Sample records for specific neuronal pathways

  1. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans.

    PubMed

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-10-21

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4 . Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions.

  2. Neurophysiology and itch pathways.

    PubMed

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways.

  3. Hypothalamic neurones governing glucose homeostasis.

    PubMed

    Coppari, R

    2015-06-01

    The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.

  4. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

    PubMed

    Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad

    2017-11-15

    Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  6. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  7. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Nimchinsky, E. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The neurochemical characteristics of the neuronal subsets that furnish different types of corticocortical connections have been only partially determined. In recent years, several cytoskeletal proteins have emerged as reliable markers to distinguish subsets of pyramidal neurons in the cerebral cortex of primates. In particular, previous studies using an antibody to nonphosphorylated neurofilament protein (SMI-32) have revealed a consistent degree of regional and laminar specificity in the distribution of a subpopulation of pyramidal cells in the primate cerebral cortex. The density of neurofilament protein-immunoreactive neurons was shown to vary across corticocortical pathways in macaque monkeys. In the present study, we have used the antibody SMI-32 to examine further and to quantify the distribution of a subset of corticocortically projecting neurons in a series of long ipsilateral corticocortical pathways in comparison to short corticocortical, commissural, and limbic connections. The results demonstrate that the long association pathways interconnecting the frontal, parietal, and temporal neocortex have a high representation of neurofilament protein-enriched pyramidal neurons (45-90%), whereas short corticocortical, callosal, and limbic pathways are characterized by much lower numbers of such neurons (4-35%). These data suggest that different types of corticocortical connections have differential representation of highly specific neuronal subsets that share common neurochemical characteristics, thereby determining regional and laminar cortical patterns of morphological and molecular heterogeneity. These differences in neuronal neurochemical phenotype among corticocortical circuits may have considerable influence on cortical processing and may be directly related to the type of integrative function subserved by each cortical pathway. Finally, it is worth noting that neurofilament protein-immunoreactive neurons are dramatically affected in the course of Alzheimer's disease. The present results support the hypothesis that neurofilament protein may be crucially linked to the development of selective neuronal vulnerability and subsequent disruption of corticocortical pathways that lead to the severe impairment of cognitive function commonly observed in age-related dementing disorders.

  8. GABAergic Local Interneurons Shape Female Fruit Fly Response to Mating Songs.

    PubMed

    Yamada, Daichi; Ishimoto, Hiroshi; Li, Xiaodong; Kohashi, Tsunehiko; Ishikawa, Yuki; Kamikouchi, Azusa

    2018-05-02

    Many animals use acoustic signals to attract a potential mating partner. In fruit flies ( Drosophila melanogaster ), the courtship pulse song has a species-specific interpulse interval (IPI) that activates mating. Although a series of auditory neurons in the fly brain exhibit different tuning patterns to IPIs, it is unclear how the response of each neuron is tuned. Here, we studied the neural circuitry regulating the activity of antennal mechanosensory and motor center (AMMC)-B1 neurons, key secondary auditory neurons in the excitatory neural pathway that relay song information. By performing Ca 2+ imaging in female flies, we found that the IPI selectivity observed in AMMC-B1 neurons differs from that of upstream auditory sensory neurons [Johnston's organ (JO)-B]. Selective knock-down of a GABA A receptor subunit in AMMC-B1 neurons increased their response to short IPIs, suggesting that GABA suppresses AMMC-B1 activity at these IPIs. Connection mapping identified two GABAergic local interneurons that synapse with AMMC-B1 and JO-B. Ca 2+ imaging combined with neuronal silencing revealed that these local interneurons, AMMC-LN and AMMC-B2, shape the response pattern of AMMC-B1 neurons at a 15 ms IPI. Neuronal silencing studies further suggested that both GABAergic local interneurons suppress the behavioral response to artificial pulse songs in flies, particularly those with a 15 ms IPI. Altogether, we identified a circuit containing two GABAergic local interneurons that affects the temporal tuning of AMMC-B1 neurons in the song relay pathway and the behavioral response to the courtship song. Our findings suggest that feedforward inhibitory pathways adjust the behavioral response to courtship pulse songs in female flies. SIGNIFICANCE STATEMENT To understand how the brain detects time intervals between sound elements, we studied the neural pathway that relays species-specific courtship song information in female Drosophila melanogaster We demonstrate that the signal transmission from auditory sensory neurons to key secondary auditory neurons antennal mechanosensory and motor center (AMMC)-B1 is the first-step to generate time interval selectivity of neurons in the song relay pathway. Two GABAergic local interneurons are suggested to shape the interval selectivity of AMMC-B1 neurons by receiving auditory inputs and in turn providing feedforward inhibition onto AMMC-B1 neurons. Furthermore, these GABAergic local interneurons suppress the song response behavior in an interval-dependent manner. Our results provide new insights into the neural circuit basis to adjust neuronal and behavioral responses to a species-specific communication sound. Copyright © 2018 the authors 0270-6474/18/384329-19$15.00/0.

