Giangiardi, Vivian Farahte; Alouche, Sandra Regina; de Freitas, Sandra Maria Sbeghen Ferreira; Pires, Raquel Simoni; Padula, Rosimeire Simprini
2018-06-01
To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, 24 participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling and strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in other tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job-specific task is the basis for allocating training and guidance to workers.
Schaefer, Sydney Y; Patterson, Chavelle B; Lang, Catherine E
2013-09-01
Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. The purpose of the current study was to test whether training on one motor task in individuals with chronic hemiparesis poststroke would transfer to untrained tasks that were either spatiotemporally similar or different. In all, 11 participants with chronic mild to moderate hemiparesis following stroke completed 5 days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with 2 other untrained functional upper-extremity motor tasks (sorting, dressing) was assessed before and after training. Performance of all 3 tasks improved significantly after training exclusively on 1 motor task. The amount of improvement in the untrained tasks was comparable and was not dependent on the degree of similarity to the trained task. Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits.
Motor-cognitive dual-task deficits in individuals with early-mid stage Huntington disease.
Fritz, Nora E; Hamana, Katy; Kelson, Mark; Rosser, Anne; Busse, Monica; Quinn, Lori
2016-09-01
Huntington disease (HD) results in a range of cognitive and motor impairments that progress throughout the disease stages; however, little research has evaluated specific dual-task abilities in this population, and the degree to which they may be related to functional ability. The purpose of this study was to a) examine simple and complex motor-cognitive dual-task performance in individuals with HD, b) determine relationships between dual-task walking ability and disease-specific measures of motor, cognitive and functional ability, and c) examine the relationship of dual-task measures to falls in individuals with HD. Thirty-two individuals with HD were evaluated for simple and complex dual-task ability using the Walking While Talking Test. Demographics and disease-specific measures of motor, cognitive and functional ability were also obtained. Individuals with HD had impairments in simple and complex dual-task ability. Simple dual-task walking was correlated to disease-specific motor scores as well as cognitive performance, but complex dual-task walking was correlated with total functional capacity, as well as a range of cognitive measures. Number of prospective falls was moderately-strongly correlated to dual-task measures. Our results suggest that individuals with HD have impairments in cognitive-motor dual-task ability that are related to disease progression and specifically functional ability. Dual-task measures appear to evaluate a unique construct in individuals with early to mid-stage HD, and may have value in improving the prediction of falls risk in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Schaefer, Sydney Y.; Patterson, Chavelle B.; Lang, Catherine E.
2013-01-01
Background Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. Objective The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. Methods Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. Results Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. Conclusions Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits. PMID:23549521
Motor command inhibition and the representation of response mode during motor imagery.
Scheil, Juliane; Liefooghe, Baptist
2018-05-01
Research on motor imagery proposes that overt actions during motor imagery can be avoided by proactively signaling subthreshold motor commands to the effectors and by invoking motor-command inhibition. A recent study by Rieger, Dahm, and Koch (2017) found evidence in support of motor command inhibition, which indicates that MI cannot be completed on the sole basis of subthreshold motor commands. However, during motor imagery, participants know in advance when a covert response is to be made and it is thus surprising such additional motor-command inhibition is needed. Accordingly, the present study tested whether the demand to perform an action covertly can be proactively integrated by investigating the formation of task-specific action rules during motor imagery. These task-specific action rules relate the decision rules of a task to the mode in which these rules need to be applied (e.g., if smaller than 5, press the left key covertly). To this end, an experiment was designed in which participants had to switch between two numerical judgement tasks and two response modes: covert responding and overt responding. First, we observed markers of motor command inhibition and replicated the findings of Rieger and colleagues. Second, we observed evidence suggesting that task-specific action rules are created for the overt response mode (e.g., if smaller than 5, press the left key). In contrast, for the covert response mode, no task-specific action rules are formed and decision rules do not include mode-specific information (e.g., if smaller than 5, left). Copyright © 2018 Elsevier B.V. All rights reserved.
A unifying motor control framework for task-specific dystonia
Rothwell, John C.; Edwards, Mark J.
2018-01-01
Task-specific dystonia is a movement disorder characterized by the development of a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective and the disorder generally ends the careers of affected individuals. There are a number of limitations with traditional dystonic disease models for task-specific dystonia. We therefore review emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill is disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder. PMID:29104291
Interrelations between three fine motor skills in young adults.
Lorås, Håvard; Sigmundsson, Hermundur
2012-08-01
Motor skills are typically considered to be highly specific, although some researchers have attempted to identify evidence for general motor aptitude. The present study tested these contentions by assessing the extent of relationship between fine motor tasks, using correlations between selected performance measures for three fine motor skills. University students ages 18 to 35 years (N = 305; 147 men, 158 women) completed three fine motor tasks with both right and left hands (placing pegs, posting coins, and placing bricks). Performance was assessed by time to complete each individual task. The intercorrelations between the three tasks were generally low and at a level that can be expected by chance (r < or = .3), indicating that performance was quite specific to the individual skills rather than attributable to a general ability. As a further test for evidence for a general motor ability, the dimensionality of the data set was analyzed using a principal component analysis on the correlation matrix. A three-factor solution explaining approximately 80% of the total variance in performance on the fine motor tasks was identified, where each factor could be associated with each fine motor task. These findings provide further support for the high specificity in fine motor skills and against the existence of a general aptitude for motor ability.
Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study
Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk
2017-01-01
The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette
2017-09-01
Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.
Karok, Sophia; Fletcher, David; Witney, Alice G
2017-01-08
Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals
Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo
2011-01-01
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054
Task specific grip force control in writer's cramp.
Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J
2014-04-01
Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.
Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A
2012-03-01
One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.
Hofmann, Aurélie; Grossbach, Michael; Baur, Volker; Hermsdörfer, Joachim; Altenmüller, Eckart
2015-03-01
1) To examine the fine motor skills used everyday by patients suffering from musician's dystonia (MD) in the upper limb in order to verify whether MD is task-specific; and 2) to compare the affected and non-affected hands of MD musicians vs healthy musicians in performance of these tasks in order to clarify whether dystonic symptoms can be found in the non-affected side of MD patients. MD is typically considered to be focal and task specific, but patients often report impairment in everyday life activities. Furthermore, in the course of MD, about 15% of patients complain of dystonic symptoms in other parts of the body. Twenty-seven musicians affected by MD and 27 healthy musicians were studied using 1) the Motor Performance Test Series, 2) a kinematic analysis of handwriting, and 3) an assessment of the grip force regulation while lifting and moving a manipulandum. Patients performed most fine motor tasks without any evidence of a deficit. Exclusively in the handwriting tasks (2), they exhibited fewer frequencies of the written trace and a prolonged overall writing time. MD is highly task specific and does not strongly affect other motor skills. The subtle deficits in handwriting may be explained as a consequence of a general psychological disposition rather than as compensatory mechanisms to avoid the appearance of dystonic symptoms. Furthermore, we did not find signs of multifocal motor deficits in the unaffected hands of MD patients.
Hand specific representations in language comprehension.
Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P
2014-01-01
Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.
Keller, Martin; Taube, Wolfgang; Lauber, Benedikt
2018-02-22
Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh
2011-08-01
Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.
Torres-Russotto, Diego; Perlmutter, Joel S.
2009-01-01
Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127
Morin-Moncet, Olivier; Beaumont, Vincent; de Beaumont, Louis; Lepage, Jean-Francois; Théoret, Hugo
2014-05-01
Recent data suggest that the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene can alter cortical plasticity within the motor cortex of carriers, which exhibits abnormally low rates of cortical reorganization after repetitive motor tasks. To verify whether long-term retention of a motor skill is also modulated by the presence of the polymorphism, 20 participants (10 Val66Val, 10 Val66Met) were tested twice at a 1-wk interval. During each visit, excitability of the motor cortex was measured by transcranial magnetic stimulations (TMS) before and after performance of a procedural motor learning task (serial reaction time task) designed to study sequence-specific learning of the right hand and sequence-specific transfer from the right to the left hand. Behavioral results showed a motor learning effect that persisted for at least a week and task-related increases in corticospinal excitability identical for both sessions and without distinction for genetic group. Sequence-specific transfer of the motor skill from the right hand to the left hand was greater in session 2 than in session 1 only in the Val66Met genetic group. Further analysis revealed that the sequence-specific transfer occurred equally at both sessions in the Val66Val genotype group. In the Val66Met genotype group, sequence-specific transfer did not occur at session 1 but did at session 2. These data suggest a limited impact of Val66Met polymorphism on the learning and retention of a complex motor skill and its associated changes in corticospinal excitability over time, and a possible modulation of the interhemispheric transfer of procedural learning. Copyright © 2014 the American Physiological Society.
Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices
Helm, Fabian; Reiser, Mathias; Munzert, Jörn
2016-01-01
In our everyday environments, we are constantly having to adapt our behavior to changing conditions. Hence, processing information is a fundamental cognitive activity, especially the linking together of perceptual and action processes. In this context, expertise research in the sport domain has concentrated on arguing that superior processing performance is driven by an advantage to be found in anticipatory processes (see Williams et al., 2011, for a review). This has resulted in less attention being paid to the benefits coming from basic internal perceptual-motor processing. In general, research on reaction time (RT) indicates that practicing a RT task leads to an increase in processing speed (Mowbray and Rhoades, 1959; Rabbitt and Banerji, 1989). Against this background, the present study examined whether the speed of internal processing is dependent on or independent from domain-specific motor expertise in unpredictable stimulus–response tasks and in a double stimulus–response paradigm. Thirty male participants (15 team handball goalkeepers and 15 novices) performed domain-unspecific simple or choice stimulus–response (CSR) tasks as well as CSR tasks that were domain-specific only for goalkeepers. As expected, results showed significantly faster RTs for goalkeepers on domain-specific tasks, whereas novices’ RTs were more frequently excessively long. However, differences between groups in the double stimulus-response paradigm were not significant. It is concluded that the reported expertise advantage might be due to recalling stored perceptual-motor representations for the domain-specific tasks, implying that experience with (practice of) a motor task explicitly enhances the internal processing of other related domain-specific tasks. PMID:27445879
Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices.
Helm, Fabian; Reiser, Mathias; Munzert, Jörn
2016-01-01
In our everyday environments, we are constantly having to adapt our behavior to changing conditions. Hence, processing information is a fundamental cognitive activity, especially the linking together of perceptual and action processes. In this context, expertise research in the sport domain has concentrated on arguing that superior processing performance is driven by an advantage to be found in anticipatory processes (see Williams et al., 2011, for a review). This has resulted in less attention being paid to the benefits coming from basic internal perceptual-motor processing. In general, research on reaction time (RT) indicates that practicing a RT task leads to an increase in processing speed (Mowbray and Rhoades, 1959; Rabbitt and Banerji, 1989). Against this background, the present study examined whether the speed of internal processing is dependent on or independent from domain-specific motor expertise in unpredictable stimulus-response tasks and in a double stimulus-response paradigm. Thirty male participants (15 team handball goalkeepers and 15 novices) performed domain-unspecific simple or choice stimulus-response (CSR) tasks as well as CSR tasks that were domain-specific only for goalkeepers. As expected, results showed significantly faster RTs for goalkeepers on domain-specific tasks, whereas novices' RTs were more frequently excessively long. However, differences between groups in the double stimulus-response paradigm were not significant. It is concluded that the reported expertise advantage might be due to recalling stored perceptual-motor representations for the domain-specific tasks, implying that experience with (practice of) a motor task explicitly enhances the internal processing of other related domain-specific tasks.
Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.
2017-01-01
The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Effects of practice schedule and task specificity on the adaptive process of motor learning.
Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar
2017-10-01
This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.
Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.
Tortella, Patrizia; Haga, Monika; Loras, Håvard
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985
Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der
2018-05-01
Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.
2014-01-01
Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546
Sequence-specific procedural learning deficits in children with specific language impairment.
Hsu, Hsinjen Julie; Bishop, Dorothy V M
2014-05-01
This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients
Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun
2015-01-01
Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269
Liebherr, Magnus; Weiland-Breckle, Hanna; Grewe, Tanja; Schumacher, Petra B
2018-04-01
We often walk around when we have to think about something, but suddenly stop when we are confronted with a demanding cognitive task, such as calculating 1540*24. While previous neurophysiological research investigated cognitive and motor performance separately, findings that combine both are rare. To get a deeper understanding of the influence of motor demands as well as the difficulty of a simultaneously performed cognitive task, we investigated 20 healthy individuals. Participants performed two cognitive tasks with different levels of difficulty while sitting or standing on one leg. In addition to behavioral data, we recorded the electroencephalogram from 26Ag/AgCI scalp electrodes. The critical time-windows, predefined by visual inspection, yielded an early (200-300 ms, P2) and a subsequent positivity (350-500 ms, P3). Statistical analysis of the early time window registered a motor × cognition interaction. Resolution of this interaction revealed an effect of the cognitive task in the one-legged stance motor condition, with a more pronounced positivity for the difficult task. No significant differences between cognitive tasks emerged for the simple motor condition. The time-window between 350 and 500 ms registered main effects of the motor task and a trend for the cognitive task. While the influence of cognitive task difficulty (in the P3) is in accordance with previous studies, the motor task effect is specific to one-legged stance (cf. no effects for running in previous research). The motor-cognition interaction found in the P2 indicates that the more difficult motor task (one-legged stance) facilitates cognitive task performance. Copyright © 2018 Elsevier B.V. All rights reserved.
van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert
2018-06-01
A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2 = .47), with no difference between conditions (ŋ p 2 = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.
Cognitive-motor dual-task interference: A systematic review of neural correlates.
Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco
2017-04-01
Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motor cortex is required for learning but not for executing a motor skill.
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P
2015-05-06
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
NASA Technical Reports Server (NTRS)
Kole, James A.; Schneider, Vivian I.; Healy, Alice F.; Barshi, Immanuel
2017-01-01
Subjects trained in a standard data entry task, which involved typing numbers (e.g., 5421) using their right hands. At test (6 months post-training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task. At a second test (8 months post-training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task. For each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals.
Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T
2018-06-01
Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.
de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G
2016-07-01
Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was suppressed in the locations within the auditory system that most robustly responded to particular sound stimuli. Altogether, our results provide experimental evidence for a mechanism that preferentially recruits task-related neuronal populations by increasing cortical excitability in task-related cortical areas and decreasing cortical excitability in task-unrelated areas. This mechanism is implemented by variations in alpha power and is common to humans and the non-human primate under study. These results contribute to an increasingly refined understanding of the mechanisms underlying the selection of the specific neuronal populations required for task execution. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Body side-specific control of motor activity during turning in a walking animal
Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar
2016-01-01
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731
Sleep promotes branch-specific formation of dendritic spines after learning
Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao
2015-01-01
How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169
Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A
2014-02-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A
2015-01-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700
Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N
2018-02-01
Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.
Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert
2016-11-01
Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Craje, Celine
2010-01-01
Motor imagery (MI) refers to the mental rehearsal of a movement without actual motor output. MI training has positive effects on upper limb recovery after stroke. However, until now it is unclear whether this effect is specific to the trained task or a more general motor skill improvement. This study was set up to advance our insights into the…
Manipulating motor performance and memory through real-time fMRI neurofeedback.
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-05-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Manipulating motor performance and memory through real-time fMRI neurofeedback
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-01-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342
Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.
Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej
2017-07-01
motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p < 0.001). Questionnaire replies indicated that most subjects thought that the new paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.
NASA Astrophysics Data System (ADS)
Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George
2015-03-01
Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.
Writer's cramp: increased dorsal premotor activity during intended writing.
Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan
2013-03-01
Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing. Copyright © 2011 Wiley Periodicals, Inc.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Psychosocial Modulators of Motor Learning in Parkinson’s Disease
Zemankova, Petra; Lungu, Ovidiu; Bares, Martin
2016-01-01
Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495
Motor Imagery in Asperger Syndrome: Testing Action Simulation by the Hand Laterality Task
Conson, Massimiliano; Mazzarella, Elisabetta; Frolli, Alessandro; Esposito, Dalila; Marino, Nicoletta; Trojano, Luigi; Massagli, Angelo; Gison, Giovanna; Aprea, Nellantonio; Grossi, Dario
2013-01-01
Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms. PMID:23894683
Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A
2013-10-01
Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.
1995-01-01
During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.
Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G
2013-04-12
Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W
2014-01-01
Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R
2013-12-01
Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin
Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantitative Motor Performance and Sleep Benefit in Parkinson Disease
van Gilst, Merel M.; van Mierlo, Petra; Bloem, Bastiaan R.; Overeem, Sebastiaan
2015-01-01
Study Objectives: Many people with Parkinson disease experience “sleep benefit”: temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Design: Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. Results: On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. Conclusions: A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. Citation: van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. SLEEP 2015;38(10):1567–1573. PMID:25902811
Primary writing tremor: motor cortex reorganisation and disinhibition.
Byrnes, Michelle L; Mastaglia, Frank L; Walters, Susan E; Archer, Sarah-Anne R; Thickbroom, Gary W
2005-01-01
Primary writing tremor (PWT) is a task-specific tremor of uncertain origin. There has been debate as to whether PWT represents a variant of essential tremor or a tremulous form of focal dystonia related to writer's cramp. In writer's cramp there is evidence of changes in intracortical inhibition (ICI), as well as cortical motor reorganisation. To study corticomotor organisation and short-latency ICI in a patient with typical task-specific PWT. Transcranial magnetic stimulation mapping of the corticomotor representation of the hand and studies of ICI using paired-pulse stimulation were performed in a 47-year-old right-handed woman with a pure task-specific writing tremor. The motor maps for the hand were displaced posteriorly on both sides and reverted to a normal position after treatment with botulinum toxin. Short-latency ICI was reduced for the dominant hand. The findings indicate reorganisation and disinhibition of the corticomotor projection to the hand and point to the participation of cortical centres in the origin of PWT.
Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.
van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan
2015-10-01
Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.
Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu
2017-01-01
Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.
Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu
2017-01-01
Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction. PMID:29095902
Rafique, Sara A; Northway, Nadia
2015-08-01
Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
Piccardi, L; Nori, R; Boccia, M; Barbetti, S; Verde, P; Guariglia, C; Ferlazzo, F
2015-08-01
In the present study, we used single- and dual-task conditions to investigate the nature of topographical working memory to better understand what type of task can hamper performance during navigation. During dual-task conditions, we considered four different sources of interference: motor (M), spatial motor (SM), verbal (i.e. articulatory suppression AS) and spatial environmental (SE). In order to assess the nature of topographical working memory, we used the Walking Corsi Test, asking the participants to perform two tasks simultaneously (M, SM, AS and SE). Our results showed that only spatial-environmental interference hampers the execution of a topographical working memory task, suggesting a task-domain-specific effect. We also found general gender differences in the topographical working memory capabilities: men were more proficient than women, regardless of the type of interferences. However, like men, women performed worse when a spatial-environmental interference was present.
Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J
2017-09-30
The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Deficits in Coordinative Bimanual Timing Precision in Children With Specific Language Impairment
Goffman, Lisa; Zelaznik, Howard N.
2017-01-01
Purpose Our objective was to delineate components of motor performance in specific language impairment (SLI); specifically, whether deficits in timing precision in one effector (unimanual tapping) and in two effectors (bimanual clapping) are observed in young children with SLI. Method Twenty-seven 4- to 5-year-old children with SLI and 21 age-matched peers with typical language development participated. All children engaged in a unimanual tapping and a bimanual clapping timing task. Standard measures of language and motor performance were also obtained. Results No group differences in timing variability were observed in the unimanual tapping task. However, compared with typically developing peers, children with SLI were more variable in their timing precision in the bimanual clapping task. Nine of the children with SLI performed greater than 1 SD below the mean on a standardized motor assessment. The children with low motor performance showed the same profile as observed across all children with SLI, with unaffected unimanual and impaired bimanual timing precision. Conclusions Although unimanual timing is unaffected, children with SLI show a deficit in timing that requires bimanual coordination. We propose that the timing deficits observed in children with SLI are associated with the increased demands inherent in bimanual performance. PMID:28174821
Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.
Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526
A training paradigm to enhance motor recovery in contused rats: effects of staircase training.
Singh, Anita; Murray, Marion; Houle, John D
2011-01-01
Ambulating on stairs is an important aspect of daily activities for many individuals with incomplete spinal cord injury (SCI), and little is known about the effect of training for this specific task. The goal of this study was to determine whether staircase ascent training enhances motor recovery in animals with contusion injury. Rats received a midthoracic contusion lesion of moderate severity and were randomly divided into 2 groups, with one group receiving staircase ascent training for up to 8 weeks and the other receiving no training. To assess the direct effect of training, a task-specific staircase climbing test was performed. Open field test (BBB) and gait analysis (CatWalk) assessed overground recovery, and a grid test was used to assess improvement in sensorimotor tasks. Changes in muscle mass of the forelimb and hindlimb muscles were also measured, and the extent of spared white matter was determined for lesion verification and anatomical correlations. Staircase training improved the task-specific performance of ascent. Gait parameters, including base of support, stride length, regularity index (RI), and step sequence, also improved. Overground locomotion and the grid test, both showed a trend of improved performance. Finally, hindlimb muscle mass was maintained with training. Staircase ascent training after incomplete SCI has beneficial effects on task-specific as well as nonspecific motor and sensorimotor activities.
Mang, Cameron S.; Snow, Nicholas J.; Campbell, Kristin L.; Ross, Colin J. D.
2014-01-01
The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (−100.8 ms) to late practice (−75.2 ms, P < 0.001) and was maintained at retention (−79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866
NASA Technical Reports Server (NTRS)
Hopkins, William D.; Washburn, David A.; Rumbaugh, Duane M.
1989-01-01
MacNeilage et al. (1987) have proposed that nonhuman primate handedness may be contingent on the specific task requirements, with visual-spatial tasks yielding left-hand preferences and fine-motor tasks producing right-hand preferences. This study reports hand preferences in the manipulation of joysticks by 2 rhesus monkeys and 3 chimpanzees. Reach data were also collected for comparison with preference data for manipulation of the joystick. The data indicated that all 5 subjects demonstrated significant right-hand preferences in manipulating the joystick. In contrast, no significant hand preferences were found for the reach data. Reaction-time data also indicated that the right hand could perform a perceptual-motor task better than the left hand in all 5 subjects. Overall, the data indicate that reach tasks may not be sensitive enough measures to produce reliable hand preferences, whereas tasks that assess fine-motor control produce significant hand preferences.
Motor Coordination and Executive Functions
ERIC Educational Resources Information Center
Michel, Eva
2012-01-01
Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…
Using noise to shape motor learning
Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.
2016-01-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721
Using noise to shape motor learning.
Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A
2017-02-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.
The effectiveness of robotic training depends on motor task characteristics.
Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert
2017-12-01
Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.
A Novel Approach to Diagnosing Motor Skills
ERIC Educational Resources Information Center
Aguirre, Aitor; Lozano-Rodero, Alberto; Matey, Luis M.; Villamañe, Mikel; Ferrero, Begoña
2014-01-01
The combination of virtual reality interactive systems and educational technologies have been used in the training of procedural tasks, but there is a lack of research with regard to providing specific assistance for acquiring motor skills. In this paper we present a novel approach to evaluating motor skills with an interactive intelligent…
Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.
Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J
2018-04-18
Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.
Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R
2013-10-10
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Garbarini, Francesca; Pia, Lorenzo
2013-11-05
When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Task-specific motor performance and musculoskeletal response in self-classified right handers.
Kumar, Sameer; Mandal, Manas K
2003-11-01
We examined the difference between the left and right hand motor performance (in terms of erg produced) of self-classified right handers (15 men, 15 women) for power (task involving muscle force) and skilled (task involving precision and eye hand coordination) tasks. Musculoskeletal response during task performance was measured by electromyogram to test the hypothesis that performance with the nondominant hand would trigger more generalized muscle tension. The difference between the left and right hand performance of men was nonsignificant for power task; for women, right hand performance was significantly superior than left for such task. Men excelled in power and women excelled in skilled tasks relative to their counterparts. Generalized muscle tension was significantly more during the left than the right hand performance for power but not for skilled tasks.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-11-01
Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of Language Load on Speech Motor Skill in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Saletta, Meredith; Goffman, Lisa; Ward, Caitlin; Oleson, Jacob
2018-01-01
Purpose: Children with specific language impairment (SLI) show particular deficits in the generation of sequenced action--the quintessential procedural task. Practiced imitation of a sequence may become rote and require reduced procedural memory. This study explored whether speech motor deficits in children with SLI occur generally or only in…
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
NASA Astrophysics Data System (ADS)
Tangwiriyasakul, Chayanin; Verhagen, Rens; van Putten, Michel J. A. M.; Rutten, Wim L. C.
2013-04-01
Objective. Event-related desynchronization (ERD) or synchronization (ERS) refers to the modulation of any EEG rhythm in response to a particular event. It is typically quantified as the ratio between a baseline and a task condition (the event). Here, we focused on the sensorimotor mu-rhythm. We explored the effects of different baselines on mu-power and ERD of the mu-rhythm during a motor imagery task. Methods. Eighteen healthy subjects performed motor imagery tasks while EEGs were recorded. Five different baseline movies were shown. For the imagery task a right-hand opening/closing movie was shown. Power and ERD of the mu-rhythm recorded over C3 and C4 for the different baselines were estimated. Main Results. 50% of the subjects showed relatively high mu-power for specific baselines only, and ERDs of these subjects were strongly dependent on the baseline used. In 17% of the subjects no preference was found. Contralateral ERD of the mu-rhythm was found in about 67% of the healthy volunteers, with a significant baseline preference in about 75% of that subgroup. Significance. The sensorimotor ERD quantifies activity of the brain during motor imagery tasks. Selection of the optimal baseline increases ERD.
High variability impairs motor learning regardless of whether it affects task performance.
Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv
2018-01-01
Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of variability was more critical than the dimension in which variability was introduced.
McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R
2014-12-14
Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.
Motor equivalence during multi-finger accurate force production
Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.
2014-01-01
We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311
What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?
König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.
Changes in Information Processing with Aging: Implications for Teaching Motor Skills.
ERIC Educational Resources Information Center
Anshel, Mark H.
