Reus, Linda; Pelzer, Ben J; Otten, Barto J; Siemensma, Elbrich P C; van Alfen-van der Velden, Janielle A A E M; Festen, Dederieke A M; Hokken-Koelega, Anita C S; Nijhuis-van der Sanden, Maria W G
2013-10-01
Although severe motor problems in infants with Prader-Willi syndrome (PWS) are striking, motor development has never been studied longitudinally and the results of growth hormone (GH) treatment on motor development are contradictory. The authors studied whether GH treatment can enhance the effect of physical training on motor development in infants with PWS. Twenty-two infants were followed for two years during a randomized controlled trial. The treatment and control groups began GH after baseline or following a control period, respectively. Both groups followed a child-specific physical training program. Motor performance was measured every three months. Multi-level regression analysis revealed that motor development differed significantly between infants (p<.001), and this could be partially explained by baseline motor developmental level (p<.01). GH treatment enhanced the effects of child-specific physical training on both motor developmental rate and motor developmental potential. Moreover, this effect was more pronounced when GH treatment was initiated at a younger age. Copyright © 2013 Elsevier Ltd. All rights reserved.
Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI
Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle
2010-01-01
Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
78 FR 12808 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
...) Electrical Controls and Electrical Equipment; (2) Main Drive Electrical Motor; (3) Auxiliary Drive Electric Motor; (4) Span Lock Electric Motor & Controls for a specific project in the State of Washington. DATES... appropriate to use (1) Electrical Controls and Electrical Equipment; (2) Main Drive Electrical Motor; (3...
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
A unifying motor control framework for task-specific dystonia
Rothwell, John C.; Edwards, Mark J.
2018-01-01
Task-specific dystonia is a movement disorder characterized by the development of a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective and the disorder generally ends the careers of affected individuals. There are a number of limitations with traditional dystonic disease models for task-specific dystonia. We therefore review emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill is disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder. PMID:29104291
GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-09-22
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
GDE2 regulates subtype specific motor neuron generation through inhibition of Notch signaling
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-01-01
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here, we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. PMID:21943603
Chen, Jun-An; Wichterle, Hynek
2012-01-01
Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237
Are gross motor skills and sports participation related in children with intellectual disabilities?
Westendorp, Marieke; Houwen, Suzanne; Hartman, Esther; Visscher, Chris
2011-01-01
This study compared the specific gross motor skills of 156 children with intellectual disabilities (ID) (50 ≤ IQ ≥ 79) with that of 255 typically developing children, aged 7-12 years. Additionally, the relationship between the specific gross motor skills and organized sports participation was examined in both groups. The Test of Gross Motor Development-2 and a self-report measure were used to assess children's gross motor skills and sports participation, respectively. The children with ID scored significantly lower on almost all specific motor skill items than the typically developing children. Children with mild ID scored lower on the locomotor skills than children with borderline ID. Furthermore, we found in all groups that children with higher object-control scores participated more in organized sports than children with lower object-control scores. Our results support the importance of attention for well-developed gross motor skills in children with borderline and mild ID, especially to object-control skills, which might contribute positively to their sports participation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.
Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver
2017-01-01
Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.
A microRNA-initiated DNAzyme motor operating in living cells
NASA Astrophysics Data System (ADS)
Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris
2017-03-01
Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.
Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris
2011-01-01
The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading, spelling, and mathematics were examined in children with learning disabilities. As expected, the children with learning disabilities scored poorer on both the locomotor and object-control subtests than their typically developing peers. Furthermore, in children with learning disabilities a specific relationship was observed between reading and locomotor skills and a trend was found for a relationship between mathematics and object-control skills: the larger children's learning lag, the poorer their motor skill scores. This study stresses the importance of specific interventions facilitating both motor and academic abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
From the motor cortex to the movement and back again.
Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I
2017-01-01
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Manipulating motor performance and memory through real-time fMRI neurofeedback.
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-05-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Manipulating motor performance and memory through real-time fMRI neurofeedback
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-01-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342
Gutknecht, Magdalena; Mannig, Angelika; Waldvogel, Anja; Wand, Benedict M; Luomajoki, Hannu
2015-10-01
Movement control impairment is a clinical subgroup of non-specific low back pain which can be assessed reliably. There is a strong correlation between tactile acuity and movement control suggesting these two treatments might have additive effects. The first research aim was to determine if patients with a motor control impairment demonstrated improvement in outcome with combined tactile acuity and motor control training. The second aim was to determine if tactile acuity training enhanced the effect of motor control training. The primary study was a single-arm cohort study conducted in three physiotherapy practices in the German-speaking part of Switzerland. 40 patients (23 males and 17 females) suffering from non-specific low back pain (NSLBP) and movement control impairment were treated. Patients were assessed at baseline and immediately post treatment. Treatment included exercises to lumbopelvic control and graphesthesia training to improve tactile acuity. Treatment effects were evaluated using the Roland Morris disability questionnaire (RMQ) and the patient-specific functional scale (PSFS). The performance on a set of six movement control tests and lumbar two-point discrimination were also assessed. The results of this cohort study were compared with a historic control group which was comparable with the primary study but included only motor control exercises. All the outcomes improved significantly with the combined training (RMQ - 2.2 pts., PSFS - 2.8 pts.; MCTB - 2.02 pts. & TPD - 17.07 mm; all p < 0.05). In comparison to the outcomes of the historic control, there was no significant differences in movement control, patient-specific functional complaints or disability between the groups. The results of this study, based on a before and after intervention comparison, showed that outcome improved significantly following combined tactile acuity and motor control training. However, compared to an earlier study, the tactile acuity training did not have an additional effect to the results. The use of historical controls does not control for allocation bias and the results obtained here require verification in a randomized controlled trial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rittig-Rasmussen, Bjarne; Kasch, Helge; Fuglsang-Frederiksen, Anders; Jensen, Troels S; Svensson, Peter
2013-07-15
Experimental investigation of short-term and long-term corticomotor effects of specific neck training, coordination training, and no training. To determine the effects of different training programs on the motor neurons controlling the neck muscles as well as the effects of training on muscle strength and muscle fatigue, and the correlations between corticomotor control and motor learning. Training is usually recommended for unspecific neck pain and consists of neck and upper body coordination, strengthening, and endurance exercises. However, it is unclear which type of training is the most effective. No studies have previously investigated the neural effect of neck training and the possible differential effect of specific versus coordination training on corticomotor control. Transcranial magnetic stimulation and electromyography were used to elicit and monitor motor evoked potentials (MEPs) from the trapezius and thumb muscles before and 30 minutes, 1 hour, and 7 days after training. Parameters measured were MEP amplitude, MEP latency, strength, learning effects, and muscle fatigue. Only specific neck training yielded a 67% increase in MEP amplitudes for up to 7 days after training compared with baseline (P < 0.001). No significant changes were seen after coordination training, no training, and in the within-subject control muscle. The mean muscle strength increased immediately after specific neck training from 56.6 to 61 kg (P < 0.001). No subjective or objective measures of fatigue were observed. Specific neck training induced a sustained hyperexcitability of motor neurons controlling the neck muscles compared with coordination training and controls. These findings may prove valuable in the process of developing more effective clinical training programs for unspecific neck pain.
Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms
Mani, Saandeep; Mutha, Pratik K.; Przybyla, Andrzej; Haaland, Kathleen Y.; Good, David C.
2013-01-01
We have proposed a model of motor lateralization, in which the left and right hemispheres are specialized for different aspects of motor control: the left hemisphere for predicting and accounting for limb dynamics and the right hemisphere for stabilizing limb position through impedance control mechanisms. Our previous studies, demonstrating different motor deficits in the ipsilesional arm of stroke patients with left or right hemisphere damage, provided a critical test of our model. However, motor deficits after stroke are most prominent on the contralesional side. Post-stroke rehabilitation has also, naturally, focused on improving contralesional arm impairment and function. Understanding whether contralesional motor deficits differ depending on the hemisphere of damage is, therefore, of vital importance for assessing the impact of brain damage on function and also for designing rehabilitation interventions specific to laterality of damage. We, therefore, asked whether motor deficits in the contralesional arm of unilateral stroke patients reflect hemisphere-dependent control mechanisms. Because our model of lateralization predicts that contralesional deficits will differ depending on the hemisphere of damage, this study also served as an essential assessment of our model. Stroke patients with mild to moderate hemiparesis in either the left or right arm because of contralateral stroke and healthy control subjects performed targeted multi-joint reaching movements in different directions. As predicted, our results indicated a double dissociation; although left hemisphere damage was associated with greater errors in trajectory curvature and movement direction, errors in movement extent were greatest after right hemisphere damage. Thus, our results provide the first demonstration of hemisphere specific motor control deficits in the contralesional arm of stroke patients. Our results also suggest that it is critical to consider the differential deficits induced by right or left hemisphere lesions to enhance post-stroke rehabilitation interventions. PMID:23358602
Task specific grip force control in writer's cramp.
Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J
2014-04-01
Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Body side-specific control of motor activity during turning in a walking animal
Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar
2016-01-01
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731
Biomechanics as a window into the neural control of movement
2016-01-01
Abstract Biomechanics and motor control are discussed as parts of a more general science, physics of living systems. Major problems of biomechanics deal with exact definition of variables and their experimental measurement. In motor control, major problems are associated with formulating currently unknown laws of nature specific for movements by biological objects. Mechanics-based hypotheses in motor control, such as those originating from notions of a generalized motor program and internal models, are non-physical. The famous problem of motor redundancy is wrongly formulated; it has to be replaced by the principle of abundance, which does not pose computational problems for the central nervous system. Biomechanical methods play a central role in motor control studies. This is illustrated with studies with the reconstruction of hypothetical control variables and those exploring motor synergies within the framework of the uncontrolled manifold hypothesis. Biomechanics and motor control have to merge into physics of living systems, and the earlier this process starts the better. PMID:28149390
Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.
2011-01-01
Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174
Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes
NASA Astrophysics Data System (ADS)
Dirba, J.; Lavrinovicha, L.; Dobriyan, R.
2017-04-01
The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.
Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette
2017-09-01
Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.
Motor Development: Manual of Alternative Procedures.
ERIC Educational Resources Information Center
McCormack, James E.
The manual of alternative procedures for teaching handicapped children focuses on programming, planning, and implementing training in the gross motor (posture, limb control, locomotion) and fine motor (facial, digital) skills. The manual consists of the following sections: specific teaching tactics commonly used in motor training stiuations…
Evaluating the importance of social motor synchronization and motor skill for understanding autism.
Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C
2017-10-01
Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Motor Signs Distinguish Children with High Functioning Autism and Asperger's Syndrome from Controls
ERIC Educational Resources Information Center
Jansiewicz, Eva M.; Goldberg, Melissa C.; Newschaffer, Craig J.; Denckla, Martha B.; Landa, Rebecca; Mostofsky, Stewart H.
2006-01-01
While many studies of motor control in autism have focused on specific motor signs, there has been a lack of research examining the complete range of subtle neuromotor signs. This study compared performance on a neurologic examination standardized for children (PANESS, Physical and Neurological Exam for Subtle Signs, Denckla ["1974 Developmental…
An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives
NASA Astrophysics Data System (ADS)
Usha, S.; Subramani, C.
2018-04-01
Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.
Specificity of Dyspraxia in Children with Autism
MacNeil, Lindsey K.; Mostofsky, Stewart H.
2012-01-01
Objective To explore the specificity of impaired praxis and postural knowledge to autism by examining three samples of children, including those with autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and typically developing (TD) children. Method Twenty-four children with ASD, 24 children with ADHD, and 24 TD children, ages 8–13, completed measures assessing basic motor control (the Physical and Neurological Exam for Subtle Signs; PANESS), praxis (performance of skilled gestures to command, with imitation, and tool use) and the ability to recognize correct hand postures necessary to perform these skilled gestures (the Postural Knowledge Test; PKT). Results Children with ASD performed significantly worse than TD children on all three assessments. In contrast, children with ADHD performed significantly worse than TD controls on PANESS but not on the praxis examination or PKT. Furthermore, children with ASD performed significantly worse than children with ADHD on both the praxis examination and PKT, but not on the PANESS. Conclusions Whereas both children with ADHD and children with ASD show impairments in basic motor control, impairments in performance and recognition of skilled motor gestures, consistent with dyspraxia, appear to be specific to autism. The findings suggest that impaired formation of perceptual-motor action models necessary to development of skilled gestures and other goal directed behavior is specific to autism; whereas, impaired basic motor control may be a more generalized finding. PMID:22288405
A Bearingless Switched-Reluctance Motor for High Specific Power Applications
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Siebert, Mark
2006-01-01
A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.
A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Siebert, Mark
2008-01-01
The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.
Bardid, Farid; Deconinck, Frederik J A; Descamps, Sofie; Verhoeven, Liesbeth; De Pooter, Greet; Lenoir, Matthieu; D'Hondt, Eva
2013-12-01
This study evaluated the effect of a 10-week fundamental motor skill programme in pre-schoolers with motor problems. Alongside the general effect of the intervention, we also explored possible gender differences and the role of the environmental context (living community, socio-economic status, and recreational space inside/outside the house). The intervention group (n=47; 20 ♂ and 27 ♀) received twenty 60-min motor skill sessions (2 per week) in addition to the regular physical education curriculum for pre-schoolers; the control group (n=46; 21 ♂ and 25 ♀) did not receive additional practice. General motor competence, and locomotor and object control subscales, were assessed before and after the intervention using the Test of Gross Motor Development 2nd edition (TGMD-2). Data regarding environmental factors were gathered through a questionnaire. A Group×Gender×Time ANOVA revealed that the intervention group benefited significantly from the intervention and scored better than the control group at the post-test for general motor competence and both sub-categories (locomotor and object control skill). Moreover, the intervention programme was found to be effective in helping 49% of the intervention group to achieve an average motor skill level, according to the TGMD-2 norms, while a further decline in motor competence was observed in the control group. Interestingly, the effect appeared to be gender-specific, since object control skill improved only in girls of the intervention group. Considering the environmental context, none of the above-mentioned factors was found to have an influence on the effectiveness of the intervention. The present study highlights the need for an early motor skill programme with a gender-specific approach in order to help low skilled boys and girls master a diverse set of motor skills. Copyright © 2013 Elsevier Ltd. All rights reserved.
The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper
Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang
2016-01-01
For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702
Theories and control models and motor learning: clinical applications in neuro-rehabilitation.
Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D
2015-01-01
In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François
2013-01-01
Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Subliminal action priming modulates the perceived intensity of sensory action consequences.
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2014-02-01
The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Subliminal action priming modulates the perceived intensity of sensory action consequences☆
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539
NASA Technical Reports Server (NTRS)
1997-01-01
Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.
Transistorized PWM inverter-induction motor drive system
NASA Technical Reports Server (NTRS)
Peak, S. C.; Plunkett, A. B.
1982-01-01
This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.
Electric motor assisted bicycle as an aerobic exercise machine.
Nagata, T; Okada, S; Makikawa, M
2012-01-01
The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.
Controllable molecular motors engineered from myosin and RNA
NASA Astrophysics Data System (ADS)
Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev
2018-01-01
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
Neuromotor control in chronic obstructive pulmonary disease.
Mantilla, Carlos B; Sieck, Gary C
2013-05-01
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der
2018-05-01
Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.
Motor experience with a sport-specific implement affects motor imagery
Zhu, Hua; Shen, Cheng; Zhang, Jian
2018-01-01
The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738
Two Archetypes of Motor Control Research.
Latash, Mark L
2010-07-01
This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.
Karok, Sophia; Fletcher, David; Witney, Alice G
2017-01-08
Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.
Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam
2013-11-01
This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Does trampolining and anaerobic physical fitness affect sleep?
Buchegger, J; Fritsch, R; Meier-Koll, A; Riehle, H
1991-08-01
The structure of nocturnal sleep of 16 volunteers, participating in the anaerobic sports of trampolining, dancing, and soccer, was monitored by means of polygraphic recordings. Since trampolining requires the acquisition of unfamiliar patterns of motor coordination, it can be considered as a special form of motor learning, whereas the acquisition of motor skills specific for dancing and soccer can be linked with motor patterns of normal biped locomotion. According to this view, an experimental group of 8 volunteers was formed; they participated in a training course of trampolining. In addition, a control group of 8 subjects was recruited, who engaged in one of the other two anaerobic sports. Subjects who had acquired new motor skills during a 13-wk. program in trampolining showed a statistically significant increase in REM-sleep. By contrast, the 8 subjects of the control group showed no considerable changes in REM-sleep. This suggests that efforts in acquiring new and complex motor patterns activate processes specifically involved in the generation of REM stage during nocturnal sleep.
Laird, Angela S; Mackovski, Nikolce; Rinkwitz, Silke; Becker, Thomas S; Giacomotto, Jean
2016-05-01
Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
Patterson, John P; Markgraf, Carrie G; Cirino, Maria; Bass, Alan S
2005-01-01
A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.
Using noise to shape motor learning
Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.
2016-01-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721
Using noise to shape motor learning.
Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A
2017-02-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.
The neural optimal control hierarchy for motor control
NASA Astrophysics Data System (ADS)
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
Space shuttle booster separation motor design
NASA Technical Reports Server (NTRS)
Smith, G. W.; Chase, C. A.
1976-01-01
The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.
Gestalt principles in the control of motor action.
Klapp, Stuart T; Jagacinski, Richard J
2011-05-01
We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control. © 2011 American Psychological Association
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-01-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution.
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-10-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons.
Zheng, Weijia; Pi, Youguo
2016-07-01
A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Improving Control of Two Motor Controllers
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.
ERIC Educational Resources Information Center
Nip, Ignatius S. B.; Blumenfeld, Henrike K.
2015-01-01
Purpose: Second-language (L2) production requires greater cognitive resources to inhibit the native language and to retrieve less robust lexical representations. The current investigation identifies how proficiency and linguistic complexity, specifically syntactic and lexical factors, influence speech motor control and performance. Method: Speech…
The posterior parietal cortex (PPC) mediates anticipatory motor control.
Krause, Vanessa; Weber, Juliane; Pollok, Bettina
2014-01-01
Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
2018-01-01
Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices. PMID:29666634
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
Shi, Haibo; Sun, Yaoru; Li, Jie
2018-01-01
Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices.
Spinal projection neurons control turning behaviors in zebrafish.
Huang, Kuo-Hua; Ahrens, Misha B; Dunn, Timothy W; Engert, Florian
2013-08-19
Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1-9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Spinal Projection Neurons Control Turning Behaviors in Zebrafish
Huang, Kuo-Hua; Ahrens, Misha B.; Dunn, Timothy W.; Engert, Florian
2013-01-01
Summary Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1–9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. PMID:23910662
2010-11-01
connected. On this same disk, a servo motor is connected to a light weight leg. An Arduino 77 Body Weight Markers Leg Disk Servo Motor Front View Top View...this control enables more dynamic and fast walking, the control is based on precise joint-angle control. The main consequence of such a control is that... based climbing strategies. Specifically, the four-limbed free-climbing LEMUR robot goes up climbing walls by choosing a sequence of handholds
General aviation fuel quality control
NASA Technical Reports Server (NTRS)
Poitz, H.
1983-01-01
Quality control measures for aviation gasoline, and some of the differences between quality control on avgas and mogas are discussed. One thing to keep in mind is that with motor gasoline you can always pull off to the side of the road. It's not so easy to do in an airplane. Consequently, there are reasons for having the tight specifications and the tight quality control measures on avgas as compared to motor gasoline.
Motor Control and Nonword Repetition in Specific Working Memory Impairment and SLI
ERIC Educational Resources Information Center
Archibald, Lisa M. D.; Joanisse, Marc F.; Munson, Benjamin
2013-01-01
Purpose: Debate around the underlying cognitive factors leading to poor performance in the repetition of nonwords by children with developmental impairments in language has centered around phonological short-term memory, lexical knowledge, and other factors. This study examines the impact of motor control demands on nonword repetition in groups of…
Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study
Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk
2017-01-01
The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714
Rafique, Sara A; Northway, Nadia
2015-08-01
Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
A cortical circuit for voluntary laryngeal control: Implications for the evolution language.
Hickok, Gregory
2017-02-01
The development of voluntary laryngeal control has been argued to be a key innovation in the evolution of language. Part of the evidence for this hypothesis comes from neuroscience. For example, comparative research has shown that humans have direct cortical innervation of motor neurons controlling the larynx, whereas nonhuman primates do not. Research on cortical motor control circuits has shown that the frontal lobe cortical motor system does not work alone; it is dependent on sensory feedback control circuits. Thus, the human brain must have evolved not only the required efferent motor pathway but also the cortical circuit for controlling those efferent signals. To fill this gap, I propose a link between the evolution of laryngeal control and neuroscience research on the human dorsal auditory-motor speech stream. Specifically, I argue that the dorsal stream Spt (Sylvian parietal-temporal) circuit evolved in step with the direct cortico-laryngeal control pathway and together represented a key advance in the evolution of speech. I suggest that a cortical laryngeal control circuit may play an important role in language by providing a prosodic frame for speech planning.
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System
Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca
2017-01-01
In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138
Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.
Tortella, Patrizia; Haga, Monika; Loras, Håvard
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985
ERIC Educational Resources Information Center
Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.
2012-01-01
22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…
Maher, Chris G; Latimer, Jane; Hodges, Paul W; Refshauge, Kathryn M; Moseley, G Lorimer; Herbert, Robert D; Costa, Leonardo OP; McAuley, James
2005-01-01
Background While one in ten Australians suffer from chronic low back pain this condition remains extremely difficult to treat. Many contemporary treatments are of unknown value. One potentially useful therapy is the use of motor control exercise. This therapy has a biologically plausible effect, is readily available in primary care and it is of modest cost. However, to date, the efficacy of motor control exercise has not been established. Methods This paper describes the protocol for a clinical trial comparing the effects of motor control exercise versus placebo in the treatment of chronic non-specific low back pain. One hundred and fifty-four participants will be randomly allocated to receive an 8-week program of motor control exercise or placebo (detuned short wave and detuned ultrasound). Measures of outcomes will be obtained at follow-up appointments at 2, 6 and 12 months after randomisation. The primary outcomes are: pain, global perceived effect and patient-generated measure of disability at 2 months and recurrence at 12 months. Discussion This trial will be the first placebo-controlled trial of motor control exercise. The results will inform best practice for treating chronic low back pain and prevent its occurrence. PMID:16271149
Muscle Control and Non‐specific Chronic Low Back Pain
Deckers, Kristiaan; Eldabe, Sam; Kiesel, Kyle; Gilligan, Chris; Vieceli, John; Crosby, Peter
2017-01-01
Objectives Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non‐specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). Methods This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Results Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Conclusions Targeting MF control with restorative neurostimulation promises a new treatment option. PMID:29230905
Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis
2018-01-01
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404
Crosslinguistic application of English-centric rhythm descriptors in motor speech disorders.
Liss, Julie M; Utianski, Rene; Lansford, Kaitlin
2013-01-01
Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. The goals of this paper are to (i) provide a review of the cognitive-linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. Copyright © 2013 S. Karger AG, Basel.
Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders
Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin
2014-01-01
Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596
Self-controlled practice enhances motor learning in introverts and extroverts.
Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda; Tani, Go
2014-06-01
The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys in a specific spatial and temporal pattern. The experiment consisted of practice, retention, and transfer phases. The participants were distributed into 4 groups, formed by the combination of personality trait (extraversion/introversion) and type of feedback frequency (self-controlled/yoked). The results showed superior learning for the groups that practiced in a self-controlled schedule, in relation to groups who practiced in an externally controlled schedule, F(1, 52) = 4.13, p < .05, eta2 = .07, regardless of personality trait. We conclude that self-controlled practice enhances motor learning in introverts and extroverts.
What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?
König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.
Paulig, Jakobine; Jabusch, Hans-Christian; Großbach, Michael; Boullet, Laurent; Altenmüller, Eckart
2014-01-01
Musician’s dystonia (MD) is a task-specific movement disorder that causes loss of voluntary motor control while playing the instrument. A subgroup of patients displays the so-called sensory trick: alteration of somatosensory input, e.g., by wearing a latex glove, may result in short-term improvement of motor control. In this study, the glove-effect in pianists with MD was quantified and its potential association with MD-severity and outcome after treatment was investigated. Thirty affected pianists were included in the study. Music instrument digital interface-based scale analysis was used for assessment of fine motor control. Therapeutic options included botulinum toxin, pedagogical retraining and anticholinergic medication (trihexyphenidyl). 19% of patients showed significant improvement of fine motor control through wearing a glove. After treatment, outcome was significantly better in patients with a significant pre-treatment sensory trick. We conclude that the sensory trick may have a prognostic value for the outcome after treatment in pianists with MD. PMID:25295014
ERIC Educational Resources Information Center
Robinson, Leah E.
2011-01-01
Fundamental motor skills (e.g., run, jump, catch, and throw) are essential building blocks for more advanced and context-specific skills. Children with these motor skills are able to function independently while learning and exploring their environment. The National Association for Sport and Physical Education (NASPE) "Active Start"…
Axford, Caitlin; Joosten, Annette V; Harris, Courtenay
2018-04-01
Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P < 0.001; d = 0.67). Children's occupational performance in daily tasks also improved. Preliminary evidence was gained for using the iPad, with these motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.
Young Athletes program: impact on motor development.
Favazza, Paddy C; Siperstein, Gary N; Zeisel, Susan A; Odom, Samuel L; Sideris, John H; Moskowitz, Andrew L
2013-07-01
This study examined the effectiveness of the Young Athletes program to promote motor development in preschool-aged children with disabilities. In the study, 233 children were randomly assigned to a control group or the Young Athletes (YA) intervention group which consisted of 24 motor skill lessons delivered 3 times per week for 8 weeks. Hierarchical Linear Modeling (HLM) showed that children who participated in the YA intervention exhibited mean gains of 7-9 months on the Peabody Developmental Motor Subscales (PDMS) compared with mean gains of 3-5 months for the control group. Children in the YA intervention also exhibited significant gains on the gross motor subscale of the Vineland Teacher Rating Form (VTRF). Teachers and parents reported benefits for children not only in specific motor skills, but also kindergarten readiness skills and social/play skills. The necessity for direct and intentional instruction of motor skills, as well as the challenges of involving families in the YA program, are discussed.
Effects of Tongue Force Training on Orolingual Motor Cortical Representation
Guggenmos, David J.; Barbay, Scott; Bethel-Brown, Crystal; Nudo, Randolph J.; Stanford, John A.
2009-01-01
Previous research has demonstrated that training rats in a skilled reaching condition will induce task-related changes in the caudal forelimb area of motor cortex. The purpose of the present study was to determine whether task-specific changes can be induced within the orofacial area of the motor cortex in rats. Specifically, we compared changes of the orofacial motor cortical representation in lick-trained rats to age-matched controls. For one month, six water-restricted Sprague-Dawley rats were trained to lick an isometric force-sensing disc at increasing forces for water reinforcement. The rats were trained daily for six minutes starting with forces of 1g, and increasing over the course of the month to 10, 15, 20, 25 and finally 30 g. One to three days following the last training session, the animals were subjected to a neurophysiological motor mapping procedure in which motor representations corresponding to the orofacial and adjacent areas were defined using intracortical microstimulation (ICMS) techniques. We found no statistical difference in the topographical representation of the control (mean = 2.03 mm2) vs. trained (1.87 mm2) rats. This result indicates that force training alone is insufficient to drive changes in the size of the cortical representation. We also recorded the minimum current threshold required to elicit a motor response at each site of microstimulation. We found that the lick-trained rats had a significantly lower average minimum threshold (29.1 ± 1.0 μA) for evoking movements related to the task compared to control rats (34.6 ± 1.1 μA). These results indicate that while tongue force training alone does not produce lasting changes in the size of the orofacial cortical motor representation, tongue force training decreases the current thresholds necessary for eliciting an ICMS-evoked motor response. PMID:19428638
On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.