  9. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  10. Evolutionarily conserved coding properties of auditory neurons across grasshopper species

    PubMed Central

    Neuhofer, Daniela; Wohlgemuth, Sandra; Stumpner, Andreas; Ronacher, Bernhard

    2008-01-01

    We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the ‘efficient coding’ hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. PMID:18505715

  11. Specific induction of Akt3 in spinal cord motor neurons is neuroprotective in a mouse model of familial amyotrophic lateral sclerosis.

    PubMed

    Peviani, Marco; Tortarolo, Massimo; Battaglia, Elisa; Piva, Roberto; Bendotti, Caterina

    2014-02-01

    Evidence is accumulating that an imbalance between pathways for degeneration or survival in motor neurons may play a central role in mechanisms that lead to neurodegeneration in amyotrophic lateral sclerosis (ALS). We and other groups have observed that downregulation, or lack of induction, of the PI3K/Akt prosurvival pathway may be responsible for defective response of motor neurons to injury and their consequent cellular demise. Some of the neuroprotective effects mediated by growth factors may involve activation of Akt, but a proof of concept of Akt as a target for therapy is lacking. We demonstrate that specific expression of constitutively activated Akt3 in motor neurons through the use of the promoter of homeobox gene Hb9 prevents neuronal loss induced by SOD1.G93A both in vitro (in mixed neuron/astrocyte cocultures) and in vivo (in a mouse model of ALS). Inhibition of ASK1 and GSK3beta was involved in the neuroprotective effects of activated Akt3, further supporting the hypothesis that induction of Akt3 may be a key step in activation of pathways for survival in the attempt to counteract motor neuronal degeneration in ALS.

  12. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  13. Patient-derived iPSCs show premature neural differentiation and neuron-type specific phenotypes relevant to neurodevelopment

    PubMed Central

    Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.

    2017-01-01

    Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583

  14. Alternative splicing disabled by Nova2.

    PubMed

    Park, Tae-Ju; Curran, Tom

    2010-06-24

    Disabled-1 is a key signaling molecule in the Reelin pathway that plays a critical role in neuronal migration and positioning during brain development. In this issue of Neuron, Yano et al. demonstrate that the neuron-specific RNA binding protein Nova2 contributes to neuronal migration by regulating alternative splicing of disabled-1.

  15. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  16. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  17. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

    PubMed Central

    Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung

    2016-01-01

    Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747

  18. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

    PubMed

    Gonchar, Yuri; Burkhalter, Andreas

    2003-11-26

    Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.

  19. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system

    PubMed Central

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-01-01

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates. PMID:26387804

  20. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system.

    PubMed

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-09-21

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates.

  1. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways.

    PubMed

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.

  2. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    PubMed Central

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C.

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells. PMID:25309332

  3. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam

    PubMed Central

    Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung

    2012-01-01

    Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636

  4. Central neural pathways for thermoregulation.

    PubMed

    Morrison, Shaun F; Nakamura, Kazuhiro

    2011-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.

  5. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes.

    PubMed

    Jukam, David; Viets, Kayla; Anderson, Caitlin; Zhou, Cyrus; DeFord, Peter; Yan, Jenny; Cao, Jinshuai; Johnston, Robert J

    2016-07-01

    The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein. © 2016. Published by The Company of Biologists Ltd.

