORROW, JAMES
2009-06-16
BECCA is a learning and control method based on the function of the human brain. The goal behind its creation is to learn to control robots in unfamiliar environments in a way that is very robust, similar to the way that an infant learns to interact with her environment by trial and error. As of this release, this software contains an application for controlling robot hardware through a socket. The code was created so as to make it extensible to new applications. It is modular, object-oriented code in which the portions of the code that are specific to one robotmore » are easily separable from those portions that are the constant between implementations. BECCA makes very few assumptions about the robot and environment it is learning, and so is applicable to a wide range of learning and control problems.« less
Re-engineering the process of medical imaging physics and technology education and training.
Sprawls, Perry
2005-09-01
The extensive availability of digital technology provides an opportunity for enhancing both the effectiveness and efficiency of virtually all functions in the process of medical imaging physics and technology education and training. This includes degree granting academic programs within institutions and a wide spectrum of continuing education lifelong learning activities. Full achievement of the advantages of technology-enhanced education (e-learning, etc.) requires an analysis of specific educational activities with respect to desired outcomes and learning objectives. This is followed by the development of strategies and resources that are based on established educational principles. The impact of contemporary technology comes from its ability to place learners into enriched learning environments. The full advantage of a re-engineered and implemented educational process involves changing attitudes and functions of learning facilitators (teachers) and resource allocation and sharing both within and among institutions.
Learning to rank using user clicks and visual features for image retrieval.
Yu, Jun; Tao, Dacheng; Wang, Meng; Rui, Yong
2015-04-01
The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.
ERIC Educational Resources Information Center
Guthrie, Patricia Ann
2010-01-01
In recent years, learning objects have emerged as an instructional tool for teachers. Digital libraries and collections provide teachers with free or fee-base access to a variety of learning objects from photos and famous speeches to Flash animations and interactive Java Applets. Learning objects offer opportunities for students to interact with…
ERIC Educational Resources Information Center
Alvarado, Amy Edmonds; Herr, Patricia R.
This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…
Emotional Intelligence Instruction in a Pharmacy Communications Course
Lust, Elaine; Moore, Frances C.
2006-01-01
Objectives To determine the benefits of incorporating emotional intelligence instruction into a required pharmacy communications course. Design Specific learning objectives were developed based upon the emotional intelligence framework and how it can be applied to pharmacy practice. Qualitative data on student perceptions were collected and analyzed using theme analysis. Assessment Students found instruction on emotional intelligence to be a positive experience. Students reported learning the taxonomy of emotional intelligence – a concept that previously was difficult for them to articulate or describe, and could use this knowledge in future pharmacy management situations. Students also recognized that their new knowledge of emotional intelligence would lead to better patient outcomes. Conclusion Students had positive perceptions of the importance of emotional intelligence. They valued its inclusion in the pharmacy curriculum and saw practical applications of emotional intelligence to the practice of pharmacy. PMID:17136149
McNair, Antonia; Moran, Conor; McGrath, Erinn; Naqvi, Syed; Connolly, Claire; McKenna, Verna; Kropmans, Thomas
2011-01-01
Since the introduction of professionalism in medical curricula worldwide, little evidence has been published to exemplify good educational practice. The Medical school at the National University of Ireland Galway teaches professionalism in an interdisciplinary manner, integrating the learning objectives of health informatics, understanding health & illness in society, medical law and ethics. Students work in small groups on clinical cases. Enquiry-based learning is used as the teaching method following a few introductory lectures on specific objectives. Students present their work in the format of a scientific essay. The latter is assessed by a board of reviewers. The purpose of this article is to demonstrate evidence of excellent professional output and illustrate the benefits to a fully integrated professionalism curriculum.
NASA Astrophysics Data System (ADS)
Shih, D.-T.; Lin, C. L.; Tseng, C.-Y.
2015-08-01
This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of "The Digital ARt/ARchitecture Project". The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, "3D AR for Hukou Old " and "Hsinchu County History Museum AR Tour" which are in form of augmented reality (AR). By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in Hsinchu County.
Competition between multiple words for a referent in cross-situational word learning
Benitez, Viridiana L.; Yurovsky, Daniel; Smith, Linda B.
2016-01-01
Three experiments investigated competition between word-object pairings in a cross-situational word-learning paradigm. Adults were presented with One-Word pairings, where a single word labeled a single object, and Two-Word pairings, where two words labeled a single object. In addition to measuring learning of these two pairing types, we measured competition between words that refer to the same object. When the word-object co-occurrences were presented intermixed in training (Experiment 1), we found evidence for direct competition between words that label the same referent. Separating the two words for an object in time eliminated any evidence for this competition (Experiment 2). Experiment 3 demonstrated that adding a linguistic cue to the second label for a referent led to different competition effects between adults who self-reported different language learning histories, suggesting both distinctiveness and language learning history affect competition. Finally, in all experiments, competition effects were unrelated to participants’ explicit judgments of learning, suggesting that competition reflects the operating characteristics of implicit learning processes. Together, these results demonstrate that the role of competition between overlapping associations in statistical word-referent learning depends on time, the distinctiveness of word-object pairings, and language learning history. PMID:27087742
Project-based introduction to aerospace engineering course: A model rocket
NASA Astrophysics Data System (ADS)
Jayaram, Sanjay; Boyer, Lawrence; George, John; Ravindra, K.; Mitchell, Kyle
2010-05-01
In this paper, a model rocket project suitable for sophomore aerospace engineering students is described. This project encompasses elements of drag estimation, thrust determination and analysis using digital data acquisition, statistical analysis of data, computer aided drafting, programming, team work and written communication skills. The student built rockets are launched in the university baseball field with the objective of carrying a specific amount of payload so that the rocket achieves a specific altitude before the parachute is deployed. During the course of the project, the students are introduced to real-world engineering practice through written report submission of their designs. Over the years, the project has proven to enhance the learning objectives, yet cost effective and has provided good outcome measures.