ERIC Educational Resources Information Center
De Kleine, Elian; Van der Lubbe, Rob H. J.
2011-01-01
Learning movement sequences is thought to develop from an initial controlled attentive phase to a more automatic inattentive phase. Furthermore, execution of sequences becomes faster with practice, which may result from changes at a general motor processing level rather than at an effector specific motor processing level. In the current study, we…
Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.
Bestmann, Sven; Duque, Julie
2016-08-01
Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. © The Author(s) 2015.
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
Beulertz, Julia; Bloch, Wilhelm; Prokop, Aram; Baumann, Freerk T
2013-05-01
Although survival rates in childhood cancer have distinctly improved, pediatric cancer patients often experience various disease- and treatment-related side effects with long-term consequences. Despite current studies investigating inactivity and limitations in physical functioning and quality of life in pediatric cancer patients, only little information regarding specific deficits in physical functioning and quality of life has been available until now. No study has yet analyzed these parameters from a global perspective and then identified specific deficits in a mixed childhood cancer population. Within this cross-sectional pilot study, motor performance and quality of life of 26 pediatric cancer patients were assessed after inpatient medical treatment, using standardized motor test batteries (MOT 4-6; DMT 6-18) and a quality of life questionnaire (KINDL®). Reference data have been mainly provided by the German "Children and Young People Health Survey" (KiGGS). Patients achieved lower motor performance scores (p = .000) (more than 27% below the average of healthy peers). Specific deficits were identified in motor speed and motor control (4-6 years), as well as in endurance, strength and coordination under time pressure (6-17 years). In terms of quality of life, no significant differences were examined compared to healthy children of the same age. The results of this study confirm that children with oncological diseases frequently have specific motor problems. Future research in pediatric oncology must investigate the impact of targeted, individualized exercise interventions addressing these specific deficits.
Brooks, Cristy; Kennedy, Suzanne; Marshall, Paul W M
2012-12-01
A randomized controlled trial. To compare changes in self-rated disability, pain, and anticipatory postural adjustments between specific trunk exercise and general exercise in patients with chronic low back pain. Chronic low back pain is associated with altered motor control of the trunk muscles. The best exercise to address altered motor control is unclear. Sixty-four patients with chronic low back pain were randomly assigned to a specific trunk exercise group (SEG) that included skilled cognitive activation of the trunk muscles in addition to a number of other best practice exercises, whereas the general exercise group performed only seated cycling exercise. The training program lasted for 8 weeks. Self-rated disability and pain scores were collected before and after the training period. Electromyographic activity of various trunk muscles was recorded during performance of a rapid shoulder flexion task before and after training. Muscle onsets were calculated, and the latency time (in ms) between the onset of each trunk muscle and the anterior deltoid formed the basis of the motor control analysis. After training, disability was significantly lower in the SEG (d = 0.62, P = 0.018). Pain was reduced in both groups after training (P < 0.05), but was lower for the SEG (P < 0.05). Despite the general exercise group performing no specific trunk exercise, similar changes in trunk muscle onsets were observed in both groups after training. SEG elicited significant reductions in self-rated disability and pain, whereas similar between-group changes in trunk muscle onsets were observed. The motor control adaptation seems to reflect a strategy of improved coordination between the trunk muscles with the unilateral shoulder movement. Trunk muscle onsets during rapid limb movement do not seem to be a valid mechanism of action for specific trunk exercise rehabilitation programs.
Distributed Motor Controller (DMC) for Operation in Extreme Environments
NASA Technical Reports Server (NTRS)
McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don
2012-01-01
This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.
Ahn, J M; Masuzawa, T; Taenaka, Y; Tatsumi, E; Ohno, T; Choi, W W; Toda, K; Miyazaki, K; Baba, Y; Nakatani, T; Takano, H; Min, B G
1996-01-01
In an electrohydraulic total artificial heart developed at the National Cardiovascular Center (Osaka, Japan), two blood pumps are pushed alternatively by means of the bidirectional motion of a brushless DC motor for pump systole and diastole. Improvement in the dynamic response of the motor is very important to obtain better pump performance; this was accomplished by using power electronic simulation. For the motor to have the desired dynamic response, it must be commutated properly and the damping ratio (zeta), which represents transient characteristics of the motor, must lie between 0.4 and 0.8. Consequently, all satisfactory specifications with respect to power consumption must be obtained. Based on the simulated results, the design criteria were determined and the precise controller designed to reduce torque ripple and motor vibration, and determine motor stop time at every direction change. In in vitro tests, evaluation of the controller and dynamic response of the motor was justified in terms of zeta, power consumption, and motor stop time. The results indicated that the power consumption of the controller and the input power of the motor were decreased by 1.2 and 2.5 W at zeta = 0.6, respectively, compared to the previous system. An acceptable dynamic response of the motor, necessary for the reduction of torque ripple and motor vibration, was obtained between zeta = 0.5 and zeta = 0.7, with an increase in system efficiency from 10% to 12%. The motor stop time required for stable motor reoperation was determined to be over 10 msec, for a savings in power consumption of approximately 1.5 W. Therefore, the improved dynamic response of the motor can contribute to the stability and reliability of the pump.
Muscle Control and Non-specific Chronic Low Back Pain.
Russo, Marc; Deckers, Kristiaan; Eldabe, Sam; Kiesel, Kyle; Gilligan, Chris; Vieceli, John; Crosby, Peter
2018-01-01
Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non-specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Targeting MF control with restorative neurostimulation promises a new treatment option. © 2017 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
NASA Astrophysics Data System (ADS)
Li, Boyuan; Du, Haiping; Li, Weihua
2016-05-01
Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.
Mendelsohn, Alana I.; Dasen, Jeremy S.; Jessell, Thomas M.
2017-01-01
Summary The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles. PMID:28190640
Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh
2011-08-01
Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.
"The caterpillar": a novel reading passage for assessment of motor speech disorders.
Patel, Rupal; Connaghan, Kathryn; Franco, Diana; Edsall, Erika; Forgit, Dory; Olsen, Laura; Ramage, Lianna; Tyler, Emily; Russell, Scott
2013-02-01
A review of the salient characteristics of motor speech disorders and common assessment protocols revealed the need for a novel reading passage tailored specifically to differentiate between and among the dysarthrias (DYSs) and apraxia of speech (AOS). "The Caterpillar" passage was designed to provide a contemporary, easily read, contextual speech sample with specific tasks (e.g., prosodic contrasts, words of increasing length and complexity) targeted to inform the assessment of motor speech disorders. Twenty-two adults, 15 with DYS or AOS and 7 healthy controls (HC), were recorded reading "The Caterpillar" passage to demonstrate its utility in examining motor speech performance. Analysis of performance across a subset of segmental and prosodic variables illustrated that "The Caterpillar" passage showed promise for extracting individual profiles of impairment that could augment current assessment protocols and inform treatment planning in motor speech disorders.
Acquisition and reacquisition of motor coordination in musicians.
Furuya, Shinichi; Altenmüller, Eckart
2015-03-01
Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means. © 2015 New York Academy of Sciences.
Definition and classification of negative motor signs in childhood.
Sanger, Terence D; Chen, Daofen; Delgado, Mauricio R; Gaebler-Spira, Deborah; Hallett, Mark; Mink, Jonathan W
2006-11-01
In this report we describe the outcome of a consensus meeting that occurred at the National Institutes of Health in Bethesda, Maryland, March 12 through 14, 2005. The meeting brought together 39 specialists from multiple clinical and research disciplines including developmental pediatrics, neurology, neurosurgery, orthopedic surgery, physical therapy, occupational therapy, physical medicine and rehabilitation, neurophysiology, muscle physiology, motor control, and biomechanics. The purpose of the meeting was to establish terminology and definitions for 4 aspects of motor disorders that occur in children: weakness, reduced selective motor control, ataxia, and deficits of praxis. The purpose of the definitions is to assist communication between clinicians, select homogeneous groups of children for clinical research trials, facilitate the development of rating scales to assess improvement or deterioration with time, and eventually to better match individual children with specific therapies. "Weakness" is defined as the inability to generate normal voluntary force in a muscle or normal voluntary torque about a joint. "Reduced selective motor control" is defined as the impaired ability to isolate the activation of muscles in a selected pattern in response to demands of a voluntary posture or movement. "Ataxia" is defined as an inability to generate a normal or expected voluntary movement trajectory that cannot be attributed to weakness or involuntary muscle activity about the affected joints. "Apraxia" is defined as an impairment in the ability to accomplish previously learned and performed complex motor actions that is not explained by ataxia, reduced selective motor control, weakness, or involuntary motor activity. "Developmental dyspraxia" is defined as a failure to have ever acquired the ability to perform age-appropriate complex motor actions that is not explained by the presence of inadequate demonstration or practice, ataxia, reduced selective motor control, weakness, or involuntary motor activity.
Coupling dynamics in speech gestures: amplitude and rate influences.
van Lieshout, Pascal H H M
2017-08-01
Speech is a complex oral motor function that involves multiple articulators that need to be coordinated in space and time at relatively high movement speeds. How this is accomplished remains an important and largely unresolved empirical question. From a coordination dynamics perspective, coordination involves the assembly of coordinative units that are characterized by inherently stable coupling patterns that act as attractor states for task-specific actions. In the motor control literature, one particular model formulated by Haken et al. (Biol Cybern 51(5):347-356, 1985) or HKB has received considerable attention in the way it can account for changes in the nature and stability of specific coordination patterns between limbs or between limbs and external stimuli. In this model (and related versions), movement amplitude is considered a critical factor in the formation of these patterns. Several studies have demonstrated its role for bimanual coordination and similar types of tasks, but for speech motor control such studies are lacking. The current study describes a systematic approach to evaluate the impact of movement amplitude and movement duration on coordination stability in the production of bilabial and tongue body gestures for specific vowel-consonant-vowel strings. The vowel combinations that were used induced a natural contrast in movement amplitude at three speaking rate conditions (slow, habitual, fast). Data were collected on ten young adults using electromagnetic articulography, recording movement data from lips and tongue with high temporal and spatial precision. The results showed that with small movement amplitudes there is a decrease in coordination stability, independent from movement duration. These findings were found to be robust across all individuals and are interpreted as further evidence that principles of coupling dynamics operate in the oral motor control system similar to other motor systems and can be explained in terms of coupling mechanisms between neural oscillators (organized in networks) and effector systems. The relevance of these findings for understanding motor control issues in people with speech disorders is discussed as well.
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
Two Processes in Early Bimanual Motor Skill Learning
Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves
2017-01-01
Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573
Thompson, Abigail; Murphy, Declan; Dell'Acqua, Flavio; Ecker, Christine; McAlonan, Grainne; Howells, Henrietta; Baron-Cohen, Simon; Lai, Meng-Chuan; Lombardo, Michael V
2017-02-01
Fine motor skill impairments are common in autism spectrum disorder (ASD), significantly affecting quality of life. Sensory inputs reaching the primary motor cortex (M1) from the somatosensory cortex (S1) are likely involved in fine motor skill and specifically motor learning. However, the role of these connections has not been directly investigated in humans. This study aimed to investigate, for the first time, the role of the S1-M1 connections in healthy subjects in vivo and whether microstructural alterations are associated with motor impairment in ASD. Sixty right-handed neurotypical adult men aged 18 to 45 years, and 60 right-handed age- and sex-matched subjects diagnosed with ASD underwent fine motor skill assessment and scanning with diffusion tensor imaging (DTI). The streamlines of the hand region connecting S1-M1 of the motor-sensory homunculus were virtually dissected using TrackVis, and diffusion properties were extracted. The face/tongue region connections were used as control tracts. The ASD group displayed lower motor performances and altered DTI measurements of the hand-region connection. Behavioral performance correlated with hand-region DTI measures in both groups, but not with the face/tongue connections, indicating anatomical specificity. There was a left-hemisphere association of motor ability in the control group and an atypical rightward shift in the ASD group. These findings suggest that direct interaction between S1 and M1 may contribute to the human ability to precisely interact with and manipulate the environment. Because electrophysiological evidence indicates that these connections may underpin long-term potentiation in M1, our findings may lead to novel therapeutic treatments for motor skill disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.
Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver
2017-01-04
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.
An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons.
Kratsios, Paschalis; Kerk, Sze Yen; Catela, Catarina; Liang, Joseph; Vidal, Berta; Bayer, Emily A; Feng, Weidong; De La Cruz, Estanisla Daniel; Croci, Laura; Consalez, G Giacomo; Mizumoto, Kota; Hobert, Oliver
2017-07-05
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans . Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.
Theta dynamics reveal domain-specific control over stimulus and response conflict.
Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit
2012-05-01
Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.
Frick, Andrea; Möhring, Wenke
2016-01-01
Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157
van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert
2018-06-01
A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2 = .47), with no difference between conditions (ŋ p 2 = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.
Grasping synergies: A motor-control approach to the mirror neuron mechanism
NASA Astrophysics Data System (ADS)
D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura
2015-03-01
The discovery of mirror neurons revived interest in motor theories of perception, fostering a number of new studies as well as controversies. In particular, the degree of motor specificity with which others' actions are simulated is highly debated. Human corticospinal excitability studies support the conjecture that a mirror mechanism encodes object-directed goals or low-level kinematic features of others' reaching and grasping actions. These interpretations lead to different experimental predictions and implications for the functional role of the simulation of others' actions. We propose that the representational granularity of the mirror mechanism cannot be any different from that of the motor system during action execution. Hence, drawing from motor control models, we propose that the building blocks of the mirror mechanism are the relatively few motor synergies explaining the variety of hand functions. The recognition of these synergies, from action observation, can be potentially very robust to visual noise and thus demonstrate a clear advantage of using motor knowledge for classifying others' action.
Sequence-specific procedural learning deficits in children with specific language impairment.
Hsu, Hsinjen Julie; Bishop, Dorothy V M
2014-05-01
This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Crash Fatality Rates After Recreational Marijuana Legalization in Washington and Colorado.
Aydelotte, Jayson D; Brown, Lawrence H; Luftman, Kevin M; Mardock, Alexandra L; Teixeira, Pedro G R; Coopwood, Ben; Brown, Carlos V R
2017-08-01
To evaluate motor vehicle crash fatality rates in the first 2 states with recreational marijuana legalization and compare them with motor vehicle crash fatality rates in similar states without recreational marijuana legalization. We used the US Fatality Analysis Reporting System to determine the annual numbers of motor vehicle crash fatalities between 2009 and 2015 in Washington, Colorado, and 8 control states. We compared year-over-year changes in motor vehicle crash fatality rates (per billion vehicle miles traveled) before and after recreational marijuana legalization with a difference-in-differences approach that controlled for underlying time trends and state-specific population, economic, and traffic characteristics. Pre-recreational marijuana legalization annual changes in motor vehicle crash fatality rates for Washington and Colorado were similar to those for the control states. Post-recreational marijuana legalization changes in motor vehicle crash fatality rates for Washington and Colorado also did not significantly differ from those for the control states (adjusted difference-in-differences coefficient = +0.2 fatalities/billion vehicle miles traveled; 95% confidence interval = -0.4, +0.9). Three years after recreational marijuana legalization, changes in motor vehicle crash fatality rates for Washington and Colorado were not statistically different from those in similar states without recreational marijuana legalization. Future studies over a longer time remain warranted.
Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R
2013-10-10
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Light-controlled intracellular transport in Caenorhabditis elegans.
Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C
2016-02-22
To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gambarini, G
2001-12-01
The main problem with the NiTi rotary instrumentation technique is instrument failure. During shaping procedures, rotary instruments might lock and/or screw into canals and, consequently, be subjected to high levels of stress. This may frequently lead to instrument separation or deformation. If a high-torque motor is used, the applied forces are usually very high and the instrument-fracture limit is often exceeded, thus increasing the risk of intracanal failure. A possible solution of this problem is to use a low-torque endodontic motor, which operates below the maximum permissible torque limit of each and every rotary instrument. During clinical instrumentation of root canals, if a torque-controlled motor is loaded right up to the instrument-specific torque, the motor stops momentarily and/or starts rotating counter-clockwise (auto-reverse function) to disengage the locked instrument. These safety mechanisms were developed to reduce the risk of instrument fracture. The author fully discusses the rationale for selecting lower torque values in everyday endodontic practice, and provides clinicians with useful information on the advantages and disadvantages of new endodontic motors with torque control.
The Interaction between Interoceptive and Action States within a Framework of Predictive Coding
Marshall, Amanda C.; Gentsch, Antje; Schütz-Bosbach, Simone
2018-01-01
The notion of predictive coding assumes that perception is an iterative process between prior knowledge and sensory feedback. To date, this perspective has been primarily applied to exteroceptive perception as well as action and its associated phenomenological experiences such as agency. More recently, this predictive, inferential framework has been theoretically extended to interoception. This idea postulates that subjective feeling states are generated by top–down inferences made about internal and external causes of interoceptive afferents. While the processing of motor signals for action control and the emergence of selfhood have been studied extensively, the contributions of interoceptive input and especially the potential interaction of motor and interoceptive signals remain largely unaddressed. Here, we argue for a specific functional relation between motor and interoceptive awareness. Specifically, we implicate interoceptive predictions in the generation of subjective motor-related feeling states. Furthermore, we propose a distinction between reflexive and pre-reflexive modes of agentic action control and suggest that interoceptive input may affect each differently. Finally, we advocate the necessity of continuous interoceptive input for conscious forms of agentic action control. We conclude by discussing further research contributions that would allow for a fuller understanding of the interaction between agency and interoceptive awareness. PMID:29515495
Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo
2009-01-01
Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan
2003-03-15
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.
Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.
Sharma, Nikhil; Baron, Jean-Claude
2015-01-01
Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other potential confounders (e.g., effort and additional muscle use) are not responsible for the changes in the cortical networks reported after stroke. This highlights that recovery of motor function after subcortical stroke involves preexisting cortical networks that could help identify more effective restorative therapies.
Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.
2014-01-01
Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546
Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A
2013-10-01
Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Remapping residual coordination for controlling assistive devices and recovering motor functions
Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Thorp, Elias; Mussa-Ivaldi, Ferdinando A.; Casadio, Maura
2015-01-01
The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any single well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human–machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user’s residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies. PMID:26341935
Remapping residual coordination for controlling assistive devices and recovering motor functions.
Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Thorp, Elias B; Mussa-Ivaldi, Ferdinando A; Casadio, Maura
2015-12-01
The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
Reaching and Grasping in Autism Spectrum Disorder: A Review of Recent Literature
Sacrey, Lori-Ann R.; Germani, Tamara; Bryson, Susan E.; Zwaigenbaum, Lonnie
2013-01-01
Impairments in motor functioning, which, until recently, have rarely been a primary focus in autism spectrum disorder (ASD) research, may play a key role in the early expression of biological vulnerability and be associated with key social-communication deficits. This review summarizes current knowledge of motor behavior in ASD, focusing specifically on reaching and grasping. Convergent data across the lifespan indicate that impairments to reaching and grasping emerge early in life, affect the planning and execution of motor programs, and may be impacted by additional impairments to sensory control of motor behavior. The relationship between motor impairments and diagnostic outcomes will be discussed. PMID:24478753
Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action
Sumner, Petroc; Nachev, Parashkev; Morris, Peter; Peters, Andrew M.; Jackson, Stephen R.; Kennard, Christopher; Husain, Masud
2007-01-01
Summary Within the medial frontal cortex, the supplementary eye field (SEF), supplementary motor area (SMA), and pre-SMA have been implicated in the control of voluntary action, especially during motor sequences or tasks involving rapid choices between competing response plans. However, the precise roles of these areas remain controversial. Here, we study two extremely rare patients with microlesions of the SEF and SMA to demonstrate that these areas are critically involved in unconscious and involuntary motor control. We employed masked-prime stimuli that evoked automatic inhibition in healthy people and control patients with lateral premotor or pre-SMA damage. In contrast, our SEF/SMA patients showed a complete reversal of the normal inhibitory effect—ocular or manual—corresponding to the functional subregion lesioned. These findings imply that the SEF and SMA mediate automatic effector-specific suppression of motor plans. This automatic mechanism may contribute to the participation of these areas in the voluntary control of action. PMID:17553420
Motor control of handwriting in the developing brain: A review.
Palmis, Sarah; Danna, Jeremy; Velay, Jean-Luc; Longcamp, Marieke
This review focuses on the acquisition of writing motor aspects in adults, and in 5-to 12-year-old children without learning disabilities. We first describe the behavioural aspects of adult writing and dominant models based on the notion of motor programs. We show that handwriting acquisition is characterized by the transition from reactive movements programmed stroke-by-stroke in younger children, to an automatic control of the whole trajectory when the motor programs are memorized at about 10 years old. Then, we describe the neural correlates of adult writing, and the changes that could occur with learning during childhood. The acquisition of a new skill is characterized by the involvement of a network more restricted in space and where neural specificity is increased in key regions. The cerebellum and the left dorsal premotor cortex are of fundamental importance in motor learning, and could be at the core of the acquisition of handwriting.
A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.
Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P
2014-12-15
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.
The Influence of Guided Error-Based Learning on Motor Skills Self-Efficacy and Achievement.
Chien, Kuei-Pin; Chen, Sufen
2018-01-01
The authors investigated the role of errors in motor skills teaching, specifically the influence of errors on skills self-efficacy and achievement. The participants were 75 undergraduate students enrolled in pétanque courses. The experimental group (guided error-based learning, n = 37) received a 6-week period of instruction based on the students' errors, whereas the control group (correct motion instruction, n = 38) received a 6-week period of instruction emphasizing correct motor skills. The experimental group had significantly higher scores in motor skills self-efficacy and outcomes than did the control group. Novices' errors reflect their schema in motor skills learning, which provides a basis for instructors to implement student-centered instruction and to facilitate the learning process. Guided error-based learning can effectively enhance beginners' skills self-efficacy and achievement in precision sports such as pétanque.
Trait impulsivity components correlate differently with proactive and reactive control
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021
Trait impulsivity components correlate differently with proactive and reactive control.
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.
Motor cortex is required for learning but not for executing a motor skill.
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P
2015-05-06
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-12-23
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
The impact of threat and cognitive stress on speech motor control in people who stutter.
Lieshout, Pascal van; Ben-David, Boaz; Lipski, Melinda; Namasivayam, Aravind
2014-06-01
In the present study, an Emotional Stroop and Classical Stroop task were used to separate the effect of threat content and cognitive stress from the phonetic features of words on motor preparation and execution processes. A group of 10 people who stutter (PWS) and 10 matched people who do not stutter (PNS) repeated colour names for threat content words and neutral words, as well as for traditional Stroop stimuli. Data collection included speech acoustics and movement data from upper lip and lower lip using 3D EMA. PWS in both tasks were slower to respond and showed smaller upper lip movement ranges than PNS. For the Emotional Stroop task only, PWS were found to show larger inter-lip phase differences compared to PNS. General threat words were executed with faster lower lip movements (larger range and shorter duration) in both groups, but only PWS showed a change in upper lip movements. For stutter specific threat words, both groups showed a more variable lip coordination pattern, but only PWS showed a delay in reaction time compared to neutral words. Individual stuttered words showed no effects. Both groups showed a classical Stroop interference effect in reaction time but no changes in motor variables. This study shows differential motor responses in PWS compared to controls for specific threat words. Cognitive stress was not found to affect stuttering individuals differently than controls or that its impact spreads to motor execution processes. After reading this article, the reader will be able to: (1) discuss the importance of understanding how threat content influences speech motor control in people who stutter and non-stuttering speakers; (2) discuss the need to use tasks like the Emotional Stroop and Regular Stroop to separate phonetic (word-bound) based impact on fluency from other factors in people who stutter; and (3) describe the role of anxiety and cognitive stress on speech motor processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Enhanced Muscle Afferent Signals during Motor Learning in Humans.
Dimitriou, Michael
2016-04-25
Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aoi, Shinya; Funato, Tetsuro
2016-03-01
Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Motor control and the management of musculoskeletal dysfunction.
van Vliet, Paulette M; Heneghan, Nicola R
2006-08-01
This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.
Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao
2017-02-22
In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.
Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P
2017-08-01
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.
Modelling and control system of multi motor conveyor
NASA Astrophysics Data System (ADS)
Kovalchuk, M. S.; Baburin, S. V.
2018-03-01
The paper deals with the actual problem of developing the mathematical model of electromechanical system: conveyor – multimotor electric drive with a frequency converter, with the implementation in Simulink/MatLab, which allows one to perform studies of conveyor operation modes, taking into account the specifics of the mechanism with different electric drives control algorithms. The authors designed the mathematical models of the conveyor and its control system that provides increased uniformity of load distribution between drive motors and restriction of dynamic loads on the belt (over-regulation until 15%).
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
The evolution of syntax: an exaptationist perspective.
Fitch, W Tecumseh
2011-01-01
The evolution of language required elaboration of a number of independent mechanisms in the hominin lineage, including systems involved in signaling, semantics, and syntax. Two perspectives on the evolution of syntax can be contrasted. The "continuist" perspective seeks the evolutionary roots of complex human syntax in simpler combinatory systems used in animal communication systems, such as iteration and sequencing. The "exaptationist" perspective posits evolutionary change of function, so that systems today used for linguistic communication might previously have served quite different functions in earlier hominids. I argue that abundant biological evidence supports an exaptationist perspective, in general, and that it must be taken seriously when considering language evolution. When applied to syntax, this suggests that core computational components used today in language could have originally served non-linguistic functions such as motor control, non-verbal thought, or spatial reasoning. I outline three specific exaptationist hypotheses for spoken language. These three hypotheses each posit a change of functionality in a precursor circuit, and its transformation into a neural circuit or region specifically involved in language today. Hypothesis 1 suggests that the precursor mechanism for intentional vocal control, specifically direct cortical control over the larynx, was manual motor control subserved by the cortico-spinal tract. The second is that the arcuate fasciculus, which today connects syntactic and lexical regions, had its origin in intracortical connections subserving vocal imitation. The third is that the specialized components of Broca's area, specifically BA 45, had their origins in non-linguistic motor control, and specifically hierarchical planning of action. I conclude by illustrating the importance of both homology (studied via primates) and convergence (typically analyzed in birds) for testing such evolutionary hypotheses.
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam
2016-01-01
Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Origin of Word-related Motor Activity
Papeo, Liuba; Lingnau, Angelika; Agosta, Sara; Pascual-Leone, Alvaro; Battelli, Lorella; Caramazza, Alfonso
2015-01-01
Conceptual processing of verbs consistently recruits the left posterior middle temporal gyrus (lpMTG). The left precentral motor cortex also responds to verbs, with higher activity for action than nonaction verbs. The early timing of this effect has suggested that motor features of words' meaning are accessed directly, bypassing access to conceptual representations in lpMTG. An alternative hypothesis is that the retrieval of conceptual representations in lpMTG is necessary to drive more specific, motor-related representations in the precentral gyrus. To test these hypotheses, we first showed that repetitive transcranial magnetic stimulation (rTMS) applied to the verb-preferring lpMTG site selectively impoverished the semantic processing of verbs. In a second experiment, rTMS perturbation of lpMTG, relative to no stimulation (no-rTMS), eliminated the action–nonaction verb distinction in motor activity, as indexed by motor-evoked potentials induced in peripheral muscles with single-pulse TMS over the left primary motor cortex. rTMS pertubation of an occipital control site, relative to no-rTMS, did not affect the action–nonaction verb distinction in motor activity, but the verb contrast did not differ reliably from the lpMTG effect. The results show that lpMTG carries core semantic information necessary to drive the activation of specific (motor) features in the precentral gyrus. PMID:24421174
Large motor units are selectively affected following a stroke.