Although there are marked individual differences in the effect of aging on learning and performing motor skills, there is agreement that humans process information less efficiently with advanced age. Significant decrements have been found specifically with motor tasks that are characterized as externally-paced, rapid, complex, and requiring rapid…
Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia
van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart
2014-01-01
Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273
Mills, Kelly A; Markun, Leslie C; San Luciano, Marta; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L
2015-04-01
Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the 'dual-task loss' analysis. This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Mills, Kelly A; Markun, Leslie C; Luciano, Marta San; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L
2015-01-01
Objective Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Methods Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. Results A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the ‘dual-task loss’ analysis. Conclusions This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. PMID:25012202
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
Gonçalves, Jessica; Ansai, Juliana Hotta; Masse, Fernando Arturo Arriagada; Vale, Francisco Assis Carvalho; Takahashi, Anielle Cristhine de Medeiros; Andrade, Larissa Pires de
2018-04-04
A dual-task tool with a challenging and daily secondary task, which involves executive functions, could facilitate the screening for risk of falls in older people with mild cognitive impairment or mild Alzheimer's disease. To verify if a motor-cognitive dual-task test could predict falls in older people with mild cognitive impairment or mild Alzheimer's disease, and to establish cutoff scores for the tool for both groups. A prospective study was conducted with community-dwelling older adults, including 40 with mild cognitive impairment and 38 with mild Alzheimer's disease. The dual-task test consisted of the Timed up and Go Test associated with a motor-cognitive task using a phone to call. Falls were recorded during six months by calendar and monthly telephone calls and the participants were categorized as fallers or non-fallers. In the Mild cognitive impairment Group, fallers presented higher values in time (35.2s), number of steps (33.7 steps) and motor task cost (116%) on dual-task compared to non-fallers. Time, number of steps and motor task cost were significantly associated with falls in people with mild cognitive impairment. Multivariate analysis identified higher number of steps spent on the test to be independently associated with falls. A time greater than 23.88s (sensitivity=80%; specificity=61%) and a number of steps over 29.50 (sensitivity=65%; specificity=83%) indicated prediction of risk of falls in the Mild cognitive impairment Group. Among people with Alzheimer's disease, no differences in dual-task between fallers and non-fallers were found and no variable of the tool was able to predict falls. The dual-task predicts falls only in older people with mild cognitive impairment. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Sensory-motor problems in Autism
Whyatt, Caroline; Craig, Cathy
2013-01-01
Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with “hyperdexterity” witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being “secondary” level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis. PMID:23882194
Embodied mental rotation: a special link between egocentric transformation and the bodily self
Kaltner, Sandra; Riecke, Bernhard E.; Jansen, Petra
2014-01-01
This experiment investigated the influence of motor expertise on object-based versus egocentric transformations in a chronometric mental rotation task using images of either the own or another person’s body as stimulus material. According to the embodied cognition viewpoint, we hypothesized motor-experts to outperform non-motor experts specifically in the egocentric condition because of higher kinesthetic representation and motor simulations compared to object-based transformations. In line with this, we expected that images of the own body are solved faster than another person’s body stimuli. Results showed a benefit of motor expertise and representations of another person’s body, but only for the object-based transformation task. That is, this other-advantage diminishes in egocentric transformations. Since motor experts did not show any specific expertise in rotational movements, we concluded that using human bodies as stimulus material elicits embodied spatial transformations, which facilitates performance exclusively for egocentric transformations. Regarding stimulus material, the other-advantage ascribed to increased self-awareness-consciousness distracting attention-demanding resources, disappeared in the egocentric condition. This result may be due to the stronger link between the bodily self and motor representations compared to that emerging in object-based transformations. PMID:24917832
Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.
Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim
2018-01-01
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark
2017-01-01
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
Caçola, Priscila; Getchell, Nancy; Srinivasan, Dhivya; Alexandrakis, Georgios; Liu, Hanli
2018-04-01
Developmental Coordination Disorder (DCD) is as a neurodevelopmental condition characterized by poor motor proficiency, which impacts academic performance and activities of daily living. Several studies have determined that children with DCD activate different regions of the brain when performing motor skills in comparison to typically developing (TD) children. However, none have used Functional Near-Infrared Spectroscopy (fNIRS) to explore cortical activation in this population. With that, the goal of this preliminary study was to investigate cortical activation using fNIRS in six children with DCD and six TD children between ages of 8 and 12 years. Three fine-motor tasks were performed: Finger Tapping (FT), Curve Tracing (CT), and Paragraph Writing (PW). Tasks were presented in counterbalanced order and had a baseline of 30s. Cortical activity elicited during performance of the FT, CT, and PW tasks was measured by fNIRS, and activation areas within each group were statistically compared. Results indicated that participant groups used different focal activation areas as well as different neural networks to perform the tasks. These distinct patterns were also task-specific, with differences in the right Pre-Motor Cortex (Pre-MC) and Supplementary Motor Area (SMA) for CT, and the right Dorsolateral Prefrontal Cortex (DLPFC) and the right Pre-MC for the PW task. These results add to the body of research exploring neurological alterations in children with DCD, and establish the feasibility of using fNIRS technology with this population. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
2017-01-01
Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R
2014-10-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.
Sawers, Andrew; Hahn, Michael E
2013-08-01
Motor learning strategies that increase practice difficulty and the size of movement errors are thought to facilitate motor learning. In contrast to this, gradual training minimizes movement errors and reduces practice difficulty by incrementally introducing task requirements, yet remains as effective as sudden training and its large movement errors for learning novel reaching tasks. While attractive as a locomotor rehabilitation strategy, it remains unknown whether the efficacy of gradual training extends to learning locomotor tasks and their unique requirements. The influence of gradual vs. sudden training on learning a locomotor task, asymmetric split belt treadmill walking, was examined by assessing whole body sagittal plane kinematics during 24 hour retention and transfer performance following either gradual or sudden training. Despite less difficult and less specific practice for the gradual cohort on day 1, gradual training resulted in equivalent motor learning of the novel locomotor task as sudden training when assessed by retention and transfer a day later. This suggests that large movement errors and increased practice difficulty may not be necessary for learning novel locomotor tasks. Further, gradual training may present a viable locomotor rehabilitation strategy avoiding large movement errors that could limit or impair improvements in locomotor performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Motor recovery after stroke: a systematic review.
Langhorne, Peter; Coupar, Fiona; Pollock, Alex
2009-08-01
Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola
2017-04-01
The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effects of Tongue Force Training on Orolingual Motor Cortical Representation
Guggenmos, David J.; Barbay, Scott; Bethel-Brown, Crystal; Nudo, Randolph J.; Stanford, John A.
2009-01-01
Previous research has demonstrated that training rats in a skilled reaching condition will induce task-related changes in the caudal forelimb area of motor cortex. The purpose of the present study was to determine whether task-specific changes can be induced within the orofacial area of the motor cortex in rats. Specifically, we compared changes of the orofacial motor cortical representation in lick-trained rats to age-matched controls. For one month, six water-restricted Sprague-Dawley rats were trained to lick an isometric force-sensing disc at increasing forces for water reinforcement. The rats were trained daily for six minutes starting with forces of 1g, and increasing over the course of the month to 10, 15, 20, 25 and finally 30 g. One to three days following the last training session, the animals were subjected to a neurophysiological motor mapping procedure in which motor representations corresponding to the orofacial and adjacent areas were defined using intracortical microstimulation (ICMS) techniques. We found no statistical difference in the topographical representation of the control (mean = 2.03 mm2) vs. trained (1.87 mm2) rats. This result indicates that force training alone is insufficient to drive changes in the size of the cortical representation. We also recorded the minimum current threshold required to elicit a motor response at each site of microstimulation. We found that the lick-trained rats had a significantly lower average minimum threshold (29.1 ± 1.0 μA) for evoking movements related to the task compared to control rats (34.6 ± 1.1 μA). These results indicate that while tongue force training alone does not produce lasting changes in the size of the orofacial cortical motor representation, tongue force training decreases the current thresholds necessary for eliciting an ICMS-evoked motor response. PMID:19428638
Motor control and the management of musculoskeletal dysfunction.
van Vliet, Paulette M; Heneghan, Nicola R
2006-08-01
This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.
NASA Astrophysics Data System (ADS)
Fels, Meike; Bauer, Robert; Gharabaghi, Alireza
2015-08-01
Objective. Novel rehabilitation strategies apply robot-assisted exercises and neurofeedback tasks to facilitate intensive motor training. We aimed to disentangle task-specific and subject-related contributions to the perceived workload of these interventions and the related cortical activation patterns. Approach. We assessed the perceived workload with the NASA Task Load Index in twenty-one subjects who were exposed to two different feedback tasks in a cross-over design: (i) brain-robot interface (BRI) with haptic/proprioceptive feedback of sensorimotor oscillations related to motor imagery, and (ii) control of neuromuscular activity with feedback of the electromyography (EMG) of the same hand. We also used electroencephalography to examine the cortical activation patterns beforehand in resting state and during the training session of each task. Main results. The workload profile of BRI feedback differed from EMG feedback and was particularly characterized by the experience of frustration. The frustration level was highly correlated across tasks, suggesting subject-related relevance of this workload component. Those subjects who were specifically challenged by the respective tasks could be detected by an interhemispheric alpha-band network in resting state before the training and by their sensorimotor theta-band activation pattern during the exercise. Significance. Neurophysiological profiles in resting state and during the exercise may provide task-independent workload markers for monitoring and matching participants’ ability and task difficulty of neurofeedback interventions.
ERIC Educational Resources Information Center
Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.
2012-01-01
22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…
Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien
2018-04-01
Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A
2014-11-01
In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%-41% of the variance within each of the 4 waves. Phenotypically, children's average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%-40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%-52% of the variance. Nonshared environmental influences specific to each time point also significantly influenced motor impulsivity. Overall, results demonstrated that although genetic factors were critical to motor impulsivity across development, both common and specific nonshared environmental factors played a strong role in the development of motor impulsivity across age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Nonspecific Inhibition of the Motor System during Response Preparation
Sias, Ana; Labruna, Ludovica; Ivry, Richard B.
2015-01-01
Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles. Although this prediction is supported in one previous study (Duque et al., 2010), studies of stopping ongoing actions suggest that some forms of motor inhibition may be widespread (Badry et al., 2009). This motivated us to conduct a series of transcranial magnetic stimulation (TMS) experiments to examine in detail the specificity of preparatory inhibition in humans. Motor-evoked potentials were inhibited in task-irrelevant muscles during response preparation, even when the muscles were contralateral and not homologous to the responding effector. Inhibition was also observed in both choice and simple response task conditions, with and without a preparatory interval. Control experiments ruled out that this inhibition is due to expectancy of TMS or a possible need to cancel the prepared response. These findings suggest that motor inhibition during response preparation broadly influences the motor system and likely reflects a process that occurs whenever a response is selected. We propose a reinterpretation of the functional significance of preparatory inhibition, one by which inhibition reduces noise to enhance signal processing and modulates the gain of a selected response. SIGNIFICANCE STATEMENT Motor preparation entails the recruitment of excitatory and inhibitory neural mechanisms. The current experiments address the specificity of inhibitory mechanisms, asking whether preparatory inhibition affects task-irrelevant muscles. Participants prepared a finger movement to be executed at the end of a short delay period. Transcranial magnetic stimulation over primary motor cortex provided an assay of corticospinal excitability. Consistent with earlier work, the agonist muscle for the forthcoming response was inhibited during the preparatory period. Moreover, this inhibition was evident in task-irrelevant muscles, although the magnitude of inhibition depended on whether the response was fixed or involved a choice. These results implicate a broadly tuned inhibitory mechanism that facilitates response preparation, perhaps by lowering background activity before response initiation. PMID:26224853
Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin
2018-01-01
Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.
The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults
Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul
2017-01-01
Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task) and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP), matching to rhythmic cueing (WalkRC), and instrument playing while matching to rhythmic cueing (WalkIP+RC). The cognitive-motor task involved counting forward by 3s (WalkCount.f3). In each condition, dual task costs (DTC), a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3). In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the potential of applying rhythm-motor tasks to dual task methodology. This study presents how rhythm-motor tasks demand cognitive control at different levels than those engaged by cognitive-motor tasks. It also indicates how these new dual tasks can effectively mediate dual task performance indicative of fall risks, while requiring increased cognitive resources but facilitating gait control as a compensatory strategy to maintain gait stability. PMID:29375462
Enriched childhood experiences moderate age-related motor and cognitive decline
Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.
2012-01-01
Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702
Refinement of learned skilled movement representation in motor cortex deep output layer
Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho
2017-01-01
The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433
Matheson, Heath E; Familiar, Ariana M; Thompson-Schill, Sharon L
2018-03-02
Theories of embodied cognition propose that we recognize tools in part by reactivating sensorimotor representations of tool use in a process of simulation. If motor simulations play a causal role in tool recognition then performing a concurrent motor task should differentially modulate recognition of experienced vs. non-experienced tools. We sought to test the hypothesis that an incompatible concurrent motor task modulates conceptual processing of learned vs. non-learned objects by directly manipulating the embodied experience of participants. We trained one group to use a set of novel, 3-D printed tools under the pretense that they were preparing for an archeological expedition to Mars (manipulation group); we trained a second group to report declarative information about how the tools are stored (storage group). With this design, familiarity and visual attention to different object parts was similar for both groups, though their qualitative interactions differed. After learning, participants made familiarity judgments of auditorily presented tool names while performing a concurrent motor task or simply sitting at rest. We showed that familiarity judgments were facilitated by motor state-dependence; specifically, in the manipulation group, familiarity was facilitated by a concurrent motor task, whereas in the spatial group familiarity was facilitated while sitting at rest. These results are the first to directly show that manipulation experience differentially modulates conceptual processing of familiar vs. unfamiliar objects, suggesting that embodied representations contribute to recognizing tools.
Enhancing motor learning through peer tutoring.
Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L
2002-01-01
The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.
Wu, Shih-Wei; Delgado, Mauricio R.; Maloney, Laurence T.
2011-01-01
In decision under risk, people choose between lotteries that contain a list of potential outcomes paired with their probabilities of occurrence. We previously developed a method for translating such lotteries to mathematically equivalent motor lotteries. The probability of each outcome in a motor lottery is determined by the subject’s noise in executing a movement. In this study, we used functional magnetic resonance imaging in humans to compare the neural correlates of monetary outcome and probability in classical lottery tasks where information about probability was explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks where probability was implicit in the subjects’ own motor noise. We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) quantitatively represent the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC significantly tracked the distortion of such information in both tasks. Specifically, activity in mPFC represents probability information but not the physical properties of the stimuli correlated with this information. Together, the results demonstrate that mPFC represents probability from two distinct forms of decision under risk. PMID:21677166
Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T
2011-06-15
In decision under risk, people choose between lotteries that contain a list of potential outcomes paired with their probabilities of occurrence. We previously developed a method for translating such lotteries to mathematically equivalent "motor lotteries." The probability of each outcome in a motor lottery is determined by the subject's noise in executing a movement. In this study, we used functional magnetic resonance imaging in humans to compare the neural correlates of monetary outcome and probability in classical lottery tasks in which information about probability was explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks in which probability was implicit in the subjects' own motor noise. We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex quantitatively represent the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC significantly tracked the distortion of such information in both tasks. Specifically, activity in mPFC represents probability information but not the physical properties of the stimuli correlated with this information. Together, the results demonstrate that mPFC represents probability from two distinct forms of decision under risk.
Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis
Tseng, Shih-Chiao
2010-01-01
Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199
Ansai, Juliana Hotta; Andrade, Larissa Pires de; Rossi, Paulo Giusti; Almeida, Mariana Luciano; Carvalho Vale, Francisco Assis; Rebelatto, José Rubens
2017-09-13
The authors investigated whether impaired gait and dual-task performances are associated with specific cognitive domains among older people with preserved cognition (PC), mild cognitive impairment (MCI), and mild Alzheimer's disease (AD). The sample comprised 40 older adults with PC, 40 with MCI, and 38 with mild AD. The assessment consisted of gait (measured by 10-m walk test and Timed Up and Go Test [TUGT]), dual task (measured by TUGT associated with a cognitive-motor task of calling a phone number), and cognition (domains of the Addenbrooke Cognitive Examination-Revised and Frontal Assessment Battery [FAB]). For data analysis, the Pearson product-moment correlation and the backward stepwise linear regression were conducted. Language, fluency, and visuospatial domains predicted the 10-m walk test measure specifically in PC, MCI, and AD groups. Only the visuospatial domain was independently associated with the TUGT measure in the MCI and AD groups. FAB score, language domain, and FAB score and fluency domain were the strongest predictors for the isolated cognitive-motor task measure in the PC, MCI, and AD groups, respectively. The visuospatial domain was independently associated with the dual-task test measure in all 3 groups. The study findings demonstrate the influence of specific cognitive domains in daily mobility tasks in people with different cognitive profiles.
Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort
Daunizeau, Jean; Pessiglione, Mathias
2012-01-01
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. PMID:22363208
Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.
Spampinato, Danny A; Block, Hannah J; Celnik, Pablo A
2017-03-01
One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar-M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning. SIGNIFICANCE STATEMENT Connectivity between the cerebellum and motor cortex is a critical pathway for the integrity of everyday movements and understanding the somatotopic specificity of this pathway in the context of motor learning is critical to advancing the efficacy of neurorehabilitation. We found that adaptive learning with the hand affects cerebellar-motor cortex connectivity, not only for the trained hand, but also for an untrained leg muscle, an effect likely related to intereffector transfer of learning. Furthermore, we introduce a novel method to measure cerebellar-motor cortex connectivity during movement preparation. With this technique, we show that, outside the context of learning, modulation of cerebellar-motor cortex connectivity is somatotopically specific to the effector being moved. Copyright © 2017 the authors 0270-6474/17/372377-10$15.00/0.
Statistics of natural movements are reflected in motor errors.
Howard, Ian S; Ingram, James N; Körding, Konrad P; Wolpert, Daniel M
2009-09-01
Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.
Benge, Jared F; Balsis, Steve
2016-01-01
Individuals with Parkinson's disease (PD) can have difficulties with activities of daily living (ADL) that stem from cognitive, motor, or affective manifestations of the disease. Accurately attributing ADL difficulty specifically to cognitive decline is critical when conducting a neuropsychological evaluation of a person with PD. Informant description of ADL performance is frequently used for this purpose, but there has been little work assessing informants' ability to attribute ADL dysfunction to a specific symptom source in PD. Fifty community dwelling individuals with PD completed cognitive, motor, and affective measures. A knowledgeable informant completed an ADL scale that asked about degree and perceived source of difficulty (cognitive, motor, affective) for each task. Informants indicated that motor dysfunction was the most common source of ADL difficulty, but the informants viewed difficulty with certain tasks, such as financial management, as particularly related to cognitive dysfunction. Informant reports of the source of ADL dysfunction (cognitive, motor, affective) were consistent with clinical measures of those specific dysfunctions. ADL dysfunction attributed to cognition specifically (χ(2) = 9.80, p = .01) was higher in those with measurable cognitive impairment. Informant reports of the sources of ADL dysfunction correlate with clinical measures of these symptoms, suggesting that informants may provide useful clinical information about the cause of ADL dysfunction in persons with PD.
Imitation of body postures and hand movements in children with specific language impairment.
Marton, Klara
2009-01-01
Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5 years 3 months to 6 years 7 months of age). Five tests were used to examine imitation and its underlying cognitive and motor skills such as kinesthesia, working memory, and gross motor coordination. It was hypothesized that children with SLI show a weakness in imitation of body postures and that this deficit is not equally influenced by the underlying cognitive and motor skills. There was a group effect in each cognitive and motor task, but only gross motor coordination proved to be a strong predictor of imitation in children with SLI. In contrast, hand movement imitation was strongly predicted by performance in the Kinesthesia task in typically developing children. Thus, the findings show not only that children with SLI performed more poorly on the imitation tasks than their typically developing peers but also that the groups' performances showed qualitative differences. The results of the current study provide additional support to the view that the weaknesses in children with SLI are not limited to the verbal domain.
A cognitive dual task affects gait variability in patients suffering from chronic low back pain.
Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz
2014-11-01
Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.
Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.
2015-01-01
Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576
Spatiotemporal differentiation in auditory and motor regions during auditory phoneme discrimination.
Aerts, Annelies; Strobbe, Gregor; van Mierlo, Pieter; Hartsuiker, Robert J; Corthals, Paul; Santens, Patrick; De Letter, Miet
2017-06-01
Auditory phoneme discrimination (APD) is supported by both auditory and motor regions through a sensorimotor interface embedded in a fronto-temporo-parietal cortical network. However, the specific spatiotemporal organization of this network during APD with respect to different types of phonemic contrasts is still unclear. Here, we use source reconstruction, applied to event-related potentials in a group of 47 participants, to uncover a potential spatiotemporal differentiation in these brain regions during a passive and active APD task with respect to place of articulation (PoA), voicing and manner of articulation (MoA). Results demonstrate that in an early stage (50-110 ms), auditory, motor and sensorimotor regions elicit more activation during the passive and active APD task with MoA and active APD task with voicing compared to PoA. In a later stage (130-175 ms), the same auditory and motor regions elicit more activation during the APD task with PoA compared to MoA and voicing, yet only in the active condition, implying important timing differences. Degree of attention influences a frontal network during the APD task with PoA, whereas auditory regions are more affected during the APD task with MoA and voicing. Based on these findings, it can be carefully suggested that APD is supported by the integration of early activation of auditory-acoustic properties in superior temporal regions, more perpetuated for MoA and voicing, and later auditory-to-motor integration in sensorimotor areas, more perpetuated for PoA.
Romano, Jennifer C; Howard, James H; Howard, Darlene V
2010-05-01
Procedural skills such as riding a bicycle and playing a musical instrument play a central role in daily life. Such skills are learned gradually and are retained throughout life. The present study investigated 1-year retention of procedural skill in a version of the widely used serial reaction time task (SRTT) in young and older motor-skill experts and older controls in two experiments. The young experts were college-age piano and action video-game players, and the older experts were piano players. Previous studies have reported sequence-specific skill retention in the SRTT as long as 2 weeks but not at 1 year. Results indicated that both young and older experts and older non-experts revealed sequence-specific skill retention after 1 year with some evidence that general motor skill was retained as well. These findings are consistent with theoretical accounts of procedural skill learning such as the procedural reinstatement theory as well as with previous studies of retention of other motor skills.
The impact of threat and cognitive stress on speech motor control in people who stutter.
Lieshout, Pascal van; Ben-David, Boaz; Lipski, Melinda; Namasivayam, Aravind
2014-06-01
In the present study, an Emotional Stroop and Classical Stroop task were used to separate the effect of threat content and cognitive stress from the phonetic features of words on motor preparation and execution processes. A group of 10 people who stutter (PWS) and 10 matched people who do not stutter (PNS) repeated colour names for threat content words and neutral words, as well as for traditional Stroop stimuli. Data collection included speech acoustics and movement data from upper lip and lower lip using 3D EMA. PWS in both tasks were slower to respond and showed smaller upper lip movement ranges than PNS. For the Emotional Stroop task only, PWS were found to show larger inter-lip phase differences compared to PNS. General threat words were executed with faster lower lip movements (larger range and shorter duration) in both groups, but only PWS showed a change in upper lip movements. For stutter specific threat words, both groups showed a more variable lip coordination pattern, but only PWS showed a delay in reaction time compared to neutral words. Individual stuttered words showed no effects. Both groups showed a classical Stroop interference effect in reaction time but no changes in motor variables. This study shows differential motor responses in PWS compared to controls for specific threat words. Cognitive stress was not found to affect stuttering individuals differently than controls or that its impact spreads to motor execution processes. After reading this article, the reader will be able to: (1) discuss the importance of understanding how threat content influences speech motor control in people who stutter and non-stuttering speakers; (2) discuss the need to use tasks like the Emotional Stroop and Regular Stroop to separate phonetic (word-bound) based impact on fluency from other factors in people who stutter; and (3) describe the role of anxiety and cognitive stress on speech motor processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Girón, Elizabeth Coker; McIsaac, Tara; Nilsen, Dawn
2012-03-01
Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.
Motor expertise and performance in spatial tasks: A meta-analysis.
Voyer, Daniel; Jansen, Petra
2017-08-01
The present study aimed to provide a summary of findings relevant to the influence of motor expertise on performance in spatial tasks and to examine potential moderators of this effect. Studies of relevance were those in which individuals involved in activities presumed to require motor expertise were compared to non-experts in such activities. A final set of 62 effect sizes from 33 samples was included in a multilevel meta-analysis. The results showed an overall advantage in favor of motor experts in spatial tasks (d=0.38). However, the magnitude of that effect was moderated by expert type (athlete, open skills/ball sports, runner/cyclist, gymnast/dancers, musicians), stimulus type (2D, blocks, bodies, others), test category (mental rotation, spatial perception, spatial visualization), specific test (Mental Rotations Test, generic mental rotation, disembedding, rod-and-frame test, other), and publication status. These findings are discussed in the context of embodied cognition and the potential role of activities requiring motor expertise in promoting good spatial performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Bevilacqua, Frédéric; Boyer, Eric O; Françoise, Jules; Houix, Olivier; Susini, Patrick; Roby-Brami, Agnès; Hanneton, Sylvain
2016-01-01
This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
Sokhadze, Estate M.; Tasman, Allan; Sokhadze, Guela E.; El-Baz, Ayman S.; Casanova, Manuel F.
2015-01-01
Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80% of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N=30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism. PMID:26377686
Tao, Zhongping; Zhang, Mu
2014-01-01
Abstract Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery. PMID:24606178
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Bongers, Raoul M.; Fernandez, Laure; Bootsma, Reinoud J.
2009-01-01
The authors examined the origins of linear and logarithmic speed-accuracy trade-offs from a dynamic systems perspective on motor control. In each experiment, participants performed 2 reciprocal aiming tasks: (a) a velocity-constrained task in which movement time was imposed and accuracy had to be maximized, and (b) a distance-constrained task in…
Santos-Couto-Paz, Clarissa C; Teixeira-Salmela, Luci F; Tierra-Criollo, Carlos J
2013-01-01
Mental practice (MP) is a cognitive strategy which may improve the acquisition of motor skills and functional performance of athletes and individuals with neurological injuries. To determine whether an individualized, specific functional task-oriented MP, when added to conventional physical therapy (PT), promoted better learning of motor skills in daily functions in individuals with chronic stroke (13 ± 6.5 months post-stroke). Nine individuals with stable mild and moderate upper limb impairments participated, by employing an A1-B-A2 single-case design. Phases A1 and A2 included one month of conventional PT, and phase B the addition of MP training to PT. The motor activity log (MAL-Brazil) was used to assess the amount of use (AOU) and quality of movement (QOM) of the paretic upper limb; the revised motor imagery questionnaire (MIQ-RS) to assess the abilities in kinesthetic and visual motor imagery; the Minnesota manual dexterity test to assess manual dexterity; and gait speed to assess mobility. After phase A1, no significant changes were observed for any of the outcome measures. However, after phase B, significant improvements were observed for the MAL, AOU and QOM scores (p<0.0001), and MIQ-RS kinesthetic and visual scores (p=0.003; p=0.007, respectively). The significant gains in manual dexterity (p=0.002) and gait speed (p=0.019) were maintained after phase A2. Specific functional task-oriented MP, when added to conventional PT, led to improvements in motor imagery abilities combined with increases in the AOU and QOM in daily functions, manual dexterity, and gait speed.
Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J
2014-01-01
Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.
Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.