ERIC Educational Resources Information Center
Özdemir, Muzaffer
2016-01-01
This study investigates the relationships between the primary learning styles of students and different learning objects presented simultaneously in an online learning environment in the context of the usage levels of these objects. A total of 103 sophomores from a Turkish State University participated in the study. Felder-Solomon Index of…
Building Interoperable Learning Objects Using Reduced Learning Object Metadata
ERIC Educational Resources Information Center
Saleh, Mostafa S.
2005-01-01
The new e-learning generation depends on Semantic Web technology to produce learning objects. As the production of these components is very costly, they should be produced and registered once, and reused and adapted in the same context or in other contexts as often as possible. To produce those components, developers should use learning standards…
Implementing Infrastructures for Managing Learning Objects
ERIC Educational Resources Information Center
Klemke, Roland; Ternier, Stefaan; Kalz, Marco; Specht, Marcus
2010-01-01
Making learning objects available is critical to reuse learning resources. Making content transparently available and providing added value to different stakeholders is among the goals of the European Commission's eContentplus programme. This paper analyses standards and protocols relevant for making learning objects accessible in distributed data…
Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris
2015-04-01
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.
Choi, Ickwon; Chung, Amy W.; Suscovich, Todd J.; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J.; Francis, Donald; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Alter, Galit; Ackerman, Margaret E.; Bailey-Kellogg, Chris
2015-01-01
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates. PMID:25874406
A Constructivist Approach to HIV/AIDS Education for Women Within the Maritime Provinces of Canada
ERIC Educational Resources Information Center
Bulman, Donna E.
2005-01-01
The primary objective of this research was to increase understanding of how women in the Maritime Provinces of Canada learn about the HIV/AIDS epidemic. This research utilised a qualitative approach with specific methods including interviews, joint interviews and focus groups. Overall 44 women participated in this research. The data was analysed…
The Effect of Attentional Focus Cues on Object Control Performance in Elementary Children
ERIC Educational Resources Information Center
Palmer, Kara K.; Matsuyama, Abigail L.; Irwin, J. Megan; Porter, Jared M.; Robinson, Leah E.
2017-01-01
Background and purpose: Attentional focus cues have been shown to impact motor performance of adults and children. Specifically, an external focus of attention results in improved motor learning and performance as compared to adopting an internal focus of attention. The purpose of this study was to determine the effects of an internal and external…
ERIC Educational Resources Information Center
Williams, Twyman G., Jr.
The effectiveness of visible recorded feedback responses in teaching scientific theory and principles to vocational agriculture students was studied. Specific objectives were to determine the value of group feedback to the teacher, the difference in learning retention between students with and without feedback, and the difference in efficient use…
Water in Fire Control--Basic Training Course.
ERIC Educational Resources Information Center
Forest Service (USDA), Washington, DC.
Prepared by a team of fire control officers, the training guide is designed to help fire crewmen learn the fundamentals of water use. The entire package can be used for a complete course or individual lessons and can be adapted to specific training needs. Throughout the guide, emphasis is placed on one primary training objective, performance in…
A Guide for Teaching in and from an Urban School Environment, 1973.
ERIC Educational Resources Information Center
State Univ. of New York, Plattsburgh. Coll. at Plattsburgh.
The resource materials represent the cooperative efforts of graduate students enrolled in a 2-week field learning class. The specific objective of the reports was to consider the ways urban resources can be used in outdoor education teaching in and from a "city" environment. The individual reports are: Athletic Field; Community Signs; Curbs and…
What Is So Difficult about Telicity Marking in L2 Russian?
ERIC Educational Resources Information Center
Slabakova, Roumyana
2005-01-01
Two major mechanisms of encoding telicity across languages are either marking the object as exhaustively countable or measurable, or utilizing a specific prefix on the verbal form. English predominantly uses the first mechanism, while Russian mostly utilizes the second. The learning task of an English speaker acquiring Russian, then, is two-fold:…
Using Flipped Classroom Components in Blended Courses to Maximize Student Learning
ERIC Educational Resources Information Center
Heinerichs, Scott; Pazzaglia, Gina; Gilboy, Mary Beth
2016-01-01
Context: The flipped classroom is an educational approach that has become popular in higher education because it is student centered. Objective: To provide a rationale for a specific way of approaching the flipped classroom using a blended course design and resources necessary to help instructors be successful. Main Outcome Measure(s): Three class…
Money Management and the Consumer, Credit: "Ch . a . r . ge!".
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Elementary and Secondary Education.
This unit, one of a series of six Project SCAT (Skills for Consumer Applied Today) units, is designed to help senior high school students develop consumer education skills. For a description of the specific objectives and format of the units, see SO 013 467. This document provides teaching methods, learning activities, and student booklet for a…
ERIC Educational Resources Information Center
Linder, Kathryn E.; Cooper, Frank Rudy; McKenzie, Elizabeth M.; Raesch, Monika; Reeve, Patricia A.
2014-01-01
Backward design is a course creation method that encourages teachers to identify their goals for student understanding and measurable objectives for learning from the outset. In this article we explore the application of backward design to the production of scholarly articles. Specifically, we report on a writing group program that encourages…
ERIC Educational Resources Information Center
Moore, John W.; Mitchem, Cheryl E.
2004-01-01
This paper provides a model of course-embedded assessment for use in an undergraduate Accounting Information Systems course, and reports the results obtained from implementation. The profession's educational objectives are mapped to specific computer skills and assignments, to provide direct evidence of learning outcomes. Indirect evidence of…
ERIC Educational Resources Information Center
Kim, Sangsoo; Park, Jongwon
2018-01-01
Observing scientific events or objects is a complex process that occurs through the interaction between the observer's knowledge or expectations, the surrounding context, physiological features of the human senses, scientific inquiry processes, and the use of observational instruments. Scientific observation has various features specific to this…
Cluster: Metals. Course: Machine Shop. Research Project.