Lukács, M; Vécsei, L; Beniczky, S
2008-11-01
Previous studies have revealed a loss of functioning motor units in stroke patients. However, it remained unclear whether the motor units are affected randomly or in some specific pattern. We assessed whether there is a selective loss of the large (high recruitment threshold) or the small (low recruitment threshold) motor units following a stroke. Forty-five stroke patients and 40 healthy controls participated in the study. Macro-EMG was recorded from the abductor digiti minimi muscle at two levels of force output (low and high). The median macro motor unit potential (macro-MUP) amplitude on the paretic side was compared with those on the unaffected side and in the controls. In the control group and on the unaffected side, the macro-MUPs were significantly larger at the high force output than at the low one. However, on the paretic side the macro-MUPs at the high force output had the same amplitude as those recorded at the low force output. These changes correlated with the severity of the paresis. Following a stroke, there is a selective functional loss of the large, high-threshold motor units. These changes are related to the severity of the symptoms. Our findings furnish further insight into the pathophysiology of the motor deficit following a stroke.
Technology for low cost solid rocket boosters.
NASA Technical Reports Server (NTRS)
Ciepluch, C.
1971-01-01
A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.
Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo
2013-05-01
New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.
Motor neurons in Drosophila flight control: could b1 be the one?
NASA Astrophysics Data System (ADS)
Whitehead, Samuel; Shirangi, Troy; Cohen, Itai
Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.
Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar
2016-04-01
Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Land, William M.; Volchenkov, Dima; Bläsing, Bettina E.; Schack, Thomas
2013-01-01
Along with superior performance, research indicates that expertise is associated with a number of mediating cognitive adaptations. To this extent, extensive practice is associated with the development of general and task-specific mental representations, which play an important role in the organization and control of action. Recently, new experimental methods have been developed, which allow for investigating the organization and structure of these representations, along with the functional structure of the movement kinematics. In the current article, we present a new approach for examining the overlap between skill representations and motor output. In doing so, we first present an architecture model, which addresses links between biomechanical and cognitive levels of motor control. Next, we review the state of the art in assessing memory structures underlying complex action. Following we present a new spatio-temporal decomposition method for illuminating the functional structure of movement kinematics, and finally, we apply these methods to investigate the overlap between the structure of motor representations in memory and their corresponding kinematic structures. Our aim is to understand the extent to which the output at a kinematic level is governed by representations at a cognitive level of motor control. PMID:24065915
Role of the dorsolateral prefrontal cortex in context-dependent motor performance.
Lee, Y-Y; Winstein, C J; Fisher, B E
2016-04-01
Context-dependent motor performance is a phenomenon in which people perform better in the environmental context where they originally practised a task. Some animal and computer simulation studies have suggested that context-dependent performance may be associated with neural activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine the role of the DLPFC in context-dependent motor performance by perturbing the neural processing of the DLPFC with repetitive transcranial magnetic stimulation (rTMS) in healthy adults. Thirty healthy adults were recruited into the Control, rTMS DLPFC and rTMS Vertex groups. The participants practised three finger sequences associated with a specific incidental context (a coloured circle and a location on the computer screen). One day following practice, the rTMS groups received 1 Hz rTMS prior to the testing conditions in which the sequence-context associations remained the same as practice (SAME) or changed (SWITCH). All three groups improved significantly over practice on day 1. The second day testing results showed that the DLPFC group had a significantly lower decrease in motor performance under the SWITCH condition than the Control and Vertex groups. This finding suggests a specific role of the DLPFC in context-dependent motor performance. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy.
Trivedi, Richa; Agarwal, Shruti; Shah, Vipul; Goyel, Puneet; Paliwal, Vimal K; Rathore, Ram K S; Gupta, Rakesh K
2010-08-01
The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP.
Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.
Cai, X; Shimansky, Y; He, Jiping
2005-01-01
A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.
Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet
2015-06-01
Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Effect of Attentional Focus Cues on Object Control Performance in Elementary Children
ERIC Educational Resources Information Center
Palmer, Kara K.; Matsuyama, Abigail L.; Irwin, J. Megan; Porter, Jared M.; Robinson, Leah E.
2017-01-01
Background and purpose: Attentional focus cues have been shown to impact motor performance of adults and children. Specifically, an external focus of attention results in improved motor learning and performance as compared to adopting an internal focus of attention. The purpose of this study was to determine the effects of an internal and external…
Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy
Sampaio, Hugo; Mowat, David; Roscioli, Tony
2017-01-01
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis. PMID:28634552
Exploring the general motor ability construct.
Ibrahim, Halijah; Heard, N Paul; Blanksby, Brian
2011-10-01
Malaysian students ages 12 to 15 years (N = 330; 165 girls, 165 boys) took the Australian Institute of Sport Talent Identification Test (AIST) and the Balance and Movement Coordination Test (BMC), developed specifically to identify sport talent in Malaysian adolescents. To investigate evidence for general aptitude ("g") in motor ability, a higher-order factor analysis was applied to the motor skills subtests from the AIST and BMC. First-order principal components analysis indicated that scores for the adolescent boys and girls could be described by similar sets of specific motor abilities. In particular, sets of skills identified as Movement Coordination and Postural Control were found, with Balancing Ability also emerging. For the girls, a factor labeled Static Balance was indicated. However, for the boys a more general balance ability labeled Kinesthetic Integration was found, along with an ability labeled Explosive Power. These first-order analyses accounted for 45% to 60% of the variance in the scores on the motor skills tests for the boys and girls, respectively. Separate second-order factor analyses for the boys and girls extracted a single higher-order factor, which was consistent with the existence of a motoric "g".
Single-session tDCS-supported retraining does not improve fine motor control in musician's dystonia.
Buttkus, Franziska; Baur, Volker; Jabusch, Hans-Christian; de la Cruz Gomez-Pellin, Maria; Paulus, Walter; Nitsche, Michael A; Altenmüller, Eckart
2011-01-01
Focal dystonia in musicians (MD) is a task-specific movement disorder with a loss of voluntary motor control during instrumental playing. Defective inhibition on different levels of the central nervous system is involved in the pathophysiology. Sensorimotor retraining is a therapeutic approach to MD and aims to establish non-dystonic movements. Transcranial direct current stimulation (tDCS) modulates cortical excitability and alters motor performance. In this study, tDCS of the motor cortex was expected to assist retraining at the instrument. Nine professional pianists suffering from MD were included in a placebo-controlled double-blinded study. Retraining consisted of slow, voluntarily controlled movements on the piano and was combined with tDCS. Patients were treated with three stimulation protocols: anodal tDCS, cathodal tDCS and placebo stimulation. No beneficial effects of single-session tDCS-supported sensorimotor retraining on fine motor control in pianists with MD were found in all three conditions. The main cause of the negative result of this study may be the short intervention time. One retraining session with a duration of 20 min seems not sufficient to improve symptoms of MD. Additionally, a single tDCS session might not be sufficient to modify sensorimotor learning of a highly skilled task in musicians with dystonia.
NASA Astrophysics Data System (ADS)
Munson, Benjamin; Deboe, Nancy
2003-10-01
A recent study (Pierrehumbert, Bent, Munson, and Bailey, submitted) found differences in vowel production between people who are lesbian, bisexual, or gay (LBG) and people who are not. The specific differences (more fronted /u/ and /a/ in the non-LB women; an overall more-contracted vowel space in the non-gay men) were not amenable to an interpretation based on simple group differences in vocal-tract geometry. Rather, they suggested that differences were either due to group differences in some other skill, such as motor control or phonological encoding, or learned. This paper expands on this research by examining vowel production, speech-motor control (measured by diadochokinetic rates), and phonological encoding (measured by error rates in a tongue-twister task) in people who are LBG and people who are not. Analyses focus on whether the findings of Pierrehumbert et al. (submitted) are replicable, and whether group differences in vowel production are related to group differences in speech-motor control or phonological encoding. To date, 20 LB women, 20 non-LB women, 7 gay men, and 7 non-gay men have participated. Preliminary analyses suggest that there are no group differences in speech motor control or phonological encoding, suggesting that the earlier findings of Pierrehumbert et al. reflected learned behaviors.
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan
2003-01-01
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891
41 CFR 109-38.5102 - Utilization controls and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Utilization controls and....5102 Utilization controls and practices. Controls and practices to be used by DOE organizations and..., or specific organizational components; (c) The maintenance of individual motor equipment use records...
Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.
Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2017-11-01
Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, P<.03, η p 2 = 0.725) and increased the activation of trunk and proximal hip muscles in specific motor modules during perturbed cutting. Balance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, P<.01, η p 2 = 0.532). Conclusion Balance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2015-02-01
Cross-sectional study of lumbopelvic muscle activation during rapid limb movements in chronic low back pain (CLBP) patients and healthy controls. Controversy exists over whether bilateral anticipatory activation of the deep abdominal muscles represents a normal motor control strategy prior to all rapid limb movements, or if this is simply a task-specific strategy appropriate for only certain movement conditions. To assess the onset timing of the transversus abdominis/internal oblique muscles (TrA/IO) during two rapid limb movement tasks with different postural demands - bilateral shoulder flexion in standing, unilateral hip extension in prone lying - as well as differences between CLBP and controls. Twelve CLBP and 13 controls performed the two tasks in response to an auditory cue. Surface EMG was acquired bilaterally from five muscles, including TrA/IO. In both groups, 50% of bilateral shoulder flexion trials showed bilateral anticipatory TrA/IO activation. This was rare, however, in unilateral hip extension for which only the TrA/IO contralateral to the moving leg showed anticipatory activation. The only significant difference in lumbo-pelvic muscle onset timing between CLBP and controls was a delay in semitendinosus activation during bilateral shoulder flexion in standing. Our data suggest that bilateral anticipatory TrA/IO activation is a task-specific motor control strategy, appropriate for only certain rapid limb movement conditions. Furthermore, the presence of altered semitendinosus onset timing in the CLBP group during bilateral shoulder flexion may be reflective of other possible lumbo-pelvic motor control alterations among this population. Copyright © 2014 Elsevier B.V. All rights reserved.
Gorgoraptis, Nikos; Wheeler-Kingshott, Claudia AM; Jenkins, Thomas M; Altmann, Daniel R; Miller, David H; Thompson, Alan J; Ciccarelli, Olga
2010-01-01
The objective was to test three motor system-specific hypotheses in multiple sclerosis patients: (i) corticospinal tract and primary motor cortex imaging measures differ between multiple sclerosis patients and controls; (ii) in patients, these measures correlate with disability; (iii) in patients, corticospinal tract measures correlate with measures of the ipsilateral primary motor cortex. Eleven multiple sclerosis patients with a history of hemiparesis attributable to a lesion within the contralateral corticospinal tract, and 12 controls were studied. We used two advanced imaging techniques: (i) diffusion-based probabilistic tractography, to obtain connectivity and fractional anisotropy of the corticospinal tract; and (ii) FreeSurfer, to measure volume, thickness, surface area, and curvature of precentral and paracentral cortices. Differences in these measures between patients and controls, and relationships between each other and to clinical scores, were investigated. Patients showed lower corticospinal tract fractional anisotropy and smaller volume and surface area of the precentral gyrus than controls. In patients, corticospinal tract connectivity and paracentral cortical volume, surface area, and curvature were lower with increasing disability; lower connectivity of the affected corticospinal tract was associated with greater surface area of the ipsilateral paracentral cortex. Corticospinal tract connectivity and new measures of the primary motor cortex, such as surface area and curvature, reflect the underlying white and grey matter damage that contributes to disability. The correlation between lower connectivity of the affected corticospinal tract and greater surface area of the ipsilateral paracentral cortex suggests the possibility of cortical adaptation. Combining tractography and cortical measures is a useful approach in testing hypotheses which are specific to clinically relevant functional systems in multiple sclerosis, and can be applied to other neurological diseases. PMID:20215478
Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.
Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín
2015-07-08
Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies.
Perceptual reasoning predicts handwriting impairments in adolescents with autism
Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.
2010-01-01
Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184
Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.
Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.
Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease
Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117
Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W
2014-01-01
Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping
2017-05-01
Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.
Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire
2016-10-05
Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.
Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons
Serrano-Velez, Jose L.; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I.; Fraser, Scott E.; Yasumura, Thomas; Vanderpool, Kimberly G.; Rash, John E.; Rosa-Molinar, Eduardo
2014-01-01
“Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors. PMID:25018700
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
Campolo, Domenico; Tommasino, Paolo; Gamage, Kumudu; Klein, Julius; Hughes, Charmayne M L; Masia, Lorenzo
2014-09-30
In the last decades more robotic manipulanda have been employed to investigate the effect of haptic environments on motor learning and rehabilitation. However, implementing complex haptic renderings can be challenging from technological and control perspectives. We propose a novel robot (H-Man) characterized by a mechanical design based on cabled differential transmission providing advantages over current robotic technology. The H-Man transmission translates to extremely simplified kinematics and homogenous dynamic properties, offering the possibility to generate haptic channels by passively blocking the mechanics, and eliminating stability concerns. We report results of experiments characterizing the performance of the device (haptic bandwidth, Z-width, and perceived impedance). We also present the results of a study investigating the influence of haptic channel compliance on motor learning in healthy individuals, which highlights the effects of channel compliance in enhancing proprioceptive information. The generation of haptic channels to study motor redundancy is not easy for actual robots because of the needs of powerful actuation and complex real-time control implementation. The mechanical design of H-Man affords the possibility to promptly create haptic channels by mechanical stoppers (on one of the motors) without compromising the superior backdriveability and high isotropic manipulability. This paper presents a novel robotic device for motor control studies and robotic rehabilitation. The hardware was designed with specific emphasis on the mechanics that result in a system that is easy to control, homogeneous, and is intrinsically safe for use. Copyright © 2014 Elsevier B.V. All rights reserved.
Basal Ganglia Contributions to Motor Control: A Vigorous Tutor
Turner, Robert S.; Desmurget, Michel
2010-01-01
SUMMARY OF RECENT ADVANCES The roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically-disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BG-recipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the BG, the globus pallidus internus (GPi). Using single-cell recording and inactivation protocols these studies provide consistent support for two hypotheses: the BG modulates movement performance (“vigor”) according to motivational factors (i.e., context-specific cost/reward functions) and the BG contributes to motor learning. Results from these studies also add to the problems that confront theories positing that the BG selects movement, inhibits unwanted motor responses, corrects errors online, or stores and produces well-learned motor skills. PMID:20850966
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-01-01
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities. DOI: http://dx.doi.org/10.7554/eLife.05151.001 PMID:25535838
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
Wu, Hai; Naya, Francisco J.; McKinsey, Timothy A.; Mercer, Brian; Shelton, John M.; Chin, Eva R.; Simard, Alain R.; Michel, Robin N.; Bassel-Duby, Rhonda; Olson, Eric N.; Williams, R. Sanders
2000-01-01
Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained. PMID:10790363
Vibration influence on control of single motor unit activity.
Malouin, F; Simard, T
1978-03-01
Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.
Bardid, Farid; Huyben, Floris; Lenoir, Matthieu; Seghers, Jan; De Martelaer, Kristine; Goodway, Jacqueline D; Deconinck, Frederik J A
2016-06-01
This study aimed to understand the fundamental motor skills (FMS) of Belgian children using the process-oriented Test of Gross Motor Development, Second Edition (TGMD-2) and to investigate the suitability of using the United States (USA) test norms in Belgium. FMS were assessed using the TGMD-2. Gender, age and motor performance were examined in 1614 Belgian children aged 3-8 years (52.1% boys) and compared with the US reference sample. More proficient FMS performance was found with increasing age, from 3 to 6 years for locomotor skills and 3 to 7 years for object control skills. Gender differences were observed in object control skills, with boys performing better than girls. In general, Belgian children had lower levels of motor competence than the US reference sample, specifically for object control skills. The score distribution of the Belgian sample was skewed, with 37.4% scoring below average and only 6.9% scoring above average. This study supported the usefulness of the TGMD-2 as a process-oriented instrument to measure gross motor development in early childhood in Belgium. However, it also demonstrated that caution is warranted when using the US reference norms. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Kaminski, Elisabeth; Hoff, Maike; Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Steele, Christopher J; Villringer, Arno; Ragert, Patrick
2013-09-27
The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gut microbiota in patients with Parkinson's disease in southern China.
Lin, Aiqun; Zheng, Wenxia; He, Yan; Tang, Wenli; Wei, Xiaobo; He, Rongni; Huang, Wei; Su, Yuying; Huang, Yaowei; Zhou, Hongwei; Xie, Huifang
2018-05-16
Accumulating evidence has revealed alterations in the communication between the gut and brain in patients with Parkinson's disease (PD), and previous studies have confirmed that alterations in the gut microbiome play an important role in the pathogenesis of numerous diseases, including PD. The aim of this study was to determine whether the faecal microbiome of PD patients in southern China differs from that of control subjects and whether the gut microbiome composition alters among different PD motor phenotypes. We compared the gut microbiota composition of 75 patients with PD and 45 age-matched controls using 16S rRNA next-generation-sequencing. We observed significant increases in the abundance of four bacterial families and significant decreases in the abundance of seventeen bacterial families in patients with PD compared to those of the controls. In particular, the abundance of Lachnospiraceae was reduced by 42.9% in patients with PD, whereas Bifidobacteriaceae was enriched in patients with PD. We did not identify a significant difference in the overall microbial composition among different PD motor phenotypes, but we identified the association between specific taxas and different PD motor phenotypes. PD is accompanied by alterations in the abundance of specific gut microbes. The abundance of certain gut microbes was altered depending on clinical motor phenotypes. Based on our findings, the gut microbiome may be a potential PD biomarker. Copyright © 2018 Elsevier Ltd. All rights reserved.
Makary, Meena M; Seulgi, Eun; Kyungmo Park
2017-07-01
Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial.
Arya, Kamal Narayan; Verma, Rajesh; Garg, R K; Sharma, V P; Agarwal, Monika; Aggarwal, G G
2012-01-01
The upper extremity motor deficit is one of the functional challenges in post stroke patients. The objective of the present study was to evaluate the effectiveness of the meaningful task-specific training (MTST) on the upper extremity motor recovery during the subacute phase after a stroke. This was a randomized, controlled, double-blinded trial in the neurology department of a university hospital and occupational therapy unit of a rehabilitation institute. A convenience sample of 103 people, 4 to 24 weeks (mean, 12.15 weeks) after the stroke, was randomized into 2 groups (MTST, 51; standard training group, 52). Subjects in the Brunnstrom stage of arm recovery of 2 to 5 were included in the study. Ninety-five participants completed the 8-week follow-up. Participants were assigned to receive either the MTST or dose-matched standard training program based on the Brunnstrom stage and Bobath neurodevelopmental technique, 4 to 5 days a week for 4 weeks. Fugl-Meyer assessment (FMA), Action Research Arm Test (ARAT), Graded Wolf Motor Function Test (GWMFT), and Motor Activity Log (MAL) were outcome measures The MTST group showed a positive improvement in the mean scores on the outcome measures at post and follow-up assessments in comparison to the control group. Further, statistically significant differences were observed in changes between the groups at post and follow-up assessment for FMA, ARAT, GWMFT, and MAL. The MTST produced statistically significant and clinically relevant improvements in the upper extremity motor recovery of the patients who had a subacute stroke.
Vukovic, Mile; Vukovic, Irena; Stojanovik, Vesna
2010-01-01
Specific language impairment (SLI) is usually defined as a developmental language disorder which does not result from a hearing loss, autism, neurological and emotional difficulties, severe social deprivation, low non-verbal abilities. Children affected with SLI typically have difficulties with the acquisition of different aspects of language and by definition, their impairment is specific to language and no other skills are affected. However, there has been a growing body of literature to suggest that children with SLI also have non-linguistic deficits, including impaired motor abilities. The aim of the current study is to investigate language and motor abilities of a group of thirty children with SLI (aged between 4 and 7) in comparison to a group of 30 typically developing children matched for chronological age. The results showed that the group of children with SLI had significantly more difficulties on the language and motor assessments compared to the control group. The SLI group also showed delayed onset in the development of all motor skills under investigation in comparison to the typically developing group. More interestingly, the two groups differed with respect to which language abilities were correlated with motor abilities, however Imitation of Complex Movements was the unique skill which reliably predicted expressive vocabulary in both typically developing children and in children with SLI. Copyright © 2010 Elsevier Ltd. All rights reserved.
Motor control in a Drosophila taste circuit
Gordon, Michael D.; Scott, Kristin
2009-01-01
Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior, and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis. PMID:19217375
The compensatory interaction between motor unit firing behavior and muscle force during fatigue
De Luca, Carlo J.; Kline, Joshua C.
2016-01-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798
The compensatory interaction between motor unit firing behavior and muscle force during fatigue.
Contessa, Paola; De Luca, Carlo J; Kline, Joshua C
2016-10-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.
Causby, Ryan S; McDonnell, Michelle N; Reed, Lloyd; Hillier, Susan L
2016-12-05
The process of using a scalpel, like all other motor activities, is dependent upon the successful integration of afferent (sensory), cognitive and efferent (motor) processes. During learning of these skills, even if motor practice is carefully monitored there is still an inherent risk involved. It is also possible that this strategy could reinforce high levels of anxiety experienced by the student and affect student self-efficacy, causing detrimental effects on motor learning. An alternative training strategy could be through targeting sensory rather than motor processes. Second year podiatry students who were about to commence learning scalpel skills were recruited. Participants were randomly allocated into sensory awareness training (Sensory), additional motor practice (Motor) or usual teaching only (Control) groups. Participants were then evaluated on psychological measures (Intrinsic Motivation Inventory) and dexterity measures (Purdue Pegboard, Grooved Pegboard Test and a grip-lift task). A total of 44 participants were included in the study. There were no baseline differences or significant differences between the three groups over time on the Perceived Competence, Effort/ Importance or Pressure/ Tension, psychological measures. All groups showed a significant increase in Perceived Competence over time (F 1,41 = 13.796, p = 0.001). Only one variable for the grip-lift task (Preload Duration for the non-dominant hand) showed a significant difference over time between the groups (F 2,41 = 3.280, p = 0.038), specifically, Motor and Control groups. The use of sensory awareness training, or additional motor practice did not provide a more effective alternative compared with usual teaching. Further research may be warranted using more engaged training, provision of supervision and greater participant numbers. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12616001428459 . Registered 13 th October 2016. Registered Retrospectively.
49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 412; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...
49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 406; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...
49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 407; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...
49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 412; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...
49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 406; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...
49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 407; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...
Grace, Nicci; Enticott, Peter Gregory; Johnson, Beth Patricia; Rinehart, Nicole Joan
2017-04-01
Handwriting is commonly identified as an area of weakness in children with autism spectrum disorder (ASD), but precise deficits have not been fully characterised. Boys with ASD (n = 23) and matched controls (n = 20) aged 8-12 years completed a simple, digitised task to objectively assess handwriting performance using advanced descriptive measures. Moderate to large associations were identified between handwriting performance and attention, ASD symptoms and motor proficiency. The ASD group demonstrated significantly less smooth movements and significantly greater sizing variability and peak velocity relative to controls. These findings provide a clearer indication of the specific nature of handwriting impairments in children with ASD, and suggest a relationship with core clinical symptom severity, attention and motor behaviours.
Marois, Pierre; Marois, Mikael; Pouliot-Laforte, Annie; Vanasse, Michel; Lambert, Jean; Ballaz, Laurent
2016-05-01
To develop a new way to interpret Gross Motor Function Measure (GMFM-66) score improvement in studies conducted without control groups in children with cerebral palsy (CP). The curves, which describe the pattern of motor development according to the children's Gross Motor Function Classification System level, were used as historical control to define the GMFM-66 expected natural evolution in children with CP. These curves have been modeled and generalized to fit the curve to particular children characteristics. Research center. Not applicable. Not applicable. Not applicable. Assuming that the GMFM-66 score evolution followed the shape of the Rosenbaum curves, by taking into account the age and GMFM-66 score of children, the expected natural evolution of the GMFM-66 score was predicted for any group of children with CP who were <8 years old. Because the expected natural evolution could be predicted for a specific group of children with CP, the efficacy of a treatment could be determined by comparing the GMFM-66 score evolution measured before and after treatment with the expected natural evolution for the same period. A new index, the Gross Motor Function Measure Evolution Ratio, was defined as follows: Gross Motor Function Measure Evolution Ratio=measured GMFM-66 score change/expected natural evolution. For practical or ethical reasons, it is almost impossible to use control groups in studies evaluating effectiveness of many therapeutic modalities. The Gross Motor Function Measure Evolution Ratio gives the opportunity to take into account the expected natural evolution of the gross motor function of children with CP, which is essential to accurately interpret the therapy effect on the GMFM-66. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Toro-Tamargo, Esther; Gimeno, Francisca; Narberhaus, Ana; Segarra, Dolors; Pueyo, Roser
2018-01-01
Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.
2015-01-01
Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p < 0.05). CTB–SAP caused minimal cell death in other brainstem or spinal cord regions. CTB–SAP: 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493
Efficient differentiation of mouse embryonic stem cells into motor neurons.
Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan
2012-06-09
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.
The effect of motor imagery with specific implement in expert badminton player.
Wang, Z; Wang, S; Shi, F-Y; Guan, Y; Wu, Y; Zhang, L-L; Shen, C; Zeng, Y-W; Wang, D-H; Zhang, J
2014-09-05
Motor skill can be improved with mental simulation. Implements are widely used in daily life and in various sports. However, it is unclear whether the utilization of implements enhances the effect of mental simulation. The present study was designed to investigate the different effects of motor imagery in athletes and novices when they handled a specific implement. We hypothesize that athletes have better motor imagery ability than novices when they hold a specific implement for the sport. This is manifested as higher motor cortical excitability in athletes than novices during motor imagery with the specific implement. Sixteen expert badminton players and 16 novices were compared when they held a specific implement such as a badminton racket and a non-specific implement such as a a plastic bar. Motor imagery ability was measured with a self-evaluation questionnaire. Transcranial magnetic stimulation was used to test the motor cortical excitability during motor imagery. Motor-evoked potentials (MEPs) in the first dorsal interosseous (FDI) and extensor carpi radialis muscles were recorded. Athletes reported better motor imagery than novices when they held a specific implement. Athletes exhibited more MEP facilitation than novices in the FDI muscle with the specific implement applied during motor imagery. The MEP facilitation is correlated with motor imagery ability in athletes. We conclude that the effects of motor imagery with a specific implement are enhanced in athletes compared to novices and the difference between two groups is caused by long-term physical training of athletes with the specific implement. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Temporal course of gene expression during motor memory formation in primary motor cortex of rats.
Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A
2016-12-01
Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.
Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A
2018-04-01
The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek
2016-12-21
Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.
Monoaminergic Modulation of Motor Cortex Function
Vitrac, Clément; Benoit-Marand, Marianne
2017-01-01
Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274
Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control
Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.
2013-01-01
Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923
Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert
2017-02-01
Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke.
Moberget, Torgeir; Ivry, Richard B
2016-04-01
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control. © 2016 New York Academy of Sciences.
Halliday, Mark H; Ferreira, Paulo H; Hancock, Mark J; Clare, Helen A
2015-06-01
To investigate if McKenzie exercises when applied to a cohort of patients with chronic LBP who have a directional preference demonstrate improved recruitment of the transversus abdominis compared to motor control exercises when measurements were assessed from ultrasound images. A randomized blinded trial with a 12-month follow-up. The Physiotherapy department of Concord Hospital a primary health care environment. 70-adults with greater than three-month history of LBP who have a directional preference. McKenzie techniques or motor control exercises for 12-sessions over eight weeks. Transversus abdominus thickness measured from real time ultrasound images, pain, global perceived effect and capacity to self-manage. This study will be the first to investigate the possible mechanism of action that McKenzie therapy and motor control exercises have on the recruitment of the transversus abdominus in a cohort of low back pain patients sub-classified with a directional preference. Patients receiving matched exercises according to their directional preference are believed to have better outcomes than those receiving unmatched exercises. A better understanding of the mechanism of action that specific treatments such as motor control exercises or McKenzie exercises have on patients classified with a directional preference will allow therapist to make a more informed choice about treatment options. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.