2014-01-01
Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2015-02-01
Cross-sectional study of lumbopelvic muscle activation during rapid limb movements in chronic low back pain (CLBP) patients and healthy controls. Controversy exists over whether bilateral anticipatory activation of the deep abdominal muscles represents a normal motor control strategy prior to all rapid limb movements, or if this is simply a task-specific strategy appropriate for only certain movement conditions. To assess the onset timing of the transversus abdominis/internal oblique muscles (TrA/IO) during two rapid limb movement tasks with different postural demands - bilateral shoulder flexion in standing, unilateral hip extension in prone lying - as well as differences between CLBP and controls. Twelve CLBP and 13 controls performed the two tasks in response to an auditory cue. Surface EMG was acquired bilaterally from five muscles, including TrA/IO. In both groups, 50% of bilateral shoulder flexion trials showed bilateral anticipatory TrA/IO activation. This was rare, however, in unilateral hip extension for which only the TrA/IO contralateral to the moving leg showed anticipatory activation. The only significant difference in lumbo-pelvic muscle onset timing between CLBP and controls was a delay in semitendinosus activation during bilateral shoulder flexion in standing. Our data suggest that bilateral anticipatory TrA/IO activation is a task-specific motor control strategy, appropriate for only certain rapid limb movement conditions. Furthermore, the presence of altered semitendinosus onset timing in the CLBP group during bilateral shoulder flexion may be reflective of other possible lumbo-pelvic motor control alterations among this population. Copyright © 2014 Elsevier B.V. All rights reserved.
von Carlowitz-Ghori, K; Bayraktaroglu, Z; Waterstraat, G; Curio, G; Nikulin, V V
2015-04-02
Corticomuscular coherence (CMC) relates to synchronization between activity in the motor cortex and the muscle activity. The strength of CMC can be affected by motor behavior. In a proof-of-principle study, we examined whether independent of motor output parameters, healthy subjects are able to voluntarily modulate CMC in a neurofeedback paradigm. Subjects received visual online feedback of their instantaneous CMC strength, which was calculated between an optimized spatial projection of multichannel electroencephalography (EEG) and electromyography (EMG) in an individually defined target frequency range. The neurofeedback training consisted of either increasing or decreasing CMC strength using a self-chosen mental strategy while performing a simple motor task. Evaluation of instantaneous coherence showed that CMC strength was significantly larger when subjects had to increase than when to decrease CMC; this difference between the two task conditions did not depend on motor performance. The exclusion of confounding factors such as motor performance, attention and task complexity in study design provides evidence that subjects were able to voluntarily modify CMC independent of motor output parameters. Additional analysis further strengthened the assumption that the subjects' response was specifically shaped by the neurofeedback. In perspective, we suggest that CMC-based neurofeedback could provide a therapeutic approach in clinical conditions, such as motor stroke, where CMC is altered. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Spatio-Temporal Information Analysis of Event-Related BOLD Responses
Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.
2009-01-01
A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Cona, G; Marino, G; Semenza, C
2017-02-01
In the present study we applied online transcranial magnetic stimulation (TMS) bursts at 10Hz to the supplementary motor area (SMA) and primary motor cortex to test whether these regions are causally involved in mental rotation. Furthermore, in order to investigate what is the specific role played by SMA and primary motor cortex, two mental rotation tasks were used, which included pictures of hands and abstract objects, respectively. While primary motor cortex stimulation did not affect mental rotation performance, SMA stimulation improved the performance in the task with object stimuli, and only for the pairs of stimuli that had higher angular disparity between each other (i.e., 100° and 150°). The finding that the effect of SMA stimulation was modulated by the amount of spatial orientation information indicates that SMA is causally involved in the very act of mental rotation. More specifically, we propose that SMA mediates domain-general sequence processes, likely required to accumulate and integrate information that are, in this context, spatial. The possible physiological mechanisms underlying the facilitation of performance due to SMA stimulation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.
Sharma, Nikhil; Baron, Jean-Claude
2015-01-01
Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other potential confounders (e.g., effort and additional muscle use) are not responsible for the changes in the cortical networks reported after stroke. This highlights that recovery of motor function after subcortical stroke involves preexisting cortical networks that could help identify more effective restorative therapies.
Kerr, Abigail L.; Tennant, Kelly A.
2014-01-01
Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models. PMID:25045916
Sex-Differences, Handedness, and Lateralization in the Iowa Gambling Task
Singh, Varsha
2016-01-01
In a widely used decision-making task, the Iowa Gambling Task (IGT), male performance is observed to be superior to that of females, and is attributed to right lateralization (i.e., right hemispheric dominance). It is as yet unknown whether sex-differences in affect and motor lateralization have implications for sex-specific lateralization in the IGT, and specifically, whether sex-difference in performance in the IGT changes with right-handedness or with affect lateralization (decision valence, and valence-directed motivation). The present study (N = 320; 160 males) examined the effects of right-handedness (right-handedness vs. non-right-handedness) as a measure of motor lateralization, decision valence (reward vs. punishment IGT), and valence-directedness of task motivation (valence-directed vs. non-directed instructions), as measures of affective lateralization on IGT decision making. Analyses of variance revealed that both male and female participants showed valence-induced inconsistencies in advantageous decision-making; however, right-handed females made more disadvantageous decisions in a reward IGT. These results suggest that IGT decision-making may be largely right-lateralized in right-handed males, and show that sex and lateralized differences (motor and affect) have implications for sex-differences in IGT decision-making. Implications of the results are discussed with reference to lateralization and sex-differences in cognition. PMID:27303316
Distributed task-specific processing of somatosensory feedback for voluntary motor control
Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H
2016-01-01
Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949
Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.
Bajaj, Sahil; Butler, Andrew J; Drake, Daniel; Dhamala, Mukesh
2015-01-01
Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability.
Grau-Sánchez, Jennifer; Ramos, Neus; Duarte, Esther; Särkämö, Teppo; Rodríguez-Fornells, Antoni
2017-09-01
Previous studies have shown that Music-Supported Therapy (MST) can improve the motor function and promote functional neuroplastic changes in motor areas; however, the time course of motor gains across MST sessions and treatment periods remain unknown. The aim of this study was to explore the progression of the rehabilitation of motor deficits in a chronic stroke patient for a period of 7 months. A reversal design (ABAB) was implemented in a chronic stroke patient where no treatment was provided in the A periods and MST was applied in the B periods. Each period comprised of 4 weeks and an extensive evaluation of the motor function using clinical motor tests and 3D movement analysis was performed weekly. During the MST periods, a keyboard task was recorded daily. A follow-up evaluation was performed 3 months after the second MST treatment. Improvements were observed during the first sessions in the keyboard task but clinical gains were noticeable only at the end of the first treatment and during the second treatment period. These gains were maintained in the follow-up evaluation. This is the first study examining the pattern of motor recovery progression in MST, evidencing that gradual and continuous motor improvements are possible with the repeated application of MST training. Fast-acquisition in specific motor abilities was observed at the beginning of the MST training but generalization of these improvements to other motor tasks took place at the end or when another treatment period was provided. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Learning trajectories for speech motor performance in children with specific language impairment.
Richtsmeier, Peter T; Goffman, Lisa
2015-01-01
Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.
The Quiet Eye and Motor Expertise: Explaining the “Efficiency Paradox”
Klostermann, André; Hossner, Ernst-Joachim
2018-01-01
It has been consistently reported that experts show longer quiet eye (QE) durations when compared to near-experts and novices. However, this finding is rather paradoxical as motor expertise is characterized by an economization of motor-control processes rather than by a prolongation in response programming, a suggested explanatory mechanism of the QE phenomenon. Therefore, an inhibition hypothesis was proposed that suggests an inhibition of non-optimal task solutions over movement parametrization, which is particularly necessary in experts due to the great extent and high density of their experienced task-solution space. In the current study, the effect of the task-solution space’ extension was tested by comparing the QE-duration gains in groups that trained a far-aiming task with a small number (low-extent) vs. a large number (high-extent) of task variants. After an extensive training period of more than 750 trials, both groups showed superior performance in post-test and retention test when compared to pretest and longer QE durations in post-test when compared to pretest. However, the QE durations dropped to baseline values at retention. Finally, the expected additional gain in QE duration for the high-extent group was not found and thus, the assumption of long QE durations due to an extended task-solution space was not confirmed. The findings were (by tendency) more in line with the density explanation of the inhibition hypothesis. This density argument suits research revealing a high specificity of motor skills in experts thus providing worthwhile options for future research on the paradoxical relation between the QE and motor expertise. PMID:29472882
Brunelle, Jean-François; Blais-Coutu, Sébastien; Gouadec, Kenan; Bédard, Éric; Fait, Philippe
2015-01-01
Introduction In preparation for a short track speed skating season, eight men and seven women were given yoga sessions during an 8-week high volume training cycle. The sessions were planned according to the postural aspects specific to short track speed skating technical requirements. Three specific goals were selected for the intervention: 1) to observe whether the practice of yoga as postural training could improve the efficiency and the athlete’s repertoire along the muscular synergies solicited in the short track speed skating specific technique; 2) to enhance and diversify the motor time-on-task of athletes without changing the prescription of other training stimulus; and 3) to lower the risk of injury during periods with high volumes of training. Methods A total of 36 sessions of yoga were given. Three postural tests were administered before and after the intervention with 14 angles analyzed. Non-parametric Wilcoxon test was used to compare angles’ variations. Results The 36 yoga sessions totalized 986 minutes of motor time-on-task, registering a proportion of 30% of the global motor time-on-task of the training cycle. Improvements were found in eleven of the 14 angles measured when comparing pre- and post-postural tests (P-value from 0.01 to 0.005). During the 8 weeks, excepting traumatic injuries due to short track speed skating accidents, no skaters suffered injuries linked to the high volume of training. Following the intervention, coaches noticed, following their on-ice feedbacks, an adjustment in the efficiency of the skating technique, in particular regarding hip dissociation. Conclusion These results suggest that yoga could be inserted into out-of-season training cycles, even in a high volume training cycle. Planned with the decision training tools, it allows athletes to diversify their motor time-on-task by integrating a new functional range of generic movements with the solicitation of neuromuscular synergies related to the specificity of their sport. PMID:25709511
Bočková, Martina; Chládek, Jan; Jurák, Pavel; Halámek, Josef; Štillová, Klára; Baláž, Marek; Chrastina, Jan; Rektor, Ivan
2015-03-01
Cognitive adverse effects were reported after the deep brain stimulation (DBS) of the anterior nucleus of the thalamus (AN) in epilepsy. As the AN may have an influence on widespread neocortical networks, we hypothesized that the AN, in addition to its participation in memory processing, may also participate in cognitive activities linked with the frontal neocortical structures. The aim of this study was to investigate whether the AN might participate in complex motor-cognitive activities. Three pharmacoresistant epilepsy patients implanted with AN-DBS electrodes performed two tasks involving the writing of single letters: (1) copying letters from a monitor; and (2) writing of any letter other than that appearing on the monitor. The cognitive load of the second task was increased. The task-related oscillatory changes and evoked potentials were assessed. Local event-related alpha and beta desynchronization were more expressed during the second task while the lower gamma synchronization decreased. The local field event-related potentials were elicited by the two tasks without any specific differences. The AN participates in cognitive networks processing complex motor-cognitive tasks. Attention should be paid to executive functions in subjects undergoing AN-DBS.
Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.
2016-01-01
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917
Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G
2016-04-01
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Bencke, J; Damsgaard, R; Saekmose, A; Jørgensen, P; Jørgensen, K; Klausen, K
2002-06-01
The aim of the present investigation was to study the possible effects of specificity of training on muscle strength and anaerobic power in children from different sports and at different performance levels in relation to growth and maturation status. Hundred and eighty-four children of both gender participating either in swimming, tennis, team handball or gymnastics were recruited from the best clubs in Denmark. Within each sport, the coach had divided the children into an elite (E) and non-elite (NE) group according to performance level and talent. Tanner stage assessment and body weight and height measurements were performed by a physician. The anaerobic performances were assessed by Wingate tests and jumping performance in squat jump (SJ), countermovement jump (CMJ) and drop jump (DJ) from two heights. Most of the differences between groups in Wingate performance disappeared when the data were normalised to body mass. The gymnasts were the best jumpers and their superiority were increased in the more complex motor coordination tasks like DJ. The results may indicate some influence of training specificity, especially on the more complex motor tasks as DJ and there may be an effect of training before puberty. The performance in the less complex motor tasks like cycling and SJ and CMJ may also be influenced by specific training, but not to the same extent, and heritance may be an important factor for performance in these anaerobic tasks.
Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen
2018-01-10
Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (p<0.01, d=0.55; p<0.01, d=0.88). QUEST effectiveness and safety scores showed feasibility and satisfaction in the clinical setting. Our newly developed compact brain-machine interface system is feasible for use in real-world clinical settings.
NASA Astrophysics Data System (ADS)
Belokurov, V. P.; Belokurov, S. V.; Korablev, R. A.; Shtepa, A. A.
2018-05-01
The article deals with decision making concerning transport tasks on search iterations in the management of motor transport processes. An optimal selection of the best option for specific situations is suggested in the management of complex multi-criteria transport processes.
Response-Specific Effects of Pain Observation on Motor Behavior
ERIC Educational Resources Information Center
Morrison, India; Poliakoff, Ellen; Gordon, Lucy; Downing, Paul
2007-01-01
How does seeing a painful event happening to someone else influence the observer's own motor system? To address this question, we measured simple reaction times following videos showing noxious or innocuous implements contacting corporeal or noncorporeal objects. Key releases in a go/nogo task were speeded, and key presses slowed, after subjects…
ERIC Educational Resources Information Center
Pietsch, Stefanie; Böttcher, Caroline; Jansen, Petra
2017-01-01
The long-term physical activity in specific sport activities can change the quality of mental rotation performance. This study investigates the influence of "Life Kinetik"--a motion program with tasks of cognition and motor coordination--on mental rotation performance of 44 primary school-aged children. While the experimental group…
Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults
Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas
2018-01-01
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614
Specific interpretation of augmented feedback changes motor performance and cortical processing.
Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang
2013-05-01
It is well established that the presence of external feedback, also termed augmented feedback, can be used to improve performance of a motor task. The present study aimed to elucidate whether differential interpretation of the external feedback signal influences the time to task failure of a sustained submaximal contraction and modulates motor cortical activity. In Experiment 1, subjects had to maintain a submaximal contraction (30% of maximum force) performed with their thumb and index finger. Half of the tested subjects were always provided with feedback about joint position (pF-group), whereas the other half of the subjects were always provided with feedback about force (fF-group). Subjects in the pF-group were led to belief in half of their trials that they would receive feedback about the applied force, and subjects in the fF-group to receive feedback about the position. In both groups (fF and pF), the time to task failure was increased when subjects thought to receive feedback about the force. In Experiment 2, subthreshold transcranial magnetic stimulation was applied over the right motor cortex and revealed an increased motor cortical activity when subjects thought to receive feedback about the joint position. The results showed that the interpretation of feedback influences motor behavior and alters motor cortical activity. The current results support previous studies suggesting a distinct neural control of force and position.
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation
Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh
2015-01-01
Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability. PMID:26236627
Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q
2008-09-05
Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.
Bridges, Susan M; Zhu, Frank; Leung, W Keung; Burrow, Michael F; Poolton, Jamie; Masters, Rich SW
2017-01-01
Background There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. Objective The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. Methods We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students’ propensity to reinvest. Results Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). Conclusions This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory. PMID:29233801
Motormouth: mere exposure depends on stimulus-specific motor simulations.
Topolinski, Sascha; Strack, Fritz
2009-03-01
The authors apply an embodied account to mere exposure, arguing that through the repeated exposure of a particular stimulus, motor responses specifically associated to that stimulus are repeatedly simulated, thus trained, and become increasingly fluent. This increased fluency drives preferences for repeated stimuli. This hypothesis was tested by blocking stimulus-specific motor simulations during repeated exposure. In Experiment 1, chewing gum while evaluating stimuli destroyed mere exposure effects (MEEs) for words but not for visual characters. However, concurrently kneading a ball left both MEEs unaffected. In Experiment 2, concurrently whispering an unrelated word destroyed MEEs for words but not for characters, even when implemented either exclusively during the initial presentation or during the test phase and when the first presentation involved an evaluation or a mere study of the stimuli. In Experiment 3, a double dissociation between 2 classes of stimuli was demonstrated, namely, words (oral) and tunes (vocal). A concurrent oral task (tongue movements) destroyed MEEs for words but not for tone sequences. A concurrent vocal task (humming "mm-hm") destroyed MEEs for tone sequences but not for words. (c) 2009 APA, all rights reserved
Craig, Francesco; Lorenzo, Alessandro; Lucarelli, Elisabetta; Russo, Luigi; Fanizza, Isabella; Trabacca, Antonio
2018-06-01
This study aimed to investigate the association between motor competency and social communication in children with Autism Spectrum Disorder (ASD) compared with children with Intellectual Disabilities (ID) and typically developing (TD) children. Motor competency, ASD symptoms, and nonverbal Intelligent Quotient (IQ) were investigated through the following tests: Movement Assessment Battery for Children, second edition (MABC-2), Social Communication Questionnaire (SCQ), Autism Classification System of Functioning: Social Communication (ACSF:SC) and Leiter International Performances Scale Revised (Leiter-R). The ASD + ID and ID groups had lower MABC-2-manual dexterity mean scores, MABC-2-aiming and catching mean scores, MABC-2-static and dynamic balance mean scores and MABC-2-TTS compared with the TD group (P < 0.05). In addition, the ASD + ID group had lower MABC-2-aiming and catching mean scores compared with the ID group. In the ASD + ID group, we found a significant negative correlation (P < 0.001) between MABC-2-aiming and catching scores with SCQ scores, nonverbal IQ and ACSF:SC levels. Our findings provide new insight into the common neuropsychological mechanisms underlying social communication and motor deficits in ASD. Multiple deficits in motor functioning may be present in ASD and ID, however deficits involving the ability to integrate motor and social cues are somewhat specific to ASD. Autism Res 2018, 11: 893-902. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. This study highlighted the specificity of motor impairment in ASD comparing performances on a frequently used measure of motor impairment between clinical groups (ASD + ID and ID) and a non-clinical group. While previous research has suggested that multiple deficits in motor functioning may be present in ASD, our findings suggest that deficits in tasks involving the ability to integrate visual and motor cues (aiming and catching task) are somewhat specific to ASD. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Nonverbal Social Communication and Gesture Control in Schizophrenia
Walther, Sebastian; Stegmayer, Katharina; Sulzbacher, Jeanne; Vanbellingen, Tim; Müri, René; Strik, Werner; Bohlhalter, Stephan
2015-01-01
Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities. PMID:25646526
Wang, Chun-Hao; Tu, Kuo-Cheng
2017-06-01
The present study aimed to investigate the neural correlates associated with sports expertise during a domain-specific task in badminton players. We compared event-related potentials activity from collegiate male badminton players and a set of matched athletic controls when they performed a badminton-specific attentional cueing task in which the uncertainty and validity were manipulated. The data showed that, regardless of cue type, the badminton players had faster responses along with greater P3 amplitudes than the athletic controls on the task. Specifically, the contingent negative variation amplitude was smaller for the players than for the controls in the condition involving higher uncertainty. Such an effect, however, was absent in the condition with lower uncertainty. We conclude that expertise in sports is associated with proficient modulation of brain activity during cognitive and motor preparation, as well as response execution, when performing a task related to an individual's specific sport domain.
Pelleck, Valerie; Passmore, Steven R
2017-05-01
Impaired performance while executing a motor task is attributed to a disruption of normal automatic processes when an internal focus of attention is used. What remains unclear is whether the specificity of internally focused task instructions may impact task performance. The present study assessed the implications of changing the attentional focus of novice and skilled golfers by measuring behavioural, neurophysiological and kinematic changes during a golf putting task. Over six blocks of ten putting trials each, attention was directed either externally (towards the target) or internally in one of two ways: 1) proximal (keeping the elbows extended and the hands gripping the putter); or 2) distal (keeping the weight evenly distributed between both legs) to the critical elements of the task. Results provided evidence that when novice participants use an internal focus of attention more closely associated with task performance that their: 1) execution; 2) accuracy; 3) variability of surface electromyography (sEMG) activity; and 4) kinematics of the putter movement are all adversely affected. Skilled golfers are much more resilient to changes in attentional focus, while all participants interpret a distal internal focus of attention similar to an external focus. All participants produced decreased activity in the muscle (tibialis anterior) associated with the distal (less task relevant) focus of attention even when the "internal" focus was on the lower extremity. Our results provide evidence that the skill level of the participant and the distance of the internal focus of attention from the key elements of a motor skill directly impact the execution, muscle activity, and movement kinematics associated with skilled motor task performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement
Bar, Rachel J.; DeSouza, Joseph F. X.
2016-01-01
Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance. PMID:26824475
Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice
Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.
2013-01-01
The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820
Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.
Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara
2017-02-01
Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph
2014-11-01
Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.
Motor learning and modulation of prefrontal cortex: an fNIRS assessment
NASA Astrophysics Data System (ADS)
Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy
2015-12-01
Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.
Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task.
Lu, Yingzhi; Jaquess, Kyle J; Hatfield, Bradley D; Zhou, Chenglin; Li, Hong
2017-04-01
It is widely recognized that emotions impact an individual's ability to perform in a given task. However, little is known about how emotion impacts the various aspects of cognitive -motor performance. We recorded event-related potentials (ERPs) and chronometric responses from twenty-six participants while they performed a cognitive-motor oddball task in regard to four categories of emotional stimuli (high-arousing positive-valence, low-arousing positive-valence, high-arousing negative-valence, and low-arousing negative-valence) as "deviant" stimuli. Six chronometric responses (reaction time, press time, return time, choice time, movement time, and total time) and three ERP components (P2, N2 and late positive potential) were measured. Results indicated that reaction time was significantly affected by the presentation of emotional stimuli. Also observed was a negative relationship between N2 amplitude and elements of performance featuring reaction time in the low-arousing positive-valence condition. This study provides further evidence that emotional stimuli influence cognitive-motor performance in a specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.
Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation.
King, Bradley R; Hoedlmoser, Kerstin; Hirschauer, Franziska; Dolfen, Nina; Albouy, Genevieve
2017-09-01
For the past two decades, it has generally been accepted that sleep benefits motor memory consolidation processes. This notion, however, has been challenged by recent studies and thus the sleep and motor memory story is equivocal. Currently, and in contrast to the declarative memory domain, a comprehensive overview and synthesis of the effects of post-learning sleep on the behavioral and neural correlates of motor memory consolidation is not available. We therefore provide an extensive review of the literature in order to highlight that sleep-dependent motor memory consolidation depends upon multiple boundary conditions, including particular features of the motor task, the recruitment of relevant neural substrates (and the hippocampus in particular), as well as the specific architecture of the intervening sleep period (specifically, sleep spindle and slow wave activity). For our field to continue to advance, future research must consider the multifaceted nature of sleep-related motor memory consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shared internal models for feedforward and feedback control.
Wagner, Mark J; Smith, Maurice A
2008-10-15
A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.
ERIC Educational Resources Information Center
Mailend, Marja-Liisa; Maas, Edwin
2013-01-01
Purpose: Apraxia of speech (AOS) is considered a speech motor programming impairment, but the specific nature of the impairment remains a matter of debate. This study investigated 2 hypotheses about the underlying impairment in AOS framed within the Directions Into Velocities of Articulators (DIVA; Guenther, Ghosh, & Tourville, 2006) model: The…
Knowledge of Results after Good Trials Enhances Learning in Older Adults
ERIC Educational Resources Information Center
Chiviacowsky, Suzete; Wulf, Gabriele; Wally, Raquel; Borges, Thiago
2009-01-01
In recent years, some researchers have examined motor learning in older adults. Some of these studies have specifically looked at the effectiveness of different manipulations of extrinsic feedback, or knowledge of results (KR). Given that many motor tasks may already be more challenging for older adults compared to younger adults, making KR more…
Neural mechanisms of movement planning: motor cortex and beyond.
Svoboda, Karel; Li, Nuo
2018-04-01
Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.
Autonomic Correlates of Speech Versus Nonspeech Tasks in Children and Adults
Arnold, Hayley S.; MacPherson, Megan K.; Smith, Anne
2015-01-01
Purpose To assess autonomic arousal associated with speech and nonspeech tasks in school-age children and young adults. Method Measures of autonomic arousal (electrodermal level, electrodermal response amplitude, blood pulse volume, and heart rate) were recorded prior to, during, and after the performance of speech and nonspeech tasks by twenty 7- to 9-year-old children and twenty 18- to 22-year-old adults. Results Across age groups, autonomic arousal was higher for speech tasks compared with nonspeech tasks, based on peak electrodermal response amplitude and blood pulse volume. Children demonstrated greater relative arousal, based on heart rate and blood pulse volume, for nonspeech oral motor tasks than adults but showed similar mean arousal levels for speech tasks as adults. Children demonstrated sex differences in autonomic arousal; specifically, autonomic arousal remained high for school-age boys but not girls in a more complex open-ended narrative task that followed a simple sentence production task. Conclusions Speech tasks elicit greater autonomic arousal than nonspeech tasks, and children demonstrate greater autonomic arousal for nonspeech oral motor tasks than adults. Sex differences in autonomic arousal associated with speech tasks in school-age children are discussed relative to speech-language differences between boys and girls. PMID:24686989
Self-controlled practice enhances motor learning in introverts and extroverts.
Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda; Tani, Go
2014-06-01
The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys in a specific spatial and temporal pattern. The experiment consisted of practice, retention, and transfer phases. The participants were distributed into 4 groups, formed by the combination of personality trait (extraversion/introversion) and type of feedback frequency (self-controlled/yoked). The results showed superior learning for the groups that practiced in a self-controlled schedule, in relation to groups who practiced in an externally controlled schedule, F(1, 52) = 4.13, p < .05, eta2 = .07, regardless of personality trait. We conclude that self-controlled practice enhances motor learning in introverts and extroverts.
Altenmüller, Eckart; Baur, Volker; Hofmann, Aurélie; Lim, Vanessa K; Jabusch, Hans-Christian
2012-04-01
Musician's cramp is a task-specific movement disorder that presents itself as muscular incoordination or loss of voluntary motor control of extensively trained movements while a musician is playing the instrument. It is characterized by task specificity and gender bias, affecting significantly more males than females. The etiology is multifaceted: a combination of a genetic predisposition, termed endophenotype, and behavioral triggering factors being the leading features for the manifestation of the disorder. We present epidemiological data from 591 musician patients from our outpatient clinic demonstrating an influence of fine-motor requirements on the manifestation of dystonia. Brass, guitar, and woodwind players were at greater risk than other instrumentalists. High temporospatial precision of movement patterns, synchronous demands on tonic and phasic muscular activation, in combination with fine-motor burdens of using the dominant hand in daily life activities, constitute as triggering factors for the disorder and may explain why different body parts are affected. © 2012 New York Academy of Sciences.
Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire
2016-10-05
Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
"The caterpillar": a novel reading passage for assessment of motor speech disorders.
Patel, Rupal; Connaghan, Kathryn; Franco, Diana; Edsall, Erika; Forgit, Dory; Olsen, Laura; Ramage, Lianna; Tyler, Emily; Russell, Scott
2013-02-01
A review of the salient characteristics of motor speech disorders and common assessment protocols revealed the need for a novel reading passage tailored specifically to differentiate between and among the dysarthrias (DYSs) and apraxia of speech (AOS). "The Caterpillar" passage was designed to provide a contemporary, easily read, contextual speech sample with specific tasks (e.g., prosodic contrasts, words of increasing length and complexity) targeted to inform the assessment of motor speech disorders. Twenty-two adults, 15 with DYS or AOS and 7 healthy controls (HC), were recorded reading "The Caterpillar" passage to demonstrate its utility in examining motor speech performance. Analysis of performance across a subset of segmental and prosodic variables illustrated that "The Caterpillar" passage showed promise for extracting individual profiles of impairment that could augment current assessment protocols and inform treatment planning in motor speech disorders.
Increased gamma band power during movement planning coincides with motor memory retrieval.
Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten
2016-01-15
The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.
Langlet, C; Hainaut, J P; Bolmont, B
2017-03-16
Arousal anxiety has a great impact on reaction time, physiological parameters and motor performance. Numerous studies have focused on the influence of anxiety on muscular activity during simple non ecologic task. We investigate the impact of a moderate state-anxiety (arousal stressor) on the specific component of a complex multi-joint ecologic movement during a reaction time task of auditory stimulus-response. Our objective is to know if central and peripheral voluntary motor processes were modulated in the same way by an arousal stressor. Eighteen women volunteers performed simple reaction time tasks of auditory stimulus-response. Video-recorded Stroop test with interferences was used to induced moderate state-anxiety. Electromyographic activity of the wrist extensor was recorded in order to analyse the two components of the reaction time: the premotor and motor time. In anxiogenic condition, an acceleration and an increase of muscular activity of the reaction time was obtained. This increase was due to a stronger muscle activity during the premotor time in the anxiogenic condition. Arousal anxiety has a different impact on central and peripheral voluntary motor processes. The modifications observed could be related to an increase in arousal related to a higher anxiety in order to prepare the body to act. Copyright © 2017 Elsevier B.V. All rights reserved.