ERIC Educational Resources Information Center
Sanford - Lee County Schools, NC.
The set of 13 units is designed for use with an instructor in actual machine shop practice and is also keyed to audio visual and textual materials. Each unit contains a series of task packages which: specify prerequisites within the series (minimum is Unit 1); provide a narrative rationale for learning; list both general and specific objectives in…
ERIC Educational Resources Information Center
Patton, William E.; Wilen, William W.
The paper provides a rationale for using a decision-making model in teaching environmental issues, outlines specific steps in creating a simulation, and illustrates its use in the classroom. The objectives of environmental education are to provide learning opportunities for students to know, think, choose, and act regarding pervasive social issues…
SCDC Spanish Curricula Units. Science/Math, Unit 10, Grade 3, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Unit 10 of a Spanish science/math curriculum for grade three, composed of kits 37-40, has as its theme "communities around the world". The unit's teacher's guide contains both learning and assessment activities, with the focus, objective, and materials needed for each activity listed. Specific attention is placed on four spiraling questions…
ERIC Educational Resources Information Center
Robinson, Leah E.
2011-01-01
Fundamental motor skills (e.g., run, jump, catch, and throw) are essential building blocks for more advanced and context-specific skills. Children with these motor skills are able to function independently while learning and exploring their environment. The National Association for Sport and Physical Education (NASPE) "Active Start"…
Individualizing the Teaching of Reading through Test Management Systems.
ERIC Educational Resources Information Center
Fry, Edward
Test management systems are suggested for individualizing the teaching of reading in the elementary classroom. Test management systems start with a list of objectives or specific goals which cover all or some major areas of the learning to read process. They then develop a large number of criterion referenced tests which match the skill areas at…
Data Mining in Course Management Systems: Moodle Case Study and Tutorial
ERIC Educational Resources Information Center
Romero, Cristobal; Ventura, Sebastian; Garcia, Enrique
2008-01-01
Educational data mining is an emerging discipline, concerned with developing methods for exploring the unique types of data that come from the educational context. This work is a survey of the specific application of data mining in learning management systems and a case study tutorial with the Moodle system. Our objective is to introduce it both…
ERIC Educational Resources Information Center
Gordon, C. Wayne
The objectives of the Los Angeles Model Mathematics Project (LAMMP) are stated by the administration as improvement of mathematical skills and understanding of mathematical concepts; improvement of the pupils' self-image; identification of specific assets and limitations relating to the learning process; development and use of special…
ERIC Educational Resources Information Center
Shamsuddeen, Abdulrahman; Amina, Hassan
2016-01-01
This study investigated the Correlation between instructional methods and students end of term achievement in Biology in selected secondary schools in Sokoto Metropolis, Sokoto State Nigeria. The study addressed three Specific objectives. To examine the relationship between; Cooperative learning methods, guided discovery, Simulation Method and…
Rethinking the Use of Video in Teacher Education: A Holistic Approach
ERIC Educational Resources Information Center
Masats, Dolors; Dooly, Melinda
2011-01-01
Video case studies are commonly used in teacher training programmes, usually to develop one specific area of competence. The need for an integrative model that meets diverse learning objectives and competences led to a study on how to effectively use videos to guide student-teachers towards professional development. The analysis of case studies…
Using business intelligence to improve performance.
Wadsworth, Tom; Graves, Brian; Glass, Steve; Harrison, A Marc; Donovan, Chris; Proctor, Andrew
2009-10-01
Cleveland Clinic's enterprise performance management program offers proof that comparisons of actual performance against strategic objectives can enable healthcare organization to achieve rapid organizational change. Here are four lessons Cleveland Clinic learned from this initiative: Align performance metrics with strategic initiatives. Structure dashboards for the CEO. Link performance to annual reviews. Customize dashboard views to the specific user.
Building a Global Future through Research and Innovative Practices in Open and Distance Learning
ERIC Educational Resources Information Center
Mahmood, Sheikh Tariq; Mahmood, Azhar
2014-01-01
The current study aims to investigate awareness of research students about the concept of plagiarism and to suggest possible ways to avoid it; a descriptive survey study was conducted. The objectives of the study were to examine the researcher's knowledge about concept of plagiarism, knowledge about specific terminologies, types of plagiarism, and…
ERIC Educational Resources Information Center
Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D., Jr.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.
2009-01-01
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons…
Predictable Locations Aid Early Object Name Learning
Benitez, Viridiana L.; Smith, Linda B.
2012-01-01
Expectancy-based localized attention has been shown to promote the formation and retrieval of multisensory memories in adults. Three experiments show that these processes also characterize attention and learning in 16- to 18- month old infants and, moreover, that these processes may play a critical role in supporting early object name learning. The three experiments show that infants learn names for objects when those objects have predictable rather than varied locations, that infants who anticipate the location of named objects better learn those object names, and that infants integrate experiences that are separated in time but share a common location. Taken together, these results suggest that localized attention, cued attention, and spatial indexing are an inter-related set of processes in young children that aid in the early building of coherent object representations. The relevance of the experimental results and spatial attention for everyday word learning are discussed. PMID:22989872
2012-01-01
Objective. To evaluate preceptors’ perception of their ability to perform the Structured Practical Experiences in Pharmacy (SPEP) learning objectives through a self-assessment activity. Methods. A self-assessment instrument consisting of 28 learning objectives associated with clinic, community, and hospital pharmacy practice experiences were developed. Preceptors rated their performance ability for each of the learning objectives using a 3-point Likert scale. Results. Of the 116 preceptors, 89 (77%) completed the self-assessment survey instrument. The overall preceptor responses to the items on performance of the 28 SPEP learning objectives ranged from good to excellent. Years of experience, practice experience setting, and involvement as a SPEP or SPEP and PharmD preceptor had no influence on their self-reported capabilities. Conclusion. Most preceptors rated their ability to perform the learning objectives for the structured practical experiences in pharmacy as high. Competency areas requiring further preceptor development were identified. PMID:23193333
[The Visual Association Test to study episodic memory in clinical geriatric psychology].