2017-01-01
The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267
Walking the talk--speech activates the leg motor cortex.
Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan
2008-09-01
Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.
Büschges, A; Wolf, H
1995-05-01
1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.
Medication use and the risk of motor vehicle collisions among licensed drivers: A systematic review
Rudisill, Toni M.; Zhu, Motao; Kelley, George A.; Pilkerton, Courtney; Rudisill, Brandon R.
2016-01-01
Objectives Driving under the influence of prescription and over-the-counter medication is a growing public health concern. A systematic review of the literature was performed to investigate which specific medications were associated with increased risk of motor vehicle collision (MVC). Methods The a priori inclusion criteria were: 1) studies published from English-language sources on or after January 1, 1960, 2) licensed drivers 15 years of age and older, 3) peer-reviewed publications, master's theses, doctoral dissertations, and conference papers, 4) studies limited to randomized control trials, cohort studies, case-control studies, or case-control type studies 5) outcome measure reported for at least one specific medication, 6) outcome measure reported as the odds or risk of a motor vehicle collision. Fourteen databases were examined along with hand-searching. Independent, dual selection of studies and data abstraction was performed. Results Fifty-three medications were investigated by 27 studies included in the review. Fifteen (28.3%) were associated with an increased risk of MVC. These included Buprenorphine, Codeine, Dihydrocodeine, Methadone, Tramadol, Levocitirizine, Diazepam, Flunitrazepam, Flurazepam, Lorazepam, Temazepam, Triazolam, Carisoprodol, Zolpidem, and Zopiclone. Conclusions Several medications were associated with an increased risk of MVC and decreased driving ability. The associations between specific medication use and the increased risk of MVC and/or affected driving ability are complex. Future research opportunities are plentiful and worthy of such investigation. PMID:27569655
Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel
2016-12-01
Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.
32 CFR 636.26 - Pedestrian's rights and duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.26 Pedestrian's rights and duties. (a) Pedestrians will obey all traffic control devices and regulations, unless directed to do otherwise by the Military Police. (b) When traffic-control...
Fine motor skills and executive function both contribute to kindergarten achievement
Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.
2012-01-01
This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276
Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D
2004-01-01
Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.
Rusz, Jan; Hlavnička, Jan; Tykalová, Tereza; Bušková, Jitka; Ulmanová, Olga; Růžička, Evžen; Šonka, Karel
2016-03-01
Patients with idiopathic rapid eye movement sleep behaviour disorder (RBD) are at substantial risk for developing Parkinson's disease (PD) or related neurodegenerative disorders. Speech is an important indicator of motor function and movement coordination, and therefore may be an extremely sensitive early marker of changes due to prodromal neurodegeneration. Speech data were acquired from 16 RBD subjects and 16 age- and sex-matched healthy control subjects. Objective acoustic assessment of 15 speech dimensions representing various phonatory, articulatory, and prosodic deviations was performed. Statistical models were applied to characterise speech disorders in RBD and to estimate sensitivity and specificity in differentiating between RBD and control subjects. Some form of speech impairment was revealed in 88% of RBD subjects. Articulatory deficits were the most prominent findings in RBD. In comparison to controls, the RBD group showed significant alterations in irregular alternating motion rates (p = 0.009) and articulatory decay (p = 0.01). The combination of four distinctive speech dimensions, including aperiodicity, irregular alternating motion rates, articulatory decay, and dysfluency, led to 96% sensitivity and 79% specificity in discriminating between RBD and control subjects. Speech impairment was significantly more pronounced in RBD subjects with the motor score of the Unified Parkinson's Disease Rating Scale greater than 4 points when compared to other RBD individuals. Simple quantitative speech motor measures may be suitable for the reliable detection of prodromal neurodegeneration in subjects with RBD, and therefore may provide important outcomes for future therapy trials. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin
2017-01-01
Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.
Changes of motor-cortical oscillations associated with motor learning.
Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A
2014-09-05
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Lightweight High Efficiency Electric Motors for Space Applications
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.
2011-01-01
Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Mailend, Marja-Liisa; Maas, Edwin
2013-05-01
Apraxia of speech (AOS) is considered a speech motor programming impairment, but the specific nature of the impairment remains a matter of debate. This study investigated 2 hypotheses about the underlying impairment in AOS framed within the Directions Into Velocities of Articulators (DIVA; Guenther, Ghosh, & Tourville, 2006) model: The retrieval hypothesis states that access to the motor programs is impaired, and the damaged programs hypothesis states that the motor programs themselves are damaged. The experiment used a delayed picture-word interference paradigm in which participants prepare their response and auditory distracters are presented with the go signal. The overlap between target and distracter words was manipulated (i.e., shared sounds or no shared sounds), and participants' reaction times (RTs) were measured. Participants included 5 speakers with AOS (4 with concomitant aphasia), 2 speakers with aphasia without AOS, and 9 age-matched control speakers. The control speakers showed no effects of distracter type or presence. The speakers with AOS had longer RTs in the distracter condition compared to the no-distracter condition. The speakers with aphasia without AOS were comparable to the control group in their overall RTs and RT pattern. Results provide preliminary support for the retrieval hypothesis, suggesting that access to motor programs may be impaired in speakers with AOS. However, the possibility that the motor programs may also be damaged cannot be ruled out.
Relationships between non-pathological dream-enactment and mirror behaviors.
Nielsen, Tore; Kuiken, Don
2013-09-01
Dream-enacting behaviors (DEBs) are behavioral expressions of forceful dream images often occurring during sleep-to-wakefulness transitions. We propose that DEBs reflect brain activity underlying social cognition, in particular, motor-affective resonance generated by the mirror neuron system. We developed a Mirror Behavior Questionnaire (MBQ) to assess some dimensions of mirror behaviors and investigated relationships between MBQ scores and DEBs in a large of university undergraduate cohort. MBQ scores were normally distributed and described by a four-factor structure (Empathy/Emotional Contagion, Behavioral Imitation, Sleepiness/Anger Contagion, Motor Skill Imitation). DEB scores correlated positively with MBQ total and factor scores even with social desirability, somnambulism and somniloquy controlled. Emotion-specific DEB items correlated with corresponding emotion-specific MBQ items, especially crying and smiling. Results provide preliminary evidence for cross-state relationships between propensities for dream-enacting and mirror behaviors--especially behaviors involving motor-affective resonance--and our suggestion that motor-affective resonance mediates dream-enactment imagery during sleep and emotional empathy during waking. Copyright © 2013 Elsevier Inc. All rights reserved.
How Language Is Embodied in Bilinguals and Children with Specific Language Impairment
Adams, Ashley M.
2016-01-01
This manuscript explores the role of embodied views of language comprehension and production in bilingualism and specific language impairment. Reconceptualizing popular models of bilingual language processing, the embodied theory is first extended to this area. Issues such as semantic grounding in a second language and potential differences between early and late acquisition of a second language are discussed. Predictions are made about how this theory informs novel ways of thinking about teaching a second language. Secondly, the comorbidity of speech, language, and motor impairments and how embodiment theory informs the discussion of the etiology of these impairments is examined. A hypothesis is presented suggesting that what is often referred to as specific language impairment may not be so specific due to widespread subclinical motor deficits in this population. Predictions are made about how weaknesses and instabilities in speech motor control, even at a subclinical level, may disrupt the neural network that connects acoustic input, articulatory motor plans, and semantics. Finally, I make predictions about how this information informs clinical practice for professionals such as speech language pathologists and occupational and physical therapists. These new hypotheses are placed within the larger framework of the body of work pertaining to semantic grounding, action-based language acquisition, and action-perception links that underlie language learning and conceptual grounding. PMID:27582716
Children with autism show specific handwriting impairments
Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.
2009-01-01
Background: Handwriting skills, which are crucial for success in school, communication, and building children’s self-esteem, have been observed to be poor in individuals with autism. Little information exists on the handwriting of children with autism, without delineation of specific features that can contribute to impairments. As a result, the specific aspects of handwriting in which individuals with autism demonstrate difficulty remain unknown. Methods: A case-control study of handwriting samples from children with and without autism spectrum disorders (ASD) was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also tested on the Wechsler Intelligence Scale for Children–IV and the Physical and Neurological Examination for Subtle (Motor) Signs. Results: We found that children with ASD do indeed show overall worse performance on a handwriting task than do age- and intelligence-matched controls. More specifically, children with ASD show worse quality of forming letters but do not show differences in their ability to correctly size, align, and space their letters. Within the ASD group, motor skills were significantly predictive of handwriting performance, whereas age, gender, IQ, and visuospatial abilities were not. Conclusions: We addressed how different elements of handwriting contribute to impairments observed in children with autism. Our results suggest that training targeting letter formation, in combination with general training of fine motor control, may be the best direction for improving handwriting performance in children with autism. GLOSSARY ADI-R = Autism Diagnostic Interview–Revised; ADOS-G = Autism Diagnostic Observation Schedule–Generic; ASD = autism spectrum disorders; DICA-IV = Diagnostic Interview for Children and Adolescents, 4th edition; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; FSIQ = full-scale IQ; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Indices; WISC-IV = Wechsler Intelligence Scale for Children–IV. PMID:19901244
Genetic identification of a hindbrain nucleus essential for innate vocalization.
Hernandez-Miranda, Luis Rodrigo; Ruffault, Pierre-Louis; Bouvier, Julien C; Murray, Andrew J; Morin-Surun, Marie-Pierre; Zampieri, Niccolò; Cholewa-Waclaw, Justyna B; Ey, Elodie; Brunet, Jean-Francois; Champagnat, Jean; Fortin, Gilles; Birchmeier, Carmen
2017-07-25
Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.
Bevilacqua, Frédéric; Boyer, Eric O; Françoise, Jules; Houix, Olivier; Susini, Patrick; Roby-Brami, Agnès; Hanneton, Sylvain
2016-01-01
This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Convergent transcriptional specializations in the brains of humans and song-learning birds
Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.
2015-01-01
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733
Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L; Campopiano, Rosa; Griguoli, Anna M P; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco
2017-01-01
The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson's disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.
Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L.; Campopiano, Rosa; Griguoli, Anna M. P.; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco
2017-01-01
The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented. PMID:28458632
Weerdmeester, Joanneke; Cima, Maaike; Granic, Isabela; Hashemian, Yasaman; Gotsis, Marientina
2016-08-01
The current study assessed the feasibility and effectiveness of a full-body-driven intervention videogame targeted at decreasing attention deficit hyperactivity disorder (ADHD) symptoms, specifically inattention, hyperactivity, impulsivity, and motor deficiency. The game was tested in a Dutch sample (N = 73) of school-aged children with elevated ADHD symptoms. Children assigned to the intervention condition played "Adventurous Dreaming Highflying Dragon," and those in the control condition played a comparable full-body-driven game without ADHD-focused training components. Games were played during six 15-minute sessions. Outcomes were teacher-rated ADHD symptoms and scores on neuropsychological tasks assessing motor skills, impulsivity, and sustained attention. There was some indication of greater improvement in the intervention group in comparison to the control group in terms of teacher-rated ADHD symptoms. Both groups showed equal indication of improvement in fine motor skills, but no change was found in gross motor skills. Additionally, both groups showed a deterioration in number of hits (assessing sustained attention) on the go/no-go task. Last, the intervention group showed a greater increase in false alarms (assessing impulsivity) than the control group. Dragon seems promising as a game-based intervention for children with ADHD. Children who played Dragon improved in several areas with only a short amount of gameplay (1.5 hours in total), and their satisfaction with the game was high. For future research, it is recommended to further inspect Dragon's influence on impulsivity and gross motor skills. Furthermore, it is recommended to disentangle, examine, and evaluate specific properties of videogames that might lead to positive behavioral change.
Bruno, J P; Byrnes, E M; Johnson, B J
1995-11-01
The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.
Nonverbal Social Communication and Gesture Control in Schizophrenia
Walther, Sebastian; Stegmayer, Katharina; Sulzbacher, Jeanne; Vanbellingen, Tim; Müri, René; Strik, Werner; Bohlhalter, Stephan
2015-01-01
Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities. PMID:25646526
Linear motion device and method for inserting and withdrawing control rods
Smith, Jay E.
1984-01-01
A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda
2015-01-01
Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832
Increased gamma band power during movement planning coincides with motor memory retrieval.
Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten
2016-01-15
The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.
Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.
Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
Embouchure dystonia--Portrait of a task-specific cranial dystonia.
Frucht, Steven J
2009-09-15
Focal task-specific dystonia (FTSD) is an unusual disorder of motor control, which typically affects the hand but may also involve the face, jaw, and tongue. We report 89 musicians with dystonia of the embouchure (ED), the muscles of the lower face, jaw, and tongue used to control the flow of air into the mouthpiece of a woodwind or brass instrument. Symptoms of ED began at an average age of 36, were typically painless and only rarely were preceded by trauma. Specific musical techniques commonly triggered dystonia, often in one instrumental register. Task-specific embouchure tremor and lip-pulling ED phenotypes were common among high-register brass players (trumpet and French horn), whereas lip-locking occurred exclusively in low-register brass players (trombone and tuba). Jaw and tongue ED phenotypes occurred predominantly in woodwind players, and once present, frequently spread to speaking or eating. Six percent of all ED patients had coincident writer's cramp, suggesting a possible genetic predisposition to develop dystonia. We assessed two-point sensory discrimination in the upper lip, lower lip, and hand in ED patients, normal musicians, and nonmusician age-matched controls--there were no differences between groups. Once present, symptoms of ED did not remit and often disrupted careers and livelihoods. Better treatments are urgently needed for this unusual disorder of oral motor control.
Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert
2016-01-13
Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN-DBS with TMS at short (∼ 3 ms) and medium (∼ 23 ms) intervals increased cortical excitability that lasted for up to 45 min, whereas the control condition (fixed latency of 167 ms) had no effects on cortical excitability. This is the first demonstration of associative plasticity in the STN-M1 circuits in PD patients using this novel technique. The potential therapeutic effects of combining DBS and noninvasive cortical stimulation should be investigated further. Copyright © 2016 the authors 0270-6474/16/360397-09$15.00/0.
Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.
Hage, Steffen R; Nieder, Andreas
2015-05-06
Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.
What can posturography tell us about vestibular function?
NASA Technical Reports Server (NTRS)
Black, F. O.
2001-01-01
Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed.
Romano, Jennifer C; Howard, James H; Howard, Darlene V
2010-05-01
Procedural skills such as riding a bicycle and playing a musical instrument play a central role in daily life. Such skills are learned gradually and are retained throughout life. The present study investigated 1-year retention of procedural skill in a version of the widely used serial reaction time task (SRTT) in young and older motor-skill experts and older controls in two experiments. The young experts were college-age piano and action video-game players, and the older experts were piano players. Previous studies have reported sequence-specific skill retention in the SRTT as long as 2 weeks but not at 1 year. Results indicated that both young and older experts and older non-experts revealed sequence-specific skill retention after 1 year with some evidence that general motor skill was retained as well. These findings are consistent with theoretical accounts of procedural skill learning such as the procedural reinstatement theory as well as with previous studies of retention of other motor skills.
Two-motor direct drive control for elevation axis of telescope
NASA Astrophysics Data System (ADS)
Tang, T.; Tan, Y.; Ren, G.
2014-07-01
Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.
Integrated regulation of motor-driven organelle transport by scaffolding proteins.
Fu, Meng-meng; Holzbaur, Erika L F
2014-10-01
Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fine motor skills and executive function both contribute to kindergarten achievement.
Cameron, Claire E; Brock, Laura L; Murrah, William M; Bell, Lindsay H; Worzalla, Samantha L; Grissmer, David; Morrison, Frederick J
2012-01-01
This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n=213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall of kindergarten, and Woodcock-Johnson III Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
Intermediate Cognitive Phenotypes in Bipolar Disorder
Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.
2013-01-01
Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130
Halder, S; Käthner, I; Kübler, A
2016-02-01
Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force
Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.
2013-01-01
Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2015-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2016-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535
D'Angelo, Maria C; Jiménez, Luis; Milliken, Bruce; Lupiáñez, Juan
2013-01-01
Individuals experience less interference from conflicting information following events that contain conflicting information. Recently, Jiménez, Lupiáñez, and Vaquero (2009) demonstrated that such adaptations to conflict occur even when the source of conflict arises from implicit knowledge of sequences. There is accumulating evidence that momentary changes in adaptations made in response to conflicting information are conflict-type specific (e.g., Funes, Lupiáñez, & Humphreys, 2010a), suggesting that there are multiple modes of control. The current study examined whether conflict-specific sequential congruency effects occur when the 2 sources of conflict are implicitly learned. Participants implicitly learned a motor sequence while simultaneously learning a perceptual sequence. In a first experiment, after learning the 2 orthogonal sequences, participants expressed knowledge of the 2 sequences independently of each other in a transfer phase. In Experiments 2 and 3, within each sequence, the presence of a single control trial disrupted the expression of this specific type of learning on the following trial. There was no evidence of cross-conflict modulations in the expression of sequence learning. The results suggest that the mechanisms involved in transient shifts in conflict-specific control, as reflected in sequential congruency effects, are also engaged when the source of conflict is implicit. (c) 2013 APA, all rights reserved.
Interaction between telencephalic signals and respiratory dynamics in songbirds
Méndez, Jorge M.; Mindlin, Gabriel B.
2012-01-01
The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649
Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.
Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C
2018-01-01
Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santos-García, Diego; Mir, Pablo; Cubo, Esther; Vela, Lydia; Rodríguez-Oroz, Mari Cruz; Martí, Maria José; Arbelo, José Matías; Infante, Jon; Kulisevsky, Jaime; Martínez-Martín, Pablo
2016-02-25
Parkinson's disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms that can affect independence, social adjustment and the quality of life (QoL) of both patients and caregivers. Studies designed to find diagnostic and/or progression biomarkers of PD are needed. We describe here the study protocol of COPPADIS-2015 (COhort of Patients with PArkinson's DIsease in Spain, 2015), an integral PD project based on four aspects/concepts: 1) PD as a global disease (motor and non-motor symptoms); 2) QoL and caregiver issues; 3) Biomarkers; 4) Disease progression. Observational, descriptive, non-interventional, 5-year follow-up, national (Spain), multicenter (45 centers from 15 autonomous communities), evaluation study. Specific goals: (1) detailed study (clinical evaluations, serum biomarkers, genetic studies and neuroimaging) of a population of PD patients from different areas of Spain, (2) comparison with a control group and (3) follow-up for 5 years. COPPADIS-2015 has been specifically designed to assess 17 proposed objectives. approximately 800 non-dementia PD patients, 600 principal caregivers and 400 control subjects. Study evaluations: (1) baseline includes motor assessment (e.g., Unified Parkinson's Disease Rating Scale part III), non-motor symptoms (e.g., Non-Motor Symptoms Scale), cognition (e.g., Parkinson's Disease Cognitive Rating Scale), mood and neuropsychiatric symptoms (e.g., Neuropsychiatric Inventory), disability, QoL (e.g., 39-item Parkinson's disease Quality of Life Questionnaire Summary-Index) and caregiver status (e.g., Zarit Caregiver Burden Inventory); (2) follow-up includes annual (patients) or biannual (caregivers and controls) evaluations. Serum biomarkers (S-100b protein, TNF-α, IL-1, IL-2, IL-6, vitamin B12, methylmalonic acid, homocysteine, uric acid, C-reactive protein, ferritin, iron) and brain MRI (volumetry, tractography and MTAi [Medial Temporal Atrophy Index]), at baseline and at the end of follow-up, and genetic studies (DNA and RNA) at baseline will be performed in a subgroup of subjects (300 PD patients and 100 control subjects). Study periods: (1) recruitment period, from November, 2015 to February, 2017 (basal assessment); (2) follow-up period, 5 years; (3) closing date of clinical follow-up, May, 2022. Public/Private. COPPADIS-2015 is a challenging initiative. This project will provide important information on the natural history of PD and the value of various biomarkers.
Sensorimotor integration in chronic stroke: Baseline differences and response to sensory training.
Brown, Katlyn E; Neva, Jason L; Feldman, Samantha J; Staines, W Richard; Boyd, Lara A
2018-01-01
The integration of somatosensory information from the environment into the motor cortex to inform movement is essential for motor function. As motor deficits commonly persist into the chronic phase of stroke recovery, it is important to understand potential contributing factors to these deficits, as well as their relationship with motor function. To date the impact of chronic stroke on sensorimotor integration has not been thoroughly investigated. The current study aimed to comprehensively examine the influence of chronic stroke on sensorimotor integration, and determine whether sensorimotor integration can be modified with an intervention. Further, it determined the relationship between neurophysiological measures of sensorimotor integration and motor deficits post-stroke. Fourteen individuals with chronic stroke and twelve older healthy controls participated. Motor impairment and function were quantified in individuals with chronic stroke. Baseline neurophysiology was assessed using nerve-based measures (short- and long-latency afferent inhibition, afferent facilitation) and vibration-based measures of sensorimotor integration, which paired vibration with single and paired-pulse TMS techniques. Neurophysiological assessment was performed before and after a vibration-based sensory training paradigm to assess changes within these circuits. Vibration-based, but not nerve-based measures of sensorimotor integration were different in individuals with chronic stroke, as compared to older healthy controls, suggesting that stroke differentially impacts integration of specific types of somatosensory information. Sensorimotor integration was behaviourally relevant in that it related to both motor function and impairment post-stroke. Finally, sensory training modulated sensorimotor integration in individuals with chronic stroke and controls. Sensorimotor integration is differentially impacted by chronic stroke based on the type of afferent feedback. However, both nerve-based and vibration-based measures relate to motor impairment and function in individuals with chronic stroke.
Quantitative Motor Performance and Sleep Benefit in Parkinson Disease
van Gilst, Merel M.; van Mierlo, Petra; Bloem, Bastiaan R.; Overeem, Sebastiaan
2015-01-01
Study Objectives: Many people with Parkinson disease experience “sleep benefit”: temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Design: Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. Results: On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. Conclusions: A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. Citation: van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. SLEEP 2015;38(10):1567–1573. PMID:25902811
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng
2013-06-12
The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.
Nichols, Nicole L; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S
2015-05-01
Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; p<0.05). CTB-SAP caused minimal cell death in other brainstem or spinal cord regions. 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7days post-25μg, 0.3±0.07V; CTB+SAP: 1.5±0.3; n=9; p<0.05). Intrapleural CTB-SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. Copyright © 2014 Elsevier Inc. All rights reserved.
Taylor, Jacob; Anderson, William S; Brandt, Jason; Mari, Zoltan; Pontone, Gregory M
2016-12-01
Although Parkinson disease (PD) is defined clinically by its motor symptoms, it is increasingly recognized that much of the disability and worsened quality of life experienced by patients with PD is attributable to psychiatric symptoms. The authors describe a model of multidisciplinary care that enables these symptoms to be effectively managed. They describe neuropsychiatric complications of PD itself and pharmacologic and neurostimulation treatments for parkinsonian motor symptoms and discuss the management of these complications. Specifically, they describe the clinical associations between motor fluctuations and anxiety and depressive symptoms, the compulsive overuse of dopaminergic medications prescribed for motor symptoms (the dopamine dysregulation syndrome), and neuropsychiatric complications of these medications, including impulse control disorders, psychosis, and manic syndromes. Optimal management of these problems requires close collaboration across disciplines because of the potential for interactions among the pathophysiologic process of PD, motor symptoms, dopaminergic drugs, and psychiatric symptoms. The authors emphasize how their model of multidisciplinary care facilitates close collaboration among psychiatrists, other mental health professionals, neurologists, and functional neurosurgeons and how this facilitates effective care for patients who develop the specific neuropsychiatric complications discussed. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.
van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan
2015-10-01
Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.
Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2017-01-01
Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n = 14) and healthy controls ( n = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the individual susceptibility to iTBS after stroke is influenced by interindividual differences in motor network connectivity of the lesioned hemisphere.
Barnett, Lisa M; Lai, Samuel K; Veldman, Sanne L C; Hardy, Louise L; Cliff, Dylan P; Morgan, Philip J; Zask, Avigdor; Lubans, David R; Shultz, Sarah P; Ridgers, Nicola D; Rush, Elaine; Brown, Helen L; Okely, Anthony D
2016-11-01
Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed. The aim of this systematic review was to identify the potential correlates of gross motor competence in typically developing children and adolescents (aged 3-18 years) using an ecological approach. Motor competence was defined as gross motor skill competency, encompassing fundamental movement skills and motor coordination, but excluding motor fitness. Studies needed to assess a summary score of at least one aspect of motor competence (i.e., object control, locomotor, stability, or motor coordination). A structured electronic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Six electronic databases (CINAHL Complete, ERIC, MEDLINE Complete, PsycINFO ® , Scopus and SPORTDiscus with Full Text) were searched from 1994 to 5 August 2014. Meta-analyses were conducted to determine the relationship between potential correlates and motor competency if at least three individual studies investigated the same correlate and also reported standardized regression coefficients. A total of 59 studies were identified from 22 different countries, published between 1995 and 2014. Studies reflected the full range of age groups. The most examined correlates were biological and demographic factors. Age (increasing) was a correlate of children's motor competence. Weight status (healthy), sex (male) and socioeconomic background (higher) were consistent correlates for certain aspects of motor competence only. Physical activity and sport participation constituted the majority of investigations in the behavioral attributes and skills category. Whilst we found physical activity to be a positive correlate of skill composite and motor coordination, we also found indeterminate evidence for physical activity being a correlate of object control or locomotor skill competence. Few studies investigated cognitive, emotional and psychological factors, cultural and social factors or physical environment factors as correlates of motor competence. This systematic review is the first that has investigated correlates of gross motor competence in children and adolescents. A strength is that we categorized correlates according to the specific ways motor competence has been defined and operationalized (object control, motor coordination, etc.), which enables us to have an understanding of what correlates assist what types of motor competence. Indeed our findings do suggest that evidence for some correlates differs according to how motor competence is operationalized.
Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.
Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula
2017-12-01
Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.
Varlet, Manuel; Marin, Ludovic; Capdevielle, Delphine; Del-Monte, Jonathan; Schmidt, R. C.; Salesse, Robin N.; Boulenger, Jean-Philippe; Bardy, Benoît G.; Raffard, Stéphane
2014-01-01
Defined by a persistent fear of embarrassment or negative evaluation while engaged in social interaction or public performance, social anxiety disorder (SAD) is one of the most common psychiatric syndromes. Previous research has made a considerable effort to better understand and assess this mental disorder. However, little attention has been paid to social motor behavior of patients with SAD despite its crucial importance in daily social interactions. Previous research has shown that the coordination of arm, head or postural movements of interacting people can reflect their mental states or feelings such as social connectedness and social motives, suggesting that interpersonal movement coordination may be impaired in patients suffering from SAD. The current study was specifically aimed at determining whether SAD affects the dynamics of social motor coordination. We compared the unintentional and intentional rhythmic coordination of a SAD group (19 patients paired with control participants) with the rhythmic coordination of a control group (19 control pairs) in an interpersonal pendulum coordination task. The results demonstrated that unintentional social motor coordination was preserved with SAD while intentional coordination was impaired. More specifically, intentional coordination became impaired when patients with SAD had to lead the coordination as indicated by poorer (i.e., more variable) coordination. These differences between intentional and unintentional coordination as well as between follower and leader roles reveal an impaired coordination dynamics that is specific to SAD, and thus, opens promising research directions to better understand, assess and treat this mental disorder. PMID:24567707
The Interplay between Executive Control and Motor Functioning in Williams Syndrome
ERIC Educational Resources Information Center
Hocking, Darren R.; Thomas, Daniel; Menant, Jasmine C.; Porter, Melanie A.; Smith, Stuart; Lord, Stephen R.; Cornish, Kim M.
2013-01-01
Previous studies suggest that individuals with Williams syndrome (WS), a rare genetically based neurodevelopmental disorder, show specific weaknesses in visual attention and response inhibition within the visuospatial domain. Here we examine the extent to which impairments in attentional control extend to the visuomotor domain using a…
External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.
Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N
2018-04-01
Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.
Motor regulation problems and pain in adults diagnosed with ADHD
2013-01-01
Background Most children who are diagnosed with attention deficit-hyperactivity disorder (ADHD) have moderate-to-severe motor problems using the Motor Function Neurological Assessment battery (MFNU). The MFNU focuses on specific muscle adjustment problems associated with ADHD, especially motor inhibition problems and high muscle tone. Here we investigated whether adults with ADHD/hyperkinetic disorder (HKD) have similar motor problems. In our clinical experience, adults with ADHD often complain about back, shoulder, hip, and leg pain. We also investigate reported pain in adults with ADHD. Methods Twenty-five adult outpatients diagnosed with ADHD/HKD who were responders to methylphenidate (MPH) were compared to 23 non-ADHD controls on 16 MFNU subtests and using a ‘total score’ (‘TS’) parameter. The MFNU test leader was blinded to group identity. The two groups were also compared using the Pain Drawing and Numerical Pain Rating Scale. Results The adult ADHD group had significantly (p < .001) more motor problems (higher TS) than controls. On the muscle regulation subtests, 36–96% of the ADHD group showed ‘moderate’ to ‘severe’ problems compared to 13–52% of the control group, and 80% of the ADHD group reported widespread pain. Highly significant differences were found between the ADHD and control groups for the variables ‘pain level’ (p < .001) and ‘pain location’ (p < .001). Significant correlations were found between TS and ‘pain location’ and between TS and ‘pain level’. Conclusions These findings suggest that similar to children with ADHD, adults diagnosed with ADHD also have motor inhibition problems and heightened muscle tone. The presence of significantly higher pain levels and more widespread pain in the ADHD group compared to non-ADHD controls might indicate that pain is a long-term secondary effect of heightened muscle tone and restricted movement that can be demonstrated in children and adults by the MFNU battery. PMID:23642255
Sensorimotor integration for functional recovery and the Bobath approach.
Levin, Mindy F; Panturin, Elia
2011-04-01
Bobath therapy is used to treat patients with neurological disorders. Bobath practitioners use hands-on approaches to elicit and reestablish typical movement patterns through therapist-controlled sensorimotor experiences within the context of task accomplishment. One aspect of Bobath practice, the recovery of sensorimotor function, is reviewed within the framework of current motor control theories. We focus on the role of sensory information in movement production, the relationship between posture and movement and concepts related to motor recovery and compensation with respect to this therapeutic approach. We suggest that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is the lack of a unified framework for both experimental identification and treatment of neurological motor deficits. More conclusive analysis of therapeutic effectiveness requires the development of specific outcomes that measure movement quality.
Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for
NASA Technical Reports Server (NTRS)
Denson, Erik C.
2014-01-01
This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.
van der Kolk, Nicolien M; Overeem, Sebastiaan; de Vries, Nienke M; Kessels, Roy P C; Donders, Rogier; Brouwer, Marc; Berg, Daniela; Post, Bart; Bloem, Bas R
2015-04-16
Parkinson's disease (PD) is a neurodegenerative disorder with a wide range of motor and non-motor symptoms. Despite optimal medical management, PD still results in a high disability rate and secondary complications and many patients lead a sedentary lifestyle, which in turn is also associated with a higher co-morbidity and mortality. Exercise has been explored as a strategy to reduce secondary complications and results suggests that it not only provides general health benefits, but may also provide symptomatic relief. If this holds true exercise would be a very attractive addition to the therapeutic arsenal in PD. The supportive evidence remains incomplete. Here, we describe the design of the Park-in-Shape study, which primarily aims to evaluate whether aerobic exercise affords clinically relevant improvements in motor symptoms in sedentary PD patients. A specific new element is the introduction of gaming to optimize compliance to the exercise intervention. The Park-in-Shape study is a randomized controlled, assessor- and patient-blinded single center study. Two parallel groups will include a total of 130 patients, receiving either aerobic exercise on a home trainer equipped with gaming elements ("exergaming"), or a non-aerobic intervention (stretching, flexibility and relaxation exercises). Both groups are supported by a specifically designed motivational app that uses gaming elements to stimulate patients to exercise and rewards them after having completed the exercise. Both interventions are delivered at home at least 3 times a week for 30-45 minutes during 6 months. Eligible patients are community-dwelling, sedentary patients diagnosed with mild-moderate PD. The primary outcome is the MDS-UPDRS motor score (tested in the off state) after 6 months. Secondary outcomes include various motor and non-motor symptoms, quality of life, physical fitness, and adherence. This Park-in-Shape study is anticipated to answer the question whether high intensity aerobic exercise combined with gaming elements ("exergaming") provides symptomatic relief in PD. Strong elements include the double-blinded randomized controlled trial design, the MDS-UPDRS as valid primary outcome, the large sample size and unique combination of home-based pure aerobic exercise combined with gaming elements and motivational aspects. Dutch trial register NTR4743.
Effect of biased feedback on motor imagery learning in BCI-teleoperation system.
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2014-01-01
Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.
Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin
Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie
2013-01-21
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Invariant principles of speech motor control that are not language-specific.
Chakraborty, Rahul
2012-12-01
Bilingual speakers must learn to modify their speech motor control mechanism based on the linguistic parameters and rules specified by the target language. This study examines if there are aspects of speech motor control which remain invariant regardless of the first (L1) and second (L2) language targets. Based on the age of academic exposure and proficiency in L2, 21 Bengali-English bilingual participants were classified into high (n = 11) and low (n = 10) L2 (English) proficiency groups. Using the Optotrak 3020 motion sensitive camera system, the lips and jaw movements were recorded while participants produced Bengali (L1) and English (L2) sentences. Based on kinematic analyses of the lip and jaw movements, two different variability measures (i.e., lip aperture and lower lip/jaw complex) were computed for English and Bengali sentences. Analyses demonstrated that the two groups of bilingual speakers produced lip aperture complexes (a higher order synergy) that were more consistent in co-ordination than were the lower lip/jaw complexes (a lower order synergy). Similar findings were reported earlier in monolingual English speakers by Smith and Zelaznik. Thus, this hierarchical organization may be viewed as a fundamental principle of speech motor control, since it is maintained even in bilingual speakers.
Arshavsky, I; Deliagina, T G; Orlovsky, G N
2015-01-01
Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
Vogt, Tobias; Kato, Kouki; Schneider, Stefan; Türk, Stefan; Kanosue, Kazuyuki
2017-04-01
Research on motor behavioural processes preceding voluntary movements often refers to analysing the readiness potential (RP). For this, decades of studies used laboratory setups with controlled sports-related actions. Further, recent applied approaches focus on athlete-non-athlete comparisons, omitting possible effects of training history on RP. However, RP preceding real sport-specific movements in accordance to skill acquisition remains to be elucidated. Therefore, after familiarization 16 right-handed males with no experience in archery volunteered to perform repeated sports-specific movements, i.e. 40 arrow-releasing shots at 60s rest on a 15m distant standard target. Continuous, synchronised EEG and right limb EMG recordings during arrow-releasing served to detect movement onsets for RP analyses over distinct cortical motor areas. Based on attained scores on target, archery novices were, a posteriori, subdivided into a skilled and less skilled group. EMG results for mean values revealed no significant changes (all p>0.05), whereas RP amplitudes and onsets differed between groups but not between motor areas. Arrow-releasing preceded larger RP amplitudes (p<0.05) and later RP onsets (p<0.05) in skilled compared to less skilled novices. We suggest this to reflect attentional orienting and greater effort that accompanies central neuronal preparatory states of a sports-specific movement. Copyright © 2017 Elsevier B.V. All rights reserved.
Flywheel energy storage for electromechanical actuation systems
NASA Technical Reports Server (NTRS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
1991-01-01
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Flywheel energy storage for electromechanical actuation systems
NASA Astrophysics Data System (ADS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Effects of practice schedule and task specificity on the adaptive process of motor learning.
Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar
2017-10-01
This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.
Perceptual and Motor Inhibition in Adolescents/Young Adults with Childhood-Diagnosed ADHD
Bedard, Anne-Claude V.; Trampush, Joey W.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.
2010-01-01
Objective This study examined perceptual and motor inhibition in a longitudinal sample of adolescents/young adults who were diagnosed with ADHD in childhood, and as a function of the relative persistence of ADHD. Method Ninety-eight participants diagnosed with ADHD in childhood were re-evaluated approximately 10 years later. Eighty-five never-ADHD controls similar in age, IQ, sociodemographic background, and gender distribution served as a comparison group. Participants were administered a psychiatric interview and the Stimulus and Response Conflict Tasks (Nassauer & Halperin, 2003). Results Participants with childhood ADHD demonstrated slower and less accurate responses to both control and conflict conditions relative to the comparison group, as well as more variable responses in both conditions of the motor inhibition task; there was no specific effect of childhood ADHD on perceptual or motor inhibition. ADHD persisters and partial remitters did not differ in overall accuracy, speed or variability in responding, but relative to partial remitters, persisters demonstrated greater slowing in response to perceptual conflict. Conclusions These findings are consistent with theories positing state regulation, but not inhibitory control deficits in the etiology of ADHD, and suggest that improved perceptual inhibition may be associated with better outcome for ADHD. PMID:20604617
Electro-Mechanical Actuator. DC Resonant Link Controller
NASA Technical Reports Server (NTRS)
Schreiner, Kenneth E.
1996-01-01
This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.
Commercializing a U.S. piezoceramic linear motor
NASA Astrophysics Data System (ADS)
Diehl, Rick W.
2000-06-01
A small low-cost piezoceramic linear motor has been developed in the US and is being commercialized by EDO Corporation, working with a leading motion control OEM and with a prominent US corporate research laboratory. First generation motor design has emphasized high displacement at up to 200mm per second velocity with 3.5 Newtons force with high resolution, short time constant and a 15 volt power supply at a cost of less than 100 dollars. Motor dimensions of 30 by 50 by 4 mm allow broad configuration choices, al hidden within the motion control slide. The EDO approach was to build on its core competence in high reliability electroceramic material engineering and production, and to use a strategy of back-integrating, or outsourcing of recent advances outside Edo in piezoceramics, while forward- integrating into specific emerging applications known intimately by the OEM in the market. The strategy provided design focus that has led to a cost-effective advance in 'solid-state actuation and control'. This is considered a classic case of successful industrial integration of an enabling technology across organizations in order to access the needed mix of technology for development of an innovative and competitive solution.
Obesity-related differences in neural correlates of force control.
Mehta, Ranjana K; Shortz, Ashley E
2014-01-01
Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).
Chehrehrazi, Mahshid; Sanjari, Mohammad Ali; Mokhtarinia, Hamid Reza; Jamshidi, Ali Ashraf; Maroufi, Nader; Parnianpour, Mohamad
2017-01-01
Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading; each at two levels. A goal function for the task was defined as maintaining a constant movement time at each cycle. Given the GEM, flexibility index and performance index were calculated respectively as amounts of goal-equivalent variability and the ratio of goal-equivalent to non-goal-equivalent variability. CNSLBP group was as similar as healthy individuals in both flexibility index (p=0.41) and performance index (p=0.24). Performance index was higher in asymmetric (p<0.001), high velocity (p<0.001), and loaded (p=0.006) conditions. Performance and flexibility in using motor abundance were influenced by repeated trunk flexion/extension conditions. However, these measures were not significantly affected by CNSLBP. Copyright © 2016 Elsevier B.V. All rights reserved.
Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis
Tseng, Shih-Chiao
2010-01-01
Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199
Morand-Beaulieu, Simon; O'Connor, Kieron P; Sauvé, Geneviève; Blanchet, Pierre J; Lavoie, Marc E
2015-12-01
Tic disorders, such as the Gilles de la Tourette syndrome and persistent tic disorder, are neurodevelopmental movement disorders involving impaired motor control. Hence, patients show repetitive unwanted muscular contractions in one or more parts of the body. A cognitive-behavioral therapy, with a particular emphasis on the psychophysiology of tic expression and sensorimotor activation, can reduce the frequency and intensity of tics. However, its impact on motor activation and inhibition is not fully understood. To study the effects of a cognitive-behavioral therapy on electrocortical activation, we recorded the event-related potentials (ERP) and lateralized readiness potentials (LRP), before and after treatment, of 20 patients with tic disorders and 20 healthy control participants (matched on age, sex and intelligence), during a stimulus-response compatibility inhibition task. The cognitive-behavioral therapy included informational, awareness training, relaxation, muscle discrimination, cognitive restructuration and relapse prevention strategies. Our results revealed that prior to treatment; tic patients had delayed stimulus-locked LRP onset latency, larger response-locked LRP peak amplitude, and a frontal overactivation during stimulus inhibition processing. Both stimulus-locked LRP onset latency and response-locked LRP peak amplitude normalized after the cognitive behavioral therapy completion. However, the frontal overactivation related to inhibition remained unchanged following therapy. Our results showed that P300 and reaction times are sensitive to stimulus-response compatibility, but are not related to tic symptoms. Secondly, overactivity of the frontal LPC and impulsivity in TD patients were not affected by treatment. Finally, CBT had normalizing effects on the activation of the pre-motor and motor cortex in TD patients. These results imply specific modifications of motor processes following therapy, while inhibition processes remained unchanged. Given that LRPs are partially generated within the sensorimotor and supplementary motor area, the reported reduction in tic frequency and improvements of LRPs components suggest that CBT induced a physiological change in patients' motor area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Jacob, Pedro F; Hedwig, Berthold
2016-08-01
Decoding the neural basis of behaviour requires analysing how the nervous system is organised and how the temporal structure of motor patterns emerges from its activity. The stereotypical patterns of the calling song behaviour of male crickets, which consists of chirps and pulses, is an ideal model to study this question. We applied selective lesions to the abdominal nervous system of field crickets and performed long-term acoustic recordings of the songs. Specific lesions to connectives or ganglia abolish singing or reliably alter the temporal features of the chirps and pulses. Singing motor control appears to be organised in a modular and hierarchically fashion, where more posterior ganglia control the timing of the chirp pattern and structure and anterior ganglia the timing of the pulses. This modular organisation may provide the substrate for song variants underlying calling, courtship and rivalry behaviour and for the species-specific song patterns in extant crickets. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun
2013-01-01
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. PMID:23208423
Parental questionnaire as a screening instrument for motor function at age five.
Nordbye-Nielsen, Kirsten; Kesmodel, Ulrik Schiøler
2014-12-01
No standardised method is used to determine motor function in children in general practice in Denmark. Our aim was to evaluate the correlation between a parental questionnaire assessing motor function at the age of five years and the clinical test Movement Assessment Battery for Children (M-ABC), and to assess whether one or more questions could be used to screen for motor problems at the age of five years. This study was based on a parental questionnaire containing ten questions. The M-ABC was used as the gold standard. n = 755 children. The Mann-Whitney rank sum test, Pearson's χ(2)-test, logistic regression analyses and sensitivity and specificity were used to assess the correlation between the questionnaire and the M-ABC test. The best screening tool was six questions in combination: sensitivity 39.8%, specificity 87.1%. Asking if a health professional ever expressed concern about the childs motor development had a sensitivity of 17.0% and a specificity of 93.9%. A parental questionnaire used as a screening instrument to identify children with motor problems has a reasonable specificity, but a low sensitivity. The six questions can be used to identify children who do not have motor function difficulties with a relatively high certainty, and it can fairly well identify children with motor function problems. This study was primarily supported by the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Additional support was obtained from The Danish Health and Medicines Authority, the Lundbeck Foundation, Ludvig & Daara Elsass Foundation, the Augustinus Foundation, and Aase & Ejnar Danielsens Foundation. The Danish National Research Foundation has established the Danish Epidemiology Science Centre that initiated and created the Danish National Birth Cohort. The cohort is furthermore a result of a major grant from this Foundation. Additional support for the Danish National Birth Cohort is obtained from the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation and the Health Foundation. Approved by the Danish National Birth Cohort (DNBC) Board of Directors, the DNBC Steering Committee, the Regional Ethics Committee, the Danish Data Protection Agency and the CDC Institutional Review Board.
tDCS over the motor cortex improves lexical retrieval of action words in poststroke aphasia.
Branscheidt, Meret; Hoppe, Julia; Zwitserlood, Pienie; Liuzzi, Gianpiero
2018-02-01
One-third of stroke survivors worldwide suffer from aphasia. Speech and language therapy (SLT) is considered effective in treating aphasia, but because of time constraints, improvements are often limited. Noninvasive brain stimulation is a promising adjuvant strategy to facilitate SLT. However, stroke might render "classical" language regions ineffective as stimulation sites. Recent work showed the effectiveness of motor cortex stimulation together with intensive naming therapy to improve outcomes in aphasia (Meinzer et al. 2016). Although that study highlights the involvement of the motor cortex, the functional aspects by which it influences language remain unclear. In the present study, we focus on the role of motor cortex in language, investigating its functional involvement in access to specific lexico-semantic (object vs. action relatedness) information in poststroke aphasia. To this end, we tested effects of anodal transcranial direct current stimulation (tDCS) to the left motor cortex on lexical retrieval in 16 patients with poststroke aphasia in a sham-controlled, double-blind study design. Critical stimuli were action and object words, and pseudowords. Participants performed a lexical decision task, deciding whether stimuli were words or pseudowords. Anodal tDCS improved accuracy in lexical decision, especially for words with action-related content and for pseudowords with an "action-like" ending ( t 15 = 2.65, P = 0.036), but not for words with object-related content and pseudowords with "object-like" characteristics. We show as a proof-of-principle that the motor cortex may play a specific role in access to lexico-semantic content. Thus motor-cortex stimulation may strengthen content-specific word-to-semantic concept associations during language treatment in poststroke aphasia. NEW & NOTEWORTHY The role of motor cortex (MC) in language processing has been debated in both health and disease. Recent work has suggested that MC stimulation together with speech and language therapy enhances outcomes in aphasia. We show that MC stimulation has a differential effect on object- and action-word processing in poststroke aphasia. We propose that MC stimulation may specifically strengthen word-to-semantic concept association in aphasia. Our results potentially provide a way to tailor therapies for language rehabilitation.
Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz
2017-02-01
Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic parameters. Slowed activation kinetics of muscles reduced frequency modulation and, unexpectedly, caused a distinct decrease in sound amplitude and increase in phonation onset pressure. These results show that active control enhances the efficiency of energy conversion in the syrinx. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Roshani, Amir; Erfanian, Abbas
2016-08-01
Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.
Distributed task-specific processing of somatosensory feedback for voluntary motor control
Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H
2016-01-01
Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949
Development of a PLC modem for data transmission over a PWM power supply
NASA Astrophysics Data System (ADS)
Batard, Christophe; Ginot, Nicolas; Mannah, Marc Anthony; Millet, Christophe; Poitiers, Frédéric
2014-04-01
In variable-speed electrical drive and online conditioning monitoring, a feedback loop is required in order to transmit the sensor information from the motor to the controller close to the inverter. Additional cabling is used for signalling. This extra cabling has a significant cost and data transmission may not be reliable. Thus, the use of power line communication (PLC) technology to transmit data in motor drive application is quite interesting. The use of a PLC modem dedicated to the home network in a three-phase inverter-fed motor power cable does not work. Therefore, specific coupling interfaces are developed to transmit data through a pulse-width modulated power supply. Laboratory tests have shown that the couplers are operating properly. They ensure reliable data transmission in a motor drive application.
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
Linear motion device and method for inserting and withdrawing control rods
Smith, J.E.
Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
Structural brain correlates associated with professional handball playing.
Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz
2015-01-01
There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.
Passive motion paradigm: an alternative to optimal control.
Mohan, Vishwanathan; Morasso, Pietro
2011-01-01
IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.
Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza
2016-04-01
Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Motor programming in apraxia of speech.
Maas, Edwin; Robin, Donald A; Wright, David L; Ballard, Kirrie J
2008-08-01
Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. Journal of Experimental Psychology: Human Perception and Performance, 21, 1015-1027; Klapp, S. T. (2003). Reaction time analysis of two types of motor preparation for speech articulation: Action as a sequence of chunks. Journal of Motor Behavior, 35, 135-150] that proposes a preprogramming stage (INT) and a process that assigns serial order to multiple programs in a sequence (SEQ). The main hypothesis was that AOS involves a process-specific deficit in the INT (preprogramming) stage of processing, rather than in the on-line serial ordering (SEQ) and initiation of movement. In addition, we tested the hypothesis that AOS involves a central (i.e., modality-general) motor programming deficit. We used a reaction time paradigm that provides two dependent measures: study time (the amount of time for participants to ready a motor response; INT), and reaction time (time to initiate movement; SEQ). Two experiments were conducted to examine INT and SEQ in AOS: Experiment 1 involved finger movements, Experiment 2 involved speech movements analogous to the finger movements. Results showed longer preprogramming time for patients with AOS but normal sequencing and initiation times, relative to controls. Together, the findings are consistent with the hypothesis of a process-specific, but central (modality-independent) deficit in AOS; alternative explanations are also discussed.
Response Inhibition and Interference Control in Obsessive–Compulsive Spectrum Disorders
van Velzen, Laura S.; Vriend, Chris; de Wit, Stella J.; van den Heuvel, Odile A.
2014-01-01
Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders. PMID:24966828
Morphological and motor characteristics of Croatian first league female football players.
Jelaska, Petra Mandić; Katić, Ratko; Jelaska, Igor
2013-05-01
The aim of this study was to determine the structure of morphological and motor characteristics of Croatian first league female football players and their impact on the estimated quality of the players. According to the goal of the research, a sample consisted of 70 Croatian first league female football players. Participants were measured in 18 tests for assessing morphological characteristics, a set of 12 basic motor abilities tests and a set of 7 tests for assessing football-specific motor abilities. Exploratory factor analysis strategy was applied separately to all measured tests: morphological, basic motor abilities and football specific motor abilities. Factor analysis of morphological tests has shown existence of 3 significant latent dimensions that explain 64% of the total variability. Factors are defined as transverse dimensionality of the skeleton and voluminosity (35%), subcutaneous fat tissue (16%) and longitudinal dimensionality of the skeleton (13%). In the area of basic motor abilities, four factors were extracted. The first factor is responsible for the integration of agility and explosive power of legs, i.e. a factor of movement regulation (agility/lower body explosiveness) (23%), the second one defines muscle tone regulation (15%), the third one defines the frequency of leg movements (12%), while the fourth one is recognized as responsible for the manifestation of basic strength, particularly of basic core strength (19%). Two factors were isolated in the space of football-specific motor abilities: football-specific efficiency (53%) and situational football coordination (27%). Furthermore, by use of factor analysis on extracted latent dimensions (morphological, basic and football specific motor abilities) two higher order factors (explaining 87% of common variability) were extracted. They were named morphological-motor factor (54%) and football-specific motor abilities factor (33%). It is assumed that two extracted higher-order factors fully describe morphological and motor status of first league female football players. Furthermore, the linear regression results in latent space showed that the identified factors are very good predictors of female football players quality (delta = 0.959). In doing so, both specific motor abilities factors and the first factor of basic motor abilities as a factor of general motor efficiency have the greatest impact on player quality, and these factors have been identified as most important predictors of player quality in Croatian women's first league and elite female football players in general. Obtained results provide deep insight into the structure of relations between the morphological, motor and specific motor variables and also indicate the importance of such definition of specific motor abilities. Consequently, results explicitly indicate the necessity of early, continuous, and systematic development of football-specific motor abilities in female football players of high competitive level but also, adjusted, to the younger age categories.
Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.
Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li
2017-01-01
Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel < 100; 19 patients with preserved function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
A motor-driven ventricular assist device controlled with an optical encoder system.
Nakamura, T; Hayashi, K; Yamane, H
1993-01-01
An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.
Colomer, Carolina; NOé, Enrique; Llorens, Roberto
2016-06-01
Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.
Samuelkamaleshkumar, Selvaraj; Reethajanetsureka, Stephen; Pauljebaraj, Paul; Benshamir, Bright; Padankatti, Sanjeev Manasseh; David, Judy Ann
2014-11-01
To investigate the effectiveness of mirror therapy (MT) combined with bilateral arm training and graded activities to improve motor performance in the paretic upper limb after stroke. Randomized, controlled, assessor-blinded study. Inpatient stroke rehabilitation center of a tertiary care teaching hospital. Patients with first-time ischemic or hemorrhagic stroke (N=20), confined to the territory of the middle cerebral artery, occurring <6 months before the commencement of the study. The MT and control group participants underwent a patient-specific multidisciplinary rehabilitation program including conventional occupational therapy, physical therapy, and speech therapy for 5 d/wk, 6 h/d, over 3 weeks. The participants in the MT group received 1 hour of MT in addition to the conventional stroke rehabilitation. The Upper Extremity Fugl-Meyer Assessment for motor recovery, Brunnstrom stages of motor recovery for the arm and hand, Box and Block Test for gross manual hand dexterity, and modified Ashworth scale to assess the spasticity. After 3 weeks of MT, mean change scores were significantly greater in the MT group than in the control group for the Fugl-Meyer Assessment (P=.008), Brunnstrom stages of motor recovery for the arm (P=.003) and hand (P=.003), and the Box and Block Test (P=.022). No significant difference was found between the groups for modified Ashworth scale (P=.647). MT when combined with bilateral arm training and graded activities was effective in improving motor performance of the paretic upper limb after stroke compared with conventional therapy without MT. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Pandian, Shanta; Arya, Kamal Narayan; Davidson, E W Rajkumar
2012-07-01
Motor recovery of the hand usually plateaus in chronic stroke patients. Various conventional and contemporary approaches have been used to rehabilitate the hand post-stroke. However, the evidence for their effectiveness is still limited. To compare the hand therapy protocols based on Brunnstrom approach and motor relearning program in rehabilitation of the hand of chronic stroke patients. Randomized trial. Outpatients attending the occupational therapy department of a rehabilitation institute. 30 post-stroke subjects (35.06 ± 14.52 months) were randomly assigned into two equal groups (Group A and Group B), Outcome Measures: Brunnstrom recovery stages of hand (BRS-H), Fugl-Meyer assessment: wrist and hand (FMA-WH). Group A received Brunnstrom hand manipulation (BHM). BHM is the hand treatment protocol of the Brunnstrom movement therapy, which uses synergies and reflexes to develop voluntary motor control. Group B received the Motor Relearning Program (MRP) based hand protocol. MRP is the practice of specific motor skills, which results in the ability to perform a task. Active practice of context-specific motor task such as reaching and grasping helps regain the lost motor functions. Both the therapy protocols were effective in rehabilitation of the hand (BRS-H; p = 0.003 to 0.004, FMA-WH; p < 0.001). However, the results were statistically significant in favor of group A undergoing BHM for FMA-WH (p < 0.004) and FMA item VIII (hand motor recovery) (p < 0.033). BHM was found to be more effective than MRP in rehabilitation of the hand in chronic post-stroke patients. Copyright © 2011 Elsevier Ltd. All rights reserved.
FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY
The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...
Specific cerebellar regions are related to force amplitude and rate of force development
Spraker, M.B.; Corcos, D.M.; Kurani, A.S.; Prodoehl, J.; Swinnen, S.P.; Vaillancourt, D.E.
2011-01-01
The human cerebellum has been implicated in the control of a wide variety of motor control parameters, such as force amplitude, movement extent, and movement velocity. These parameters often covary in both movement and isometric force production tasks, so it is difficult to resolve whether specific regions of the cerebellum relate to specific parameters. In order to address this issue, the current study used two experiments and SUIT normalization to determine whether BOLD activation in the cerebellum scales with the amplitude or rate of change of isometric force production or both. In the first experiment, subjects produced isometric pinch-grip force over a range of force amplitudes without any constraints on the rate of force development. In the second experiment, subjects varied the rate of force production, but the target force amplitude remained constant. The data demonstrate that BOLD activation in separate sub-areas of cerebellar regions lobule VI and Crus I/II scale with both force amplitude and force rate. In addition, BOLD activation in cerebellar lobule V and vermis VI was specific to force amplitude, whereas BOLD activation in lobule VIIb was specific to force rate. Overall, cerebellar activity related to force amplitude was located superior and medial, whereas activity related to force rate was inferior and lateral. These findings suggest that specific circuitry in the cerebellum may be dedicated to specific motor control parameters such as force amplitude and force rate. PMID:21963915
Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS
Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva
2016-01-01
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807
Face processing in chronic alcoholism: a specific deficit for emotional features.