D'Mello, G D; Duffy, E A; Miles, S S
1985-01-01
A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.
Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control
Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.
2013-01-01
Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923
A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
Peternel, Luka; Tsagarakis, Nikos; Ajoudani, Arash
2017-07-01
This paper aims to improve the interaction and coordination between the human and the robot in cooperative execution of complex, powerful, and dynamic tasks. We propose a novel approach that integrates online information about the human motor function and manipulability properties into the hybrid controller of the assistive robot. Through this human-in-the-loop framework, the robot can adapt to the human motor behavior and provide the appropriate assistive response in different phases of the cooperative task. We experimentally evaluate the proposed approach in two human-robot co-manipulation tasks that require specific complementary behavior from the two agents. Results suggest that the proposed technique, which relies on a minimum degree of task-level pre-programming, can achieve an enhanced physical human-robot interaction performance and deliver appropriate level of assistance to the human operator.
Automatic motor task selection via a bandit algorithm for a brain-controlled button
NASA Astrophysics Data System (ADS)
Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen
2013-02-01
Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.
Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas
2016-10-01
While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alam, Monzurul; Ahmed, Ghazanfar; Ling, Yan To; Zheng, Yong-Ping
2018-05-25
Event-related desynchronization (ERD) is a relative power decrease of electroencephalogram (EEG) signals in a specific frequency band during physical motor execution, while transcranial Doppler (TCD) measures cerebral blood flow velocity. The objective of this study was to investigate the neurovascular coupling in the motor cortex by using an integrated EEG and TCD system, and to find any difference in hemodynamic responses in healthy young male and female adults. Approach: 30 healthy volunteers, aged 20-30 years were recruited for this study. The subjects were asked to perform a motor task for the duration of a provided visual cue. Simultaneous EEG and TCD recording was carried out using a new integrated system to detect the ERD arising from the EEG signals, and to measure the mean blood flow velocity of the left and right middle cerebral arteries from bilateral TCD signals. Main Results: The results showed a significant decrease in EEG power in mu band (7.5-12.5 Hz) during the motor task compared to the resting phase. It showed significant increase in desynchronization on the contralateral side of the motor task compared to the ipsilateral side. Mean blood flow velocity during the task phase was significantly higher in comparison with the resting phase at the contralateral side. The results also showed a significantly higher increase in the percentage of mean blood flow velocity in the contralateral side of motor task compared to the ipsilateral side. However, no significant difference in desynchronization, or change of mean blood flow velocity was found between males and females. Significance: A combined TCD-EEG system successfully detects ERD and blood flow velocity in cerebral arteries, and can be used as a useful tool to study neurovascular coupling in the brain. There is no significant difference in the hemodynamic responses in healthy young males and females. © 2018 Institute of Physics and Engineering in Medicine.
Delevoye-Turrell, Yvonne Nathalie; Bobineau, Claudie
2012-01-01
Mindfulness-Based Stress Reduction meditation (MBSR) may offer optimal performance through heightened attention for increased body consciousness. To test this hypothesis, MBSR effects were assessed on the simple task of lifting an object. A dual task paradigm was included to assess the opposite effect of a limited amount of attention on motor consciousness. In a stimulus-based condition, the subjects’ task was to lift an object that was hefted with weights. In an intentional-based condition, subjects were required to lift a light object while imagining that the object was virtually heavier and thus, adjust their grip voluntarily. The degree of motor consciousness was evaluated by calculating correlation factors for each participant between the grip force level used during the lift trial (“lift the object”) and that used during its associated reproduce trial (“without lifting, indicate the force you think you used in the previous trial”). Under dual task condition, motor consciousness decreased for intention- and stimulus-based actions, revealing the importance of top-down attention for building the motor representation that guides action planning. For MBSR-experts, heightened attention provided stronger levels of motor consciousness; this was true for both intention and stimulus-based actions. For controls, heightened attention decreased the capacity to reproduce force levels, suggesting that voluntary top-down attention interfered with the automatic bottom-up emergence of body sensations. Our results provide strong arguments for involvement of two types of attention for the emergence of motor consciousness. Bottom-up attention would serve as an amplifier of motor-sensory afferences; top-down attention would help transfer the motor-sensory content from a preconscious to a conscious state of processing. MBSR would be a specific state for which both types of attention are optimally combined to provide experts with total experiences of their body in movement. PMID:22973242
Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander
2016-01-01
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Chivers, Paola; Larkin, Dawne; Rose, Elizabeth; Beilin, Lawrence; Hands, Beth
2013-10-01
This study examined whether lower motor performance scores can be full attributed to poor coordination, or whether weight related morphological constraints may also affect motor performance. Data for 666 children and adolescents from the longitudinal Western Australian Pregnancy Cohort (Raine) Study were grouped into normal weight, overweight and obese categories based on the International Obesity Task Force cut points. Participants completed the 10-item McCarron Assessment of Neuromuscular Development (MAND) at the 10 and 14 year follow-up. The prevalence of overweight and obese participants classified with mild or moderate motor difficulties was not different from the normal weight group at 10 years (χ2 = 5.8 p = .215), but higher at 14 years (χ2 = 11.3 p = .023). There were no significant differences in overall motor performance scores between weight status groups at 10 years, but at 14 years, the normal weight group achieved better scores than the obese group (p<.05). For specific items, the normal weight group consistently scored higher than the overweight and obese groups on the jump task at 10 (p<.001) and 14 (p<.01)years but lower on the hand strength task at both ages (p<.01). Our findings raise the question as to whether some test items commonly used for assessing motor competence are appropriate for an increasingly overweight and obese population. Copyright © 2013 Elsevier B.V. All rights reserved.
Prichard, George; Weiller, Cornelius; Fritsch, Brita; Reis, Janine
2014-01-01
Noninvasive electrical brain stimulation (NEBS) with transcranial direct current (tDCS) or random noise stimulation (tRNS) applied to the primary motor cortex (M1) can augment motor learning. We tested whether different types of stimulation alter particular aspects of learning a tracing task over three consecutive days, namely skill acquisition (online/within session effects) or consolidation (offline/between session effects). Motor training on a tracing task over three consecutive days was combined with different types and montages of stimulation (tDCS, tRNS). Unilateral M1 stimulation using tRNS as well as unilateral and bilateral M1 tDCS all enhanced motor skill learning compared to sham stimulation. In all groups, this appeared to be driven by online effects without an additional offline effect. Unilateral tDCS resulted in large skill gains immediately following the onset of stimulation, while tRNS exerted more gradual effects. Control stimulation of the right temporal lobe did not enhance skill learning relative to sham. The mechanisms of action of tDCS and tRNS are likely different. Hence, the time course of skill improvement within sessions could point to specific and temporally distinct interactions with the physiological process of motor skill learning. Exploring the parameters of NEBS on different tasks and in patients with brain injury will allow us to maximize the benefits of NEBS for neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.
White matter microstructural properties correlate with sensorimotor synchronization abilities.
Blecher, Tal; Tal, Idan; Ben-Shachar, Michal
2016-09-01
Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping
2017-05-01
Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.
Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task.
Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian
2017-01-01
Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.
Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task
Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian
2017-01-01
Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback. PMID:28473762
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp
Najee-ullah, Muslimah 'Ali; Hallett, Mark
2016-01-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In the present MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. PMID:27466043
Pandian, Shanta; Arya, Kamal Narayan; Davidson, E W Rajkumar
2012-07-01
Motor recovery of the hand usually plateaus in chronic stroke patients. Various conventional and contemporary approaches have been used to rehabilitate the hand post-stroke. However, the evidence for their effectiveness is still limited. To compare the hand therapy protocols based on Brunnstrom approach and motor relearning program in rehabilitation of the hand of chronic stroke patients. Randomized trial. Outpatients attending the occupational therapy department of a rehabilitation institute. 30 post-stroke subjects (35.06 ± 14.52 months) were randomly assigned into two equal groups (Group A and Group B), Outcome Measures: Brunnstrom recovery stages of hand (BRS-H), Fugl-Meyer assessment: wrist and hand (FMA-WH). Group A received Brunnstrom hand manipulation (BHM). BHM is the hand treatment protocol of the Brunnstrom movement therapy, which uses synergies and reflexes to develop voluntary motor control. Group B received the Motor Relearning Program (MRP) based hand protocol. MRP is the practice of specific motor skills, which results in the ability to perform a task. Active practice of context-specific motor task such as reaching and grasping helps regain the lost motor functions. Both the therapy protocols were effective in rehabilitation of the hand (BRS-H; p = 0.003 to 0.004, FMA-WH; p < 0.001). However, the results were statistically significant in favor of group A undergoing BHM for FMA-WH (p < 0.004) and FMA item VIII (hand motor recovery) (p < 0.033). BHM was found to be more effective than MRP in rehabilitation of the hand in chronic post-stroke patients. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial Attention, Motor Intention, and Bayesian Cue Predictability in the Human Brain.
Kuhns, Anna B; Dombert, Pascasie L; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2017-05-24
Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying cortical mechanisms and their specificity for different cognitive subsystems. The present study aimed at identifying common and distinct neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor intention task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are encoded in distinct brain regions, but that crosstalk with the hippocampus may be necessary to integrate new trialwise outcomes in both cognitive systems. SIGNIFICANCE STATEMENT The brain is able to infer the environments' statistical structure and responds strongly to expectancy violations. In the spatial attentional domain, it has been shown that parts of the attentional networks are sensitive to the predictability of stimuli. It remains unknown, however, whether these effects are ubiquitous or if they are specific for different cognitive systems. The present study compared the influence of model-derived cue predictability on brain activity in the spatial attentional and motor intentional system. We identified areas with distinct predictability-dependent activation for spatial attention and motor intention, but also common connectivity changes of these regions with the hippocampus. These findings provide novel insights into the generality and specificity of predictive processing signatures in the human brain. Copyright © 2017 the authors 0270-6474/17/375334-11$15.00/0.
Kashou, Nasser H.; Giacherio, Brenna M.; Nahhas, Ramzi W.; Jadcherla, Sudarshan R.
2016-01-01
Abstract. Despite promising advantages such as low cost and portability of functional near-infrared spectroscopy (fNIRS), it has yet to be widely implemented outside of basic research. Specifically, fNIRS has yet to be proven as a standalone tool within a clinical setting. The objective of this study was to assess hemodynamic concentration changes at the primary and premotor motor cortices as a result of simple whole-hand grasping and sequential finger-opposition (tapping) tasks. These tasks were repeated over 3 days in a randomized manner. Ten healthy young adults (23.8±4.8 years) participated in the study. Quantitatively, no statistically significant differences were discovered between the levels of activation for the two motor tasks (p>0.05). Overall, the signals were consistent across all 3 days. The findings show that both finger-opposition and hand grasping can be used interchangeably in fNIRS for assessment of motor function which would be useful in further advancing techniques for clinical implementation. PMID:27335888
Priming of disability and elderly stereotype in motor performance: similar or specific effects?
Ginsberg, Frederik; Rohmer, Odile; Louvet, Eva
2012-04-01
In three experimental studies, the effects of priming participants with the disability stereotype were investigated with respect to their subsequent motor performance. Also explored were effects of activating two similar stereotypes, persons with a disability and elderly people. In Study 1, participants were primed with the disability stereotype versus with a neutral prime, and then asked to perform on a motor coordination task. In Studies 2 and 3, a third condition was introduced: priming participants with the elderly stereotype. Results indicated that priming participants with the disability stereotype altered their motor performance: they showed decreased manual dexterity and performed slower than the non-primed participants. Priming with the elderly stereotype decreased only performance speed. These findings underline that prime-to-behavior effects may depend on activation of specific stereotype content.
Economic decision-making compared with an equivalent motor task.
Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T
2009-04-14
There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Relationship between binocular vision, visual acuity, and fine motor skills.
O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley
2010-12-01
The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.
Marinovic, Welber; Tresilian, James; Chapple, Jack L; Riek, Stephan; Carroll, Timothy J
2017-04-21
A loud acoustic stimulus (LAS) is often used as a tool to investigate motor preparation in simple reaction time (RT) tasks, where all movement parameters are known in advance. In this report, we used a LAS to examine direction specification in simple and choice RT tasks. This allowed us to investigate how the specification of movement direction unfolds during the preparation period. In two experiments, participants responded to the appearance of an imperative stimulus (IS) with a ballistic wrist force directed toward one of two targets. In probe trials, a LAS (120dBa) was delivered around the time of IS presentation. In Experiment 1, RTs in the simple RT task were faster when the LAS was presented, but the effect on the movement kinematics was negligible. In the Choice RT task, however, movement direction variability increased when the LAS was presented. In Experiment 2, when we primed movements toward one direction, our analyses revealed that the longer participants took to start a movement, the more accurate their responses became. Our results show not only that movement direction reprogramming occurs quickly and continuously, but also that LAS can be a valuable tool to obtain meaningful readouts of the motor system's preparatory state. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Neural activity in superior parietal cortex during rule-based visual-motor transformations.
Hawkins, Kara M; Sayegh, Patricia; Yan, Xiaogang; Crawford, J Douglas; Sergio, Lauren E
2013-03-01
Cognition allows for the use of different rule-based sensorimotor strategies, but the neural underpinnings of such strategies are poorly understood. The purpose of this study was to compare neural activity in the superior parietal lobule during a standard (direct interaction) reaching task, with two nonstandard (gaze and reach spatially incongruent) reaching tasks requiring the integration of rule-based information. Specifically, these nonstandard tasks involved dissociating the planes of reach and vision or rotating visual feedback by 180°. Single unit activity, gaze, and reach trajectories were recorded from two female Macaca mulattas. In all three conditions, we observed a temporal discharge pattern at the population level reflecting early reach planning and on-line reach monitoring. In the plane-dissociated task, we found a significant overall attenuation in the discharge rate of cells from deep recording sites, relative to standard reaching. We also found that cells modulated by reach direction tended to be significantly tuned either during the standard or the plane-dissociated task but rarely during both. In the standard versus feedback reversal comparison, we observed some cells that shifted their preferred direction by 180° between conditions, reflecting maintenance of directional tuning with respect to the reach goal. Our findings suggest that the superior parietal lobule plays an important role in processing information about the nonstandard nature of a task, which, through reciprocal connections with precentral motor areas, contributes to the accurate transformation of incongruent sensory inputs into an appropriate motor output. Such processing is crucial for the integration of rule-based information into a motor act.
Sleep to the beat: A nap favours consolidation of timing.
Verweij, Ilse M; Onuki, Yoshiyuki; Van Someren, Eus J W; Van der Werf, Ysbrand D
2016-06-01
Growing evidence suggests that sleep is important for procedural learning, but few studies have investigated the effect of sleep on the temporal aspects of motor skill learning. We assessed the effect of a 90-min day-time nap on learning a motor timing task, using 2 adaptations of a serial interception sequence learning (SISL) task. Forty-two right-handed participants performed the task before and after a 90-min period of sleep or wake. Electroencephalography (EEG) was recorded throughout. The motor task consisted of a sequential spatial pattern and was performed according to 2 different timing conditions, that is, either following a sequential or a random temporal pattern. The increase in accuracy was compared between groups using a mixed linear regression model. Within the sleep group, performance improvement was modeled based on sleep characteristics, including spindle- and slow-wave density. The sleep group, but not the wake group, showed improvement in the random temporal, but especially and significantly more strongly in the sequential temporal condition. None of the sleep characteristics predicted improvement on either general of the timing conditions. In conclusion, a daytime nap improves performance on a timing task. We show that performance on the task with a sequential timing sequence benefits more from sleep than motor timing. More important, the temporal sequence did not benefit initial learning, because differences arose only after an offline period and specifically when this period contained sleep. Sleep appears to aid in the extraction of regularities for optimal subsequent performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.
2009-01-01
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J
2009-10-21
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.
Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone
2013-10-30
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
Mennenga, Sarah E; Gerson, Julia E; Dunckley, Travis; Bimonte-Nelson, Heather A
2015-01-01
Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task. Copyright © 2014. Published by Elsevier Inc.
Flynn, Sheryl; Palma, Phyllis; Bender, Anneke
2007-12-01
Many Americans live with physical functional limitations stemming from stroke. These functional limitations can be reduced by task-specific training that is repetitive, motivating, and augmented with feedback. Virtual reality (VR) is reported to offer an engaging environment that is repetitive, safe, motivating, and gives task-specific feedback. The purpose of this case report was to explore the use of a low-cost VR device [Sony PlayStation 2 (PS2) EyeToy] for an individual in the chronic phase of stroke recovery. An individual two years poststroke with residual sensorimotor deficits completed 20 one-hour sessions using the PS2 EyeToy. The game's task requirements included target-based motion, dynamic balance, and motor planning. The feasibility of using the gaming platform was explored and a broad selection of outcomes was used to assess change in performance. Device use was feasible. Clinically relevant improvements were found on the Dynamic Gait Index and trends toward improvement on the Fugl-Meyer Assessment, Berg Balance Scale, UE Functional Index, Motor Activity Log, and Beck Depression Inventory. A low-cost VR system was easily used in the home. In the future it may be used to improve sensory/motor recovery following stroke as an adjunct to standard care physical therapy.
An fMRI study of musicians with focal dystonia during tapping tasks.
Kadota, Hiroshi; Nakajima, Yasoichi; Miyazaki, Makoto; Sekiguchi, Hirofumi; Kohno, Yutaka; Amako, Masatoshi; Arino, Hiroshi; Nemoto, Koichi; Sakai, Naotaka
2010-07-01
Musician's dystonia is a type of task specific dystonia for which the pathophysiology is not clear. In this study, we performed functional magnetic resonance imaging to investigate the motor-related brain activity associated with musician's dystonia. We compared brain activities measured from subjects with focal hand dystonia and normal (control) musicians during right-hand, left-hand, and both-hands tapping tasks. We found activations in the thalamus and the basal ganglia during the tapping tasks in the control group but not in the dystonia group. For both groups, we detected significant activations in the contralateral sensorimotor areas, including the premotor area and cerebellum, during each tapping task. Moreover, direct comparison between the dystonia and control groups showed that the dystonia group had greater activity in the ipsilateral premotor area during the right-hand tapping task and less activity in the left cerebellum during the both-hands tapping task. Thus, the dystonic musicians showed irregular activation patterns in the motor-association system. We suggest that irregular neural activity patterns in dystonic subjects reflect dystonic neural malfunction and consequent compensatory activity to maintain appropriate voluntary movements.
Role of medial premotor areas in action language processing in relation to motor skills.
Courson, Melody; Macoir, Joël; Tremblay, Pascale
2017-10-01
The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task.
Chen, Xiaogang; Bin, Guangyu; Daly, Ian; Gao, Xiaorong
2013-04-29
Recent studies have demonstrated that mentally rotating the hands involves participants engaging in motor imagery processing. However, far less is known about the possible neurophysiological basis of such processing. To contribute to a better understanding of hand mental rotation processing, event-related spectral perturbation (ERSP) methods were applied to electroencephalography (EEG) data collected from participants mentally rotating their hands. Time-frequency analyses revealed that alpha-band power suppression was larger over central-parietal regions. This is in accordance with motor imagery findings suggesting that the motor regions may be involved in processing or detection of kinaesthetic information. Furthermore, the presence of a significant negative correlation between reaction times (RTs) and alpha-band power suppression over central regions is illustrated. These findings are consistent with the neural efficiency hypothesis, which proposes the non-use of many brain regions irrelevant for the task performance as well as the more focused use of specific task-related regions in individuals with better performance. These results indicate that ERSP provides some independent insights into the mental rotation process and further confirms that parietal and motor cortices are involved in mental rotation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Henz, Sonja; Kutz, Dieter F.; Werner, Jana; Hürster, Walter; Kolb, Florian P.; Nida-Ruemelin, Julian
2015-01-01
The aim of the study was to determine whether a deliberative process, leading to a motor action, is detectable in high density EEG recordings. Subjects were required to press one of two buttons. In a simple motor task the subject knew which button to press, whilst in a color-word Stroop task subjects had to press the right button with the right index finger when meaning and color coincided, or the left button with the left index finger when meaning and color were disparate. EEG recordings obtained during the simple motor task showed a sequence of positive (P) and negative (N) cortical potentials (P1-N1-P2) which are assumed to be related to the processing of the movement. The sequence of cortical potentials was similar in EEG recordings of subjects having to deliberate over how to respond, but the above sequence (P1-N1-P2) was preceded by slowly increasing negativity (N0), with N0 being assumed to represent the end of the deliberation process. Our data suggest the existence of neurophysiological correlates of deliberative processes. PMID:26190987
Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B
2011-01-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184
Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L
2017-01-01
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn
2014-01-01
Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461
ERIC Educational Resources Information Center
LoGerfo, Emanuele; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo
2008-01-01
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also…
Deutsch, Judith E
2009-01-01
Improving walking for individuals with musculoskeletal and neuromuscular conditions is an important aspect of rehabilitation. The capabilities of clinicians who address these rehabilitation issues could be augmented with innovations such as virtual reality gaming based technologies. The chapter provides an overview of virtual reality gaming based technologies currently being developed and tested to improve motor and cognitive elements required for ambulation and mobility in different patient populations. Included as well is a detailed description of a single VR system, consisting of the rationale for development and iterative refinement of the system based on clinical science. These concepts include: neural plasticity, part-task training, whole task training, task specific training, principles of exercise and motor learning, sensorimotor integration, and visual spatial processing.
Ranganathan, Rajiv; Wieser, Jon; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Scheidt, Robert A
2014-06-11
Prior learning of a motor skill creates motor memories that can facilitate or interfere with learning of new, but related, motor skills. One hypothesis of motor learning posits that for a sensorimotor task with redundant degrees of freedom, the nervous system learns the geometric structure of the task and improves performance by selectively operating within that task space. We tested this hypothesis by examining if transfer of learning between two tasks depends on shared dimensionality between their respective task spaces. Human participants wore a data glove and learned to manipulate a computer cursor by moving their fingers. Separate groups of participants learned two tasks: a prior task that was unique to each group and a criterion task that was common to all groups. We manipulated the mapping between finger motions and cursor positions in the prior task to define task spaces that either shared or did not share the task space dimensions (x-y axes) of the criterion task. We found that if the prior task shared task dimensions with the criterion task, there was an initial facilitation in criterion task performance. However, if the prior task did not share task dimensions with the criterion task, there was prolonged interference in learning the criterion task due to participants finding inefficient task solutions. These results show that the nervous system learns the task space through practice, and that the degree of shared task space dimensionality influences the extent to which prior experience transfers to subsequent learning of related motor skills. Copyright © 2014 the authors 0270-6474/14/348289-11$15.00/0.
Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T
2016-12-07
The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.
Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P; Nieuwboer, Alice
2016-01-01
Patients with Parkinson's disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy.
de Mello Monteiro, Carlos Bandeira; Massetti, Thais; da Silva, Talita Dias; van der Kamp, John; de Abreu, Luiz Carlos; Leone, Claudio; Savelsbergh, Geert J P
2014-10-01
With the growing accessibility of computer-assisted technology, rehabilitation programs for individuals with cerebral palsy (CP) increasingly use virtual reality environments to enhance motor practice. Thus, it is important to examine whether performance improvements in the virtual environment generalize to the natural environment. To examine this issue, we had 64 individuals, 32 of which were individuals with CP and 32 typically developing individuals, practice two coincidence-timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key. In the more abstract, less tangible task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment. The results showed that individuals with CP timed less accurate than typically developing individuals, especially for the more abstract task in the virtual environment. The individuals with CP did-as did their typically developing peers-improve coincidence timing with practice on both tasks. Importantly, however, these improvements were specific to the practice environment; there was no transfer of learning. It is concluded that the implementation of virtual environments for motor rehabilitation in individuals with CP should not be taken for granted but needs to be considered carefully. Copyright © 2014 Elsevier Ltd. All rights reserved.
Men are more accurate than women in aiming at targets in both near space and extrapersonal space.
Sykes Tottenham, Laurie; Saucier, Deborah M; Elias, Lorin J; Gutwin, Carl
2005-08-01
Men excel at motor tasks requiring aiming accuracy whereas women excel at different tasks requiring fine motor skill. However, these tasks are confounded with proximity to the body, as fine motor tasks are performed proximally and aiming tasks are directed at distal targets. As such, it is not known whether the male advantage on tasks requiring aiming accuracy is because men have better aim or is better in the proximal domain in which the task is usually presented. 18 men (M age = 20.6 yr., SD = 3.0) and 20 women (M age = 18.7 yr., SD = 0.9) performed 2 tasks of extrapersonal aiming accuracy (>2 m away), 2 tasks of aiming accuracy performed in near space (< 1 m from them), and a task of fine motor skill. Men outperformed women on both the extrapersonal aiming tasks, and women outperformed men on the task of fine motor skill. However, a male advantage was observed for one of the aiming tasks performed in near space, suggesting that the male advantage for aiming accuracy does not result from proximity.
Psotta, Rudolf; Abdollahipour, Reza
2017-12-01
The Movement Assessment Battery for Children-2nd Edition (MABC-2) is a test of motor development, widely used in clinical and research settings. To address which motor abilities are actually captured by the motor tasks in the two age versions of the MABC-2, the AB2 for 7- 10-year-olds and the AB3 for 11- 16-year-olds, we examined AB2 and AB3 factorial validity. We conducted confirmatory factor analysis (SPSS AMOS 22.0) on data from the test's standardization samples of children aged 7-10, n = 483, and 11-16, n = 674, in order to find the best fitting models. The covariance matrix of AB2 and AB3 fit a three-factor model that included tasks of manual dexterity, aiming and catching, and balance. However, factor analytic models fitting AB2 and AB3 did not involve the dynamic balance tasks of hopping with the better leg and hopping with the other leg; and the drawing trail showed very low factor validity. In sum, both AB2 and AB3 of the MABC-2 test are able to discriminate between the three specific motor abilities; but due to questionable psychometric quality, the drawing trail and hopping tasks should be modified to improve the construct validity for both age versions of the MABC-2.
Censor, N
2013-10-10
In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.
Cai, X; Shimansky, Y; He, Jiping
2005-01-01
A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.
Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.
Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim
2009-08-01
This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.
Oscillatory EEG signatures of postponed somatosensory decisions.
Ludwig, Simon; Herding, Jan; Blankenburg, Felix
2018-05-02
In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command. We recorded EEG data in two separate experiments, both employing the vibrotactile frequency comparison task with delayed decision reports. In the first experiment, delayed choices were associated with a fixed motor mapping, whereas in the second experiment, choices were mapped onto a color code concealing a specific motor response until the end of the delay phase. In between stimulus presentations, as well as after the second stimulus, prefrontal beta band power indexed stimulus information held in working memory. Beta band power also encoded choices during the response delay, notably, in different cortical areas depending on the provided response mapping. In particular, when decisions were associated with a specific motor mapping, choices were represented in premotor cortices, whereas the color mapping resulted in a choice-selective modulation of beta band power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., the decision consequence) determines where in the cortical sensorimotor hierarchy an according decision signal is processed. © 2018 Wiley Periodicals, Inc.
Cherry, Kendra M.; Lenze, Eric J.