  6. Cocaine Inhibition of Synaptic Transmission in the Ventral Pallidum Is Pathway-Specific and Mediated by Serotonin.

    PubMed

    Matsui, Aya; Alvarez, Veronica A

    2018-06-26

    The ventral pallidum (VP) is part of the basal ganglia circuitry and a target of both direct and indirect pathway projections from the nucleus accumbens. VP is important in cocaine reinforcement, and the firing of VP neurons is modulated in vivo during cocaine self-administration. This modulation of firing is thought to be indirect via cocaine actions on dopamine in the accumbens. Here, we show that cocaine directly inhibits synaptic transmission evoked by selective stimulation of indirect pathway projections to VP neurons. The inhibition is independent of dopamine receptor activation, absent in 5-HT1B knockout mice, and mimicked by a serotonin transporter (SERT) blocker. SERT-expressing neurons in dorsal raphe project to the VP. Optogenetic stimulation of these projections evokes serotonin transients and effectively inhibits GABAergic transmission to VP neurons. This study shows that cocaine increases endogenous serotonin in the VP to suppress synaptic transmission selectively from indirect pathway projections to VP neurons. Published by Elsevier Inc.

  7. Pathway-Specific Striatal Substrates for Habitual Behavior.

    PubMed

    O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole

    2016-02-03

    The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway.

    PubMed

    Follansbee, Taylor L; Gjelsvik, Kayla J; Brann, Courtney L; McParland, Aidan L; Longhurst, Colin A; Galko, Michael J; Ganter, Geoffrey K

    2017-08-30

    Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs. Copyright © 2017 the authors 0270-6474/17/378524-10$15.00/0.

  9. Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway

    PubMed Central

    Follansbee, Taylor L.; Gjelsvik, Kayla J.; Brann, Courtney L.; McParland, Aidan L.

    2017-01-01

    Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs. PMID:28855331

  10. Pathways for Emotions: Specializations in the Amygdalar, Mediodorsal Thalamic, and Posterior Orbitofrontal Network.

    PubMed

    Timbie, Clare; Barbas, Helen

    2015-08-26

    The primate amygdala projects to posterior orbitofrontal cortex (pOFC) directly and possibly indirectly through a pathway to the magnocellular mediodorsal thalamic nucleus (MDmc), which may convey signals about the significance of stimuli. However, because MDmc receives input from structures in addition to the amygdala and MDmc projects to areas in addition to pOFC, it is unknown whether amygdalar pathways in MDmc innervate pOFC-bound neurons. We addressed this issue using double- or triple-labeling approaches to identify pathways and key cellular and molecular features in rhesus monkeys. We found that amygdalar terminations innervated labeled neurons in MDmc that project to pOFC. Projection neurons in MDmc directed to pOFC included comparatively fewer "core" parvalbumin neurons that project focally to the middle cortical layers and more "matrix" calbindin neurons that project expansively to the upper cortical layers. In addition, a small and hitherto unknown pathway originated from MDmc calretinin neurons and projected to pOFC. Further, whereas projection neurons directed to MDmc and to pOFC were intermingled in the amygdala, none projected to both structures. Larger amygdalar neurons projected to MDmc and expressed the vesicular glutamate transporter 2 (VGLUT2), which is found in highly efficient "driver" pathways. In contrast, smaller amygdalar neurons directed to pOFC expressed VGLUT1 found in modulatory pathways. The indirect pathway from the amygdala to pOFC via MDmc may provide information about the emotional significance of events and, along with a parallel direct pathway, ensures transfer of signals to all layers of pOFC. The amygdala-the brain's center for emotions-is strongly linked with the orbital cortex, a region associated with social interactions. This study provides evidence that a robust pathway from the amygdala reaches neurons in the thalamus that link directly with the orbital cortex, forming a tight tripartite network. The dual pathways from the amygdala to the orbital cortex and to the thalamus are distinct by morphology, neurochemistry, and function. This tightly linked network suggests the presence of fool-proof avenues for emotions to influence high-order cortical areas associated with affective reasoning. Specific nodes of this tripartite network are disrupted in psychiatric diseases, divorcing areas that integrate emotions and thoughts for decisions and flexible behavior. Copyright © 2015 the authors 0270-6474/15/3511976-12$15.00/0.