Diesfeldt, Han; Prins, Marleen; Lauret, Gijs
2018-04-01
The Visual Association Test (VAT) is a brief learning task that consists of six line drawings of pairs of interacting objects (association cards). Subjects are asked to name or identify each object and later are presented with one object from the pair (the cue) and asked to name the other (the target). The VAT was administered in a consecutive sample of 174 psychogeriatric day care participants with mild to major neurocognitive disorder. Comparison of test performance with normative data from non-demented subjects revealed that 69% scored within the range of a major deficit (0-8 over two recall trials), 14% a minor, and 17% no deficit (9-10, and ≥10 respectively).VAT-scores correlated with another test of memory function, the Cognitive Screening Test (CST), based on the Short Portable Mental Status Questionnaire (r = 0.53). Tests of executive functioning (Expanded Mental Control Test, Category Fluency, Clock Drawing) did not add significantly to the explanation of variance in VAT-scores.Fifty-five participants (31.6%) were faced with initial problems in naming or identifying one or more objects on the cue cards or association cards. If necessary, naming was aided by the investigator. Initial difficulties in identifying cue objects were associated with lower VAT-scores, but this did not hold for difficulties in identifying target objects.A hierarchical multiple regression analysis was used to examine whether linear or quadratic trends best fitted VAT performance across the range of CST scores. The regression model revealed a linear but not a quadratic trend. The best fitting linear model implied that VAT scores differentiated between CST scores in the lower, as well as in the upper range, indicating the absence of floor and ceiling effects, respectively. Moreover, the VAT compares favourably to word list-learning tasks being more attractive in its presentation of interacting visual objects and cued recall based on incidental learning of the association between cues and targets.For practical purposes and based on documented sensitivity and specificity, Bayesian probability tables give predictive power of age-specific VAT cutoff scores for the presence or absence of a major neurocognitive disorder across a range of a priori probabilities or base rates.
Delagran, Louise; Vihstadt, Corrie; Evans, Roni
2015-09-01
Online educational interventions to teach evidence-based practice (EBP) are a promising mechanism for overcoming some of the barriers to incorporating research into practice. However, attention must be paid to aligning strategies with adult learning theories to achieve optimal outcomes. We describe the development of a series of short self-study modules, each covering a small set of learning objectives. Our approach, informed by design-based research (DBR), involved 6 phases: analysis, design, design evaluation, redesign, development/implementation, and evaluation. Participants were faculty and students in 3 health programs at a complementary and integrative educational institution. We chose a reusable learning object approach that allowed us to apply 4 main learning theories: events of instruction, cognitive load, dual processing, and ARCS (attention, relevance, confidence, satisfaction). A formative design evaluation suggested that the identified theories and instructional approaches were likely to facilitate learning and motivation. Summative evaluation was based on a student survey (N=116) that addressed how these theories supported learning. Results suggest that, overall, the selected theories helped students learn. The DBR approach allowed us to evaluate the specific intervention and theories for general applicability. This process also helped us define and document the intervention at a level of detail that covers almost all the proposed Guideline for Reporting Evidence-based practice Educational intervention and Teaching (GREET) items. This thorough description will facilitate the interpretation of future research and implementation of the intervention. Our approach can also serve as a model for others considering online EBP intervention development.
Vihstadt, Corrie; Evans, Roni
2015-01-01
Background: Online educational interventions to teach evidence-based practice (EBP) are a promising mechanism for overcoming some of the barriers to incorporating research into practice. However, attention must be paid to aligning strategies with adult learning theories to achieve optimal outcomes. Methods: We describe the development of a series of short self-study modules, each covering a small set of learning objectives. Our approach, informed by design-based research (DBR), involved 6 phases: analysis, design, design evaluation, redesign, development/implementation, and evaluation. Participants were faculty and students in 3 health programs at a complementary and integrative educational institution. Results: We chose a reusable learning object approach that allowed us to apply 4 main learning theories: events of instruction, cognitive load, dual processing, and ARCS (attention, relevance, confidence, satisfaction). A formative design evaluation suggested that the identified theories and instructional approaches were likely to facilitate learning and motivation. Summative evaluation was based on a student survey (N=116) that addressed how these theories supported learning. Results suggest that, overall, the selected theories helped students learn. Conclusion: The DBR approach allowed us to evaluate the specific intervention and theories for general applicability. This process also helped us define and document the intervention at a level of detail that covers almost all the proposed Guideline for Reporting Evidence-based practice Educational intervention and Teaching (GREET) items. This thorough description will facilitate the interpretation of future research and implementation of the intervention. Our approach can also serve as a model for others considering online EBP intervention development. PMID:26421233
Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework.
Zhu, Egui; Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil
2015-09-18
Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs' rational use of antibiotics. The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories-situated, experiential, and transformative learning-provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners' personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners' personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework.