2014-01-01
Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. d-Cycloserine (DCS), a partial N-methyl-d-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136–1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1–3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke. PMID:24671538
Predicting explorative motor learning using decision-making and motor noise.
Chen, Xiuli; Mohr, Kieran; Galea, Joseph M
2017-04-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.
Predicting explorative motor learning using decision-making and motor noise
Galea, Joseph M.
2017-01-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451
Task-specific recruitment of motor units for vibration damping.
Wakeling, James M; Liphardt, Anna-Maria
2006-01-01
Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.
Shin, Joon-Ho; Park, Gyulee; Cho, Duk Youn
2017-04-01
To explore motor performance on 2 different cognitive tasks during robotic rehabilitation in which motor performance was longitudinally assessed. Prospective study. Rehabilitation hospital. Patients (N=22) with chronic stroke and upper extremity impairment. A total of 640 repetitions of robot-assisted planar reaching, 5 times a week for 4 weeks. Longitudinal robotic evaluations regarding motor performance included smoothness, mean velocity, path error, and reach error by the type of cognitive task. Dual-task effects (DTEs) of motor performance were computed to analyze the effect of the cognitive task on dual-task interference. Cognitive task type influenced smoothness (P=.006), the DTEs of smoothness (P=.002), and the DTEs of reach error (P=.052). Robotic rehabilitation improved smoothness (P=.007) and reach error (P=.078), while stroke severity affected smoothness (P=.01), reach error (P<.001), and path error (P=.01). Robotic rehabilitation or severity did not affect the DTEs of motor performance. The results provide evidence for the effect of cognitive-motor interference on upper extremity performance among participants with stroke using a robotic-guided rehabilitation system. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR
2017-01-01
Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165
Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing
2007-08-01
Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.
Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.
Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan
2003-07-01
The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.
Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions
Buszard, Tim; Farrow, Damian; Verswijveren, Simone J. J. M.; Reid, Machar; Williams, Jacqueline; Polman, Remco; Ling, Fiona Chun Man; Masters, Rich S. W.
2017-01-01
Although it is generally accepted that certain practice conditions can place large demands on working memory (WM) when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24) and higher WM capacity (n = 24) groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control. PMID:28878701
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-01-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching–grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. PMID:27733538
Moving attractive virtual agent improves interpersonal coordination stability.
Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G
2015-06-01
Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination. Copyright © 2015 Elsevier B.V. All rights reserved.
Huo, Xueliang; Johnson-Long, Ashley N.; Ghovanloo, Maysam; Shinohara, Minoru
2015-01-01
The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue. Slow waveform tracking performance by the tongue was compromised with an additional motor or cognitive task, but with an additional motor task only for the hand. Practitioner Summary We investigated the influence of task complexity and background physical exertion on the motor performance of tongue and hand. Results indicate the task performance degrades with an additional concurrent task or physical exertion due to the limited attentional resources available for handling both the motor task and background exertion. PMID:24003900
ERIC Educational Resources Information Center
Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-01-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…
ERIC Educational Resources Information Center
Subiaul, Francys; Zimmermann, Laura; Renner, Elizabeth; Schilder, Brian; Barr, Rachel
2016-01-01
During the first 5 years of life, the versatility, breadth, and fidelity with which children imitate change dramatically. Currently, there is no model to explain what underlies such significant changes. To that end, the present study examined whether task-independent but domain-specific--elemental--imitation mechanism explains performance across…
Load type influences motor unit recruitment in biceps brachii during a sustained contraction.
Baudry, Stéphane; Rudroff, Thorsten; Pierpoint, Lauren A; Enoka, Roger M
2009-09-01
Twenty subjects participated in four experiments designed to compare time to task failure and motor-unit recruitment threshold during contractions sustained at 15% of maximum as the elbow flexor muscles either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). Subcutaneous branched bipolar electrodes were used to record single motor unit activity from the biceps brachii muscle during ramp contractions performed before and at 50 and 90% of the time to failure for the position task during both fatiguing contractions. The time to task failure was briefer for the position task than for the force task (P=0.0002). Thirty and 29 motor units were isolated during the force and position tasks, respectively. The recruitment threshold declined by 48 and 30% (P=0.0001) during the position task for motor units with an initial recruitment threshold below and above the target force, respectively, whereas no significant change in recruitment threshold was observed during the force task. Changes in recruitment threshold were associated with a decrease in the mean discharge rate (-16%), an increase in discharge rate variability (+40%), and a prolongation of the first two interspike intervals (+29 and +13%). These data indicate that there were faster changes in motor unit recruitment and rate coding during the position task than the force task despite a similar net muscle torque during both tasks. Moreover, the results suggest that the differential synaptic input observed during the position task influences most of the motor unit pool.
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model
Ryu, Stephen I.
2017-01-01
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. PMID:28087767
Embouchure dystonia--Portrait of a task-specific cranial dystonia.
Frucht, Steven J
2009-09-15
Focal task-specific dystonia (FTSD) is an unusual disorder of motor control, which typically affects the hand but may also involve the face, jaw, and tongue. We report 89 musicians with dystonia of the embouchure (ED), the muscles of the lower face, jaw, and tongue used to control the flow of air into the mouthpiece of a woodwind or brass instrument. Symptoms of ED began at an average age of 36, were typically painless and only rarely were preceded by trauma. Specific musical techniques commonly triggered dystonia, often in one instrumental register. Task-specific embouchure tremor and lip-pulling ED phenotypes were common among high-register brass players (trumpet and French horn), whereas lip-locking occurred exclusively in low-register brass players (trombone and tuba). Jaw and tongue ED phenotypes occurred predominantly in woodwind players, and once present, frequently spread to speaking or eating. Six percent of all ED patients had coincident writer's cramp, suggesting a possible genetic predisposition to develop dystonia. We assessed two-point sensory discrimination in the upper lip, lower lip, and hand in ED patients, normal musicians, and nonmusician age-matched controls--there were no differences between groups. Once present, symptoms of ED did not remit and often disrupted careers and livelihoods. Better treatments are urgently needed for this unusual disorder of oral motor control.
The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks
Sami, Saber; Robertson, Edwin M.
2014-01-01
Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776
Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco
2014-01-01
Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task. PMID:24621480
Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco
2014-01-01
Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp.
Gallea, Cecile; Horovitz, Silvina G; Najee-Ullah, Muslimah 'Ali; Hallett, Mark
2016-12-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In this MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. Hum Brain Mapp 37:4363-4375, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Perry, Suzanne; Bridges, Susan M; Zhu, Frank; Leung, W Keung; Burrow, Michael F; Poolton, Jamie; Masters, Rich Sw
2017-12-12
There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, r s =.49, P=.03). This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory. ©Suzanne Perry, Susan M Bridges, Frank Zhu, W Keung Leung, Michael F Burrow, Jamie Poolton, Rich SW Masters. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.12.2017.
Lavigne, Katie M; Woodward, Todd S
2018-04-01
Hypercoupling of activity in speech-perception-specific brain networks has been proposed to play a role in the generation of auditory-verbal hallucinations (AVHs) in schizophrenia; however, it is unclear whether this hypercoupling extends to nonverbal auditory perception. We investigated this by comparing schizophrenia patients with and without AVHs, and healthy controls, on task-based functional magnetic resonance imaging (fMRI) data combining verbal speech perception (SP), inner verbal thought generation (VTG), and nonverbal auditory oddball detection (AO). Data from two previously published fMRI studies were simultaneously analyzed using group constrained principal component analysis for fMRI (group fMRI-CPCA), which allowed for comparison of task-related functional brain networks across groups and tasks while holding the brain networks under study constant, leading to determination of the degree to which networks are common to verbal and nonverbal perception conditions, and which show coordinated hyperactivity in hallucinations. Three functional brain networks emerged: (a) auditory-motor, (b) language processing, and (c) default-mode (DMN) networks. Combining the AO and sentence tasks allowed the auditory-motor and language networks to separately emerge, whereas they were aggregated when individual tasks were analyzed. AVH patients showed greater coordinated activity (deactivity for DMN regions) than non-AVH patients during SP in all networks, but this did not extend to VTG or AO. This suggests that the hypercoupling in AVH patients in speech-perception-related brain networks is specific to perceived speech, and does not extend to perceived nonspeech or inner verbal thought generation. © 2017 Wiley Periodicals, Inc.
Robot-assisted surgery: an emerging platform for human neuroscience research
Jarc, Anthony M.; Nisky, Ilana
2015-01-01
Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785
Vlaar, Martijn P; Mugge, Winfred; Groot, Paul F C; Sharifi, Sarvi; Bour, Lo J; van der Helm, Frans C T; van Rootselaar, Anne-Fleur; Schouten, Alfred C
2016-07-01
Dedicated pairs of isometric wrist flexion tasks, with and without visual feedback of the exerted torque, were designed to target activation of the CBL and BG in healthy subjects during functional magnetic resonance imaging (fMRI). Selective activation of the cerebellum (CBL) and basal ganglia (BG), often implicated in movement disorders such as tremor and dystonia, may help identify pathological changes and expedite diagnosis. A prototyped MR-compatible wrist torque measurement device, free of magnetic and conductive materials, allowed safe execution of tasks during fMRI without causing artifacts. A significant increase of activity in CBL and BG was found in healthy volunteers during a constant torque task with visual feedback compared to a constant torque task without visual feedback. This study shows that specific pairs of motor tasks using MR-compatible equipment at the wrist allow for targeted activation of CBL and BG, paving a new way for research into the pathophysiology of movement disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Changes of motor-cortical oscillations associated with motor learning.
Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A
2014-09-05
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Hand grips strength effect on motor function in human brain using fMRI: a pilot study
NASA Astrophysics Data System (ADS)
Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.
2014-11-01
Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.
Motor demands impact speed of information processing in Autism Spectrum Disorders
Kenworthy, Lauren; Yerys, Benjamin E.; Weinblatt, Rachel; Abrams, Danielle N.; Wallace, Gregory L.
2015-01-01
Objective The apparent contradiction between preserved or even enhanced perceptual processing speed on inspection time tasks in autism spectrum disorders (ASD) and impaired performance on complex processing speed tasks that require motor output (e.g. Wechsler Processing Speed Index) has not yet been systematically investigated. This study investigates whether adding motor output demands to an inspection time task impairs ASD performance compared to that of typically developing control (TDC) children. Method The performance of children with ASD (n=28; mean FSIQ=115) and TDC (n=25; mean FSIQ=122) children was compared on processing speed tasks with increasing motor demand. Correlations were run between ASD task performance and Autism Diagnostic Observation Schedule (ADOS) Communication scores. Results Performance by the ASD and TDC groups on a simple perceptual processing speed task with minimal motor demand was equivalent, though it diverged (ASD worse than TDC) on two tasks with the same stimuli, but increased motor output demands. ASD performance on the moderate but not the high speeded motor output demand task was negatively correlated with ADOS communication symptoms. Conclusions These data address the apparent contradiction between preserved inspection time in the context of slowed “processing speed” in ASD. They show that processing speed is preserved when motor demands are minimized, but that increased motor output demands interfere with the ability to act on perceptual processing of simple stimuli. Reducing motor demands (e.g. through the use of computers) may increase the capacity of people with ASD to demonstrate good perceptual processing in a variety of educational, vocational and social settings. PMID:23937483
Age-related differences in dual task performance: A cross-sectional study on women.
Brustio, Paolo R; Magistro, Daniele; Rabaglietti, Emanuela; Liubicich, Monica E
2017-02-01
Simultaneous performances of motor and attention-demanding tasks are common in activities of everyday life. The present cross-sectional study examined the changes and age-related differences on mobility performance with an additional cognitive or motor task, and evaluated the relative dual-task cost (DTC) on the motor performance in young, middle-aged and older women. A total of 30 young (mean age 25.12 ± 3.00 years), 30 middle-aged (mean age 47.82 ± 5.06 years) and 30 older women (mean age 72.74 ± 5.95 years) were recruited. Participants carried out: (i) single task: Timed Up & Go Test; (ii) cognitive dual-task: Timed Up & Go Test while counting backwards by three; (iii) manual dual-task: Timed Up & Go Test while carrying a glass of water. A repeated measures anova with between-factor as age groups and within-factor as tasks was carried out to assess the effect of aging on the performance of mobility tasks. DTC was calculated as ([performance in single-task - performance in dual-task] / performance in single task) × 100%. One-way ancova were carried out to compare the DTC among the three age groups. A significant interaction between age groups and task (F 4,172 = 6.716, P < 0.001, partial η 2 = 0.135) was observed. Specifically, older women showed a worse mobility performance under dual-task condition compared with young and middle-aged groups. Furthermore, DTC differences in cognitive task were observed in older women compared with younger and middle-aged women (F 2,86 = 7.649, P < 0.001, partial η 2 = 0.151), but not in manual task. Dual-task conditions might affect mobility performance differently across the lifespan, and could be particularly challenging in older women. Geriatr Gerontol Int 2017; 17: 315-321. © 2015 Japan Geriatrics Society.
Aging and Concurrent Task Performance: Cognitive Demand and Motor Control
ERIC Educational Resources Information Center
Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn
2006-01-01
A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…
Vaquero, Lucía; Ramos-Escobar, Neus; François, Clément; Penhune, Virginia; Rodríguez-Fornells, Antoni
2018-06-18
Music learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training. Here, we tested the relationship of the dorsal auditory-motor pathway with individual behavioural differences in short-term music learning. We gathered structural neuroimaging data from 44 healthy non-musicians (28 females) before they performed a rhythm- and a melody-learning task during a single behavioural session, and manually dissected the arcuate fasciculus (AF) in both hemispheres. The macro- and microstructural organization of the AF (i.e., volume and FA) predicted the learning rate and learning speed in the musical tasks, but only in the right hemisphere. Specifically, the volume of the right anterior segment predicted the synchronization improvement during the rhythm task, the FA in the right long segment was correlated with the learning rate in the melody task, and the volume and FA of the right whole AF predicted the learning speed during the melody task. This is the first study finding a specific relation between different branches within the AF and rhythmic and melodic materials. Our results support the relevant function of the AF as the structural correlate of both auditory-motor transformations and the feedback-feedforward loop, and suggest a crucial involvement of the anterior segment in error-monitoring processes related to auditory-motor learning. These findings have implications for both the neuroscience of music field and second-language learning investigations. Copyright © 2018. Published by Elsevier Inc.
Small vertical changes in jaw relation affect motor unit recruitment in the masseter.
Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J
2016-04-01
Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P < 0·001) different jaw relation-specific recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P < 0·01) different between tasks. Overall MU recruitment was significantly (P < 0·05) greater in the deep masseter than in the superficial muscle. The number of recruited MUs and the RMS EMG values decreased significantly (P < 0·01) with increasing jaw separation. This investigation revealed differential MU recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.
Macoun, Sarah J; Kerns, Kimberly A
2016-01-01
Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.
The emotional counting Stroop: a task for assessing emotional interference during brain imaging.
Whalen, Paul J; Bush, George; Shin, Lisa M; Rauch, Scott L
2006-01-01
The emotional counting Stroop (ecStroop) is an emotional variant of the counting Stroop. Both of these tasks require a motor response instead of a spoken response for the purpose of minimizing head movement during functional MRI (fMRI). During this task, subjects report, by button press, the number of words (1-4) that appear on a screen, regardless of word meaning. Neutral word-control trials contain common words (e.g., 'cabinet' written three times), while interference trials contain emotional words (e.g., 'murder' written three times). The degree to which this task represents a true 'Stroop' interference task, in the sense that emotional words will increase motor-response times compared with neutral words, depends upon the subjects of the study and the words that are presented. Much research on the emotional Stroop task demonstrates that interference effects are observed in psychopathological groups in response to words that are specific to their disorder, and in normal subjects when the words are related to current concerns endorsed by them. The ecStroop task described here will produce reaction time-interference effects that are comparable to the traditional color-naming emotional Stroop. This protocol can be completed in approximately 20 min per subject. The protocol described here employs neutral words and emotional words that include general-negative words, as well as words specific to combat-related trauma. However, this protocol is amenable to any emotional word lists.
Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T
2015-06-01
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J
2013-07-01
To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Grooms, Dustin R; Kiefer, Adam W; Riley, Michael A; Ellis, Jonathan D; Thomas, Staci; Kitchen, Katie; DiCesare, Christopher; Bonnette, Scott; Gadd, Brooke; Barber Foss, Kim D; Yuan, Weihong; Silva, Paula; Galloway, Ryan; Diekfuss, Jed; Leach, James; Berz, Kate; Myer, Gregory D
2018-03-27
A limiting factor for reducing anterior cruciate ligament (ACL) injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. To determine the neural mechanisms for injury risk reducing biomechanics transfer to sport after ACL injury prevention training. Cohort study Setting: Research laboratory Participants: Four healthy high school soccer athletes. Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg-press task was completed with neuroimaging before and after training. A virtual reality soccer specific landing task was also competed following training to assess transfer of movement mechanics. Landing mechanics during the virtual reality soccer task and blood oxygen level dependent signal change during neuroimaging. Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg-press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Changes in brain activity may underlie adaptation and transfer of injury risk reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.
Response inhibition in motor conversion disorder.
Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark
2013-05-01
Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P < .001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.
Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.
Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B
2015-11-01
Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG.
Ecological validity of the German Bruininks-Oseretsky Test of Motor Proficiency - 2nd Edition.
Vinçon, Sabine; Green, Dido; Blank, Rainer; Jenetzky, Ekkehart
2017-06-01
The diagnosis of Developmental Coordination Disorder (DCD) is based on poor motor coordination in the absence of other neurological disorders. In order to identify the presence of movement difficulties, a standardised motor assessment is recommended to determine the extent of movement problems which may contribute to deficits in daily task performance. A German version of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (German BOT-2) was recently published. This study aimed to determine the ecological validity of the German BOT-2 by considering the relationship between assessment of fundamental motor skills with the BOT-2 and performance of everyday motor activities as evaluated by parents. This study used data obtained from the German BOT-2 standardisation study (n=1.177). Subtests were compared with theoretically corresponding tasks via parental ratings of overall fine and gross motor abilities and performance in six typical motor activities. Non-parametric Jonckheere Terpstra test was used to identify differences in ordered contrasts. Subtests reflecting 'Strength', 'Running Speed and Agility', 'Upper-Limb Coordination', 'Balance', and 'Fine Motor Precision' were associated with parental evaluation of gross motor skills (p<0.001). The subtest 'Fine Motor Integration' significantly correlated with parental ratings of females' fine motor skills. Parental ratings of males' fine motor skills were associated with three further subtests. Regarding everyday motor activities, the first three fine motor BOT-2 subtests were associated with parent evaluations of drawing, writing and arts and crafts (p<0.001). Gross motor subtests of 'Bilateral Coordination' and 'Balance' showed no relationship to bike riding or performance in sports. Subtests of 'Upper-Limb Coordination' and 'Strength' showed significant correlations with sports, ball games and cycling. The results of this study suggest that the closer the proximity in the nature of the motor skills assessed in the German BOT-2 to daily motor tasks, the stronger the relationship between the clinical test and parental report of everyday performance of their child. The body functions tested in the German BOT-2, and hypothesized to underpin certain skills, were not automatically relevant for specific activities undertaken by German children. Future research should investigate the relationships of the various BOT-2 constructs for diagnosis of DCD. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B
2010-08-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.
Enhanced Muscle Afferent Signals during Motor Learning in Humans.
Dimitriou, Michael
2016-04-25
Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yokoyama, Hisayo; Okazaki, Kazunobu; Imai, Daiki; Yamashina, Yoshihiro; Takeda, Ryosuke; Naghavi, Nooshin; Ota, Akemi; Hirasawa, Yoshikazu; Miyagawa, Toshiaki
2015-05-28
Physical activity reduces the incidence and progression of cognitive impairment. Cognitive-motor dual-task training, which requires dividing attention between cognitive tasks and exercise, may improve various cognitive domains; therefore, we examined the effect of dual-task training on the executive functions and on plasma amyloid β peptide (Aβ) 42/40 ratio, a potent biomarker of Alzheimer's disease, in healthy elderly people. Twenty-seven sedentary elderly people participated in a 12-week randomized, controlled trial. The subjects assigned to the dual-task training (DT) group underwent a specific cognitive-motor dual-task training, and then the clinical outcomes, including cognitive functions by the Modified Mini-Mental State (3MS) examination and the Trail-Making Test (TMT), and the plasma Aβ 42/40 ratio following the intervention were compared with those of the control single-task training (ST) group by unpaired t-test. Among 27 participants, 25 completed the study. The total scores in the 3MS examination as well as the muscular strength of quadriceps were equally improved in both groups after the training. The specific cognitive domains, "registration & recall", "attention", "verbal fluency & understanding", and "visuospatial skills" were significantly improved only in the DT group. Higher scores in "attention", "verbal fluency & understanding", and "similarities" were found in the DT group than in the ST group at post-intervention. The absolute changes in the total (8.5 ± 1.6 vs 2.4 ± 0.9, p = 0.004, 95 % confidence interval (CI) 0.75-3.39) and in the scores of "attention" (1.9 ± 0.5 vs -0.2 ± 0.4, p = 0.004, 95 % CI 2.25-9.98) were greater in the DT group than in the ST group. We found no changes in the TMT results in either group. Plasma Aβ 42/40 ratio decreased in both groups following the training (ST group: 0.63 ± 0.13 to 0.16 ± 0.03, p = 0.001; DT group: 0.60 ± 0.12 to 0.25 ± 0.06, p = 0.044), although the pre- and post-intervention values were not different between the groups for either measure. Cognitive-motor dual-task training was more beneficial than single-task training alone in improving broader domains of cognitive functions of elderly persons, and the improvement was not directly due to modulating Aβ metabolism.
Experience modulates motor imagery-based brain activity.
Kraeutner, Sarah N; McWhinney, Sean R; Solomon, Jack P; Dithurbide, Lori; Boe, Shaun G
2018-05-01
Whether or not brain activation during motor imagery (MI), the mental rehearsal of movement, is modulated by experience (i.e. skilled performance, achieved through long-term practice) remains unclear. Specifically, MI is generally associated with diffuse activation patterns that closely resemble novice physical performance, which may be attributable to a lack of experience with the task being imagined vs. being a distinguishing feature of MI. We sought to examine how experience modulates brain activity driven via MI, implementing a within- and between-group design to manipulate experience across tasks as well as expertise of the participants. Two groups of 'experts' (basketball/volleyball athletes) and 'novices' (recreational controls) underwent magnetoencephalography (MEG) while performing MI of four multi-articular tasks, selected to ensure that the degree of experience that participants had with each task varied. Source-level analysis was applied to MEG data and linear mixed effects modelling was conducted to examine task-related changes in activity. Within- and between-group comparisons were completed post hoc and difference maps were plotted. Brain activation patterns observed during MI of tasks for which participants had a low degree of experience were more widespread and bilateral (i.e. within-groups), with limited differences observed during MI of tasks for which participants had similar experience (i.e. between-groups). Thus, we show that brain activity during MI is modulated by experience; specifically, that novice performance is associated with the additional recruitment of regions across both hemispheres. Future investigations of the neural correlates of MI should consider prior experience when selecting the task to be performed. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Variability of human corticospinal excitability tracks the state of action preparation.
Klein-Flügge, Miriam C; Nobbs, David; Pitcher, Julia B; Bestmann, Sven
2013-03-27
Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example, trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in variability before movement onset. However, whether noninvasive measures of the variability of population activity available from humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action preparation. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation, and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of action preparation but also more complex processes, such as choice-to-action transformations.
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
Effect of acute mild dehydration on cognitive-motor performance in golf.
Smith, Mark F; Newell, Alex J; Baker, Mistrelle R
2012-11-01
Whether mild dehydration (-1 to 3% body mass change [ΔBM]) impairs neurophysiological function during sport-specific cognitive-motor performance has yet to be fully elucidated. To investigate this within a golfing context, 7 low-handicap players (age: 21 ± 1.1 years; mass: 76.1 ± 11.8 kg; stature: 1.77 ± 0.07 m; handicap: 3.0 ± 1.2) completed a golf-specific motor and cognitive performance task in a euhydrated condition (EC) and dehydrated condition (DC) (randomized counterbalanced design; 7-day interval). Dehydration was controlled using a previously effective 12-hour fluid restriction, monitored through ΔBM and urine color assessment (UCOL). Mild dehydration reduced the mean BM by 1.5 ± 0.5% (p = 0.01), with UCOL increasing from 2 (EC) to 4 (DC) (p = 0.02). Mild dehydration significantly impaired motor performance, expressed as shot distance (114.6 vs. 128.6 m; p < 0.001) and off-target accuracy (7.9 vs. 4.1 m; p = 0.001). Cognitive performance, expressed as the mean error in distance judgment to target increased from 4.1 ± 3.0 m (EC) to 8.8 ± 4.7 m (DC) (p < 0.001). The findings support those of previous research that indicates mild dehydration (-1 to 2% ΔBM) significantly impairs cognitive-motor task performance. This study is the first to show that mild dehydration can impair distance, accuracy, and distance judgment during golf performance.
Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.
2009-01-01
We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048
Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan
2018-03-01
Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Adjustments differ among low-threshold motor units during intermittent, isometric contractions.
Farina, Dario; Holobar, Ales; Gazzoni, Marco; Zazula, Damjan; Merletti, Roberto; Enoka, Roger M
2009-01-01
We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded from the abductor pollicis brevis muscle of eight healthy men during 12-s contractions (n = 25) in which the force increased and decreased linearly from 0 to 10% of the maximum. The maximal force exhibited a modest decline (8.5 +/- 9.3%; P < 0.05) at the end of the task. The discharge times of 73 motor units that were active for 16-98% of the time during the first five contractions were identified throughout the task by decomposition of the EMG signals. Action potential conduction velocity decreased during the task by a greater amount for motor units that were initially active for >70% of the time compared with that of less active motor units. Moreover, recruitment and derecruitment thresholds increased for these most active motor units, whereas the thresholds decreased for the less active motor units. Another 18 motor units were recruited at an average of 171 +/- 32 s after the beginning of the task. The recruitment and derecruitment thresholds of these units decreased during the task, but muscle fiber conduction velocity did not change. These results indicate that low-threshold motor units exhibit individual adjustments in muscle fiber conduction velocity and motor neuron activation that depended on the relative duration of activity during intermittent contractions.
Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred
2012-01-01
Background Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8). Results The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered. Conclusions Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming. PMID:22649558
Effects of tDCS on Bimanual Motor Skills: A Brief Review
Pixa, Nils H.; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation. PMID:29670514
Effects of tDCS on Bimanual Motor Skills: A Brief Review.
Pixa, Nils H; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.
Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa
2018-02-01
We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.
Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment
Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A
2017-02-01
Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine
2012-01-01
Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language deficits compared to several other studies; (c) describe how performance differed on a nonword repetition test between children who stutter who do and do not have concomitant speech or language deficits; (d) make a general statement about speech motor control for nonword production in children who stutter compared to controls. PMID:23218217
Karageorgiou, John; Dietrich, Mary S.; Charboneau, Evonne J.; Woodward, Neil D.; Blackford, Jennifer U.; Salomon, Ronald M.; Cowan, Ronald L.