Maurage, P; Campanella, S; Philippot, P; Martin, S; de Timary, P
2008-04-01
It is well established that chronic alcoholism is associated with a deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specifically for emotions or due to a more general impairment in visual or facial processing. This study was designed to clarify this issue using multiple control tasks and the subtraction method. Eighteen patients suffering from chronic alcoholism and 18 matched healthy control subjects were asked to perform several tasks evaluating (1) Basic visuo-spatial and facial identity processing; (2) Simple reaction times; (3) Complex facial features identification (namely age, emotion, gender, and race). Accuracy and reaction times were recorded. Alcoholic patients had a preserved performance for visuo-spatial and facial identity processing, but their performance was impaired for visuo-motor abilities and for the detection of complex facial aspects. More importantly, the subtraction method showed that alcoholism is associated with a specific EFE decoding deficit, still present when visuo-motor slowing down is controlled for. These results offer a post hoc confirmation of earlier data showing an EFE decoding deficit in alcoholism by strongly suggesting a specificity of this deficit for emotions. This may have implications for clinical situations, where emotional impairments are frequently observed among alcoholic subjects.
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B
2012-01-18
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.
2012-01-01
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879
Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.
2009-01-01
We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048
Referent control and motor equivalence of reaching from standing
Tomita, Yosuke; Feldman, Anatol G.
2016-01-01
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. PMID:27784802
Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon.
Dinning, P G; Costa, M; Brookes, S J; Spencer, N J
2012-07-01
The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.
Bögli, Stefan Yu; Afthinos, Maresa; Huang, Melody Ying-Yu
2017-06-01
Infantile nystagmus syndrome (INS) is a disorder characterized by typical horizontal eye oscillations. Due to the uncertain etiology of INS, developing specific treatments remains difficult. Single reports demonstrated, on limited measures, alleviating effects of gabapentin and memantine. In the current study, we employed the zebrafish INS model belladonna (bel) to conduct an in-depth study of how gabapentin and memantine interventions alleviate INS signs, which may further restore visual conditions in affected subjects. Moreover, we described the influence of both medications on ocular motor functions in healthy zebrafish, evaluating possible iatrogenic effects. Ocular motor function and INS characteristics were assessed by eliciting optokinetic response, spontaneous nystagmus, and spontaneous saccades in light and in dark, in 5- to 6-day postfertilization bel larvae and heterozygous siblings. Single larvae were recorded before and after a 1-hour drug treatment (200 mM gabapentin/0.2 mM memantine). Both interventions significantly reduced nystagmus intensity (gabapentin: 59.98%, memantine: 39.59%). However, while the application of gabapentin affected all tested ocular motor functions, memantine specifically reduced nystagmus amplitude and intensity, and thus left controls completely unaffected. Finally, both drug treatments resulted in specific changes in nystagmus waveform and velocity. Our study provides deeper insight into gabapentin and memantine treatment effect in the zebrafish INS model. Moreover, this study should establish zebrafish as a pharmacologic animal model for treating nystagmus and ocular motor disease, serving as a basis for future large-scale drug screenings.
Sanz-Mengibar, Jose Manuel; Altschuck, Natalie; Sanchez-de-Muniain, Paloma; Bauer, Christian; Santonja-Medina, Fernando
2017-04-01
To understand whether there is a trunk postural control threshold in the sagittal plane for the transition between the Gross Motor Function Classification System (GMFCS) levels measured with 3-dimensional gait analysis. Kinematics from 97 children with spastic bilateral cerebral palsy from spine angles according to Plug-In Gait model (Vicon) were plotted relative to their GMFCS level. Only average and minimum values of the lumbar spine segment correlated with GMFCS levels. Maximal values at loading response correlated independently with age at all functional levels. Average and minimum values were significant when analyzing age in combination with GMFCS level. There are specific postural control patterns in the average and minimum values for the position between trunk and pelvis in the sagittal plane during gait, for the transition among GMFCS I-III levels. Higher classifications of gross motor skills correlate with more extended spine angles.
Automatic alignment method for calibration of hydrometers
NASA Astrophysics Data System (ADS)
Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.
2004-04-01
This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.
Responsiveness of rat fetuses to sibling motor activity: Communication in utero?
Brumley, Michele R; Hoagland, Riana; Truong, Melissa; Robinson, Scott R
2018-04-01
Previous research has revealed that fetuses detect and respond to extrauterine stimuli such as maternal movement and speech, but little attention has been cast on how fetuses may directly influence and respond to each other in the womb. This study investigated whether motor activity of E20 rat fetuses influenced the behavior of siblings in utero. Three experiments showed that; (a) contiguous siblings expressed a higher frequency of synchronized movement than noncontiguous siblings; (b) fetuses that lay between two siblings immobilized with curare showed less movement relative to fetuses between saline or uninjected controls; and (c) fetuses between two siblings behaviorally activated by the opioid agonist U50,488 also showed less activity and specific behavioral changes compared to controls. Our findings suggest that rat fetuses are directly impacted by sibling motor activity, and thus that a rudimentary form of communication between siblings may influence the development of fetuses in utero. © 2018 Wiley Periodicals, Inc.
Specific cerebral perfusion patterns in three schizophrenia symptom dimensions.
Stegmayer, Katharina; Strik, Werner; Federspiel, Andrea; Wiest, Roland; Bohlhalter, Stephan; Walther, Sebastian
2017-12-01
Dimensional concepts such as the Research Domain Criteria initiative have been proposed to disentangle the heterogeneity of schizophrenia. One model introduced three neurobiologically informed behavioral dimensions: language, affectivity and motor behavior. To study the brain-behavior associations of these three dimensions, we investigated whether current behavioral alterations were linked to resting state perfusion in distinct brain circuits in schizophrenia. In total, 47 patients with schizophrenia spectrum disorders and 44 healthy controls were included. Psychopathology was assessed with the Positive And Negative Syndrome Scale and the Bern Psychopathology scale (BPS). The BPS provides severity ratings of three behavioral dimensions (language, affectivity and motor). Patients were classified according to the severity of alterations (severe, mild, no) in each dimension. Whole brain resting state cerebral blood flow (CBF) was compared between patient subgroups and controls. Two symptom dimensions were associated with distinct CBF changes. Behavioral alterations in the language dimension were linked to increased CBF in Heschl's gyrus. Altered affectivity was related to increased CBF in amygdala. The ratings of motor behavior instead were not specifically associated with CBF. Investigating behavioral alterations in three schizophrenia symptom dimensions identified distinct regional CBF changes in the language and limbic brain circuits. The results demonstrate a hitherto unknown segregation of pathophysiological pathways underlying a limited number of specific symptom dimensions in schizophrenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
2012-06-01
Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. Neuromuscul Disord. 2001;11(5...evaluation of specific muscle groups responsible for fatigue-related changes. Since fiber type proportion is determined by its innervation, evaluating muscle ... fiber output provides down-stream information about the integrity of the motor neuron. Objective To determine the association between muscle
The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
Variable current speed controller for eddy current motors
Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.
1982-03-12
A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Su, Fong-Chin; Yu, Hui-I; Hua, Shih-Che; Lu, Chieh-Hsiang
2014-01-01
To comprehend the sensorimotor control ability in diabetic hands, this study investigated the sensation, motor function and precision pinch performances derived from a pinch-holding-up activity (PHUA) test of the hands of diabetic patients and healthy subjects. The precision, sensitivity and specificity of the PHUA test in the measurements of diabetic patients were also analyzed. We hypothesized that the diabetic hands would have impacts on the sensorimotor functions of the hand performances under functionally quantitative measurements. One hundred and fifty-nine patients with clinically defined diabetes mellitus (DM) and 95 age- and gender-matched healthy controls were included. Semmes-Weinstein monofilament (SWM), static and moving two-point discrimination (S2PD and M2PD), maximal pinch strength and precision pinch performance tests were conducted to evaluate the sensation, motor and sensorimotor status of the recruited hands. The results showed that there were significant differences (all p<0.05) in SWM, S2PD, M2PD and maximum pinch strength between the DM and control groups. A higher force ratio in the DM patients than in the controls (p<0.001) revealed a poor ability of pinch force adjustment in the DM patients. The percentage of maximal pinch strength was also significantly different (p<0.001) between the DM and control groups. The sensitivity, specificity and area under the receiver operating characteristic curve were 0.85, 0.51, and 0.724, respectively, for the PHUA test. Statistically significant degradations in sensory and motor functions and sensorimotor control ability were observed in the hands of the diabetic patients. The PHUA test could be feasibly used as a clinical tool to determine the sensorimotor function of the hands of diabetic patients from a functional perspective.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Su, Fong-Chin; Yu, Hui-I; Hua, Shih-Che; Lu, Chieh-Hsiang
2014-01-01
To comprehend the sensorimotor control ability in diabetic hands, this study investigated the sensation, motor function and precision pinch performances derived from a pinch-holding-up activity (PHUA) test of the hands of diabetic patients and healthy subjects. The precision, sensitivity and specificity of the PHUA test in the measurements of diabetic patients were also analyzed. We hypothesized that the diabetic hands would have impacts on the sensorimotor functions of the hand performances under functionally quantitative measurements. One hundred and fifty-nine patients with clinically defined diabetes mellitus (DM) and 95 age- and gender-matched healthy controls were included. Semmes-Weinstein monofilament (SWM), static and moving two-point discrimination (S2PD and M2PD), maximal pinch strength and precision pinch performance tests were conducted to evaluate the sensation, motor and sensorimotor status of the recruited hands. The results showed that there were significant differences (all p<0.05) in SWM, S2PD, M2PD and maximum pinch strength between the DM and control groups. A higher force ratio in the DM patients than in the controls (p<0.001) revealed a poor ability of pinch force adjustment in the DM patients. The percentage of maximal pinch strength was also significantly different (p<0.001) between the DM and control groups. The sensitivity, specificity and area under the receiver operating characteristic curve were 0.85, 0.51, and 0.724, respectively, for the PHUA test. Statistically significant degradations in sensory and motor functions and sensorimotor control ability were observed in the hands of the diabetic patients. The PHUA test could be feasibly used as a clinical tool to determine the sensorimotor function of the hands of diabetic patients from a functional perspective. PMID:24722361
Motor Control Abnormalities in Parkinson’s Disease
Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo
2012-01-01
The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667
Electric vehicle motors and controllers
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1981-01-01
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
Electric vehicle motors and controllers
NASA Astrophysics Data System (ADS)
Secunde, R. R.
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia
van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart
2014-01-01
Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273
Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi
2015-10-08
In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.
DC motor speed control using fuzzy logic controller
NASA Astrophysics Data System (ADS)
Ismail, N. L.; Zakaria, K. A.; Nazar, N. S. Moh; Syaripuddin, M.; Mokhtar, A. S. N.; Thanakodi, S.
2018-02-01
The automatic control has played a vital role in the advance of engineering and science. Nowadays in industries, the control of direct current (DC) motor is a common practice thus the implementation of DC motor controller speed is important. The main purpose of motor speed control is to keep the rotation of the motor at the present speed and to drive a system at the demand speed. The main purpose of this project is to control speed of DC Series Wound Motor using Fuzzy Logic Controller (FLC). The expectation of this project is the Fuzzy Logic Controller will get the best performance compared to dc motor without controller in terms of settling time (Ts), rise time (Tr), peak time (Tp) and percent overshoot (%OS).
On-road bicycle facilities and bicycle crashes in Iowa, 2007-2010.
Hamann, Cara; Peek-Asa, Corinne
2013-07-01
An average of 611 deaths and over 47,000 bicyclists are injured in traffic-related crashes in the United States each year. Efforts to increase bicycle safety are needed to reduce and prevent injuries and fatalities, especially as trends indicate that ridership is increasing rapidly. The objective of this study was to evaluate the effect of bicycle-specific roadway facilities (e.g., signage and bicycle lanes) in reducing bicycle crashes. We conducted a case site-control site study of 147 bicycle crash-sites identified from the Iowa Department of Transportation crash database from 2007 to 2010 and 147 matched non-crash sites. Control sites were randomly selected from intersections matched to case sites on neighborhood (census block group) and road classification (arterial, feeder, collector, etc.). We examined crash risk by any on-road bicycle facility present and by facility type (pavement markings--bicycle lanes and shared lane arrows, bicycle-specific signage, and the combination of markings and signage), controlling for bicycle volume, motor vehicle volume, street width, sidewalks, and traffic controls. A total of 11.6% of case sites and 15.0% of controls had an on-road bicycle facility. Case intersections had higher bicycle volume (3.52 vs. 3.34 per 30 min) and motor vehicle volume (248.77 vs. 205.76 per 30 min) than controls. Our results are suggestive that the presence of an on-road bicycle facility decreases crash risk by as much as 60% with a bicycle lane or shared lane arrow (OR=0.40, 95% CI=0.09-1.82) and 38% with bicycle-specific signage (OR=0.62, 95% CI=0.15-2.58). Investments in bicycle-specific pavement markings and signage have been shown to be beneficial to traffic flow, and our results suggest that they may also reduce the number of bicycle-motor vehicle crashes and subsequent injuries and fatalities. As a relatively low-cost traffic feature, community considerations for further implementation of these facilities are justified. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of an AC induction motor system for producing finger movements in human subjects.
Proudlock, F A; Scott, J J
1998-12-01
This report describes the set-up and evaluation of a novel system for producing precise finger movements, for tests of movement perception. The specifications were to construct a system using commercially available components that were easy to use but which offered both flexibility and also high precision control. The system was constructed around an industrial AC induction motor with an optical encoder, controlled by an AC servo digital control module that could be programmed using a simple, high-level language. This set-up fulfilled the requirements regarding position and velocity control for a range of movements and also the facility for the subject to move the joint voluntarily while still attached to the motor. However a number of problems were encountered, the most serious being the level of vibration and the inability to vary the torque during movements. The vibration was reduced to the point where it did not affect the subject, by the introduction of mechanical dampening using an anti-vibration coupling and a pneumatic splint. The torque control could not be modified during rotation and so the system could only be operated using constant torque for any given movement.
Defective cerebellar control of cortical plasticity in writer’s cramp
Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha
2013-01-01
A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-01-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118
Doud, Alexander J.; Lucas, John P.; Pisansky, Marc T.; He, Bin
2011-01-01
Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications. PMID:22046274
Motor skills, haptic perception and social abilities in children with mild speech disorders.
Müürsepp, Iti; Aibast, Herje; Gapeyeva, Helena; Pääsuke, Mati
2012-02-01
The aim of the study was to evaluate motor skills, haptic object recognition and social interaction in 5-year-old children with mild specific expressive language impairment (expressive-SLI) and articulation disorder (AD) in comparison of age- and gender matched healthy children. Twenty nine children (23 boys and 6 girls) with expressive-SLI, 27 children (20 boys and 7 girls) with AD and 30 children (23 boys and 7 girls) with typically developing language as controls participated in our study. The children were examined for manual dexterity, ball skills, static and dynamic balance by M-ABC test, haptic object recognition and for social interaction by questionnaire completed by teachers. Children with mild expressive-SLI demonstrated significantly poorer results in all subtests of motor skills (p<0.05), in haptic object recognition and social interaction (p<0.01) compared to controls. There were no statistically significant differences (p>0.05) in measured parameters between children with AD and controls. Children with expressive-SLI performed considerably poorer compared to AD group in balance subtest (p<0.05), and in overall M-ABC test (p<0.01). In children with mild expressive-SLI the functional motor performance, haptic perception and social interaction are considerably more affected than in children with AD. Although motor difficulties in speech production are prevalent in AD, it is localised and does not involve children's general motor skills, haptic perception or social interaction. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment
Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A
2017-02-01
Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.
Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.
Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P
2016-01-01
Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Bianco, V; Berchicci, M; Perri, R L; Quinzi, F; Di Russo, F
2017-09-30
Both playing a musical instrument and playing sport produce brain adaptations that might affect sensory-motor functions. While the benefits of sport practice have traditionally been attributed to aerobic fitness, it is still unknown whether playing an instrument might induce similar brain adaptations, or if a specific musical instrument like drums might be associated to specific benefits because of its high energy expenditure. Since the aerobic costs of playing drums was estimated to be comparable to those of average sport activities, we hypothesized that these two groups might show both behavioral and neurocognitive similarities. To test this hypothesis, we recruited 48 young adults and divided them into four age-matched groups: 12 drummers, 12 athletes, 12 no-drummer musicians and 12 non-athletes. Participants performed a visuo-motor discriminative response task, namely the Go/No-go, and their cortical activity was recorded by means of a 64-channel electroencephalography (EEG). Behavioral performance showed that athletes and drummers were faster than the other groups. Electrophysiological results showed that the pre-stimulus motor preparation (i.e. the Bereitschaftspotential or BP) and attentional control (i.e., the prefrontal negativity or pN), and specific post-stimulus components like the P3 and the pP2 (reflecting the stimulus categorization process) were enhanced in the athletes and drummers' groups. Overall, these results suggest that playing sport and drums led to similar benefits at behavioral and cognitive level as detectable in a cognitive task. Explanations of these findings, such as on the difference between drummers and other musicians, are provided in terms of long-term neural adaptation mechanisms and increased visuo-spatial abilities. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
1989-01-20
This photograph shows a static firing test of the Solid Rocket Qualification Motor-8 (QM-8) at the Morton Thiokol Test Site in Wasatch, Utah. The twin solid rocket boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.
Wisneski, Kimberly J; Anderson, Nicholas; Schalk, Gerwin; Smyth, Matt; Moran, Daniel; Leuthardt, Eric C
2008-12-01
Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.
NASA Technical Reports Server (NTRS)
Packard, D.; Schmitt, D.
1984-01-01
Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.
46 CFR 111.70-3 - Motor controllers and motor-control centers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...
46 CFR 111.70-3 - Motor controllers and motor-control centers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...
46 CFR 111.70-3 - Motor controllers and motor-control centers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...
46 CFR 111.70-3 - Motor controllers and motor-control centers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...
46 CFR 111.70-3 - Motor controllers and motor-control centers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...
Kuruvilla-Dugdale, Mili; Mefferd, Antje
2017-01-01
Purpose Although it is frequently presumed that bulbar muscle degeneration in Amyotrophic Lateral Sclerosis (ALS) is associated with progressive loss of speech motor control, empirical evidence is limited. Furthermore, because speaking rate slows with disease progression and rate manipulations are used to improve intelligibility in ALS, this study sought to (i) determine between and within-group differences in articulatory motor control as a result of speaking rate changes and (ii) identify the strength of association between articulatory motor control and speech impairment severity. Method Ten talkers with ALS and 11 healthy controls repeated the target sentence at habitual, fast, and slow rates. The spatiotemporal variability index (STI) was calculated to determine tongue, lower lip, and jaw movement variability. Results During habitual speech, talkers with mild-moderate dysarthria displayed significantly lower tongue and lip movement variability whereas those with severe dysarthria showed greater variability compared to controls. Within-group rate effects were significant only for talkers with ALS. Specifically, lip and tongue movement variability significantly increased during slow speech relative to habitual and fast speech. Finally, preliminary associations between speech impairment severity and movement variability were moderate to strong in talkers with ALS. Conclusion Between-group differences for habitual speech and within-group effects for slow speech replicated previous findings for lower lip and jaw movements. Preliminary findings of moderate to strong associations between speech impairment severity and STI suggest that articulatory variability may vary from pathologically low (possibly indicating articulatory compensation) to pathologically high variability (possibly indicating loss of control) with dysarthria progression in ALS. PMID:28528293
Srinivasan, Sudha M.; Kaur, Maninderjit; Park, Isabel K.; Gifford, Timothy D.; Marsh, Kerry L.; Bhat, Anjana N.
2015-01-01
We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD) between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2). We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD. PMID:26793394
Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm
NASA Astrophysics Data System (ADS)
Milecki, Andrzej; Ortmann, Jarosław
2017-11-01
The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.
Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex
Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin
2014-01-01
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397
Improved lower extremity pedaling mechanics in individuals with stroke under maximal workloads.
Linder, Susan M; Rosenfeldt, Anson B; Bazyk, Andrew S; Koop, Mandy Miller; Ozinga, Sarah; Alberts, Jay L
2018-05-01
Background Individuals with stroke present with motor control deficits resulting in the abnormal activation and timing of agonist and antagonist muscles and inefficient movement patterns. The analysis of pedaling biomechanics provides a window into understanding motor control deficits, which vary as a function of workload. Understanding the relationship between workload and motor control is critical when considering exercise prescription during stroke rehabilitation. Objectives To characterize pedaling kinematics and motor control processes under conditions in which workload was systematically increased to an eventual patient-specific maximum. Methods A cohort study was conducted in which 18 individuals with chronic stroke underwent a maximal exertion cardiopulmonary exercise test on a stationary cycle ergometer, during which pedaling torque was continuously recorded. Measures of force production, pedaling symmetry, and pedaling smoothness were obtained. Results Mean Torque increased significantly (p < 0.05) for both legs from initial to terminal workloads. Mean torque Symmetry Index, calculated for down and upstroke portions of the pedaling action, improved from 0.37(0.29) to 0.29(0.35) during downstroke (p = 0.007), and worsened during the upstroke: -0.37(0.38) to -0.62(0.46) (p < 0.001) from initial to terminal workloads. Low Torque Duration improved from initial to terminal workloads, decreasing from 121.1(52.9) to 58.1(39.6) degrees (p < 0.001), respectively. Smoothness of pedaling improved significantly from initial to terminal workloads (p < 0.001). Conclusions Improved pedaling kinematics at terminal workloads indicate that individuals with stroke demonstrate improved motor control with respect to the timing, sequencing, and activation of hemiparetic lower extremity musculature compared to lower workloads. Therapeutic prescription involving higher resistance may be necessary to sufficiently engage and activate the paretic lower extremity.
Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Rizzi, Giorgio; Ferrigno, Giancarlo; Nardocci, Nardo
2012-07-23
Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment.The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns.
2012-01-01
Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns. PMID:22824547
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2017-01-01
Purpose The purpose was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom over the preschool year. Method 92 children between the ages of 3–5 years old (mean age 4.31 years) were recruited to participate. Comprehensive measures of visual motor integration skills, object manipulation skills, executive function and social behaviors were administered in the fall and spring of the preschool year. Results Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores, (B = .47 [.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head-Start status, and site location, but not after controlling for children’s baseline levels of executive function. In addition, children who demonstrated better object-manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control, (B −.03 [.00], p < .05, β = .40), more cooperation, (B = .02 [.01], p < .05, β = .28), and less externalizing/hyperactivity, (B = −.02 [.01], p < .05, β = −.28) after controlling for social behavior in the fall and other covariates. Conclusion Children’s visual motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness. PMID:27732149
Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E
2010-08-15
Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.
A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis.
Zhao, Zhong; Lange, Dale J; Voustianiouk, Andrei; MacGrogan, Donal; Ho, Lap; Suh, Jason; Humala, Nelson; Thiyagarajan, Meenakshisundaram; Wang, Jun; Pasinetti, Giulio M
2006-04-03
The cause of neuronal death in amyotrophic lateral sclerosis (ALS) is uncertain but mitochondrial dysfunction may play an important role. Ketones promote mitochondrial energy production and membrane stabilization. SOD1-G93A transgenic ALS mice were fed a ketogenic diet (KD) based on known formulations for humans. Motor performance, longevity, and motor neuron counts were measured in treated and disease controls. Because mitochondrial dysfunction plays a central role in neuronal cell death in ALS, we also studied the effect that the principal ketone body, D-beta-3 hydroxybutyrate (DBH), has on mitochondrial ATP generation and neuroprotection. Blood ketones were > 3.5 times higher in KD fed animals compared to controls. KD fed mice lost 50% of baseline motor performance 25 days later than disease controls. KD animals weighed 4.6 g more than disease control animals at study endpoint; the interaction between diet and change in weight was significant (p = 0.047). In spinal cord sections obtained at the study endpoint, there were more motor neurons in KD fed animals (p = 0.030). DBH prevented rotenone mediated inhibition of mitochondrial complex I but not malonate inhibition of complex II. Rotenone neurotoxicity in SMI-32 immunopositive motor neurons was also inhibited by DBH. This is the first study showing that diet, specifically a KD, alters the progression of the clinical and biological manifestations of the G93A SOD1 transgenic mouse model of ALS. These effects may be due to the ability of ketone bodies to promote ATP synthesis and bypass inhibition of complex I in the mitochondrial respiratory chain.
Trial-to-trial Adaptation: Parsing out the Roles of Cerebellum and BG in Predictive Motor Timing.
Lungu, Ovidiu V; Bares, Martin; Liu, Tao; Gomez, Christopher M; Cechova, Ivica; Ashe, James
2016-07-01
We previously demonstrated that predictive motor timing (i.e., timing requiring visuomotor coordination in anticipation of a future event, such as catching or batting a ball) is impaired in patients with spinocerebellar ataxia (SCA) types 6 and 8 relative to healthy controls. Specifically, SCA patients had difficulties postponing their motor response while estimating the target kinematics. This behavioral difference relied on the activation of both cerebellum and striatum in healthy controls, but not in cerebellar patients, despite both groups activating certain parts of cerebellum during the task. However, the role of these two key structures in the dynamic adaptation of the motor timing to target kinematic properties remained unexplored. In the current paper, we analyzed these data with the aim of characterizing the trial-by-trial changes in brain activation. We found that in healthy controls alone, and in comparison with SCA patients, the activation in bilateral striatum was exclusively associated with past successes and that in the left putamen, with maintaining a successful performance across successive trials. In healthy controls, relative to SCA patients, a larger network was involved in maintaining a successful trial-by-trial strategy; this included cerebellum and fronto-parieto-temporo-occipital regions that are typically part of attentional network and action monitoring. Cerebellum was also part of a network of regions activated when healthy participants postponed their motor response from one trial to the next; SCA patients showed reduced activation relative to healthy controls in both cerebellum and striatum in the same contrast. These findings support the idea that cerebellum and striatum play complementary roles in the trial-by-trial adaptation in predictive motor timing. In addition to expanding our knowledge of brain structures involved in time processing, our results have implications for the understanding of BG disorders, such as Parkinson disease where feedback processing or reward learning is affected.
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L
2017-01-01
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Permanent magnet DC motor control by using arduino and motor drive module BTS7960
NASA Astrophysics Data System (ADS)
Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.
2018-05-01
This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.
Motor Costs and the Coordination of the Two Arms
Shadmehr, Reza
2014-01-01
We have two arms, many muscles in each arm, and numerous neurons that contribute to their control. How does the brain assign responsibility to each of these potential actors? We considered a bimanual task in which people chose how much force to produce with each arm so that the sum would equal a target. We found that the dominant arm made a greater contribution, but only for specific directions. This was not because the dominant arm was stronger. Rather, it was less noisy. A cost that included unimanual noise and strength accounted for both direction- and handedness-dependent choices that young people made. To test whether there was a causal relationship between unimanual noise and bimanual control, we considered elderly people, whose unimanual noise is comparable in the two arms. We found that, in bimanual control, the elderly showed no preference for their dominant arm. We noninvasively stimulated the motor cortex to produce a change in unimanual strength and noise, and found a corresponding change in bimanual control. Using the noise measurements, we built a neuronal model. The model explained the anisotropic distribution of preferred directions of neurons in the monkey motor cortex and predicted that, in humans, there are changes in the number of these cortical neurons with handedness and aging. Therefore, we found that coordination can be explained by the noise and strength of each effector, where noise may be a reflection of the number of task-related neurons available for control of that effector in the motor cortex. PMID:24478362
Speech motor planning and execution deficits in early childhood stuttering.