A cultural side effect: learning to read interferes with identity processing of familiar objects
Kolinsky, Régine; Fernandes, Tânia
2014-01-01
Based on the neuronal recycling hypothesis (Dehaene and Cohen, 2007), we examined whether reading acquisition has a cost for the recognition of non-linguistic visual materials. More specifically, we checked whether the ability to discriminate between mirror images, which develops through literacy acquisition, interferes with object identity judgments, and whether interference strength varies as a function of the nature of the non-linguistic material. To these aims we presented illiterate, late literate (who learned to read at adult age), and early literate adults with an orientation-independent, identity-based same-different comparison task in which they had to respond “same” to both physically identical and mirrored or plane-rotated images of pictures of familiar objects (Experiment 1) or of geometric shapes (Experiment 2). Interference from irrelevant orientation variations was stronger with plane rotations than with mirror images, and stronger with geometric shapes than with objects. Illiterates were the only participants almost immune to mirror variations, but only for familiar objects. Thus, the process of unlearning mirror-image generalization, necessary to acquire literacy in the Latin alphabet, has a cost for a basic function of the visual ventral object recognition stream, i.e., identification of familiar objects. This demonstrates that neural recycling is not just an adaptation to multi-use but a process of at least partial exaptation. PMID:25400605
Participative Knowledge Production of Learning Objects for E-Books.
ERIC Educational Resources Information Center
Dodero, Juan Manuel; Aedo, Ignacio; Diaz, Paloma
2002-01-01
Defines a learning object as any digital resource that can be reused to support learning and thus considers electronic books as learning objects. Highlights include knowledge management; participative knowledge production, i.e. authoring electronic books by a distributed group of authors; participative knowledge production architecture; and…
Can social semantic web techniques foster collaborative curriculum mapping in medicine?
Spreckelsen, Cord; Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig
2013-08-15
Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives ("LOs"). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are accessible by standard Web browsers. The formative usability study yielded positive results (median rating of 2 ("good") in all 7 general usability items) and produced valuable qualitative feedback, especially concerning navigation and comprehensibility. Although not asked to, the participants (n=5) detected critical aspects of the curriculum (similar learning objectives addressed repeatedly and missing objectives), thus proving the system's ability to support curriculum revision. The SMW-based approach enabled an agile implementation of computer-supported knowledge management. The approach, based on standard Social Semantic Web formats and technology, represents a feasible and effectively applicable compromise between answering to the individual requirements of curriculum management at a particular medical school and using proprietary systems.
NASA Astrophysics Data System (ADS)
Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.
2014-12-01
The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State Standards.
A learning apprentice for software parts composition
NASA Technical Reports Server (NTRS)
Allen, Bradley P.; Holtzman, Peter L.
1987-01-01
An overview of the knowledge acquisition component of the Bauhaus, a prototype computer aided software engineering (CASE) workstation for the development of domain-specific automatic programming systems (D-SAPS) is given. D-SAPS use domain knowledge in the refinement of a description of an application program into a compilable implementation. The approach to the construction of D-SAPS was to automate the process of refining a description of a program, expressed in an object-oriented domain language, into a configuration of software parts that implement the behavior of the domain objects.
ERIC Educational Resources Information Center
Wang, Tzone I; Tsai, Kun Hua; Lee, Ming Che; Chiu, Ti Kai
2007-01-01
With vigorous development of the Internet, especially the web page interaction technology, distant E-learning has become more and more realistic and popular. Digital courses may consist of many learning units or learning objects and, currently, many learning objects are created according to SCORM standard. It can be seen that, in the near future,…
Learning Object Retrieval and Aggregation Based on Learning Styles
ERIC Educational Resources Information Center
Ramirez-Arellano, Aldo; Bory-Reyes, Juan; Hernández-Simón, Luis Manuel
2017-01-01
The main goal of this article is to develop a Management System for Merging Learning Objects (msMLO), which offers an approach that retrieves learning objects (LOs) based on students' learning styles and term-based queries, which produces a new outcome with a better score. The msMLO faces the task of retrieving LOs via two steps: The first step…
Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T
2017-11-01
Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.
Learning Objects--Instructional Metadata and Sequencing.
ERIC Educational Resources Information Center
Redeker, Giselher
The main focus of current discussions within the standardization process of learning technology is on economical opportunities and technical aspects of learning objects. There has been little discussion about the instructional or didactical issues. The purpose of this paper is to conceptualize a taxonomy of learning objects for the facilitation of…
The International Learning Object Metadata Survey
ERIC Educational Resources Information Center
Friesen, Norm
2004-01-01
A wide range of projects and organizations is currently making digital learning resources (learning objects) available to instructors, students, and designers via systematic, standards-based infrastructures. One standard that is central to many of these efforts and infrastructures is known as Learning Object Metadata (IEEE 1484.12.1-2002, or LOM).…
Training of trainers for community primary health care workers.
Cernada, G P
1983-01-01
Training community-based health care workers in "developing" countries is essential to improving the quality of life in both rural and urban areas. Two major obstacles to such training are the tremendous social distance gap between these community workers and their more highly-educated and upper-class trainers (often medical officers) and the didactic, formal educational system. Bridging this gap demands a participant-centered, field-oriented approach which actively involves the trainee in the design, implementation and evaluation of the training program. A description of a philosophic learning approach based on self-initiated change, educational objectives related to planning, organizing, conducting and evaluating training, and specific learning methodologies utilizing participatory learning, non-formal educational techniques, field experience, continuing feedback and learner participation are reviewed. Included are: role playing, story telling, case studies, self-learning and simulation exercises, visuals, and Portapak videotape.
Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P
2004-01-01
The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.
Fazio, B B
1994-04-01
This study examined the counting abilities of preschool children with specific language impairment compared to language-matched and mental-age-matched peers. In order to determine the nature of the difficulties SLI children exhibited in counting, the subjects participated in a series of oral counting tasks and a series of gestural tasks that used an invented counting system based on pointing to body parts. Despite demonstrating knowledge of many of the rules associated with counting, SLI preschool children displayed marked difficulty in counting objects. On oral counting tasks, they showed difficulty with rote counting, displayed a limited repertoire of number terms, and miscounted sets of objects. However, on gestural counting tasks, SLI children's performance was significantly better. These findings suggest that SLI children have a specific difficulty with the rote sequential aspect of learning number words.
Governance and assessment in a widely distributed medical education program in Australia.