2009-01-01
MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) is a popular recreational drug that produces long-lasting serotonin (5-HT) neurotoxicity consisting of reductions in markers for 5-HT axons. 5-HT innervates cortical and subcortical brain regions mediating motor function, predicting that MDMA users will have altered motor system neurophysiology. We used functional magnetic resonance imaging (fMRI) to assay motor task performance-associated brain activation changes in MDMA and non-MDMA users. 24 subjects (14 MDMA users and 10 controls) performed an event-related motor tapping task (1, 2 or 4 taps) during fMRI at 3 T. Motor regions of interest were used to measure percent signal change (PSC) and percent activated voxels (PAV) in bilateral motor cortex, sensory cortex, supplementary motor area (SMA), caudate, putamen, pallidum and thalamus. We used SPM5 to measure brain activation via three methods: T-maps, PSC and PAV. There was no statistically significant difference in reaction time between the two groups. For the Tap 4 condition, MDMA users had more activation than controls in the right SMA for T-score (p = 0.02), PSC (p = 0.04) and PAV (p = 0.03). Lifetime episodes of MDMA use were positively correlated with PSC for the Tap 4 condition on the right for putamen and pallidum; with PAV in the right motor and sensory cortex and bilateral thalamus. In conclusion, we found a group difference in the right SMA and positive dose–response association between lifetime exposure to MDMA and signal magnitude and extent in several brain regions. This evidence is consistent with MDMA-induced alterations in basal ganglia–thalamocortical circuit neurophysiology and is potentially secondary to neurotoxic effects on 5-HT signaling. Further studies examining behavioral correlates and the specific neurophysiological basis of the observed findings are warranted. PMID:19264142
Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.
Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia
2016-01-01
In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Schäfer, Sarah K; Ihmig, Frank R; Lara H, Karen A; Neurohr, Frank; Kiefer, Stephan; Staginnus, Marlene; Lass-Hennemann, Johanna; Michael, Tanja
2018-03-16
Specific phobias are among the most common anxiety disorders. Exposure therapy is the treatment of choice for specific phobias. However, not all patients respond equally well to it. Hence, current research focuses on therapeutic add-ons to increase and consolidate the effects of exposure therapy. One potential therapeutic add-on is biofeedback to increase heart rate variability (HRV). A recent meta-analysis shows beneficial effects of HRV biofeedback interventions on stress and anxiety symptoms. Therefore, the purpose of the current trial is to evaluate the effects of HRV biofeedback, which is practiced before and utilized during exposure, in spider-fearful individuals. Further, this trial is the first to differentiate between the effects of a HRV biofeedback intervention and those of a low-load working memory (WM) task. Eighty spider-fearful individuals participate in the study. All participants receive a training session in which they practice two tasks (HRV biofeedback and a motor pseudo-biofeedback task or two motor pseudo-biofeedback tasks). Afterwards, they train both tasks at home for 6 days. One week later, during the exposure session, they watch 16 1-min spider video clips. Participants are divided into four groups: group 1 practices the HRV biofeedback and one motor pseudo-task before exposure and utilizes HRV biofeedback during exposure. Group 2 receives the same training, but continues the pseudo-biofeedback task during exposure. Group 3 practices two pseudo-biofeedback tasks and continues one of them during exposure. Group 4 trains in two pseudo-biofeedback tasks and has no additional task during exposure. The primary outcome is fear of spiders (measured by the Fear of Spiders Questionnaire and the Behavioral Approach Test). Secondary outcomes are physiological measures based on electrodermal activity, electrocardiogram and respiration. This RCT is the first one to investigate the effects of using a pre-trained HRV biofeedback during exposure in spider-fearful individuals. The study critically contrasts the effects of the biofeedback intervention with those of pseudo-tasks, which also require WM capacity, but which do not have a physiological base. If HRV biofeedback is effective in reducing fear of spiders, it would represent an easy-to-use tool to improve exposure-therapy outcomes. Deutsches Register Klinischer Studien, DRKS00012278 . Registered on 23 May 2017, amendment on 5 October 2017.
Task-phase-specific dynamics of basal forebrain neuronal ensembles
Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.
2014-01-01
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352
Global models: Robot sensing, control, and sensory-motor skills
NASA Technical Reports Server (NTRS)
Schenker, Paul S.
1989-01-01
Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.
Fenrich, Keith K.; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J.; Fouad, Karim
2016-01-01
Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24 h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563
Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim
2016-02-15
Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. Copyright © 2015 Elsevier B.V. All rights reserved.
Arya, Kamal Narayan; Pandian, Shanta
2013-01-01
Mirror therapy (MT) is an alternative therapeutic intervention that uses the interaction of visuomotor-proprioception inputs to enhance movement performance of the impaired limb. Despite strong evidence for task-specific training in stroke, MT has been investigated using nontask movements. The aim of this pilot study was to assess the effectiveness of task-based MT on motor recovery of the upper extremity in chronic stroke patients. In a pretest-posttest single-group design, a convenience sample of 13 chronic stroke patients at an occupational therapy department of a rehabilitation institute was assessed on a task-based MT intervention. Participants received a task-based MT program, performing various tasks by the less affected upper extremity and observing in the mirror box along with conventional management, 4 days per week for 4 weeks. Fugl-Meyer Assessment (FMA), which includes subsection upper extremity (FMA-UE) and subpart upper arm (FMA-UA) and hand (FMA-WH), was used as an outcome measure. Participants showed no significant improvement for FMA-UE and FMA-UA at postassessment. FMA-UE changed from 43% to 51%. Post FMA-UA score showed only 2% improvement. However, there was statistically significant improvement on mean scores of FMA-WH at postassessment (16.21 ± 3.06) as compared with the prescores (12.29 ± 3.1; P < .05). FMA-WH improved from 41% to 54%. The preliminary findings suggest that task-based MT is effective in improving wrist and hand motor recovery in chronic stroke patients. Further studies in the form of randomized trials are needed to validate its effectiveness.
Dealing with delays does not transfer across sensorimotor tasks.
de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli
2014-10-09
It is known that people can learn to deal with delays between their actions and the consequences of such actions. We wondered whether they do so by adjusting their anticipations about the sensory consequences of their actions or whether they simply learn to move in certain ways when performing specific tasks. To find out, we examined details of how people learn to intercept a moving target with a cursor that follows the hand with a delay and examined the transfer of learning between this task and various other tasks that require temporal precision. Subjects readily learned to intercept the moving target with the delayed cursor. The compensation for the delay generalized across modifications of the task, so subjects did not simply learn to move in a certain way in specific circumstances. The compensation did not generalize to completely different timing tasks, so subjects did not generally expect the consequences of their motor commands to be delayed. We conclude that people specifically learn to control the delayed visual consequences of their actions to perform certain tasks. © 2014 ARVO.
Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong
2003-11-01
We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.
Carlsson, Håkan; Rosén, Birgitta; Pessah-Rasmussen, Hélène; Björkman, Anders; Brogårdh, Christina
2018-04-17
Many stroke survivors suffer from sensory impairments of their affected upper limb (UL). Although such impairments can affect the ability to use the UL in everyday activities, very little attention is paid to sensory impairments in stroke rehabilitation. The purpose of this trial is to investigate if sensory re-learning in combination with task-specific training may prove to be more effective than task-specific training alone to improve sensory function of the hand, dexterity, the ability to use the hand in daily activities, perceived participation, and life satisfaction. This study is a single-blinded pilot randomized controlled trial (RCT) with two treatment arms. The participants will be randomly assigned either to sensory re-learning in combination with task-specific training (sensory group) or to task-specific training only (control group). The training will consist of 2.5 h of group training per session, 2 times per week for 5 weeks. The primary outcome measures to assess sensory function are as follows: Semmes-Weinstein monofilament, Shape/Texture Identification (STI™) test, Fugl-Meyer Assessment-upper extremity (FMA-UE; sensory section), and tactile object identification test. The secondary outcome measures to assess motor function are as follows: Box and Block Test (BBT), mini Sollerman Hand Function Test (mSHFT), Modified Motor Assessment Scale (M-MAS), and Grippit. To assess the ability to use the hand in daily activities, perceived participation, and life satisfaction, the Motor Activity Log (MAL), Canadian Occupational Performance Measure (COPM), Stroke Impact Scale (SIS) participation domain, and Life Satisfaction checklist will be used. Assessments will be performed pre- and post-training and at 3-month follow-up by independent assessors, who are blinded to the participants' group allocation. At the 3-month follow-up, the participants in the sensory group will also be interviewed about their general experience of the training and how effective they perceived the training. The results from this study can add new knowledge about the effectiveness of sensory re-learning in combination with task-specific training on UL functioning after stroke. If the new training approach proves efficient, the results can provide information on how to design a larger RCT in the future in persons with sensory impairments of the UL after stroke. ClinicalTrials.gov, NCT03336749 . Registered on 8 November 2017.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604
Hakim, Renée M; Tunis, Brandon G; Ross, Michael D
2017-11-01
The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.
Kakebeeke, Tanja H; Zysset, Annina E; Messerli-Bürgy, Nadine; Chaouch, Aziz; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Rousson, Valentin; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G
2018-02-01
Young children generally show contralateral associated movements (CAMs) when they are making an effort to perform a unimanual task. CAM and motor speed are two relevant aspects of motor proficiency in young children. These CAMs decrease over age, while motor speed increases. As both CAM and motor speed are associated with age, we were interested in whether these two parameters are also linked with each other. In this study, three manual dexterity tasks with the dominant and nondominant hands (pegboard, repetitive hand, and repetitive finger tasks) were used to investigate the effect of covariates (age, sex, socioeconomic status, total physical activity) on both motor speed and CAMs in preschool children. There was a significant age effect for both motor speed and CAMs in all tasks when the dominant hand was used. When the nondominant hand was used, the decrease in the intensity of CAMs over age was not consistently significant. The influence of physical activity and socioeconomic status on motor proficiency was small. Furthermore, the correlation between motor speed and CAMs, although significant, was low. Motor speed improved with age over three fine motor tasks in preschool children. Decrease in CAMs was observed but it was not always significant when the nondominant hand was working. Motor speed and CAMs were only weakly associated. We conclude that the excitatory pathways responsible for motor speed and inhibitory pathways responsible for reducing CAMs occupy two different domains in the brain and therefore mostly behave independently of each other.
Motor unit recruitment for dynamic tasks: current understanding and future directions.
Hodson-Tole, Emma F; Wakeling, James M
2009-01-01
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.
Sailor, Janet; Meyerand, M Elizabeth; Moritz, Chad H; Fine, Jason; Nelson, Lindsey; Badie, Behnam; Haughton, Victor M
2003-10-01
Some patients who undergo surgical resection of portions of the supplementary motor area (SMA) have severe postoperative motor and language deficits, whereas others have no deficits. We tested the hypothesis that in some patients with lesions affecting the SMA, the contralateral SMA exhibits some of the activation normally associated with the ipsilateral SMA. Functional MR imaging studies in seven healthy volunteers and 19 patients with frontal lobe tumors or arteriovenous malformations were reviewed retrospectively. The hemisphere in which the SMA activation predominated was tabulated for right and left motor tasks. The relative hemispheric dominance in the SMA for the right and left motor tasks was compared in the healthy and patient groups and with the location of the lesion in the patient group. None of the control subjects performing a right hand motor task activated predominantly the right SMA. Fifty percent of the patients with lesions overlapping the left SMA performing the right motor task activated predominantly the right SMA. Fifty-seven percent of control subjects performing the left hand motor task activated the left SMA predominantly. One hundred percent of patients with lesions overlapping the right frontal SMA performing the left motor task activated the left SMA predominantly. Differences between patients and controls were statistically significant. A lesion that contacts or overlaps the SMA is associated with an increased functional MR imaging response within the contralateral SMA.
The neural correlates of learned motor acuity
Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.
2014-01-01
We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466
Cerebellum and Integration of Neural Networks in Dual-Task Processing
Wu, Tao; Liu, Jun; Hallett, Mark; Zheng, Zheng; Chan, Piu
2014-01-01
Performing two tasks simultaneously (dual-task) is common in human daily life. The neural correlates of dual-task processing remain unclear. In the current study, we used a dual motor and counting task with functional MRI (fMRI) to determine whether there are any areas additionally activated for dual-task performance. Moreover, we investigated the functional connectivity of these added activated areas, as well as the training effect on brain activity and connectivity. We found that the right cerebellar vermis, left lobule V of the cerebellar anterior lobe and precuneus are additionally activated for this type of dual-tasking. These cerebellar regions had functional connectivity with extensive motor- and cognitive-related regions. Dual-task training induced less activation in several areas, but increased the functional connectivity between these cerebellar regions and numbers of motor- and cognitive-related areas. Our findings demonstrate that some regions within the cerebellum can be additionally activated with dual-task performance. Their role in dual motor and cognitive task processes is likely to integrate motor and cognitive networks, and may be involved in adjusting these networks to be more efficient in order to perform dual-tasking properly. The connectivity of the precuneus differs from the cerebellar regions. A possible role of the precuneus in dual-task may be monitoring the operation of active brain networks. PMID:23063842
Association between educational status and dual-task performance in young adults.
Voos, Mariana Callil; Pimentel Piemonte, Maria Elisa; Castelli, Lilian Zanchetta; Andrade Machado, Mariane Silva; Dos Santos Teixeira, Patrícia Pereira; Caromano, Fátima Aparecida; Ribeiro Do Valle, Luiz Eduardo
2015-04-01
The influence of educational status on perceptual-motor performance has not been investigated. The single- and dual-task performances of 15 Low educated adults (9 men, 6 women; M age=24.1 yr.; 6-9 yr. of education) and 15 Higher educated adults (8 men, 7 women; M age=24.7 yr.; 10-13 yr. of education) were compared. The perceptual task consisted of verbally classifying two figures (equal or different). The motor task consisted of alternating steps from the floor to a stool. Tasks were assessed individually and simultaneously. Two analyses of variance (2 groups×4 blocks) compared the errors and steps. The Low education group committed more errors and had less improvement on the perceptual task than the High education group. During and after the perceptual-motor task performance, errors increased only in the Low education group. Education correlated to perceptual and motor performance. The Low education group showed more errors and less step alternations on the perceptual-motor task compared to the High education group. This difference on the number of errors was also observed after the dual-task, when the perceptual task was performed alone.
Learning better by repetition or variation? Is transfer at odds with task specific training?
Bonney, Emmanuel; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Smits-Engelsman, Bouwien C M
2017-01-01
Transfer of motor skills is the ultimate goal of motor training in rehabilitation practice. In children with Developmental Coordination Disorder (DCD), very little is known about how skills are transferred from training situations to real life contexts. In this study we examined the influence of two types of practice on transfer of motor skills acquired in a virtual reality (VR) environment. One hundred and eleven children with DCD and their typically developing (TD) peers, aged 6-10 years (M = 8.0 SD = 1.0) were randomly assigned to either variable (n = 56) or repetitive practice (n = 55). Participants in the repetitive practice played the same exergame (ski slalom) twice weekly for 20 minutes, over a period of 5 weeks, while those in the variable group played 10 different games. Motor skills such as balance tasks (hopping), running and agility tasks, ball skills and functional activities were evaluated before and after 5 weeks of training. ANOVA repeated measures indicated that both DCD and TD children demonstrated transfer effects to real life skills with identical and non-identical elements at exactly the same rate, irrespective of the type of practice they were assigned to. Based on these findings, we conclude that motor skills acquired in the VR environment, transfers to real world contexts in similar proportions for both TD and DCD children. The type of practice adopted does not seem to influence children's ability to transfer skills acquired in an exergame to life situations but the number of identical elements does.
Rapid and long-lasting plasticity of input-output mapping.
Yamamoto, Kenji; Hoffman, Donna S; Strick, Peter L
2006-11-01
Skilled use of tools requires us to learn an "input-output map" for the device, i.e., how our movements relate to the actions of the device. We used the paradigm of visuo-motor rotation to examine two questions about the plasticity of input-output maps: 1) does extensive practice on one mapping make it difficult to modify and/or to form a new input-output map and 2) once a map has been modified or a new map has been formed, does this map survive a gap in performance? Humans and monkeys made wrist movements to control the position of a cursor on a computer monitor. Humans practiced the task for approximately 1.5 h; monkeys practiced for 3-9 yr. After this practice, we gradually altered the direction of cursor movement relative to wrist movement while subjects moved either to a single target or to four targets. Subjects were unaware of the change in cursor-movement relationship. Despite their prior practice on the task, the humans and the monkeys quickly adjusted their motor output to compensate for the visuo-motor rotation. Monkeys retained the modified input-output map during a 2-wk gap in motor performance. Humans retained the altered map during a gap of >1 yr. Our results show that sensorimotor performance remains flexible despite considerable practice on a specific task, and even relatively short-term exposure to a new input-output mapping leads to a long-lasting change in motor performance.
Motor cortical encoding of serial order in a context-recall task.
Carpenter, A F; Georgopoulos, A P; Pellizzer, G
1999-03-12
The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."
Brown, Joshua W.
2009-01-01
The error likelihood computational model of anterior cingulate cortex (ACC) (Brown & Braver, 2005) has successfully predicted error likelihood effects, risk prediction effects, and how individual differences in conflict and error likelihood effects vary with trait differences in risk aversion. The same computational model now makes a further prediction that apparent conflict effects in ACC may result in part from an increasing number of simultaneously active responses, regardless of whether or not the cued responses are mutually incompatible. In Experiment 1, the model prediction was tested with a modification of the Eriksen flanker task, in which some task conditions require two otherwise mutually incompatible responses to be generated simultaneously. In that case, the two response processes are no longer in conflict with each other. The results showed small but significant medial PFC effects in the incongruent vs. congruent contrast, despite the absence of response conflict, consistent with model predictions. This is the multiple response effect. Nonetheless, actual response conflict led to greater ACC activation, suggesting that conflict effects are specific to particular task contexts. In Experiment 2, results from a change signal task suggested that the context dependence of conflict signals does not depend on error likelihood effects. Instead, inputs to ACC may reflect complex and task specific representations of motor acts, such as bimanual responses. Overall, the results suggest the existence of a richer set of motor signals monitored by medial PFC and are consistent with distinct effects of multiple responses, conflict, and error likelihood in medial PFC. PMID:19375509
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan
2014-07-01
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.
Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro
2016-11-01
Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.
Coupling dynamics in speech gestures: amplitude and rate influences.
van Lieshout, Pascal H H M
2017-08-01
Speech is a complex oral motor function that involves multiple articulators that need to be coordinated in space and time at relatively high movement speeds. How this is accomplished remains an important and largely unresolved empirical question. From a coordination dynamics perspective, coordination involves the assembly of coordinative units that are characterized by inherently stable coupling patterns that act as attractor states for task-specific actions. In the motor control literature, one particular model formulated by Haken et al. (Biol Cybern 51(5):347-356, 1985) or HKB has received considerable attention in the way it can account for changes in the nature and stability of specific coordination patterns between limbs or between limbs and external stimuli. In this model (and related versions), movement amplitude is considered a critical factor in the formation of these patterns. Several studies have demonstrated its role for bimanual coordination and similar types of tasks, but for speech motor control such studies are lacking. The current study describes a systematic approach to evaluate the impact of movement amplitude and movement duration on coordination stability in the production of bilabial and tongue body gestures for specific vowel-consonant-vowel strings. The vowel combinations that were used induced a natural contrast in movement amplitude at three speaking rate conditions (slow, habitual, fast). Data were collected on ten young adults using electromagnetic articulography, recording movement data from lips and tongue with high temporal and spatial precision. The results showed that with small movement amplitudes there is a decrease in coordination stability, independent from movement duration. These findings were found to be robust across all individuals and are interpreted as further evidence that principles of coupling dynamics operate in the oral motor control system similar to other motor systems and can be explained in terms of coupling mechanisms between neural oscillators (organized in networks) and effector systems. The relevance of these findings for understanding motor control issues in people with speech disorders is discussed as well.
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-12-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching-grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. © The Author 2016. Published by Oxford University Press.
Muscle cocontraction following dynamics learning.
Darainy, Mohammad; Ostry, David J
2008-09-01
Coactivation of antagonist muscles is readily observed early in motor learning, in interactions with unstable mechanical environments and in motor system pathologies. Here we present evidence that the nervous system uses coactivation control far more extensively and that patterns of cocontraction during movement are closely tied to the specific requirements of the task. We have examined the changes in cocontraction that follow dynamics learning in tasks that are thought to involve finely sculpted feedforward adjustments to motor commands. We find that, even following substantial training, cocontraction varies in a systematic way that depends on both movement direction and the strength of the external load. The proportion of total activity that is due to cocontraction nevertheless remains remarkably constant. Moreover, long after indices of motor learning and electromyographic measures have reached asymptotic levels, cocontraction still accounts for a significant proportion of total muscle activity in all phases of movement and in all load conditions. These results show that even following dynamics learning in predictable and stable environments, cocontraction forms a central part of the means by which the nervous system regulates movement.
NASA Astrophysics Data System (ADS)
Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.
2014-06-01
Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.
Toppi, J; Risetti, M; Quitadamo, L R; Petti, M; Bianchi, L; Salinari, S; Babiloni, F; Cincotti, F; Mattia, D; Astolfi, L
2014-06-01
It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.
Sensory-guided motor tasks benefit from mental training based on serial prediction
Binder, Ellen; Hagelweide, Klara; Wang, Ling E.; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R.; Schubotz, Ricarda I.
2017-01-01
Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N = 22) received the SPT-training and the other one (N = 21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen–Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273
Chehrehrazi, Mahshid; Sanjari, Mohammad Ali; Mokhtarinia, Hamid Reza; Jamshidi, Ali Ashraf; Maroufi, Nader; Parnianpour, Mohamad
2017-01-01
Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading; each at two levels. A goal function for the task was defined as maintaining a constant movement time at each cycle. Given the GEM, flexibility index and performance index were calculated respectively as amounts of goal-equivalent variability and the ratio of goal-equivalent to non-goal-equivalent variability. CNSLBP group was as similar as healthy individuals in both flexibility index (p=0.41) and performance index (p=0.24). Performance index was higher in asymmetric (p<0.001), high velocity (p<0.001), and loaded (p=0.006) conditions. Performance and flexibility in using motor abundance were influenced by repeated trunk flexion/extension conditions. However, these measures were not significantly affected by CNSLBP. Copyright © 2016 Elsevier B.V. All rights reserved.
Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P.; Nieuwboer, Alice
2016-01-01
Background Patients with Parkinson’s disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. Objective To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Methods Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Results Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Conclusions Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols. PMID:26862915
Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians.
Walter, Uwe; Buttkus, Franziska; Benecke, Reiner; Grossmann, Annette; Dressler, Dirk; Altenmüller, Eckart
2012-01-01
In distinct movement disorders, transcranial sonography detects alterations of deep brain structures with higher sensitivity than other neuroimaging methods. Lenticular nucleus hyperechogenicity on transcranial sonography, thought to be caused by increased local copper content, has been reported as a characteristic finding in primary spontaneous dystonia. Here, we wanted to find out whether deep brain structures are altered in task-specific dystonia. The frequency of sonographic brainstem and basal ganglia changes was studied in an investigator-blinded setting in 15 musicians with focal task-specific hand dystonia, 15 musicians without dystonia, and 15 age- and sex-matched nonmusicians without dystonia. Lenticular nucleus hyperechogenicity was found in 12 musicians with task-specific dystonia, but only in 3 nondystonic musicians (Fisher's exact test, p = 0.001) and 2 nonmusicians (p < 0.001). The degree of lenticular nucleus hyperechogenicity in affected musicians correlated with age, but not with duration of music practice or duration of dystonia. In 2 of 3 affected musicians with normal echogenic lenticular nucleus, substantia nigra hyperechogenicity was found. Our findings support the idea of a pathogenetic link between primary spontaneous and task-specific dystonia. Sonographic basal ganglia alteration might indicate a risk factor that in combination with extensive fine motor training promotes the manifestation of task-specific dystonia. Copyright © 2011 S. Karger AG, Basel.
Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning
Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.
2013-01-01
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843
Effect of motor imagery in children with unilateral cerebral palsy: fMRI study.
Chinier, Eva; N'Guyen, Sylvie; Lignon, Grégoire; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickaël
2014-01-01
Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability. The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement. Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined. During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement. Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.
Effects of Concurrent Motor, Linguistic, or Cognitive Tasks on Speech Motor Performance
ERIC Educational Resources Information Center
Dromey, Christopher; Benson, April
2003-01-01
This study examined the influence of 3 different types of concurrent tasks on speech motor performance. The goal was to uncover potential differences in speech movements relating to the nature of the secondary task. Twenty young adults repeated sentences either with or without simultaneous distractor activities. These distractions included a motor…
Jansen, Petra; Kellner, Jan
2015-01-01
Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262
Jansen, Petra; Kellner, Jan
2015-01-01
Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.
Impairments of Motor Function While Multitasking in HIV
Kronemer, Sharif I.; Mandel, Jordan A.; Sacktor, Ned C.; Marvel, Cherie L.
2017-01-01
Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV. PMID:28503143
Impairments of Motor Function While Multitasking in HIV.
Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L
2017-01-01
Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.
Toovey, Rachel; Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J
2017-01-01
The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Systematic review. Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. PROSPERO ID42016036727.
Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J
2017-01-01
Objectives The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Design Systematic review. Method Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Results Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Conclusions Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. Registration PROSPERO ID42016036727 PMID:29637118
Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference
Zach, Neta; Inbar, Dorrit; Grinvald, Yael; Vaadia, Eilon
2012-01-01
Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models. PMID:22427923
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
Munzert, Jörn; Maurer, Heiko; Reiser, Mathias
2014-01-01
The authors examined how varying the content of verbal-motor instructions and requesting an internal versus external focus influenced the kinematics and outcome of a golf putting task. On Day 1, 30 novices performed 120 trials with the instruction to focus attention either on performing a pendulum-like movement (internal) or on the desired ball path (external). After 20 retention trials on Day 2, they performed 20 transfer trials with the opposite instruction. Group differences for retention and a group by block interaction showed that external instruction enhanced movement outcome. Kinematic data indicated that specific instruction content influenced outcomes by eliciting changes in movement execution. Switching from the external to the internal focus instruction resulted in a more pendulum-like movement.
A neural mechanism of cognitive control for resolving conflict between abstract task rules.
Sheu, Yi-Shin; Courtney, Susan M
2016-12-01
Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex (PFC). However, population codes in the PFC also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multi-voxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
A neural mechanism of cognitive control for resolving conflict between abstract task rules
Sheu, Yi-Shin; Courtney, Susan M.
2016-01-01
Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex. However, population codes in the prefrontal cortex also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multivoxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. PMID:27771559
Experts bodies, experts minds: How physical and mental training shape the brain
Debarnot, Ursula; Sperduti, Marco; Di Rienzo, Franck; Guillot, Aymeric
2014-01-01
Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define “expertise” from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of “pure” mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research. PMID:24847236
A Framework to Describe, Analyze and Generate Interactive Motor Behaviors
Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne
2012-01-01
While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks. PMID:23226231
A framework to describe, analyze and generate interactive motor behaviors.
Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne
2012-01-01
While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.
Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723
Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
Brain Activation in Motor Sequence Learning Is Related to the Level of Native Cortical Excitability
Lissek, Silke; Vallana, Guido S.; Güntürkün, Onur; Dinse, Hubert; Tegenthoff, Martin
2013-01-01
Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo) showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi). In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants. PMID:23613956
ERIC Educational Resources Information Center
Schaefer, Sabine; Krampe, Ralf Th.; Lindenberger, Ulman; Baltes, Paul B.
2008-01-01
Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory…
Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
Gabbard, Carl; Ammar, Diala; Cordova, Alberto
2009-01-01
We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.
Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.
Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver
2017-01-01
Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-02-15
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. Copyright © 2017 the authors 0270-6474/17/371721-12$15.00/0.