Walsh, Bridget; Mettel, Kathleen Marie; Smith, Anne
2015-01-01
Five to eight percent of preschool children develop stuttering, a speech disorder with clearly observable, hallmark symptoms: sound repetitions, prolongations, and blocks. While the speech motor processes underlying stuttering have been widely documented in adults, few studies to date have assessed the speech motor dynamics of stuttering near its onset. We assessed fundamental characteristics of speech movements in preschool children who stutter and their fluent peers to determine if atypical speech motor characteristics described for adults are early features of the disorder or arise later in the development of chronic stuttering. Orofacial movement data were recorded from 58 children who stutter and 43 children who do not stutter aged 4;0 to 5;11 (years; months) in a sentence production task. For single speech movements and multiple speech movement sequences, we computed displacement amplitude, velocity, and duration. For the phrase level movement sequence, we computed an index of articulation coordination consistency for repeated productions of the sentence. Boys who stutter, but not girls, produced speech with reduced amplitudes and velocities of articulatory movement. All children produced speech with similar durations. Boys, particularly the boys who stuttered, had more variable patterns of articulatory coordination compared to girls. This study is the first to demonstrate sex-specific differences in speech motor control processes between preschool boys and girls who are stuttering. The sex-specific lag in speech motor development in many boys who stutter likely has significant implications for the dramatically different recovery rates between male and female preschoolers who stutter. Further, our findings document that atypical speech motor development is an early feature of stuttering.
Substantiation of Structure of Adaptive Control Systems for Motor Units
NASA Astrophysics Data System (ADS)
Ovsyannikov, S. I.
2018-05-01
The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.
Neuromodulation of lower limb motor control in restorative neurology.
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-06-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuromodulation of lower limb motor control in restorative neurology
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-01-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657
Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine
2012-01-01
Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language deficits compared to several other studies; (c) describe how performance differed on a nonword repetition test between children who stutter who do and do not have concomitant speech or language deficits; (d) make a general statement about speech motor control for nonword production in children who stutter compared to controls. PMID:23218217
ERIC Educational Resources Information Center
Lee, Eliana S.; Yeatman, Jason D.; Luna, Beatriz; Feldman, Heidi M.
2011-01-01
Although studies of long-term outcomes of children born preterm consistently show low intelligence quotient (IQ) and visual-motor impairment, studies of their performance in language and reading have found inconsistent results. In this study, we examined which specific language and reading skills were associated with prematurity independent of the…
NASA Astrophysics Data System (ADS)
1980-10-01
Specifications are given for the shipping, marking, inspection, testing, and start up of equipment to be used in a proposed wood fuel cogeneration system in Maine. Couplings, mechanical drives, electric motors, spare parts, coatings, assembling, and materials handling and packaging are covered. Both OSHA and noise control regulations are included along with the ASME code.
Controller for computer control of brushless dc motors. [automobile engines
NASA Technical Reports Server (NTRS)
Hieda, L. S. (Inventor)
1981-01-01
A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.
A New Type of Motor: Pneumatic Step Motor
Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis
2011-01-01
This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106
Plasma antioxidant status and motor features in de novo Chinese Parkinson's disease patients.
Yuan, Yongsheng; Tong, Qing; Zhang, Li; Jiang, Siming; Zhou, Hong; Zhang, Rui; Zhang, Shu; Xu, Qinrong; Li, Daqian; Zhou, Xiaobin; Ding, Jian; Zhang, Kezhong
2016-01-01
This study aimed to explore plasma antioxidant status in de novo Chinese Parkinson's disease (PD) patients and investigate its relationship with specific motor features of PD. Sixty-four de novo Chinese PD patients and 40 age- and sex-matched healthy controls were recruited. Each motor feature of PD patients was assessed by unified Parkinson's disease rating scale. Plasma antioxidant status, including plasma level of glutathione (GSH) and plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), was detected using enzyme-linked immunosorbent assay. The relationship between the plasma antioxidant status and motor features of PD was evaluated by Spearman's coefficient. Plasma GSH level and plasma activities of GSH-Px, CAT and SOD of PD patients were lower than those of healthy controls. Moreover, the declining activity of plasma CAT was related with the increasing mean postural instability and gait disorder (PIGD) score and growing age. In contrast, the severity of tremor was positively correlated with plasma SOD activity. Our study demonstrates that the plasma antioxidant status is impaired in de novo Chinese PD patients. The complex relationship between the plasma antioxidant status and different motor features indicates that the antioxidant mechanisms underlying tremor and PIGD of PD may be different.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp
Najee-ullah, Muslimah 'Ali; Hallett, Mark
2016-01-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In the present MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. PMID:27466043
Control Circuit For Two Stepping Motors
NASA Technical Reports Server (NTRS)
Ratliff, Roger; Rehmann, Kenneth; Backus, Charles
1990-01-01
Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.
Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.
Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M
2006-04-25
To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.
Kim, Jung Hee; Lee, Byoung-Hee
2015-06-01
The objective of this study was to evaluate the effects of mirror therapy in combination with biofeedback functional electrical stimulation (BF-FES) on motor recovery of the upper extremities after stroke. Twenty-nine patients who suffered a stroke > 6 months prior participated in this study and were randomly allocated to three groups. The BF-FES + mirror therapy and FES + mirror therapy groups practiced training for 5 × 30 min sessions over a 4-week period. The control group received a conventional physical therapy program. The following clinical tools were used to assess motor recovery of the upper extremities: electrical muscle tester, electrogoniometer, dual-inclinometer, electrodynamometer, the Box and Block Test (BBT) and Jabsen Taylor Hand Function Test (JHFT), the Functional Independence Measure, the Modified Ashworth Scale, and the Stroke Specific Quality of Life (SSQOL) assessment. The BF-FES + mirror therapy group showed significant improvement in wrist extension as revealed by the Manual Muscle Test and Range of Motion (p < 0.05). The BF-FES + mirror therapy group showed significant improvement in the BBT, JTHT, and SSQOL compared with the FES + mirror therapy group and control group (p < 0.05). We found that BF-FES + mirror therapy induced motor recovery and improved quality of life. These results suggest that mirror therapy, in combination with BF-FES, is feasible and effective for motor recovery of the upper extremities after stroke. Copyright © 2014 John Wiley & Sons, Ltd.
Summary of electric vehicle dc motor-controller tests
NASA Technical Reports Server (NTRS)
Mcbrien, E. F.; Tryon, H. B.
1982-01-01
The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.
Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias
2010-12-01
To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki
Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.
Heins, Brittany M.; McGivern, Jered V.; Ornelas, Loren; Svendsen, Clive N.
2012-01-01
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients. PMID:22723941
Universal adaptive torque control for PM motors for field-weakening region operation
Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI
2011-03-29
The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.
Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease.
Parker, Krystal L; Kim, Youngcho; Alberico, Stephanie L; Emmons, Eric B; Narayanan, Nandakumar S
2016-03-01
Optogenetics refers to the ability to control cells that have been genetically modified to express light-sensitive ion channels. The introduction of optogenetic approaches has facilitated the dissection of neural circuits. Optogenetics allows for the precise stimulation and inhibition of specific sets of neurons and their projections with fine temporal specificity. These techniques are ideally suited to investigating neural circuitry underlying motor and cognitive dysfunction in animal models of human disease. Here, we focus on how optogenetics has been used over the last decade to probe striatal circuits that are involved in Parkinson disease, a neurodegenerative condition involving motor and cognitive abnormalities resulting from degeneration of midbrain dopaminergic neurons. The precise mechanisms underlying the striatal contribution to both cognitive and motor dysfunction in Parkinson disease are unknown. Although optogenetic approaches are somewhat removed from clinical use, insight from these studies can help identify novel therapeutic targets and may inspire new treatments for Parkinson disease. Elucidating how neuronal and behavioral functions are influenced and potentially rescued by optogenetic manipulation in animal models could prove to be translatable to humans. These insights can be used to guide future brain-stimulation approaches for motor and cognitive abnormalities in Parkinson disease and other neuropsychiatric diseases.
Application of drive circuit based on L298N in direct current motor speed control system
NASA Astrophysics Data System (ADS)
Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao
2016-10-01
In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.
Relations between basic and specific motor abilities and player quality of young basketball players.
Marić, Kristijan; Katić, Ratko; Jelicić, Mario
2013-05-01
Subjects from 5 first league clubs from Herzegovina were tested with the purpose of determining the relations of basic and specific motor abilities, as well as the effect of specific abilities on player efficiency in young basketball players (cadets). A battery of 12 tests assessing basic motor abilities and 5 specific tests assessing basketball efficiency were used on a sample of 83 basketball players. Two significant canonical correlations, i.e. linear combinations explained the relation between the set of twelve variables of basic motor space and five variables of situational motor abilities. Underlying the first canonical linear combination is the positive effect of the general motor factor, predominantly defined by jumping explosive power, movement speed of the arms, static strength of the arms and coordination, on specific basketball abilities: movement efficiency, the power of the overarm throw, shooting and passing precision, and the skill of handling the ball. The impact of basic motor abilities of precision and balance on specific abilities of passing and shooting precision and ball handling is underlying the second linear combination. The results of regression correlation analysis between the variable set of specific motor abilities and game efficiency have shown that the ability of ball handling has the largest impact on player quality in basketball cadets, followed by shooting precision and passing precision, and the power of the overarm throw.
Altenmüller, Eckart; Baur, Volker; Hofmann, Aurélie; Lim, Vanessa K; Jabusch, Hans-Christian
2012-04-01
Musician's cramp is a task-specific movement disorder that presents itself as muscular incoordination or loss of voluntary motor control of extensively trained movements while a musician is playing the instrument. It is characterized by task specificity and gender bias, affecting significantly more males than females. The etiology is multifaceted: a combination of a genetic predisposition, termed endophenotype, and behavioral triggering factors being the leading features for the manifestation of the disorder. We present epidemiological data from 591 musician patients from our outpatient clinic demonstrating an influence of fine-motor requirements on the manifestation of dystonia. Brass, guitar, and woodwind players were at greater risk than other instrumentalists. High temporospatial precision of movement patterns, synchronous demands on tonic and phasic muscular activation, in combination with fine-motor burdens of using the dominant hand in daily life activities, constitute as triggering factors for the disorder and may explain why different body parts are affected. © 2012 New York Academy of Sciences.
Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert
2016-11-01
Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.
Masiero, Stefano; Armani, Mario; Rosati, Giulio
2011-01-01
The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-Rehabilitation-roBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution).
Motor command inhibition and the representation of response mode during motor imagery.
Scheil, Juliane; Liefooghe, Baptist
2018-05-01
Research on motor imagery proposes that overt actions during motor imagery can be avoided by proactively signaling subthreshold motor commands to the effectors and by invoking motor-command inhibition. A recent study by Rieger, Dahm, and Koch (2017) found evidence in support of motor command inhibition, which indicates that MI cannot be completed on the sole basis of subthreshold motor commands. However, during motor imagery, participants know in advance when a covert response is to be made and it is thus surprising such additional motor-command inhibition is needed. Accordingly, the present study tested whether the demand to perform an action covertly can be proactively integrated by investigating the formation of task-specific action rules during motor imagery. These task-specific action rules relate the decision rules of a task to the mode in which these rules need to be applied (e.g., if smaller than 5, press the left key covertly). To this end, an experiment was designed in which participants had to switch between two numerical judgement tasks and two response modes: covert responding and overt responding. First, we observed markers of motor command inhibition and replicated the findings of Rieger and colleagues. Second, we observed evidence suggesting that task-specific action rules are created for the overt response mode (e.g., if smaller than 5, press the left key). In contrast, for the covert response mode, no task-specific action rules are formed and decision rules do not include mode-specific information (e.g., if smaller than 5, left). Copyright © 2018 Elsevier B.V. All rights reserved.
[Neurological soft signs in pervasive developmental disorders].
Halayem, S; Bouden, A; Halayem, M B; Tabbane, K; Amado, I; Krebs, M O
2010-09-01
Many studies have focused on specific motor signs in autism and Asperger's syndrome, but few has been published on the complete range of neurological soft signs (NSS) in children with pervasive developmental disorder (PDD). Scarce are the studies evaluating NSS in children suffering from PDD not otherwise specified (PDDNOS). This study compared performance of 11 autistic children (AD) and 10 children with PDDNOS, with controls matched on age, sex and cognitive performance on Krebs et al.'s NSS scale. Because of the duration of the assessments and specific difficulties encountered in managing some items, an adaptation of the scale had to be made during a pilot study with the agreement of the author. To be eligible, patients had to meet the following inclusion criteria: an age range of 6-16 years, a diagnosis of autistic disorder or PDDNOS based on the DSM IV criteria (American Psychiatric Association 1994). The autism diagnostic interview-revised (ADI-R) was used in order to confirm the diagnosis and to evaluate the association of the symptoms to the severity of the NSS. The childhood autism rating scale (CARS) was completed for the patients in order to evaluate symptoms at the time of the NSS examination. Cognitive ability was assessed with Raven's progressive matrices. Were excluded patients with: history of cerebral palsy, congenital anomaly of the central nervous system, epilepsy, known genetic syndrome, tuberous sclerosis, neurofibromatosis, antecedent of severe head trauma, Asperger's syndrome, obvious physical deformities or sensory deficits that would interfere with neurological assessment, deep mental retardation and recent or chronic substance use or abuse. Healthy controls shared the same exclusion criteria, with no personal history of neurological, psychiatric disorder or substance abuse, no family history of psychiatric disorder and normal or retardation in schooling. All study procedures were approved by the local Ethics Committee (Comité d'éthique, Razi Hospital), according to the declaration of Helsinki. There was no difference between patients and controls with respect to sex, age and cognitive function. All children had an IQ higher than 81. Significant differences were found between AD children and control group in the motor integration function and sensory integration function. Different NSS scores were significantly higher in the PDDNOS group than in controls: the total scores, motor coordination, motor integration function, sensory integration and abnormal movements. Lower performance in motor coordination skills was associated with higher ADI-R communication score in the AD group. No relationship was found between NSS and CARS' total sore. This study confirms the impaired neurological functioning in autistic as well as PDDNOS children. The association of motor impairment with autistic symptoms highlights the argument that motor control problems can be part of the autism spectrum disorders. The lack of relationship between NSS and intellectual aptitude in the clinical sample provides new elements for the neurodevelopment model of the autism spectrum. Copyright © 2010 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Motor control for a brushless DC motor
NASA Technical Reports Server (NTRS)
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
NASA Technical Reports Server (NTRS)
Baldwin, Kenneth; Feeback, Daniel
1999-01-01
Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.
Rashid, Mohammed; Ribeiro, Paula
2014-01-01
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972
Macoun, Sarah J; Kerns, Kimberly A
2016-01-01
Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.
Logan, S W; Robinson, L E; Wilson, A E; Lucas, W A
2012-05-01
The development of fundamental movement skills (FMS) is associated with positive health-related outcomes. Children do not develop FMS naturally through maturational processes. These skills need to be learned, practised and reinforced. The objective was to determine the effectiveness of motor skill interventions in children. The following databases were searched for relevant articles: Academic Search Premier, PsycArticles, PsycInfo, SportDiscus and ERIC. No date range was specified and each search was conducted to include all possible years of publication specific to each database. Key terms for the search included motor, skill, movement, intervention, programme or children. Searches were conducted using single and combined terms. Pertinent journals and article reference lists were also manually searched. (1) implementation of any type of motor skill intervention; (2) pre- and post-qualitative assessment of FMS; and (3) availability of means and standard deviations of motor performance. A significant positive effect of motor skill interventions on the improvement of FMS in children was found (d= 0.39, P < 0.001). Results indicate that object control (d= 0.41, P < 0.001) and locomotor skills (d= 0.45, P < 0.001) improved similarly from pre- to post-intervention. The overall effect size for control groups (i.e. free play) was not significant (d= 0.06, P= 0.33). A Pearson correlation indicated a non-significant (P= 0.296), negative correlation (r=-0.18) between effect size of pre- to post-improvement of FMS and the duration of the intervention (in minutes). Motor skill interventions are effective in improving FMS in children. Early childhood education centres should implement 'planned' movement programmes as a strategy to promote motor skill development in children. © 2011 Blackwell Publishing Ltd.
Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction.
Penhune, V B; Zattore, R J; Evans, A C
1998-11-01
The perception and production of temporal patterns, or rhythms, is important for both music and speech. However, the way in which the human brain achieves accurate timing of perceptual input and motor output is as yet little understood. Central control of both motor timing and perceptual timing across modalities has been linked to both the cerebellum and the basal ganglia (BG). The present study was designed to test the hypothesized central control of temporal processing and to examine the roles of the cerebellum, BG, and sensory association areas. In this positron emission tomography (PET) activation paradigm, subjects reproduced rhythms of increasing temporal complexity that were presented separately in the auditory and visual modalities. The results provide support for a supramodal contribution of the lateral cerebellar cortex and cerebellar vermis to the production of a timed motor response, particularly when it is complex and/or novel. The results also give partial support to the involvement of BG structures in motor timing, although this may be more directly related to implementation of the motor response than to timing per se. Finally, sensory association areas and the ventrolateral frontal cortex were found to be involved in modality-specific encoding and retrieval of the temporal stimuli. Taken together, these results point to the participation of a number of neural structures in the production of a timed motor response from an external stimulus. The role of the cerebellum in timing is conceptualized not as a clock or counter but simply as the structure that provides the necessary circuitry for the sensory system to extract temporal information and for the motor system to learn to produce a precisely timed response.
ERIC Educational Resources Information Center
Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-01-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…
Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
Geng, Tao; Gan, John Q
2008-01-01
EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.
Child, family and environmental correlates of children's motor skill proficiency.
Barnett, Lisa; Hinkley, Trina; Okely, Anthony D; Salmon, Jo
2013-07-01
To identify factors associated with children's motor skills. Cross-sectional. Australian preschool-aged children were recruited in 2009 as part of a larger study. Parent proxy-report of child factors (age, sex, parent perception of child skill, participation in unstructured and structured activity), self-report of parent factors (confidence in their own skills to support child's activity, parent-child physical activity interaction, parent physical activity) and perceived environmental factors (play space visits, equipment at home) were collected. Moderate to vigorous physical activity (MVPA) (ActiGraph GT1M accelerometer) and motor skills (Test of Gross Motor Development-2) were also assessed. After age adjustment, variables were checked for association with raw object control and locomotor scores. Variables with associations of p<0.20 were entered into two multiple regression models with locomotor/object control as respective outcome variables. Motor skills were assessed for 76 children (42 female), mean [SD] age=4.1 [0.68]; 71 completed parent proxy-report and 53 had valid MVPA data. Child age, swimming lessons, and home equipment were positively associated explaining 20% of locomotor skill variance, but only age was significant (β=0.36, p=0.002). Child age and sex, unstructured activity participation, MVPA%, parent confidence, home equipment (all positively associated), and dance participation (inversely associated) explained 32% object control variance. But only age (β=0.67, p<0.0001), MVPA% (β=0.37, p=0.038) and no dance (β=-0.34, p=0.028) were significant. Motor skill correlates differ according to skill category and are context specific with child level correlates appearing more important. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Pervane Vural, Secil; Nakipoglu Yuzer, Guldal Funda; Sezgin Ozcan, Didem; Demir Ozbudak, Sibel; Ozgirgin, Nese
2016-04-01
To investigate the effects of mirror therapy on upper limb motor functions, spasticity, and pain intensity in patients with hemiplegia accompanied by complex regional pain syndrome type 1. Randomized controlled trial. Training and research hospital. Adult patients with first-time stroke and simultaneous complex regional pain syndrome type 1 of the upper extremity at the dystrophic stage (N=30). Both groups received a patient-specific conventional stroke rehabilitation program for 4 weeks, 5 d/wk, for 2 to 4 h/d. The mirror therapy group received an additional mirror therapy program for 30 min/d. We evaluated the scores of the Brunnstrom recovery stages of the arm and hand for motor recovery, wrist and hand subsections of the Fugl-Meyer Assessment (FMA) and motor items of the FIM-motor for functional status, Modified Ashworth Scale (MAS) for spasticity, and visual analog scale (VAS) for pain severity. After 4 weeks of rehabilitation, both groups had significant improvements in the FIM-motor and VAS scores compared with baseline scores. However, the scores improved more in the mirror therapy group than the control group (P<.001 and P=.03, respectively). Besides, the patients in the mirror therapy arm showed significant improvement in the Brunnstrom recovery stages and FMA scores (P<.05). No significant difference was found for MAS scores. In patients with stroke and simultaneous complex regional pain syndrome type 1, addition of mirror therapy to a conventional stroke rehabilitation program provides more improvement in motor functions of the upper limb and pain perception than conventional therapy without mirror therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Rotigotine and specific non-motor symptoms of Parkinson's disease: post hoc analysis of RECOVER.
Ray Chaudhuri, K; Martinez-Martin, Pablo; Antonini, Angelo; Brown, Richard G; Friedman, Joseph H; Onofrj, Marco; Surmann, Erwin; Ghys, Liesbet; Trenkwalder, Claudia
2013-07-01
Non-motor symptoms of Parkinson's disease (PD) represent major causes of morbidity. RECOVER, a randomized controlled trial of rotigotine transdermal system, was the first prospective controlled trial to use the Non-Motor Symptoms Scale (NMSS) as an exploratory outcome for assessment of treatment effects on non-motor symptoms in PD. Rotigotine improved NMSS total score compared with placebo, and the "Sleep/fatigue" and "Mood/apathy" domains. This post hoc analysis further characterizes the effects of rotigotine on sleep/fatigue and mood/apathy. Patients with PD and unsatisfactory early-morning motor impairment were randomized to transdermal patches of rotigotine (2-16 mg/24 h) or placebo. Treatment was titrated to optimal dose over 1-8 weeks, maintained for 4 weeks. The NMSS was assessed at baseline and end of treatment. Post hoc analyses are presented for individual items of the "Sleep/fatigue" and "Mood/apathy" domains. The interpretation of p-values is considered exploratory in nature. Of 287 patients randomized, NMSS data were available for 267 patients (178 rotigotine, 89 placebo). Within the "Sleep/fatigue" domain there was a significant difference, in favor of rotigotine, in change from baseline score in 1 of 5 items: "fatigue (tiredness) or lack of energy" (ANCOVA, p < 0.0001). Within the "Mood/apathy" domain, there were significant differences in favor of rotigotine in 4 of 7 items: "lost interest in surroundings" (p < 0.0001), "lost interest in doing things" (p < 0.0001), "seems sad or depressed" (p < 0.01), and "difficulty experiencing pleasure" (p < 0.05). Rotigotine transdermal system may improve non-motor symptoms such as fatigue, symptoms of depression, anhedonia, and apathy in patients with PD; further prospective controlled studies are required to confirm this post hoc analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-01-01
The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease. PMID:24877117
A Motor-Driven Mechanism for Cell-Length Sensing
Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike
2012-01-01
Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964
Signal, noise, and variation in neural and sensory-motor latency
Lee, Joonyeol; Joshua, Mati; Medina, Javier F.; Lisberger, Stephen G.
2016-01-01
Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises: a shared component expressed as neuron-neuron latency correlations; and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking with an unexpectedly small contribution from the stochastic nature of spiking itself. The shared component causes the latency of single neuron responses in MT to be weakly predictive of the behavioral latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron latency correlations in MT, and noisy gain control downstream from MT. PMID:26971946
Motor recovery after stroke: a systematic review.
Langhorne, Peter; Coupar, Fiona; Pollock, Alex
2009-08-01
Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.
[The mirror neuron system in motor and sensory rehabilitation].
Oouchida, Yutaka; Izumi, Shinichi
2014-06-01
The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.
Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann
2015-01-01
Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250
Primary Motor Cortex in Stroke A Functional MRI-Guided Proton MR Spectroscopic Study
Cirstea, Carmen M.; Brooks, William M.; Craciunas, Sorin C.; Popescu, Elena A.; Choi, In-Young; Lee, Phil; Bani-Ahmed, Ali; Yeh, Hung-Wen; Savage, Cary R.; Cohen, Leonardo G.; Nudo, Randolph J.
2012-01-01
Background and Purpose Our goal was to investigate whether certain metabolites, specific to neurons, glial cells, or the neuronal-glial neurotransmission system, in primary motor cortices (M1), are altered and correlated with clinical motor severity in chronic stroke. Methods Fourteen survivors of a single ischemic stroke located outside the M1 and 14 age-matched healthy control subjects were included. At >6 months after stroke, N-acetylaspartate, myo-inositol, and glutamate/glutamine were measured using proton magnetic resonance spectroscopic imaging (in-plane resolution=5×5 mm2) in radiologically normal-appearing gray matter of the hand representation area, identified by functional MRI, in each M1. Metabolite concentrations and analyses of metabolite correlations within M1 were determined. Relationships between metabolite concentrations and arm motor impairment were also evaluated. Results The stroke survivors showed lower N-acetylaspartate and higher myo-inositol across ipsilesional and contral-esional M1 compared with control subjects. Significant correlations between N-acetylaspartate and glutamate/glutamine were found in either M1. Ipsilesional N-acetylaspartate and glutamate/glutamine were positively correlated with arm motor impairment and contralesional N-acetylaspartate with time after stroke. Conclusions Our preliminary data demonstrated significant alterations of neuronal-glial interactions in spared M1 with the ipsilesional alterations related to stroke severity and contralesional alterations to stroke duration. Thus, MR spectroscopy might be a sensitive method to quantify relevant metabolite changes after stroke and consequently increase our knowledge of the factors leading from these changes in spared motor cortex to motor impairment after stroke. PMID:21330627
Variable-Displacement Hydraulic Drive Unit
NASA Technical Reports Server (NTRS)
Lang, D. J.; Linton, D. J.; Markunas, A.
1986-01-01
Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario
2017-10-18
Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.
Design of BLDCM emulator for transmission control units
NASA Astrophysics Data System (ADS)
Liu, Chang; He, Yongyi; Zhang, Bodong
2018-04-01
According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.
Fuzzy – PI controller to control the velocity parameter of Induction Motor
NASA Astrophysics Data System (ADS)
Malathy, R.; Balaji, V.
2018-04-01
The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-10-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.
Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh
2016-01-01
The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of motor control among elderly participants with varying fall-risk potentials. The results suggest that, although elderly adults may be without neurological deficits, inefficient central modulation during challenging postural conditions could be an internal factor that contributes to the risk of fall. Furthermore, training that helps to improve coordinated sensorimotor integration may be a useful approach to reduce the risk of fall among elderly populations or when patients suffer from neurological deficits. PMID:27199732
Wu, Ching-Yi; Yang, Chieh-Ling; Chen, Ming-de; Lin, Keh-Chung; Wu, Li-Ling
2013-04-12
Although the effects of robot-assisted arm training after stroke are promising, the relative effects of unilateral (URT) vs. bilateral (BRT) robot-assisted arm training remain uncertain. This study compared the effects of URT vs. BRT on upper extremity (UE) control, trunk compensation, and function in patients with chronic stroke. This was a single-blinded, randomized controlled trial. The intervention was implemented at 4 hospitals. Fifty-three patients with stroke were randomly assigned to URT, BRT, or control treatment (CT). Each group received UE training for 90 to 105 min/day, 5 days/week, for 4 weeks. The kinematic variables for arm motor control and trunk compensation included normalized movement time, normalized movement units, and the arm-trunk contribution slope in unilateral and bilateral tasks. Motor function and daily function were measured by the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and ABILHAND Questionnaire. The BRT and CT groups elicited significantly larger slope values (i.e., less trunk compensation) at the start of bilateral reaching than the URT group. URT led to significantly better effects on WMFT-Time than BRT. Differences in arm control kinematics and performance on the MAL and ABILHAND among the 3 groups were not significant. BRT and URT resulted in differential improvements in specific UE/trunk performance in patients with stroke. BRT elicited larger benefits than URT on reducing compensatory trunk movements at the beginning of reaching. In contrast, URT produced better improvements in UE temporal efficiency. These relative effects on movement kinematics, however, did not translate into differential benefits in daily functions. ClinicalTrials.gov: NCT00917605.