Solarsh, Geoff; Lindley, Jennifer; Whyte, Gordon; Fahey, Michael; Walker, Amanda
2012-06-01
The learning objectives, curriculum content, and assessment standards for distributed medical education programs must be aligned across the health care systems and community contexts in which their students train. In this article, the authors describe their experiences at Monash University implementing a distributed medical education program at metropolitan, regional, and rural Australian sites and an offshore Malaysian site, using four different implementation models. Standardizing learning objectives, curriculum content, and assessment standards across all sites while allowing for site-specific implementation models created challenges for educational alignment. At the same time, this diversity created opportunities to customize the curriculum to fit a variety of settings and for innovations that have enriched the educational system as a whole.Developing these distributed medical education programs required a detailed review of Monash's learning objectives and curriculum content and their relevance to the four different sites. It also required a review of assessment methods to ensure an identical and equitable system of assessment for students at all sites. It additionally demanded changes to the systems of governance and the management of the educational program away from a centrally constructed and mandated curriculum to more collaborative approaches to curriculum design and implementation involving discipline leaders at multiple sites.Distributed medical education programs, like that at Monash, in which cohorts of students undertake the same curriculum in different contexts, provide potentially powerful research platforms to compare different pedagogical approaches to medical education and the impact of context on learning outcomes.
Walpole, Sarah C; Mortimer, Frances; Inman, Alice; Braithwaite, Isobel; Thompson, Trevor
2015-12-24
This study aimed to engage wide-ranging stakeholders and develop consensus learning objectives for undergraduate and postgraduate medical education. A UK-wide consultation garnered opinions of healthcare students, healthcare educators and other key stakeholders about environmental sustainability in medical education. The policy Delphi approach informed this study. Draft learning objectives were revised iteratively during three rounds of consultation: online questionnaire or telephone interview, face-to-face seminar and email consultation. Twelve draft learning objectives were developed based on review of relevant literature. In round one, 64 participants' median ratings of the learning objectives were 3.5 for relevance and 3.0 for feasibility on a Likert scale of one to four. Revisions were proposed, e.g. to highlight relevance to public health and professionalism. Thirty three participants attended round two. Conflicting opinions were explored. Added content areas included health benefits of sustainable behaviours. To enhance usability, restructuring provided three overarching learning objectives, each with subsidiary points. All participants from rounds one and two were contacted in round three, and no further edits were required. This is the first attempt to define consensus learning objectives for medical students about environmental sustainability. Allowing a wide range of stakeholders to comment on multiple iterations of the document stimulated their engagement with the issues raised and ownership of the resulting learning objectives.
NASA Astrophysics Data System (ADS)
Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan
2017-11-01
Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.
NASA Astrophysics Data System (ADS)
Mitchell, L. W.
2002-12-01
During the initiation of a new program at the University of North Dakota designed to promote American Indians to engage in geoscience research and complete geoscience related degrees, an evaluation procedure utilizing a modified Learning Potential Assessment Device (LPAD) and Mediated Learning Experiences (MLE) to assess minority student progress was implemented. The program, called Indians Into Geosciences (INGEOS), utilized a modified form of the Learning Potential Assessment Device first to assess cultural factors, determination, and other baseline information, and second, utilized a series of Mediated Learning Experiences to enhance minority students' opportunities in a culturally appropriate, culturally diverse, and scientifically challenging manner in an effort to prepare students for competitive research careers in the geosciences. All of the LPADs and MLEs corresponded directly to the three goals or eight objectives of INGEOS. The three goals of the INGEOS program are: 1) increasing the number of American Indians earning degrees at all levels, 2) engaging American Indians in challenging and technically based scientific research, and 3) preparing American Indians for successful geoscience careers through multicultural community involvement. The eight objectives of the INGEOS program, called the Eight Points of Success, are: 1) spiritual health, 2) social health, 3) physical health, 4) mental health, 5) financial management, 6) research involvement, 7) technical exposure, and 8) multicultural community education. The INGEOS program goals were evaluated strictly quantitatively utilizing a variety of data sources such as grade point averages, number of credits earned, research project information, and developed products. The INGEOS Program goals reflected a combined quantitative score of all participants, whereas the objectives reflected qualitative measures and are specific for each INGEOS participant. Initial results indicate that those participants which show progress through Mediated Learning Experiences within all of the Eight Points of Success, have a higher likelihood of contributing to all three of the INGEOS programs goals.
Flexible word meaning in embodied agents
NASA Astrophysics Data System (ADS)
Wellens, Peter; Loetzsch, Martin; Steels, Luc
2008-06-01
Learning the meanings of words requires coping with referential uncertainty - a learner hearing a novel word cannot be sure which aspects or properties of the referred object or event comprise the meaning of the word. Data from developmental psychology suggest that human learners grasp the important aspects of many novel words after just a few exposures, a phenomenon known as fast mapping. Traditionally, word learning is viewed as a mapping task, in which the learner has to map a set of forms onto a set of pre-existing concepts. We criticise this approach and argue instead for a flexible nature of the coupling between form and meanings as a solution to the problem of referential uncertainty. We implemented and tested the model in populations of humanoid robots that play situated language games about objects in their shared environment. Results show that the model can handle an exponential increase in uncertainty and allows scaling towards very large meaning spaces, while retaining the ability to grasp an operational meaning almost instantly for a great number of words. In addition, the model captures some aspects of the flexibility of form-meaning associations found in human languages. Meanings of words can shift between being very specific (names) and general (e.g. 'small'). We show that this specificity is biased not by the model itself but by the distribution of object properties in the world.
Conversion of short-term to long-term memory in the novel object recognition paradigm
Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.
2013-01-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143
Conversion of short-term to long-term memory in the novel object recognition paradigm.
Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G
2013-10-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
[Digital learning object for diagnostic reasoning in nursing applied to the integumentary system].
da Costa, Cecília Passos Vaz; Luz, Maria Helena Barros Araújo
2015-12-01
To describe the creation of a digital learning object for diagnostic reasoning in nursing applied to the integumentary system at a public university of Piaui. A methodological study applied to technological production based on the pedagogical framework of problem-based learning. The methodology for creating the learning object observed the stages of analysis, design, development, implementation and evaluation recommended for contextualized instructional design. The revised taxonomy of Bloom was used to list the educational goals. The four modules of the developed learning object were inserted into the educational platform Moodle. The theoretical assumptions allowed the design of an important online resource that promotes effective learning in the scope of nursing education. This study should add value to nursing teaching practices through the use of digital learning objects for teaching diagnostic reasoning applied to skin and skin appendages.
The impact of privacy protection filters on gender recognition
NASA Astrophysics Data System (ADS)
Ruchaud, Natacha; Antipov, Grigory; Korshunov, Pavel; Dugelay, Jean-Luc; Ebrahimi, Touradj; Berrani, Sid-Ahmed
2015-09-01
Deep learning-based algorithms have become increasingly efficient in recognition and detection tasks, especially when they are trained on large-scale datasets. Such recent success has led to a speculation that deep learning methods are comparable to or even outperform human visual system in its ability to detect and recognize objects and their features. In this paper, we focus on the specific task of gender recognition in images when they have been processed by privacy protection filters (e.g., blurring, masking, and pixelization) applied at different strengths. Assuming a privacy protection scenario, we compare the performance of state of the art deep learning algorithms with a subjective evaluation obtained via crowdsourcing to understand how privacy protection filters affect both machine and human vision.
The legacy of care as reflexive learning
García, Marta Rodríguez; Moya, Jose Luis Medina
2016-01-01
Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180
Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther
2006-01-01
Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.
Kantak, Shailesh S; Winstein, Carolee J
2012-03-01
Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Developing Learning Objectives for Accounting Ethics Using Bloom's Taxonomy
ERIC Educational Resources Information Center
Kidwell, Linda A.; Fisher, Dann G.; Braun, Robert L.; Swanson, Diane L.
2013-01-01
The purpose of our article is to offer a set of core knowledge learning objectives for accounting ethics education. Using Bloom's taxonomy of educational objectives, we develop learning objectives in six content areas: codes of ethical conduct, corporate governance, the accounting profession, moral development, classical ethics theories, and…
Design, Development, and Validation of Learning Objects
ERIC Educational Resources Information Center
Nugent, Gwen; Soh, Leen-Kiat; Samal, Ashok
2006-01-01
A learning object is a small, stand-alone, mediated content resource that can be reused in multiple instructional contexts. In this article, we describe our approach to design, develop, and validate Shareable Content Object Reference Model (SCORM) compliant learning objects for undergraduate computer science education. We discuss the advantages of…
Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard
2016-01-01
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592
NASA Astrophysics Data System (ADS)
Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard
2016-12-01
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.
Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard
2016-12-06
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.
Mang, Cameron S.; Snow, Nicholas J.; Campbell, Kristin L.; Ross, Colin J. D.
2014-01-01
The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (−100.8 ms) to late practice (−75.2 ms, P < 0.001) and was maintained at retention (−79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866
Learning Objects as Tools for Teaching Information Literacy Online: A Survey of Librarian Usage
ERIC Educational Resources Information Center
Mestre, Lori S.; Baures, Lisa; Niedbala, Mona; Bishop, Corinne; Cantrell, Sarah; Perez, Alice; Silfen, Kate
2011-01-01
Based on information gathered from two discussion sessions moderated by members of the Education and Behavioral Sciences Section's Online Learning Research Committee a survey was conducted to identify how librarians use course/learning management systems and learning objects to deliver instruction. Objectives of the study were to identify the…
Learning from Objects: A Future for 21st Century Urban Arts Education
ERIC Educational Resources Information Center
Lasky, Dorothea
2009-01-01
In this technological age, where mind and body are increasingly disconnected in the classroom, object-based learning--along with strong museum-school partnerships--provide many benefits for student learning. In this article, the author first outlines some of the special mind-body connections that object-based learning in museums affords learners…
Learning Grasp Context Distinctions that Generalize
NASA Technical Reports Server (NTRS)
Platt, Robert; Grupen, Roderic A.; Fagg, Andrew H.
2006-01-01
Control-based approaches to grasp synthesis create grasping behavior by sequencing and combining control primitives. In the absence of any other structure, these approaches must evaluate a large number of feasible control sequences as a function of object shape, object pose, and task. This work explores a new approach to grasp synthesis that limits consideration to variations on a generalized localize-reach-grasp control policy. A new learning algorithm, known as schema structured learning, is used to learn which instantiations of the generalized policy are most likely to lead to a successful grasp in different problem contexts. Two experiments are described where Dexter, a bimanual upper torso, learns to select an appropriate grasp strategy as a function of object eccentricity and orientation. In addition, it is shown that grasp skills learned in this way can generalize to new objects. Results are presented showing that after learning how to grasp a small, representative set of objects, the robot's performance quantitatively improves for similar objects that it has not experienced before.
An insect-inspired model for visual binding II: functional analysis and visual attention.
Northcutt, Brandon D; Higgins, Charles M
2017-04-01
We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.
Attribute-based classification for zero-shot visual object categorization.
Lampert, Christoph H; Nickisch, Hannes; Harmeling, Stefan
2014-03-01
We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
The company objects keep: Linking referents together during cross-situational word learning.