Altered cortical processing of motor inhibition in schizophrenia.
Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle
2016-12-01
Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forelimb training drives transient map reorganization in ipsilateral motor cortex
Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.
2016-01-01
Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641
Forelimb training drives transient map reorganization in ipsilateral motor cortex.
Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A
2016-10-15
Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural Recruitment for the Production of Native and Novel Speech Sounds
Moser, Dana; Fridriksson, Julius; Bonilha, Leonardo; Healy, Eric W.; Baylis, Gordon; Baker, Julie; Rorden, Chris
2010-01-01
Two primary areas of damage have been implicated in apraxia of speech (AOS) based on the time post-stroke: (1) the left inferior frontal gyrus (IFG) in acute patients, and (2) the left anterior insula (aIns) in chronic patients. While AOS is widely characterized as a disorder in motor speech planning, little is known about the specific contributions of each of these regions in speech. The purpose of this study was to investigate cortical activation during speech production with a specific focus on the aIns and the IFG in normal adults. While undergoing sparse fMRI, 30 normal adults completed a 30-minute speech-repetition task consisting of three-syllable nonwords that contained either (a) English (native) syllables or (b) Non-English (novel) syllables. When the novel syllable productions were compared to the native syllable productions, greater neural activation was observed in the aIns and IFG, particularly during the first 10 minutes of the task when novelty was the greatest. Although activation in the aIns remained high throughout the task for novel productions, greater activation was clearly demonstrated when the initial 10 minutes were compared to the final 10 minutes of the task. These results suggest increased activity within an extensive neural network, including the aIns and IFG, when the motor speech system is taxed, such as during the production of novel speech. We speculate that the amount of left aIns recruitment during speech production may be related to the internal construction of the motor speech unit such that the degree of novelty/automaticity would result in more or less demands respectively. The role of the IFG as a storehouse and integrative processor for previously acquired routines is also discussed. PMID:19385020
van der Meer, Jolanda M J; Hartman, Catharina A; Thissen, Andrieke J A M; Oerlemans, Anoek M; Luman, Marjolein; Buitelaar, Jan K; Rommelse, Nanda N J
2016-04-01
Children with attention-deficit/hyperactivity disorder (ADHD) have motor timing difficulties. This study examined whether affected motor timing accuracy and variability are specific for ADHD, or that comorbidity with autism spectrum disorders (ASD) contributes to these motor timing difficulties. An 80-trial motor timing task measuring accuracy (μ), variability (σ) and infrequent long response times (τ) in estimating a 1-s interval was administered to 283 children and adolescents (8-17 years) from both a clinic and population based sample. They were divided into four latent classes based on the SCQ and L data. These classes were: without behavioral problems 'Normal-class' (n = 154), with only ADHD symptoms 'ADHD-class' (n = 49), and two classes with both ASD and ADHD symptoms; ADHD(+ASD)-class (n = 39) and ASD(+ADHD)-class (n = 41). The pure ADHD-class did not deviate from the Normal class on any of the motor timing measures (mean RTs 916 and 925 ms, respectively). The comorbid ADHD(+ASD) and ASD(+ADHD) classes were significantly less accurate (more time underestimations) compared to the Normal class (mean RTs 847 and 870 ms, respectively). Variability in motor timing was reduced in the younger children in the ADHD(+ASD) class, which may reflect a tendency to rush the tedious task. Only patients with more severe behavioral symptoms show motor timing deficiencies. This cannot merely be explained by high ADHD severity with ASD playing no role, as ADHD symptom severity in the pure ADHD-class and the ASD(+ADHD) class was highly similar, with the former class showing no motor timing deficits.
Acute effects of aerobic exercise promote learning
Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo
2016-01-01
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330
External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.
Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N
2018-04-01
Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.
Effects of generic versus non-generic feedback on motor learning in children.
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks--a situation frequently encountered in the context of motor performance and learning.
Effects of Generic versus Non-Generic Feedback on Motor Learning in Children
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks – a situation frequently encountered in the context of motor performance and learning. PMID:24523947
Expertise-related deactivation of the right temporoparietal junction during musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2010-01-01
Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.
Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations
Koester, Dirk; Schack, Thomas
2016-01-01
Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539
Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko
2015-08-01
It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.
Silva, Marcelo Guimarães; Struber, Lucas; Brandão, José Geraldo T; Daniel, Olivier; Nougier, Vincent
2018-04-01
One of the challenges regarding human motor control is making the movement fluid and at a limited cognitive cost. The coordination between posture and movement is a necessary requirement to perform daily life tasks. The present experiment investigated this interaction in 20 adult men, aged 18-30 years. The cognitive costs associated to postural and movement control when kicking towards a target was estimated using a dual-task paradigm (secondary auditory task). Results showed that addition of the attentional demanding cognitive task yielded a decreased kicking accuracy and an increased timing to perform the movement, mainly during the backswing motion. In addition, significant differences between conditions were found for COP and COM displacement (increased amplitude, mean speed) on the anteroposterior axis. However, no significant differences between conditions were found on the mediolateral axis. Finally, EMG analysis showed that dual-task condition modified the way anticipatory postural adjustments (APAs) were generated. More specifically, we observed an increase of the peroneus longus activity, whereas the temporal EMG showed a decrease of its latency with respect to movement onset. These results suggested a functional adaptation resulting in an invariance of overall APAs, emphasizing that cognitive, postural, and motor processes worked dependently.
Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan
2016-01-01
Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925
Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial.
Arya, Kamal Narayan; Verma, Rajesh; Garg, R K; Sharma, V P; Agarwal, Monika; Aggarwal, G G
2012-01-01
The upper extremity motor deficit is one of the functional challenges in post stroke patients. The objective of the present study was to evaluate the effectiveness of the meaningful task-specific training (MTST) on the upper extremity motor recovery during the subacute phase after a stroke. This was a randomized, controlled, double-blinded trial in the neurology department of a university hospital and occupational therapy unit of a rehabilitation institute. A convenience sample of 103 people, 4 to 24 weeks (mean, 12.15 weeks) after the stroke, was randomized into 2 groups (MTST, 51; standard training group, 52). Subjects in the Brunnstrom stage of arm recovery of 2 to 5 were included in the study. Ninety-five participants completed the 8-week follow-up. Participants were assigned to receive either the MTST or dose-matched standard training program based on the Brunnstrom stage and Bobath neurodevelopmental technique, 4 to 5 days a week for 4 weeks. Fugl-Meyer assessment (FMA), Action Research Arm Test (ARAT), Graded Wolf Motor Function Test (GWMFT), and Motor Activity Log (MAL) were outcome measures The MTST group showed a positive improvement in the mean scores on the outcome measures at post and follow-up assessments in comparison to the control group. Further, statistically significant differences were observed in changes between the groups at post and follow-up assessment for FMA, ARAT, GWMFT, and MAL. The MTST produced statistically significant and clinically relevant improvements in the upper extremity motor recovery of the patients who had a subacute stroke.
Enjin, Anders; Leão, Katarina E.; Mikulovic, Sanja; Le Merre, Pierre; Tourtellotte, Warren G.; Kullander, Klas
2012-01-01
Gamma motor neurons (MNs), the efferent component of the fusimotor system, regulate muscle spindle sensitivity. Muscle spindle sensory feedback is required for proprioception that includes sensing the relative position of neighboring body parts and appropriately adjust the employed strength in a movement. The lack of a single and specific genetic marker has long hampered functional and developmental studies of gamma MNs. Here we show that the serotonin receptor 1d (5-ht1d) is specifically expressed by gamma MNs and proprioceptive sensory neurons. Using mice expressing GFP driven by the 5-ht1d promotor, we performed whole-cell patch-clamp recordings of 5-ht1d∷GFP+ and 5-ht1d∷GFP− motor neurons from young mice. Hierarchal clustering analysis revealed that gamma MNs have distinct electrophysiological properties intermediate to fast-like and slow-like alpha MNs. Moreover, mice lacking 5-ht1d displayed lower monosynaptic reflex amplitudes suggesting a reduced response to sensory stimulation in motor neurons. Interestingly, adult 5-ht1d knockout mice also displayed improved coordination skills on a beam-walking task, implying that reduced activation of MNs by Ia afferents during provoked movement tasks could reduce undesired exaggerated muscle output. In summary, we show that 5-ht1d is a novel marker for gamma MNs and that the 5-ht1d receptor is important for the ability of proprioceptive circuits to receive and relay accurate sensory information in developing and mature spinal cord motor circuits. PMID:22273508
Proactive and retroactive transfer of middle age adults in a sequential motor learning task.
Verneau, Marion; van der Kamp, John; Savelsbergh, Geert J P; de Looze, Michiel P
2015-03-01
We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30 years) and middle-aged adults (50-65 years) practiced to build two products that consisted of the same six components but which had to be assembled in a partly different order. Assembly accuracy and movement time during tests, which were performed before and after the practice sessions, were compared to determine proactive and retroactive transfer. The results showed proactive facilitation (i.e., benefits from having learned the first product on learning the second one) in terms of an overall shortening of movement time in both age-groups. In addition, only the middle-aged adults were found to show sequence-specific proactive facilitation, in which the shortening of movement time was limited to components that had the same the order in the two products. Most likely, however, the sequence-specific transfer was an epiphenomenon of the comparatively low rate of learning among the middle-aged adults. The results, however, did reveal genuine differences between the groups for retroactive transfer (i.e., effects from learning the second product on performance of the first). Middle-aged adults tended to show more pronounced retroactive interference in terms of a general decrease in accuracy, while younger adults showed sequence-specific retroactive facilitation (i.e., shortening of movement times for components that had the same order in the two products), but only when they were fully accurate. Together this suggests that in the learning of sequential motor tasks the effects of age are more marked for retroactive transfer than for proactive transfer. Copyright © 2015 Elsevier B.V. All rights reserved.
The risk of a safety-critical event associated with mobile device use in specific driving contexts.
Fitch, Gregory M; Hanowski, Richard J; Guo, Feng
2015-01-01
We explored drivers' mobile device use and its associated risk of a safety-critical event (SCE) in specific driving contexts. Our premise was that the SCE risk associated with mobile device use increases when the driving task becomes demanding. Data from naturalistic driving studies involving commercial motor vehicle drivers and light vehicle drivers were partitioned into subsets representative of specific driving contexts. The subsets were generated using data set attributes that included level of service and relation to junction. These attributes were selected based on exogenous factors known to alter driving task demands. The subsets were analyzed using a case-cohort approach, which was selected to complement previous investigations of mobile device SCE risk using naturalistic driving data. Both commercial motor vehicle and light vehicle drivers varied as to how much they conversed on a mobile device but did not vary their engagement in visual-manual subtasks. Furthermore, commercial motor vehicle drivers conversed less frequently as the driving task demands increased, whereas light vehicle drivers did not. The risk of an SCE associated with mobile device use was dependent on the subtask performed and the driving context. Only visual-manual subtasks were associated with an increased SCE risk, whereas conversing was associated with a decreased risk in some driving contexts. Drivers' engagement in mobile device subtasks varies by driving context. The SCE risk associated with mobile device use is dependent on the types of subtasks performed and the driving context. The findings of this exploratory study can be applied to the design of driver-vehicle interfaces that mitigate distraction by preventing visual-manual subtasks while driving.
Walking the talk--speech activates the leg motor cortex.
Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan
2008-09-01
Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.
What Do Eye Gaze Metrics Tell Us about Motor Imagery?
Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael
2015-01-01
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.
Rosset-Llobet, Jaume; Fàbregas-Molas, Sílvia; Pascual-Leone, Alvaro
2014-03-01
Sensory-motor returning (SMR) can help the symptoms of task-specific focal hand dystonia. However, effects vary across patients and take many sessions. Here, we present proof of principle evidence that transcranial direct current stimulation (tDCS) can enhance these effects. We compared the effects of a combined tDCS-SMR protocol (n=4 patients) with the efficacy of SMR alone (n=30 patients). All 4 patients treated with the combined protocol showed greater improvement than those undergoing SMR alone. Results encourage a larger, parallel-group clinical trial with sham tDCS control.
Hilt, Pauline M.; Delis, Ioannis; Pozzo, Thierry; Berret, Bastien
2018-01-01
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements. PMID:29666576
Acquisition and reacquisition of motor coordination in musicians.
Furuya, Shinichi; Altenmüller, Eckart
2015-03-01
Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means. © 2015 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Falk, Tiago H.; Chau, Tom
2010-04-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.
Cardillo, Ramona; Menazza, Cristina; Mammarella, Irene C
2018-06-07
Visuospatial processing in autism spectrum disorder (ASD) without intellectual disability remains only partly understood. The aim of the present study was to investigate global versus local visuospatial processing in individuals with ASD, comparing them with typically developing (TD) controls in visuoconstructive and visuospatial memory tasks. There were 21 participants with ASD without intellectual disability, and 21 TD controls matched for chronological age (M = 161.37 months, SD = 38.19), gender, and perceptual reasoning index who were tested. Participants were administered tasks assessing the visuoconstructive domain and involving fine motor skills, and visuospatial memory tasks in which visuospatial information had to be manipulated mentally. Using a mixed-effects model approach, our results showed different effects of local bias in the ASD group, depending on the domain considered: the use of a local approach only emerged for the visuoconstructive domain-in which fine motor skills were involved. These results seem to suggest that the local bias typical of the cognitive profile of ASD without intellectual disability could be a property of specific cognitive domains rather than a central mechanism. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Mayhew, Stephen D; Porcaro, Camillo; Tecchio, Franca; Bagshaw, Andrew P
2017-03-01
A bilateral visuo-parietal-motor network is responsible for fine control of hand movements. However, the sub-regions which are devoted to maintenance of contraction stability and how these processes fluctuate with trial-quality of task execution and in the presence/absence of visual feedback remains unclear. We addressed this by integrating behavioural and fMRI measurements during right-hand isometric compression of a compliant rubber bulb, at 10% and 30% of maximum voluntary contraction, both with and without visual feedback of the applied force. We quantified single-trial behavioural performance during 1) the whole task period and 2) stable contraction maintenance, and regressed these metrics against the fMRI data to identify the brain activity most relevant to trial-by-trial fluctuations in performance during specific task phases. fMRI-behaviour correlations in a bilateral network of visual, premotor, primary motor, parietal and inferior frontal cortical regions emerged during performance of the entire feedback task, but only in premotor, parietal cortex and thalamus during the stable contraction period. The trials with the best task performance showed increased bilaterality and amplitude of fMRI responses. With feedback, stronger BOLD-behaviour coupling was found during 10% compared to 30% contractions. Only a small subset of regions in this network were weakly correlated with behaviour without feedback, despite wider network activated during this task than in the presence of feedback. These findings reflect a more focused network strongly coupled to behavioural fluctuations when providing visual feedback, whereas without it the task recruited widespread brain activity almost uncoupled from behavioural performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Effect of tonic pain on motor acquisition and retention while learning to reach in a force field.
Lamothe, Mélanie; Roy, Jean-Sébastien; Bouffard, Jason; Gagné, Martin; Bouyer, Laurent J; Mercier, Catherine
2014-01-01
Most patients receiving intensive rehabilitation to improve their upper limb function experience pain. Despite this, the impact of pain on the ability to learn a specific motor task is still unknown. The aim of this study was to determine whether the presence of experimental tonic pain interferes with the acquisition and retention stages of motor learning associated with training in a reaching task. Twenty-nine healthy subjects were randomized to either a Control or Pain Group (receiving topical capsaicin cream on the upper arm during training on Day 1). On two consecutive days, subjects made ballistic movements towards two targets (NEAR/FAR) using a robotized exoskeleton. On Day 1, the task was performed without (baseline) and with a force field (adaptation). The adaptation task was repeated on Day 2. Task performance was assessed using index distance from the target at the end of the reaching movement. Motor planning was assessed using initial angle of deviation of index trajectory from a straight line to the target. Results show that tonic pain did not affect baseline reaching. Both groups improved task performance across time (p<0.001), but the Pain group showed a larger final error (under-compensation) than the Control group for the FAR target (p = 0.030) during both acquisition and retention. Moreover, a Group x Time interaction (p = 0.028) was observed on initial angle of deviation, suggesting that subjects with Pain made larger adjustments in the feedforward component of the movement over time. Interestingly, behaviour of the Pain group was very stable from the end of Day 1 (with pain) to the beginning of Day 2 (pain-free), indicating that the differences observed could not solely be explained by the impact of pain on immediate performance. This suggests that if people learn to move differently in the presence of pain, they might maintain this altered strategy over time.
Time required for motor activity in lucid dreams.
Erlacher, Daniel; Schredl, Michael
2004-12-01
The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state.
Fine and gross motor skills: The effects on skill-focused dual-tasks.
Raisbeck, Louisa D; Diekfuss, Jed A
2015-10-01
Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Normalized Index of Synergy for Evaluating the Coordination of Motor Commands
Togo, Shunta; Imamizu, Hiroshi
2015-01-01
Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system. PMID:26474043
Classification of EEG signals to identify variations in attention during motor task execution.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-06-01
Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal expectation in focal hand dystonia.
Avanzino, Laura; Martino, Davide; Martino, Isadora; Pelosin, Elisa; Vicario, Carmelo M; Bove, Marco; Defazio, Gianni; Abbruzzese, Giovanni
2013-02-01
Patients with writer's cramp present sensory and representational abnormalities relevant to motor control, such as impairment in the temporal discrimination between tactile stimuli and in pure motor imagery tasks, like the mental rotation of corporeal and inanimate objects. However, only limited information is available on the ability of patients with dystonia to process the time-dependent features (e.g. speed) of movement in real time. The processing of time-dependent features of movement has a crucial role in predicting whether the outcome of a complex motor sequence, such as handwriting or playing a musical passage, will be consistent with its ultimate goal, or results instead in an execution error. In this study, we sought to evaluate the implicit ability to perceive the temporal outcome of different movements in a group of patients with writer's cramp. Fourteen patients affected by writer's cramp in the right hand and 17 age- and gender-matched healthy subjects were recruited for the study. Subjects were asked to perform a temporal expectation task by predicting the end of visually perceived human body motion (handwriting, i.e. the action performed by the human body segment specifically affected by writer's cramp) or inanimate object motion (a moving circle reaching a spatial target). Videos representing movements were shown in full before experimental trials; the actual tasks consisted of watching the same videos, but interrupted after a variable interval ('pre-dark') from its onset by a dark interval of variable duration. During the 'dark' interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the space bar of the keyboard. We also included a visual working memory task. Performance on the timing task was analysed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. Patients with writer's cramp exhibited greater absolute timing error compared with control subjects in the human body motion task (whereas no difference was observed in the inanimate object motion task). No effect of group was documented on the visual working memory tasks. Absolute timing error on the human body motion task did not significantly correlate with symptom severity, disease duration or writing speed. Our findings suggest an alteration of the writing movement representation at a central level and are consistent with the view that dystonia is not a purely motor disorder, but it also involves non-motor (sensory, cognitive) aspects related to movement processing and planning.
Plasticity of the postural function to sport and/or motor experience.
Paillard, Thierry
2017-01-01
This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.
Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D
2009-10-01
To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).
Women's Skills Linked to Estrogen Levels.
ERIC Educational Resources Information Center
Weiss, R.
1988-01-01
Summarizes the result of research which considers the effect of women's hormone level on specific skills. Reports that low estrogen levels allow women to excel at spatial skills, but perform poorly at complex motor tasks and speech articulation. Discusses some implications and further research ideas. (YP)
Trait impulsivity components correlate differently with proactive and reactive control
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021
Trait impulsivity components correlate differently with proactive and reactive control.
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.
Does sensitivity in binary choice tasks depend on response modality?
Szumska, Izabela; van der Lubbe, Rob H J; Grzeczkowski, Lukasz; Herzog, Michael H
2016-07-01
In most models of vision, a stimulus is processed in a series of dedicated visual areas, leading to categorization of this stimulus, and possible decision, which subsequently may be mapped onto a motor-response. In these models, stimulus processing is thought to be independent of the response modality. However, in theories of event coding, common coding, and sensorimotor contingency, stimuli may be very specifically mapped onto certain motor-responses. Here, we compared performance in a shape localization task and used three different response modalities: manual, saccadic, and verbal. Meta-contrast masking was employed at various inter-stimulus intervals (ISI) to manipulate target visibility. Although we found major differences in reaction times for the three response modalities, accuracy remained at the same level for each response modality (and all ISIs). Our results support the view that stimulus-response (S-R) associations exist only for specific instances, such as reflexes or skills, but not for arbitrary S-R pairings. Copyright © 2016 Elsevier Inc. All rights reserved.
Beta band oscillations in motor cortex reflect neural population signals that delay movement onset
Khanna, Preeya; Carmena, Jose M
2017-01-01
Motor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task. Subjects volitionally brought their beta oscillatory power to an instructed state and subsequently executed an arm reach. Reaches preceded by a reduction in beta power exhibited significantly faster movement onset times than reaches preceded by an increase in beta power. Further, population neural activity was found to shift farther from a movement onset state during beta oscillations that were neurofeedback-induced or naturally occurring during reaching tasks. This finding establishes a population neural basis for slowed movement onset following periods of beta oscillatory activity. DOI: http://dx.doi.org/10.7554/eLife.24573.001 PMID:28467303
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-08-04
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.
Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task
NASA Astrophysics Data System (ADS)
Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.
2000-06-01
When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J
2015-01-01
The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Causby, Ryan S; McDonnell, Michelle N; Reed, Lloyd; Hillier, Susan L
2016-12-05
The process of using a scalpel, like all other motor activities, is dependent upon the successful integration of afferent (sensory), cognitive and efferent (motor) processes. During learning of these skills, even if motor practice is carefully monitored there is still an inherent risk involved. It is also possible that this strategy could reinforce high levels of anxiety experienced by the student and affect student self-efficacy, causing detrimental effects on motor learning. An alternative training strategy could be through targeting sensory rather than motor processes. Second year podiatry students who were about to commence learning scalpel skills were recruited. Participants were randomly allocated into sensory awareness training (Sensory), additional motor practice (Motor) or usual teaching only (Control) groups. Participants were then evaluated on psychological measures (Intrinsic Motivation Inventory) and dexterity measures (Purdue Pegboard, Grooved Pegboard Test and a grip-lift task). A total of 44 participants were included in the study. There were no baseline differences or significant differences between the three groups over time on the Perceived Competence, Effort/ Importance or Pressure/ Tension, psychological measures. All groups showed a significant increase in Perceived Competence over time (F 1,41 = 13.796, p = 0.001). Only one variable for the grip-lift task (Preload Duration for the non-dominant hand) showed a significant difference over time between the groups (F 2,41 = 3.280, p = 0.038), specifically, Motor and Control groups. The use of sensory awareness training, or additional motor practice did not provide a more effective alternative compared with usual teaching. Further research may be warranted using more engaged training, provision of supervision and greater participant numbers. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12616001428459 . Registered 13 th October 2016. Registered Retrospectively.
Primary motor cortex functionally contributes to language comprehension: An online rTMS study.
Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury
2017-02-01
Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.
Keilp, J G; Gorlyn, M; Russell, M; Oquendo, M A; Burke, A K; Harkavy-Friedman, J; Mann, J J
2013-03-01
Executive dysfunction, distinct from other cognitive deficits in depression, has been associated with suicidal behavior. However, this dysfunction is not found consistently across samples. Medication-free subjects with DSM-IV major depressive episode (major depressive disorder and bipolar type I disorder) and a past history of suicidal behavior (n = 72) were compared to medication-free depressed subjects with no history of suicidal behavior (n = 80) and healthy volunteers (n = 56) on a battery of tests assessing neuropsychological functions typically affected by depression (motor and psychomotor speed, attention, memory) and executive functions reportedly impaired in suicide attempters (abstract/contingent learning, working memory, language fluency, impulse control). All of the depressed subjects performed worse than healthy volunteers on motor, psychomotor and language fluency tasks. Past suicide attempters, in turn, performed worse than depressed non-attempters on attention and memory/working memory tasks [a computerized Stroop task, the Buschke Selective Reminding Task (SRT), the Benton Visual Retention Test (VRT) and an N-back task] but not on other executive function measures, including a task associated with ventral prefrontal function (Object Alternation). Deficits were not accounted for by current suicidal ideation or the lethality of past attempts. A small subsample of those using a violent method in their most lethal attempt showed a pattern of poor executive performance. Deficits in specific components of attention control, memory and working memory were associated with suicidal behavior in a sample where non-violent attempt predominated. Broader executive dysfunction in depression may be associated with specific forms of suicidal behavior, rather than suicidal behavior per se.
Avanzino, Laura; Pelosin, Elisa; Martino, Davide; Abbruzzese, Giovanni
2013-01-01
Timing of sequential movements is altered in Parkinson disease (PD). Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization–continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE) or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE), whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task. PMID:24086534
Learning better by repetition or variation? Is transfer at odds with task specific training?
Bonney, Emmanuel; Ferguson, Gillian D.; Smits-Engelsman, Bouwien C. M.
2017-01-01
Objective Transfer of motor skills is the ultimate goal of motor training in rehabilitation practice. In children with Developmental Coordination Disorder (DCD), very little is known about how skills are transferred from training situations to real life contexts. In this study we examined the influence of two types of practice on transfer of motor skills acquired in a virtual reality (VR) environment. Method One hundred and eleven children with DCD and their typically developing (TD) peers, aged 6–10 years (M = 8.0 SD = 1.0) were randomly assigned to either variable (n = 56) or repetitive practice (n = 55). Participants in the repetitive practice played the same exergame (ski slalom) twice weekly for 20 minutes, over a period of 5 weeks, while those in the variable group played 10 different games. Motor skills such as balance tasks (hopping), running and agility tasks, ball skills and functional activities were evaluated before and after 5 weeks of training. Results ANOVA repeated measures indicated that both DCD and TD children demonstrated transfer effects to real life skills with identical and non-identical elements at exactly the same rate, irrespective of the type of practice they were assigned to. Conclusion Based on these findings, we conclude that motor skills acquired in the VR environment, transfers to real world contexts in similar proportions for both TD and DCD children. The type of practice adopted does not seem to influence children’s ability to transfer skills acquired in an exergame to life situations but the number of identical elements does. PMID:28333997
Strobach, Tilo; Torsten, Schubert
2017-01-01
In dual-task situations, interference between two simultaneous tasks impairs performance. With practice, however, this impairment can be reduced. To identify mechanisms leading to a practice-related improvement in sensorimotor dual tasks, the present review applied the following general hypothesis: Sources that impair dual-task performance at the beginning of practice are associated with mechanisms for the reduction of dual-task impairment at the end of practice. The following types of processes provide sources for the occurrence of this impairment: (a) capacity-limited processes within the component tasks, such as response-selection or motor response stages, and (b) cognitive control processes independent of these tasks and thus operating outside of component-task performance. Dual-task practice studies show that, under very specific conditions, capacity-limited processes within the component tasks are automatized with practice, reducing the interference between two simultaneous tasks. Further, there is evidence that response-selection stages are shortened with practice. Thus, capacity limitations at these stages are sources for dual-task costs at the beginning of practice and are overcome with practice. However, there is no evidence demonstrating the existence of practice-related mechanisms associated with capacity-limited motor-response stages. Further, during practice, there is an acquisition of executive control skills for an improved allocation of limited attention resources to two tasks as well as some evidence supporting the assumption of improved task coordination. These latter mechanisms are associated with sources of dual-task interference operating outside of component task performance at the beginning of practice and also contribute to the reduction of dual-task interference at its end. PMID:28439319
From the motor cortex to the movement and back again.
Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I
2017-01-01
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Single-session tDCS-supported retraining does not improve fine motor control in musician's dystonia.
Buttkus, Franziska; Baur, Volker; Jabusch, Hans-Christian; de la Cruz Gomez-Pellin, Maria; Paulus, Walter; Nitsche, Michael A; Altenmüller, Eckart
2011-01-01
Focal dystonia in musicians (MD) is a task-specific movement disorder with a loss of voluntary motor control during instrumental playing. Defective inhibition on different levels of the central nervous system is involved in the pathophysiology. Sensorimotor retraining is a therapeutic approach to MD and aims to establish non-dystonic movements. Transcranial direct current stimulation (tDCS) modulates cortical excitability and alters motor performance. In this study, tDCS of the motor cortex was expected to assist retraining at the instrument. Nine professional pianists suffering from MD were included in a placebo-controlled double-blinded study. Retraining consisted of slow, voluntarily controlled movements on the piano and was combined with tDCS. Patients were treated with three stimulation protocols: anodal tDCS, cathodal tDCS and placebo stimulation. No beneficial effects of single-session tDCS-supported sensorimotor retraining on fine motor control in pianists with MD were found in all three conditions. The main cause of the negative result of this study may be the short intervention time. One retraining session with a duration of 20 min seems not sufficient to improve symptoms of MD. Additionally, a single tDCS session might not be sufficient to modify sensorimotor learning of a highly skilled task in musicians with dystonia.
Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.
2017-01-01
In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792
Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François
2013-01-01
Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc
2014-10-01
To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.
From Children to Adults: Motor Performance across the Life-Span
Leversen, Jonas S. R.; Haga, Monika; Sigmundsson, Hermundur
2012-01-01
The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur. PMID:22719958
Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian
2016-10-01
Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dasari, Deepika; Shou, Guofa; Ding, Lei
2017-01-01
Electroencephalograph (EEG) has been increasingly studied to identify distinct mental factors when persons perform cognitively demanding tasks. However, most of these studies examined EEG correlates at channel domain, which suffers the limitation that EEG signals are the mixture of multiple underlying neuronal sources due to the volume conduction effect. Moreover, few studies have been conducted in real-world tasks. To precisely probe EEG correlates with specific neural substrates to mental factors in real-world tasks, the present study examined EEG correlates to three mental factors, i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in EEG component signals, which were obtained using an independent component analysis (ICA) on high-density EEG data. EEG data were recorded when subjects performed a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent component (IC) signals that were associated with specific neural substrates (i.e., the frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and the alpha power of the other four ICs, were detected to be correlated to mental workload and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis indicated that spectral powers at five ICs significantly increased with TOT. These findings indicated that different levels of mental factors can be sensitively reflected in EEG signals associated with various brain functions, including visual perception, cognitive processing, and motor outputs, in real-world tasks. These results can potentially aid in the development of efficient operational interfaces to ensure productivity and safety in ATC and beyond.
Limb apraxia in aphasic patients.
Ortiz, Karin Zazo; Mantovani-Nagaoka, Joana
2017-11-01
Limb apraxia is usually associated with left cerebral hemisphere damage, with numerous case studies involving aphasic patients. The aim of this study was to verify the occurrence of limb apraxia in aphasic patients and analyze its nature. This study involved 44 healthy volunteers and 28 aphasic patients matched for age and education. AH participants were assessed using a limb apraxia battery comprising subtests evaluating lexical-semantic aspects related to the comprehension/production of gestures as well as motor movements. Aphasics had worse performances on many tasks related to conceptual components of gestures. The difficulty found on the imitation of dynamic gesture tasks also indicated that there were specific motor difficulties in gesture planning. These results reinforce the importance of conducting limb apraxia assessment in aphasic patients and also highlight pantomime difficulties as a good predictor for semantic disturbances.
Ireland, Kierla; Parker, Averil; Foster, Nicholas; Penhune, Virginia
2018-01-01
Measuring musical abilities in childhood can be challenging. When music training and maturation occur simultaneously, it is difficult to separate the effects of specific experience from age-based changes in cognitive and motor abilities. The goal of this study was to develop age-equivalent scores for two measures of musical ability that could be reliably used with school-aged children (7-13) with and without musical training. The children's Rhythm Synchronization Task (c-RST) and the children's Melody Discrimination Task (c-MDT) were adapted from adult tasks developed and used in our laboratories. The c-RST is a motor task in which children listen and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice in a row. The c-MDT is a perceptual task in which the child listens to two melodies and decides if the second was the same or different. We administered these tasks to 213 children in music camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also measured children's paced tapping, non-paced tapping, and phonemic discrimination as baseline motor and auditory abilities We estimated internal-consistency reliability for both tasks, and compared children's performance to results from studies with adults. As expected, musically trained children outperformed those without music lessons, scores decreased as difficulty increased, and older children performed the best. Using non-musicians as a reference group, we generated a set of age-based z-scores, and used them to predict task performance with additional years of training. Years of lessons significantly predicted performance on both tasks, over and above the effect of age. We also assessed the relation between musician's scores on music tasks, baseline tasks, auditory working memory, and non-verbal reasoning. Unexpectedly, musician children outperformed non-musicians in two of three baseline tasks. The c-RST and c-MDT fill an important need for researchers interested in evaluating the impact of musical training in longitudinal studies, those interested in comparing the efficacy of different training methods, and for those assessing the impact of training on non-musical cognitive abilities such as language processing.
Ireland, Kierla; Parker, Averil; Foster, Nicholas; Penhune, Virginia
2018-01-01
Measuring musical abilities in childhood can be challenging. When music training and maturation occur simultaneously, it is difficult to separate the effects of specific experience from age-based changes in cognitive and motor abilities. The goal of this study was to develop age-equivalent scores for two measures of musical ability that could be reliably used with school-aged children (7–13) with and without musical training. The children's Rhythm Synchronization Task (c-RST) and the children's Melody Discrimination Task (c-MDT) were adapted from adult tasks developed and used in our laboratories. The c-RST is a motor task in which children listen and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice in a row. The c-MDT is a perceptual task in which the child listens to two melodies and decides if the second was the same or different. We administered these tasks to 213 children in music camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also measured children's paced tapping, non-paced tapping, and phonemic discrimination as baseline motor and auditory abilities We estimated internal-consistency reliability for both tasks, and compared children's performance to results from studies with adults. As expected, musically trained children outperformed those without music lessons, scores decreased as difficulty increased, and older children performed the best. Using non-musicians as a reference group, we generated a set of age-based z-scores, and used them to predict task performance with additional years of training. Years of lessons significantly predicted performance on both tasks, over and above the effect of age. We also assessed the relation between musician's scores on music tasks, baseline tasks, auditory working memory, and non-verbal reasoning. Unexpectedly, musician children outperformed non-musicians in two of three baseline tasks. The c-RST and c-MDT fill an important need for researchers interested in evaluating the impact of musical training in longitudinal studies, those interested in comparing the efficacy of different training methods, and for those assessing the impact of training on non-musical cognitive abilities such as language processing. PMID:29674984
Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A Mark; Munzert, Jörn
2014-01-01
In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.
Temporal course of gene expression during motor memory formation in primary motor cortex of rats.
Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A
2016-12-01
Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Keetch, Katherine M.; Lee, Timothy D.
2007-01-01
Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…
Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.
Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P
2017-12-13
A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.
Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D
2004-01-01
Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Tafoya, Sara; Aathavan, K.; Schnitzbauer, Joerg; Grimes, Shelley; Jardine, Paul J.; Bustamante, Carlos
2014-01-01
SUMMARY Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per basepair increases with filling. This change accompanies a reduction in the motor’s step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the down-regulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated. PMID:24766813
Development of motor speed and associated movements from 5 to 18 years.
Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G
2010-03-01
To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Alahyane, N; Fonteille, V; Urquizar, C; Salemme, R; Nighoghossian, N; Pelisson, D; Tilikete, C
2008-01-01
Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive-but not of voluntary-saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107-121 (2007)).
Finlay, Barbara L; Hinz, Flora; Darlington, Richard B
2011-07-27
The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.
Hupfeld, K E; Ketcham, C J; Schneider, H D
2017-03-01
The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.
Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred
2006-08-15
The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.
No specific role for the manual motor system in processing the meanings of words related to the hand
Postle, Natasha; Ashton, Roderick; McFarland, Ken; de Zubicaray, Greig I.
2013-01-01
The present study explored whether semantic and motor systems are functionally interwoven via the use of a dual-task paradigm. According to embodied language accounts that propose an automatic and necessary involvement of the motor system in conceptual processing, concurrent processing of hand-related information should interfere more with hand movements than processing of unrelated body-part (i.e., foot, mouth) information. Across three experiments, 100 right-handed participants performed left- or right-hand tapping movements while repeatedly reading action words related to different body-parts, or different body-part names, in both aloud and silent conditions. Concurrent reading of single words related to specific body-parts, or the same words embedded in sentences differing in syntactic and phonological complexity (to manipulate context-relevant processing), and reading while viewing videos of the actions and body-parts described by the target words (to elicit visuomotor associations) all interfered with right-hand but not left-hand tapping rate. However, this motor interference was not affected differentially by hand-related stimuli. Thus, the results provide no support for proposals that body-part specific resources in cortical motor systems are shared between overt manual movements and meaning-related processing of words related to the hand. PMID:23378833
Neuropsychological Investigation of Motor Impairments in Autism
Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet
2013-01-01
It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036
Yogev-Seligmann, Galit; Giladi, Nir; Brozgol, Marina; Hausdorff, Jeffrey M
2012-01-01
Impairments in the ability to perform another task while walking (ie, dual tasking [DT]) are associated with an increased risk of falling. Here we describe a program we developed specifically to improve DT performance while walking based on motor learning principles and task-specific training. We examined feasibility, potential efficacy, retention, and transfer to the performance of untrained tasks in a pilot study among 7 patients with Parkinson's disease (PD). Seven patients (Hoehn and Yahr stage, 2.1±0.2) were evaluated before, after, and 1 month after 4 weeks of DT training. Gait speed and gait variability were measured during usual walking and during 4 DT conditions. The 4-week program of one-on-one training included walking while performing several distinct cognitive tasks. Gait speed and gait variability during DT significantly improved. Improvements were also seen in the DT conditions that were not specifically trained and were retained 1 month after training. These initial findings support the feasibility of applying a task-specific DT gait training program for patients with PD and suggest that it positively affects DT gait, even in untrained tasks. The present results are also consistent with the possibility that DT gait training enhances divided attention abilities during walking. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike
2015-01-01
Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.
de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio
2017-04-14
Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .
Perceptual and Motor Inhibition in Adolescents/Young Adults with Childhood-Diagnosed ADHD
Bedard, Anne-Claude V.; Trampush, Joey W.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.
2010-01-01
Objective This study examined perceptual and motor inhibition in a longitudinal sample of adolescents/young adults who were diagnosed with ADHD in childhood, and as a function of the relative persistence of ADHD. Method Ninety-eight participants diagnosed with ADHD in childhood were re-evaluated approximately 10 years later. Eighty-five never-ADHD controls similar in age, IQ, sociodemographic background, and gender distribution served as a comparison group. Participants were administered a psychiatric interview and the Stimulus and Response Conflict Tasks (Nassauer & Halperin, 2003). Results Participants with childhood ADHD demonstrated slower and less accurate responses to both control and conflict conditions relative to the comparison group, as well as more variable responses in both conditions of the motor inhibition task; there was no specific effect of childhood ADHD on perceptual or motor inhibition. ADHD persisters and partial remitters did not differ in overall accuracy, speed or variability in responding, but relative to partial remitters, persisters demonstrated greater slowing in response to perceptual conflict. Conclusions These findings are consistent with theories positing state regulation, but not inhibitory control deficits in the etiology of ADHD, and suggest that improved perceptual inhibition may be associated with better outcome for ADHD. PMID:20604617
Coll, Sélim Yahia; Ceravolo, Leonardo; Frühholz, Sascha; Grandjean, Didier
2018-05-02
Different parts of our brain code the perceptual features and actions related to an object, causing a binding problem, in which the brain has to integrate information related to an event without any interference regarding the features and actions involved in other concurrently processed events. Using a paradigm similar to Hommel, who revealed perception-action bindings, we showed that emotion could bind with motor actions when relevant, and in specific conditions, irrelevant for the task. By adapting our protocol to a functional Magnetic Resonance Imaging paradigm we investigated, in the present study, the neural bases of the emotion-action binding with task-relevant angry faces. Our results showed that emotion bound with motor responses. This integration revealed increased activity in distributed brain areas involved in: (i) memory, including the hippocampi; (ii) motor actions with the precentral gyri; (iii) and emotion processing with the insula. Interestingly, increased activations in the cingulate gyri and putamen, highlighted their potential key role in the emotion-action binding, due to their involvement in emotion processing, motor actions, and memory. The present study confirmed our previous results and point out for the first time the functional brain activity related to the emotion-action association.
Bianco, V; Berchicci, M; Perri, R L; Quinzi, F; Di Russo, F
2017-09-30
Both playing a musical instrument and playing sport produce brain adaptations that might affect sensory-motor functions. While the benefits of sport practice have traditionally been attributed to aerobic fitness, it is still unknown whether playing an instrument might induce similar brain adaptations, or if a specific musical instrument like drums might be associated to specific benefits because of its high energy expenditure. Since the aerobic costs of playing drums was estimated to be comparable to those of average sport activities, we hypothesized that these two groups might show both behavioral and neurocognitive similarities. To test this hypothesis, we recruited 48 young adults and divided them into four age-matched groups: 12 drummers, 12 athletes, 12 no-drummer musicians and 12 non-athletes. Participants performed a visuo-motor discriminative response task, namely the Go/No-go, and their cortical activity was recorded by means of a 64-channel electroencephalography (EEG). Behavioral performance showed that athletes and drummers were faster than the other groups. Electrophysiological results showed that the pre-stimulus motor preparation (i.e. the Bereitschaftspotential or BP) and attentional control (i.e., the prefrontal negativity or pN), and specific post-stimulus components like the P3 and the pP2 (reflecting the stimulus categorization process) were enhanced in the athletes and drummers' groups. Overall, these results suggest that playing sport and drums led to similar benefits at behavioral and cognitive level as detectable in a cognitive task. Explanations of these findings, such as on the difference between drummers and other musicians, are provided in terms of long-term neural adaptation mechanisms and increased visuo-spatial abilities. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Axford, Caitlin; Joosten, Annette V; Harris, Courtenay
2018-04-01
Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P < 0.001; d = 0.67). Children's occupational performance in daily tasks also improved. Preliminary evidence was gained for using the iPad, with these motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.
Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.
2013-01-01
SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893
Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M
2013-01-15
Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.
Oral Motor Abilities Are Task Dependent: A Factor Analytic Approach to Performance Rate.
Staiger, Anja; Schölderle, Theresa; Brendel, Bettina; Bötzel, Kai; Ziegler, Wolfram
2017-01-01
Measures of performance rates in speech-like or volitional nonspeech oral motor tasks are frequently used to draw inferences about articulation rate abnormalities in patients with neurologic movement disorders. The study objective was to investigate the structural relationship between rate measures of speech and of oral motor behaviors different from speech. A total of 130 patients with neurologic movement disorders and 130 healthy subjects participated in the study. Rate data was collected for oral reading (speech), rapid syllable repetition (speech-like), and rapid single articulator movements (nonspeech). The authors used factor analysis to determine whether the different rate variables reflect the same or distinct constructs. The behavioral data were most appropriately captured by a measurement model in which the different task types loaded onto separate latent variables. The data on oral motor performance rates show that speech tasks and oral motor tasks such as rapid syllable repetition or repetitive single articulator movements measure separate traits.
Iannuzzi, Stéphanie; Albaret, Jean-Michel; Chignac, Céline; Faure-Marie, Nathalie; Barry, Isabelle; Karsenty, Caroline; Chaix, Yves
2016-02-01
There is a body of evidence demonstrating comorbidity of motor and cognitive deficit in «idiopathic» developmental disorders. These associations are also found in developmental disorders secondary to monogenic disorders as in Neurofibromatosis type 1 for which the principal complication during childhood is learning disabilities. The comparison of motor impairment between developmental disorders either idiopathic or secondary as in NF1 could help us to better understand the cause of the combined language/motor deficit in these populations. The aim of this current study was to investigate motor impairment in children with NF1 for which oral language had been specified and then to compare the motors skills of the NF1 group to motor performance of children with Specific Language Disorder (SLD). Two groups of 49 children between 5 and 12years old were included and compared, the NF1 group and the SLD (Specific Language Disorder) group. Each child completed evaluation involving cognitive, language and motor assessment. In NF1 group, motor impairment was more frequent and more severe and concerned specifically balance rather than manual dexterity or ball skills, compared to a group of children with SLD. This motor impairment was independent of language status in the NF1 group. These results as well as other studies on the same topic could suggest that in NF1 children, fine motor skills impairment would be dependent on the existence of comorbidity with language disorders. Also, that gross motor skills impairment, and more precisely the balance deficit would be characteristic of NF1. This issue encourages studies of procedural learning that can involve the fronto-striatal or the fronto-cerebellar loops according to the type of motor tasks and the stage of learning. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Gutierrez-Sigut, Eva; Daws, Richard; Payne, Heather; Blott, Jonathan; Marshall, Chloë; MacSweeney, Mairéad
2016-01-01
Neuroimaging studies suggest greater involvement of the left parietal lobe in sign language compared to speech production. This stronger activation might be linked to the specific demands of sign encoding and proprioceptive monitoring. In Experiment 1 we investigate hemispheric lateralization during sign and speech generation in hearing native users of English and British Sign Language (BSL). Participants exhibited stronger lateralization during BSL than English production. In Experiment 2 we investigated whether this increased lateralization index could be due exclusively to the higher motoric demands of sign production. Sign naïve participants performed a phonological fluency task in English and a non-sign repetition task. Participants were left lateralized in the phonological fluency task but there was no consistent pattern of lateralization for the non-sign repetition in these hearing non-signers. The current data demonstrate stronger left hemisphere lateralization for producing signs than speech, which was not primarily driven by motoric articulatory demands. PMID:26605960
Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni
2014-01-01
Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice. PMID:25076876
Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni
2014-01-01
Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.
Hughes, Charmayne M L; Reissig, Paola; Seegelke, Christian
2011-09-01
The issue of handedness has been the topic of great interest for researchers in a number of scientific domains. It is typically observed that the dominant hand yields numerous behavioral advantages over the non-dominant hand during unimanual tasks, which provides evidence of hemispheric specialization. In contrast to advantages for the dominant hand during motor execution, recent research has demonstrated that the right hand has advantages during motor planning (regardless of handedness), indicating that motor planning is a specialized function of the left hemisphere. In the present study we explored hemispheric advantages in motor planning and execution in left- and right-handed individuals during a bimanual grasping and placing task. Replicating previous findings, both motor planning and execution was influenced by object end-orientation congruency. In addition, although motor planning (i.e., end-state comfort) was not influenced by hand or handedness, motor execution differed between left and right hand, with shorter object transport times observed for the left hand, regardless of handedness. These results demonstrate that the hemispheric advantages often observed in unimanual tasks do not extend to discrete bimanual tasks. We propose that the differences in object transport time between the two hands arise from overt shifting visual fixation between the two hands/objects. Copyright © 2011 Elsevier B.V. All rights reserved.
Consolidating the effects of waking and sleep on motor-sequence learning.
Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel
2010-10-20
Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.
Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark
2011-01-01
Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163
Dickins, Daina S. E.; Sale, Martin V.; Kamke, Marc R.
2015-01-01
Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand. PMID:25999856
Characterization of fine motor development: dynamic analysis of children's drawing movements.
Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu
2015-04-01
In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. Copyright © 2014 Elsevier B.V. All rights reserved.
Akizuki, Kazunori; Ohashi, Yukari
2015-10-01
The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Pessiglione, Mathias; Guehl, Dominique; Hirsch, Etienne C; Féger, Jean; Tremblay, Léon
2004-01-01
Parkinson's disease (PD) is characterized by motor symptoms, usually accompanied by cognitive deficits. The question addressed in this study is whether complexity of routine actions can exacerbate parkinsonian disorders that are often considered to be motor symptoms. To examine this question, we trained four vervet monkeys (Cercopithecus aethiops) to perform three multiple-choice retrieval tasks. In order of ascending complexity, rewards were freely available (task 1), covered with transparent sliding plaques (task 2), and covered with opaque sliding plaques cued by symbols (task 3). Thus, from task 1 to task 2 we added a motor difficulty--the recall of context-adapted movement; and from task 2 to task 3 we added a cognitive difficulty: the recall of symbol-reward associations. The more complex the task, the longer it took to learn, but after extensive training the performance was stable in all tasks, with similar retrieval durations. The monkeys then received systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (0.3-0.4 mg/kg) every 4-7 days, until the first motor symptoms appeared. In the course of MPTP intoxication, the behavioural performance declined while the motor symptoms were absent or mild--the retrieval duration increased, and non-initiated choices and hesitations between choices became frequent. Interestingly, this decline was in proportion to task complexity, and was particularly pronounced with the cognitive difficulty. Furthermore, freezing appeared only with the cognitive difficulty. We therefore suggest that everyday cognitive difficulties may exacerbate hypokinesia (lack of initiation, abnormal slowness) and executive disorders (hesitations, freezing) in the early stages of human PD.
Sullivan, Jane; Girardi, Madeline; Hensley, Melissa; Rohaus, Jordan; Schewe, Clay; Whittey, Colby; Hansen, Piper; Muir, Kimberly
2015-06-01
To investigate the effects of sensory amplitude electrical stimulation (SES) delivered by glove electrode during task-specific exercise on arm movement, function, and sensation in chronic stroke. The design was an intervention pilot study, pre-test, post-test, follow-up design. The settings used were a university research laboratory and home-based intervention. Participants comprised of 11 individuals with chronic stroke (7.2 ± 4.1 years post onset) and moderate arm paresis, 10.82/20 ± 2.27 on the Stroke Rehabilitation Assessment of Movement (STREAM) - Arm Subscale. Participants were seven males and four females (mean age: 59 years). Participants were recruited from university-based database. Intervention- Participants engaged in task-specific training at home for 30 min, twice daily, for 5 weeks, while receiving SES via glove electrode. Participants received supervised task practice at least twice during intervention period for 1 hour. Main outcome measures- Jebsen-Taylor Hand Function Test (JTHFT), STREAM - Arm Subscale, Motor Activity Log-14 (MAL-14) - Amount and Quality Subscales, and Nottingham Stereognosis Assessment (NSA). Significant changes were found in group mean pre- and post-test comparisons on the NSA (P = 0.042), MAL amount subscale (P = 0.047), and JTHFT (with writing item 29 excluded) (P = 0.003) and in pre-test to follow-up comparisons on NSA (P = 0.027) and JTHFT (writing item excluded) (P = 0.009). There was no significant change on the STREAM (P = 1.0). Individuals with a greater baseline motor capacity determined by STREAM scores (P = 0.048) and more recent stroke (P = 0.014) had significantly greater improvements. Combining task-specific training with glove-based SES in chronic stroke resulted in changes in arm sensation and function that were maintained at 3-month follow-up.
Whole body heat stress increases motor cortical excitability and skill acquisition in humans
Littmann, Andrew E.; Shields, Richard K.
2015-01-01
Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546
Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
Krishnan, Chandramouli; Ranganathan, Rajiv; Tetarbe, Manik
2017-07-01
Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer. Copyright © 2017 Elsevier B.V. All rights reserved.
Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki
2016-01-01
Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Multi-finger synergies and the muscular apparatus of the hand.
Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L
2018-05-01
We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.
Developmental study of visual perception of handwriting movement: influence of motor competencies?
Bidet-Ildei, Christel; Orliaguet, Jean-Pierre
2008-07-25
This paper investigates the influence of motor competencies for the visual perception of human movements in 6-10 years old children. To this end, we compared the kinematics of actual performed and perceptual preferred handwriting movements. The two children's tasks were (1) to write the letter e on a digitizer (handwriting task) and (2) to adjust the velocity of an e displayed on a screen so that it would correspond to "their preferred velocity" (perceptive task). In both tasks, the size of the letter (from 3.4 to 54.02 cm) was different on each trial. Results showed that irrespective of age and task, total movement time conforms to the isochrony principle, i.e., the tendency to maintain constant the duration of movement across changes of amplitude. However, concerning movement speed, there is no developmental correspondence between results obtained in the motor and the perceptive tasks. In handwriting task, movement time decreased with age but no effect of age was observed in the perceptive task. Therefore, perceptual preference of handwriting movement in children could not be strictly interpreted in terms of motor-perceptual coupling.
Association between Body Composition and Motor Performance in Preschool Children
Kakebeeke, Tanja H.; Lanzi, Stefano; Zysset, Annina E.; Arhab, Amar; Messerli-Bürgy, Nadine; Stuelb, Kerstin; Leeger-Aschmann, Claudia S.; Schmutz, Einat A.; Meyer, Andrea H.; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G.; Puder, Jardena J.
2017-01-01
Objective Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. Methods A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2) participated in the Swiss Preschoolers' Health Study (SPLASHY). Body composition assessments included skinfold thickness, waist circumference (WC), and BMI. The Zurich Neuromotor Assessment (ZNA) was used to assess gross and fine motor tasks. Results After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers), skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient −1.92, p = 0.027; and −3.34, p = 0.014, respectively), while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001). No significant associations were found between body composition measures and fine motor tasks. Conclusion The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle) mass in predominately normal-weight preschool children. PMID:28934745
Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.
Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J
2016-01-01
Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill.
Krakauer, John W.; Mazzoni, Pietro
2012-01-01
The public pays large sums of money to watch skilled motor performance. Notably, however, in recent decades motor skill learning (performance improvement beyond baseline levels) has received less experimental attention than motor adaptation (return to baseline performance in the setting of an external perturbation). Motor skill can be assessed at the levels of task success and movement quality, but the link between these levels remains poorly understood. We devised a motor skill task that required visually guided curved movements of the wrist without a perturbation, and we defined skill learning at the task level as a change in the speed–accuracy trade-off function (SAF). Practice in restricted speed ranges led to a global shift of the SAF. We asked how the SAF shift maps onto changes in trajectory kinematics, to establish a link between task-level performance and fine motor control. Although there were small changes in mean trajectory, improved performance largely consisted of reduction in trial-to-trial variability and increase in movement smoothness. We found evidence for improved feedback control, which could explain the reduction in variability but does not preclude other explanations such as an increased signal-to-noise ratio in cortical representations. Interestingly, submovement structure remained learning invariant. The global generalization of the SAF across a wide range of difficulty suggests that skill for this task is represented in a temporally scalable network. We propose that motor skill acquisition can be characterized as a slow reduction in movement variability, which is distinct from faster model-based learning that reduces systematic error in adaptation paradigms. PMID:22514286
Computer task performance by subjects with Duchenne muscular dystrophy.
Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira
2016-01-01
Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality.
Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima
2017-02-01
The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.
Working Memory: Its Role in Dyslexia and Other Specific Learning Difficulties
ERIC Educational Resources Information Center
Jeffries, Sharman; Everatt, John
2004-01-01
This paper reports a study contrasting dyslexic children against a control group of children without special educational needs (SEN) and a group with varied SENs. Children's abilities were compared on tasks assessing phonological processing, visuo-spatial/motor coordination and executive/inhibitory functioning; being targeted for assessment based…