The role of visual processing in motor learning and control: Insights from electroencephalography.
Krigolson, Olav E; Cheng, Darian; Binsted, Gord
2015-05-01
Traditionally our understanding of goal-directed action been derived from either behavioral findings or neuroanatomically derived imaging (i.e., fMRI). While both of these approaches have proven valuable, they lack the ability to determine a direct locus of function while concurrently having the necessary temporal precision needed to understand millisecond scale neural interactions respectively. In this review we summarize some seminal behavioral findings across three broad areas (target perturbation, feed-forward control, and feedback processing) and for each discuss the application of electroencephalography (EEG) to the understanding of the temporal nature of visual cue utilization during movement planning, control, and learning using four existing scalp potentials. Specifically, we examine the appropriateness of using the N100 potential as an indicator of corrective behaviors in response to target perturbation, the N200 as an index of movement planning, the P300 potential as a metric of feed-forward processes, and the feedback-related negativity as an index of motor learning. Although these existing components have potential for insight into cognitive contributions and the timing of the neural processes that contribute to motor control further research is needed to expand the control-related potentials and to develop methods to permit their accurate characterization across a wide range of behavioral tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2016-12-01
The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p < .05, β = .40), more cooperation (B = 0.02 [0.01], p < .05, β = .28), and less externalizing/hyperactivity (B = - 0.02 [0.01], p < .05, β = - .28) after controlling for social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.
Motor Imagery in Asperger Syndrome: Testing Action Simulation by the Hand Laterality Task
Conson, Massimiliano; Mazzarella, Elisabetta; Frolli, Alessandro; Esposito, Dalila; Marino, Nicoletta; Trojano, Luigi; Massagli, Angelo; Gison, Giovanna; Aprea, Nellantonio; Grossi, Dario
2013-01-01
Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms. PMID:23894683
Structural Brain Correlates Associated with Professional Handball Playing
Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz
2015-01-01
Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general. PMID:25915906
Passive Motion Paradigm: An Alternative to Optimal Control
Mohan, Vishwanathan; Morasso, Pietro
2011-01-01
In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures. PMID:22207846
Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin
2016-06-01
In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. Copyright © 2016 Elsevier Inc. All rights reserved.
Ataxia Telangiectasia in Siblings: Oral Motor and Swallowing Characterization.
Rondon-Melo, Silmara; de Almeida, Isabel Junqueira; Andrade, Claudia Regina Furquim de; Sassi, Fernanda Chiarion; Molini-Avejonas, Daniela Regina
2017-07-12
BACKGROUND The body of literature on oral motor and swallowing disorders in patients with ataxia telangiectasia (AT) is limited. CASE REPORT The purpose of this study was to characterize oral motor and swallowing disorders in two siblings with AT, based on oral motor and swallowing assessments. Specific procedures were applied for oral motor and swallowing assessments and both patients underwent videofluoroscopy (VFS). Case 1 presented vocal instability, change in postural control during feeding; food retention in oral cavity; slower oral transit time; and multiple swallowing (signs for solid and liquid). Case 2 presented parted lips at rest and reduced muscle strength; reduced strength and mobility of the tongue; vocal weakness and instability; reduced speech precision and intelligibility; decreased intonation pattern; food retention in oral cavity during feeding; slower oral transit time; multiple swallowing (signs for solid and liquid); poor bolus ejection; incoordination and difficulty in controlling the sips of water taken from the cup; altered cervical auscultation after swallowing and respiratory distress (liquid and puree). For both patients VFS results revealed laryngeal penetration for liquid. CONCLUSIONS Although the literature describes the occurrence of dysarthria and swallowing disorders in patients with AT, little attention has been given to describing which oral motor deficits are responsible for these disorders. Early identification of swallowing alterations and rehabilitation could decrease the risk of aspiration pneumonia. Future studies are necessary in order to investigate the deterioration process of swallowing in AT and the influence of rehabilitation in maintaining functional health.
Force per cross-sectional area from molecules to muscles: a general property of biological motors
Meyer-Vernet, Nicole
2016-01-01
We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area—classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 1019 mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as Mα with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result. PMID:27493785
Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)
Kaneko, Takaaki; Tomonaga, Masaki
2014-06-01
Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.
Heidlmayr, Karin; Doré-Mazars, Karine; Aparicio, Xavier; Isel, Frédéric
2016-01-01
In the present electroencephalographical study, we asked to which extent executive control processes are shared by both the language and motor domain. The rationale was to examine whether executive control processes whose efficiency is reinforced by the frequent use of a second language can lead to a benefit in the control of eye movements, i.e. a non-linguistic activity. For this purpose, we administrated to 19 highly proficient late French-German bilingual participants and to a control group of 20 French monolingual participants an antisaccade task, i.e. a specific motor task involving control. In this task, an automatic saccade has to be suppressed while a voluntary eye movement in the opposite direction has to be carried out. Here, our main hypothesis is that an advantage in the antisaccade task should be observed in the bilinguals if some properties of the control processes are shared between linguistic and motor domains. ERP data revealed clear differences between bilinguals and monolinguals. Critically, we showed an increased N2 effect size in bilinguals, thought to reflect better efficiency to monitor conflict, combined with reduced effect sizes on markers reflecting inhibitory control, i.e. cue-locked positivity, the target-locked P3 and the saccade-locked presaccadic positivity (PSP). Moreover, effective connectivity analyses (dynamic causal modelling; DCM) on the neuronal source level indicated that bilinguals rely more strongly on ACC-driven control while monolinguals rely on PFC-driven control. Taken together, our combined ERP and effective connectivity findings may reflect a dynamic interplay between strengthened conflict monitoring, associated with subsequently more efficient inhibition in bilinguals. Finally, L2 proficiency and immersion experience constitute relevant factors of the language background that predict efficiency of inhibition. To conclude, the present study provided ERP and effective connectivity evidence for domain-general executive control involvement in handling multiple language use, leading to a control advantage in bilingualism. PMID:27832065
Implementation of Motor Imagery during Specific Aerobic Training Session in Young Tennis Players
Guillot, Aymeric; Di Rienzo, Franck; Pialoux, Vincent; Simon, Germain; Skinner, Sarah; Rogowski, Isabelle
2015-01-01
The aim of this study was to investigate the effects of implementing motor imagery (MI) during specific tennis high intensity intermittent training (HIIT) sessions on groundstroke performance in young elite tennis players. Stroke accuracy and ball velocity of forehand and backhand drives were evaluated in ten young tennis players, immediately before and after having randomly performed two HIIT sessions. One session included MI exercises during the recovery phases, while the other included verbal encouragements for physical efforts and served as control condition. Results revealed that similar cardiac demand was observed during both sessions, while implementing MI maintained groundstroke accuracy. Embedding MI during HIIT enabled the development of physical fitness and the preservation of stroke performance. These findings bring new insight to tennis and conditioning coaches in order to fulfil the benefits of specific playing HIIT sessions, and therefore to optimise the training time. PMID:26580804
Stinson, L W; Murray, M J; Jones, K A; Assef, S J; Burke, M J; Behrens, T L; Lennon, R L
1994-02-01
A microcomputer-controlled closed-loop infusion system (MCCLIS) has been developed that provides stable intraoperative levels of partial neuromuscular blockade. Complete neuromuscular blockade interferes with intraoperative motor-evoked potential (MEP) monitoring used for patients undergoing surgical procedures that place them at risk for spinal cord ischemia. Nine patients were studied during which the MCCLIS maintained stable levels of partial neuromuscular blockade and allowed transcranial magnetic motor-evoked potential (TcM-MEP) monitoring during thoracoabdominal aortic aneurysmectomy. The use of TcM-MEP for monitoring intraoperative spinal cord function was balanced against surgical considerations for muscle relaxation with 80% to 90% neuromuscular blockade fulfilling each requirement. Intraoperative adjustment of partial neuromuscular blockade to facilitate TcM-MEP monitoring was also possible with the MCCLIS. The MCCLIS should allow for further investigation into the sensitivity, specificity, and predictability of TcM-MEP monitoring for any patient at risk for intraoperative spinal cord ischemia including those undergoing thoracoabdominal aortic aneurysmectomy.
Improving performance in golf: current research and implications from a clinical perspective.
Evans, Kerrie; Tuttle, Neil
2015-01-01
Golf, a global sport enjoyed by people of all ages and abilities, involves relatively long periods of low intensity exercise interspersed with short bursts of high intensity activity. To meet the physical demands of full swing shots and the mental and physical demands of putting and walking the course, it is frequently recommended that golfers undertake golf-specific exercise programs. Biomechanics, motor learning, and motor control research has increased the understanding of the physical requirements of the game, and using this knowledge, exercise programs aimed at improving golf performance have been developed. However, while it is generally accepted that an exercise program can improve a golfer's physical measurements and some golf performance variables, translating the findings from research into clinical practice to optimise an individual golfer's performance remains challenging. This paper discusses how biomechanical and motor control research has informed current practice and discusses how emerging sophisticated tools and research designs may better assist golfers improve their performance.
Improving performance in golf: current research and implications from a clinical perspective
Evans, Kerrie; Tuttle, Neil
2015-01-01
Golf, a global sport enjoyed by people of all ages and abilities, involves relatively long periods of low intensity exercise interspersed with short bursts of high intensity activity. To meet the physical demands of full swing shots and the mental and physical demands of putting and walking the course, it is frequently recommended that golfers undertake golf-specific exercise programs. Biomechanics, motor learning, and motor control research has increased the understanding of the physical requirements of the game, and using this knowledge, exercise programs aimed at improving golf performance have been developed. However, while it is generally accepted that an exercise program can improve a golfer's physical measurements and some golf performance variables, translating the findings from research into clinical practice to optimise an individual golfer's performance remains challenging. This paper discusses how biomechanical and motor control research has informed current practice and discusses how emerging sophisticated tools and research designs may better assist golfers improve their performance. PMID:26537808
Rotating rake design for unique measurement of fan-generated spinning acoustic modes
NASA Technical Reports Server (NTRS)
Konno, Kevin E.; Hausmann, Clifford R.
1993-01-01
In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.
The tongue and its control by sleep state-dependent modulators.
Horner, R L
2011-12-01
The neural networks controlling vital functions such as breathing are embedded in the brain, the neural and chemical environment of which changes with state, i.e., wakefulness, non-rapid eye movement (non-REM) sleep and REM sleep, and with commonly administered drugs such as anaesthetics, sedatives and ethanol. One particular output from the state-dependent chemical brain is the focus of attention in this paper; the motor output to the muscles of the tongue, specifically the actions of state-dependent modulators acting at the hypoglossal motor pool. Determining the mechanisms underlying the modulation of the hypoglossal motor output during sleep is relevant to understanding the spectrum of increased upper airway resistance, airflow limitation, hypoventilation and airway obstructions that occur during natural and drug-influenced sleep in humans. Understanding the mechanisms underlying upper airway dysfunction in sleep-disordered breathing is also important given the large and growing prevalence of obstructive sleep apnea syndrome which constitutes a major public health problem with serious clinical, social and economic consequences.
Kimberley, Teresa J; Pickett, Kristen A
2012-01-01
The pathophysiology of focal hand dystonia (FHD) is not clearly understood. Previous studies have reported increased and decreased cortical activity associated with motor tasks. The aim of this study was to investigate blood oxygen level dependent (BOLD) signal changes in functional magnetic resonance imaging within the hand area of primary motor cortex during cued movement of individual digits. Eight healthy individuals and five individuals with right hand FHD participated. Beta weight contrasts were examined within the hand area of the motor cortex. In both groups, BOLD signal changes in the hemisphere contralateral to the moving hand were greater in the left hemisphere than the right. Between groups, no difference was found during control of the left hand, but a significant difference was seen during right hand movement; specifically, individuals with dystonia showed increased contralateral and decreased ipsilateral cortical response associated with the affected hand as compared to healthy individuals. This suggests a similar, albeit exaggerated pattern of activation in individuals with FHD on the affected side. These results suggest different levels of ipsilateral and contralateral activation between healthy and dystonic individuals but also show a relative difference between symptomatic and asymptomatic control within the patient population.
The axonal transport of mitochondria
Saxton, William M.; Hollenbeck, Peter J.
2012-01-01
Vigorous transport of cytoplasmic components along axons over substantial distances is crucial for the maintenance of neuron structure and function. The transport of mitochondria, which serves to distribute mitochondrial functions in a dynamic and non-uniform fashion, has attracted special interest in recent years following the discovery of functional connections among microtubules, motor proteins and mitochondria, and their influences on neurodegenerative diseases. Although the motor proteins that drive mitochondrial movement are now well characterized, the mechanisms by which anterograde and retrograde movement are coordinated with one another and with stationary axonal mitochondria are not yet understood. In this Commentary, we review why mitochondria move and how they move, focusing particularly on recent studies of transport regulation, which implicate control of motor activity by specific cell-signaling pathways, regulation of motor access to transport tracks and static microtubule–mitochondrion linkers. A detailed mechanism for modulating anterograde mitochondrial transport has been identified that involves Miro, a mitochondrial Ca2+-binding GTPase, which with associated proteins, can bind and control kinesin-1. Elements of the Miro complex also have important roles in mitochondrial fission–fusion dynamics, highlighting questions about the interdependence of biogenesis, transport, dynamics, maintenance and degradation. PMID:22619228
[REHABILITATION OF MOBILITY AND MOTOR FUNCTION IN NURSING HOME RESIDENTS WITH DEMENTIA].
Aizen, Efraim; Lubosky, Enna; Sobeh, Saleh; Ibrahim, Rasha; Pressburger, Dina; Oliven, Roni
2018-04-01
Few clinical trials have evaluated exercise programs developed specifically for patients with dementia in nursing home settings. To determine if a training program tailored for demented patients, can be implemented in a nursing home setting in order to improve motor performances in patients with dementia who suffered functional decline. The present intervention was conducted in wards of patients suffering from dementia in three nursing homes. Patients suffering from dementia and hospitalized in a rehabilitation hospital were the control arm. Eligible patients in the wards assigned to the intervention group (NH; n = 24) received exercise training specifically designed for patients with dementia. Patients in the rehabilitation hospital were observed as a control group (RH; n = 50) and received usual care treatment. Primary endpoints were changes in Functional Independence Measure (FIM), 5X Sit-to-Stand Test, Timed up and go test and ADL. Basic parameters were examined as predictors of positive training response. Both the nursing home residents and rehabilitation hospital patients improved significantly in both primary endpoints (change: in Functional Independence Measure, NH: +119.2 ± 30.8 % versus RH: +83.3 ± 41.9%, p < 0.001; ADL, NH: +143.5 ± 102.6% versus RH: +59.0 ± 90.2%, p < 0.001). Age was found to be a predictor of positive training response. This functional training program tailored for demented patients can be implemented in a nursing home setting to improve motor performances in patients with dementia. Such interventions should be further evaluated in larger randomized controlled trials.
Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T
2016-12-07
The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.
Li, Lebao; Sun, Lingling; Zhang, Shengzhou
2016-05-01
A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoolboom, G.J.; Szabados, B.
The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.
Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-10-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence
Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-01-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575
Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.
2017-01-01
Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126
NASA Astrophysics Data System (ADS)
CheshmehBeigi, Hassan Moradi
2018-05-01
In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.
Risk-Sensitivity in Sensorimotor Control
Braun, Daniel A.; Nagengast, Arne J.; Wolpert, Daniel M.
2011-01-01
Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of “motor costs.” Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty. PMID:21283556
Kordovski, Victoria M; Frndak, Seth E; Fisher, Carrie S; Rodgers, Jonathan; Weinstock-Guttman, Bianca; Benedict, Ralph H B
2015-09-01
Physical disability and cognitive impairment are significant predictors of unemployment in multiple sclerosis (MS). However, little is known about the frequency of work problems in employed patients, in comparison to employed healthy persons. Use an online monitoring tool to compare the frequency of negative work events in MS patients and healthy controls, and determine a threshold at which the frequency of work problems is clinically meaningful. The sample comprised 138 MS patients and 62 healthy controls. All reported on recent negative work events and accommodations using an online survey. The clinical test battery measured depression, motor and cognitive function. Statistical tests compared the frequency of work problems in MS patients and healthy controls. Clinical neuro-performance scales were then assessed in at-risk patients with many work problems, versus those with no work problems. As a group, employed MS patients exhibited deficits in motor ability, verbal memory, and processing speed and were more likely than controls to report negative work events and accommodations. At-risk patients, that is, those reporting more than one negative work event, had more pronounced motor and cognitive deficits than their relatively stable counterparts. The data show that employed MS patients report more negative work events and accommodations than employed healthy persons. Those patients deemed at risk for job loss have more cognitive and motor impairment, suggesting the need for cognitive training and specific accommodation strategies in the work place. Copyright © 2015 Elsevier B.V. All rights reserved.
Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H
2014-11-06
This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles...
Digital control of magnetic bearings in a cryogenic cooler
NASA Technical Reports Server (NTRS)
Feeley, J.; Law, A.; Lind, F.
1990-01-01
This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Biomotor structures in elite female handball players according to performance.
Cavala, Marijana; Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka; Katić, Ratko
2008-03-01
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.
Shimizu, Masako; Miyazaki, Ikuko; Higashi, Youichirou; Eslava-Alva, Maria J; Diaz-Corrales, Francisco J; Asanuma, Masato; Ogawa, Norio
2008-04-01
We identified p53-activated gene 608 (PAG608) as a specifically induced gene in striatal tissue of L-DOPA (100mg/kg)-injected hemi-parkinsonian rats using differential display assay. In the present study, we further examined morphological distribution of PAG608 in the central nervous system of L-DOPA-treated hemi-parkinsonian rats. PAG608 expression was markedly induced in fibers and neuronal cells of the lateral globus pallidus and reticular thalamic nucleus adjacent to internal capsule, specifically in the parkinsonian side of L-DOPA-treated models. The protein was also constitutively expressed in motor neurons specifically in either side of the pontine nucleus and motor nuclei of trigeminal and facial nerves. Furthermore, L-DOPA-induced PAG608 expression on motor neurons in the contralateral side of the ventral horn of the spinal cord and the lateral corticospinal tract without cell loss. The specific induction of PAG608 6-48h after L-DOPA injection in the extrapyramidal tracts, pyramidal tracts and corresponding lower motor neurons of the spinal cords suggests its involvement in molecular events in stimulated motor neurons. Taken together with the constitutive expression of PAG608 in the motor nuclei of cranial nerves, PAG608 may be a useful marker of stressed or activated lower motor neurons.
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard
2016-06-01
Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1
Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo
2015-01-01
The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
Motorized control for mirror mount apparatus
Cutburth, Ronald W.
1989-01-01
A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.
Improved transistorized AC motor controller for battery powered urban electric passenger vehicles
NASA Technical Reports Server (NTRS)
Peak, S. C.
1982-01-01
An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.
Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations
Koester, Dirk; Schack, Thomas
2016-01-01
Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539
Schauer, Michael; Mauritz, Karl-Heinz
2003-11-01
To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.
Data-Driven Subclassification of Speech Sound Disorders in Preschool Children
Vick, Jennell C.; Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Truemper, Klaus; Rusiewicz, Heather Leavy; Moore, Christopher A.
2015-01-01
Purpose The purpose of the study was to determine whether distinct subgroups of preschool children with speech sound disorders (SSD) could be identified using a subgroup discovery algorithm (SUBgroup discovery via Alternate Random Processes, or SUBARP). Of specific interest was finding evidence of a subgroup of SSD exhibiting performance consistent with atypical speech motor control. Method Ninety-seven preschool children with SSD completed speech and nonspeech tasks. Fifty-three kinematic, acoustic, and behavioral measures from these tasks were input to SUBARP. Results Two distinct subgroups were identified from the larger sample. The 1st subgroup (76%; population prevalence estimate = 67.8%–84.8%) did not have characteristics that would suggest atypical speech motor control. The 2nd subgroup (10.3%; population prevalence estimate = 4.3%– 16.5%) exhibited significantly higher variability in measures of articulatory kinematics and poor ability to imitate iambic lexical stress, suggesting atypical speech motor control. Both subgroups were consistent with classes of SSD in the Speech Disorders Classification System (SDCS; Shriberg et al., 2010a). Conclusion Characteristics of children in the larger subgroup were consistent with the proportionally large SDCS class termed speech delay; characteristics of children in the smaller subgroup were consistent with the SDCS subtype termed motor speech disorder—not otherwise specified. The authors identified candidate measures to identify children in each of these groups. PMID:25076005
[Focal dystonia in musicians: Phenomenology and musical triggering factors].
Aránguiz, R; Chana-Cuevas, P; Alburquerque, D; Curinao, X
2015-06-01
Dystonias are defined as a joint sustained and involuntary contraction of agonist and antagonist muscles, which can cause torsion, repetitive abnormal involuntary movements, and/or abnormal postures. One special group of dystonias are those known as occupational, which include dystonia disorders triggered by a repetitive motor activity associated with a specific professional activity or task. Musicians are a population particularly vulnerable to these types of dystonia, which are presented as a loss of coordination and voluntary motor control movements highly trained in musical interpretation. Our aim is to describe a clinical series of focal dystonias in musicians evaluated and treated in our centre. Data is presented on a clinical series of 12 musicians with occupational dystonia. Their history and phenomenology are described, as well as well as their outcome after therapy. Demographic details: Mean age 34.8 ± 11.8 years, 10 males (83.3%) and 2 females (16.7%). History of trauma in dystonic segment, 6 patients (50%); family history of neurological diseases in first-degree relatives, 6 patients (50%); occupational history according to music category, 8 patients (66.6%) were classical musicians and 4 patients (33.3%) were popular musicians. The dystonia syndrome was characterised by having a mean age of onset of 28.2 ± 11.3 years (range 18-57 years). The segment affected was the hand (91.7%) in 11 patients. Of all the musicians seen in the clinic, 9 of them (75%) received therapy. The majority of patients appeared to have triggering factors specific to musical execution and linked to the requirement of fine motor control. It should be mentioned that 50% of the musicians treated maintained their professional activity or position in the orchestra to which they belonged. The majority of our phenomenological findings are consistent with those reported in the current literature. However, it is worth mentioning the presence of triggering factors attributed to the specific requirements of performing music, linked to the participation of fine motor control. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Del-Monte, Jonathan; Capdevielle, Delphine; Varlet, Manuel; Marin, Ludovic; Schmidt, Richard C.; Salesse, Robin N.; Bardy, Benoît G.; Boulenger, Jean Philippe; Gély-Nargeot, Marie Christine; Attal, Jérôme; Raffard, Stéphane
2013-01-01
Intermediate endophenotypes emerge as an important concept in the study of schizophrenia. Although research on phenotypes mainly investigated cognitive, metabolic or neurophysiological markers so far, some authors also examined the motor behavior anomalies as a potential trait-marker of the disease. However, no research has investigated social motor coordination despite the possible importance of its anomalies in schizophrenia. The aim of this study was thus to determine whether coordination modifications previously demonstrated in schizophrenia are trait-markers that might be associated with the risk for this pathology. Interpersonal motor coordination in 27 unaffected first-degree relatives of schizophrenia patients and 27 healthy controls was assessed using a hand-held pendulum task to examine the presence of interpersonal coordination impairments in individuals at risk for the disorder. Measures of neurologic soft signs, clinical variables and neurocognitive functions were collected to assess the cognitive and clinical correlates of social coordination impairments in at-risk relatives. After controlling for potential confounding variables, unaffected relatives of schizophrenia patients had impaired intentional interpersonal coordination compared to healthy controls while unintentional interpersonal coordination was preserved. More specifically, in intentional coordination, the unaffected relatives of schizophrenia patients exhibited coordination patterns that had greater variability and in which relatives did not lead the coordination. These results show that unaffected relatives of schizophrenia patients, like the patients themselves, also present deficits in intentional interpersonal coordination. For the first time, these results suggest that intentional interpersonal coordination impairments might be a potential motor intermediate endophenotype of schizophrenia opening new perspectives for early diagnosis. PMID:24106467
Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.
2017-01-01
The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.
Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T
2015-06-01
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp.
Gallea, Cecile; Horovitz, Silvina G; Najee-Ullah, Muslimah 'Ali; Hallett, Mark
2016-12-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In this MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. Hum Brain Mapp 37:4363-4375, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yang, Xingfu; Wu, Ning
2018-01-23
As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.
Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.
2013-01-01
Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388
[Social Cognition and the Sense of Agency in Autism: From Action to Interaction].
Lafleur, Alexis; Soulières, Isabelle; Forgeot d'Arc, Baudoin
The sense of agency (SoA) refers to the ability for one to detect that she is the cause of an action (Gallagher, 2000). The SoA is linked to motor control but also to self-awareness and could play an important role in social interactions. Autism spectrum disorder (ASD) is characterized by an alteration of social interactions and communication (DSM-5; APA, 2013) and is often seen as a primary deficit of functions specific to social cognition. However, motor control is also altered in ASD. We hypothesize that motor symptoms and social impairments could both arise from the same alteration of SoA. We first introduce theoretical models of implicit and explicit SoA (Synofzik et al., 2008) and present their neurofunctional basis. Then, we assess the clinical expressions of a disrupted SoA in different neuropsychiatric disorders such as schizophrenia. In ASD, the atypical formation of internal models of action during motor acquisition (Haswell et al., 2009) could be at the source of an altered implicit SoA. A lack of fidelity of sensorimotor agency cues (Zalla et al., 2015) could also entail an alteration of explicit SoA. We discuss the main clinical expressions of ASD that may ensue from a disrupted SoA (difficulties in theory of mind and imitation, deficits in motor coordination and praxis, etc.).
Late Recovery from Stuttering: The Role of Hand Dominancy, Fine Motor and Inhibition Control
Mohammadi, Hiwa; Khazaie, Habibolah; Rezaei, Mansour; Joghataei, Mohammad Taghi
2016-01-01
Objective: There are controversial reports about factors that affect recovery from stuttering. In the present study, the effect of hand dominancy, fine motor and inhibition control on late recovery from stuttering was investigated among a group of Kurdish-Persian children who stuttered in Iran. Method: Twenty-two Kurdish-Persian children aged 7-14 years who stuttered were followed for 6 years. Based on the evaluation of three experienced speech therapists and parental judgments, these children were classified into recovered or persistent groups. Data about fine motor control of hand and inhibition control were obtained, using Purdue Pegboard and Victoria Strop Color Word Tests, respectively. Risk factors including sex, age, and family history of stuttering, handedness, inhibitory control and fine motor control of hand were compared between the groups and modeled to predict recovery from stuttering using logistic regression. Results: From the 22 participants, 5 (22.7%) recovered from stuttering. The recovered and persistent groups did not show significant differences in the interference effect. By dividing the scores of the Purdue Pegboard tests to the right and left hand, we created a new Handedness Index (HI). HI was significantly higher in the recovered group. The score of right hand was higher than the left in the recovered group, but no difference was found between the two hands in the persistent group. Among the investigated risk factors, only HI could predict the recovery from or persistency of stuttering with 94% sensitivity and 84% specificity. Conclusion: Handedness Index can predict the recovery from stuttering significantly among children who stutter. PMID:27252769
CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR
Hawke, B.C.; Liederbach, F.J.; Lones, W.
1963-05-14
A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)
Pulse-Width-Modulating Driver for Brushless dc Motor
NASA Technical Reports Server (NTRS)
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing
2012-01-01
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. PMID:22391119