Zettersten, Martin; Wojcik, Erica; Benitez, Viridiana L; Saffran, Jenny
2018-04-01
Learning the meanings of words involves not only linking individual words to referents but also building a network of connections among entities in the world, concepts, and words. Previous studies reveal that infants and adults track the statistical co-occurrence of labels and objects across multiple ambiguous training instances to learn words. However, it is less clear whether, given distributional or attentional cues, learners also encode associations amongst the novel objects. We investigated the consequences of two types of cues that highlighted object-object links in a cross-situational word learning task: distributional structure - how frequently the referents of novel words occurred together - and visual context - whether the referents were seen on matching backgrounds. Across three experiments, we found that in addition to learning novel words, adults formed connections between frequently co-occurring objects. These findings indicate that learners exploit statistical regularities to form multiple types of associations during word learning.
Implicit multisensory associations influence voice recognition.
von Kriegstein, Katharina; Giraud, Anne-Lise
2006-10-01
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules.
Special Session 4: Astronomy Education between Past and Future
NASA Astrophysics Data System (ADS)
de Greve, Jean-Pierre
2010-11-01
The special session aims at discussing an integrated approach of the different efforts to increase and promote the teaching and learning of astronomy in the world, with emphasis on developing countries. To this end, attention will be given to research on education, specifically in the field of physics, to best practices of the use of astronomy in educational systems (specifically in developing countries), and to innovative learning initiatives other than formal education. The Special Session aims also at creating a universal perspective wherein modern (post-Copernican) astronomy will presented as an intellectual cumulus. The objective of the session is to disseminate best practices in teaching and learning activities of astronomy and to give an opportunity to learn about initiatives in different cultural and socio-economic settings. The special session also wants to give food-for-thought and proposals for reflection for an integrative approach, and for optimization processes, to enhance the interest in astronomy and its role as a trigger towards science education in the educational systems, with emphasis on the developing countries. The outcome should be a sensitization of teachers and students alike to the concept of a universal history of astronomy and creation of some reliable source material which can be used as a teaching aid in a culture-specific context. The outcome could be a set of recommendations for future integrated actions, and eventually recommendations on new initiatives, framed into the new decadal policy plan.
Schmidtke, Daniel; Ammersdörfer, Sandra; Joly, Marine; Zimmermann, Elke
2018-05-10
A recent study suggests that a specific, touchscreen-based task on visual object-location paired-associates learning (PAL), the so-called Different PAL (dPAL) task, allows effective translation from animal models to humans. Here, we adapted the task to a nonhuman primate (NHP), the gray mouse lemur, and provide first evidence for the successful comparative application of the task to humans and NHPs. Young human adults reach the learning criterion after considerably less sessions (one order of magnitude) than young, adult NHPs, which is likely due to faster and voluntary rejection of ineffective learning strategies in humans and almost immediate rule generalization. At criterion, however, all human subjects solved the task by either applying a visuospatial rule or, more rarely, by memorizing all possible stimulus combinations and responding correctly based on global visual information. An error-profile analysis in humans and NHPs suggests that successful learning in NHPs is comparably based either on the formation of visuospatial associative links or on more reflexive, visually guided stimulus-response learning. The classification in the NHPs is further supported by an analysis of the individual response latencies, which are considerably higher in NHPs classified as spatial learners. Our results, therefore, support the high translational potential of the standardized, touchscreen-based dPAL task by providing first empirical and comparable evidence for two different cognitive processes underlying dPAL performance in primates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Garagnani, Max; Lucchese, Guglielmo; Tomasello, Rosario; Wennekers, Thomas; Pulvermüller, Friedemann
2017-01-01
Experimental evidence indicates that neurophysiological responses to well-known meaningful sensory items and symbols (such as familiar objects, faces, or words) differ from those to matched but novel and senseless materials (unknown objects, scrambled faces, and pseudowords). Spectral responses in the high beta- and gamma-band have been observed to be generally stronger to familiar stimuli than to unfamiliar ones. These differences have been hypothesized to be caused by the activation of distributed neuronal circuits or cell assemblies, which act as long-term memory traces for learned familiar items only. Here, we simulated word learning using a biologically constrained neurocomputational model of the left-hemispheric cortical areas known to be relevant for language and conceptual processing. The 12-area spiking neural-network architecture implemented replicates physiological and connectivity features of primary, secondary, and higher-association cortices in the frontal, temporal, and occipital lobes of the human brain. We simulated elementary aspects of word learning in it, focussing specifically on semantic grounding in action and perception. As a result of spike-driven Hebbian synaptic plasticity mechanisms, distributed, stimulus-specific cell-assembly (CA) circuits spontaneously emerged in the network. After training, presentation of one of the learned “word” forms to the model correlate of primary auditory cortex induced periodic bursts of activity within the corresponding CA, leading to oscillatory phenomena in the entire network and spontaneous across-area neural synchronization. Crucially, Morlet wavelet analysis of the network's responses recorded during presentation of learned meaningful “word” and novel, senseless “pseudoword” patterns revealed stronger induced spectral power in the gamma-band for the former than the latter, closely mirroring differences found in neurophysiological data. Furthermore, coherence analysis of the simulated responses uncovered dissociated category specific patterns of synchronous oscillations in distant cortical areas, including indirectly connected primary sensorimotor areas. Bridging the gap between cellular-level mechanisms, neuronal-population behavior, and cognitive function, the present model constitutes the first spiking, neurobiologically, and anatomically realistic model able to explain high-frequency oscillatory phenomena indexing language processing on the basis of dynamics and competitive interactions of distributed cell-assembly circuits which emerge in the brain as a result of Hebbian learning and sensorimotor experience. PMID:28149276
Authoring of Learning Objects in Context
ERIC Educational Resources Information Center
Specht, Marcus; Kravcik, Milos
2006-01-01
Learning objects and content interchange standards provide new possibilities for e-learning. Nevertheless the content often lacks context data to find appropriate use for adaptive learning on demand and personalized learning experiences. In the Remotely Accessible Field Trips (RAFT) project mobile authoring of learning content in context has shown…