  11. Central neural pathways for thermoregulation

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  12. Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes

    PubMed Central

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-01-01

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread. PMID:23592792

  13. IRE1α pathway of endoplasmic reticulum stress induces neuronal apoptosis in the locus coeruleus of rats under single prolonged stress.

    PubMed

    Zhao, Wei; Han, Fang; Shi, Yuxiu

    2016-08-01

    Our previous studies have shown evidence of endoplasmic reticulum (ER) stress-induced apoptosis in the hippocampus and mPFC in an animal model of post- traumatic stress disorder (PTSD). Inositol-requiring enzyme 1α (IRE1α) and its downstream molecule X-box binding protein 1 (XBP1) play key roles in the ER-related apoptosis pathway. Dysregulation of the locus coeruleus (LC) has been reported to contribute to cognitive and/or arousal impairments associated with PTSD. The aim of the present study was to explore the role of IRE1α pathway in neuronal apoptosis in the LC of rat models of PTSD. We used an acute exposure to prolonged stress (single prolonged stress, SPS) to model PTSD in rats and examined the effects related to the IRE1α pathway. Neuronal apoptosis in LC was detected by transmission electron microscopy and TUNEL staining. The results showed that the level of LC neuronal apoptosis was markedly increased after SPS. SPS exposure triggered IRE1α pathway, as evidenced by the increased activity of IRE1α, specific splicing of XBP1, and up-regulated expression of binding immunoglobulin protein/78kDa glucose-regulated protein (BiP/GRP78), and C/EBP-homologous protein (CHOP). Treatment with STF-083010, an IRE1α RNase-specific inhibitor, successfully attenuated the above changes. These results indicate that excessive activation of the ER stress-associated IRE1α pathway is involved in LC neuronal apoptosis induced by SPS exposure; this may be a crucial mechanism of the pathogenesis of PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells.

    PubMed

    Zagoura, Dimitra; Canovas-Jorda, David; Pistollato, Francesca; Bremer-Hoffmann, Susanne; Bal-Price, Anna

    2017-06-01

    Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology, including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore, in the current study, we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM), as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes, NQO1 and SRXN1. Interestingly, exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover, rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH + ) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  17. Sensational placodes: Neurogenesis in the otic and olfactory systems

    PubMed Central

    Maier, Esther C.; Saxena, Ankur; Alsina, Berta; Bronner, Marianne E.; Whitfield, Tanya T.

    2014-01-01

    For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives. PMID:24508480

  18. Genetic Feedback Regulation of Frontal Cortical Neuronal Ensembles Through Activity-Dependent Arc Expression and Dopaminergic Input.

    PubMed

    Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong

    2016-01-01

    Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.

  19. Manganese-Induced Neurotoxicity and Alterations in Gene Expression in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi

    2018-06-01

    Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.

  20. Mechanistic insights into the role of mTOR signaling in neuronal differentiation.

    PubMed

    Bateman, Joseph M

    2015-01-01

    Temporal control of neuronal differentiation is critical to produce a complete and fully functional nervous system. Loss of the precise temporal control of neuronal cell fate can lead to defects in cognitive development and to disorders such as epilepsy and autism. Mechanistic target of rapamycin (mTOR) is a large serine/threonine kinase that acts as a crucial sensor of cellular homeostasis. mTOR signaling has recently emerged as a key regulator of neurogenesis. However, the mechanism by which mTOR regulates neurogenesis is poorly understood. In constrast to other functions of the pathway, 'neurogenic mTOR pathway factors' have not previously been identified. We have very recently used Drosophila as a model system to identify the gene unkempt as the first component of the mTOR pathway regulating neuronal differentiation. Our study demonstrates that specific adaptor proteins exist that channel mTOR signaling toward the regulation of neuronal cell fate. In this Commentary we discuss the role of mTOR signaling in neurogenesis and the significance of these findings in advancing our understanding of the mechanism by which mTOR signaling controls neuronal differentiation.

  1. The spinocerebellar ataxias.

    PubMed

    Gilman, S

    2000-01-01

    The spinocerebellar ataxias (SCAs) are diseases characterized by the progressive degeneration and subsequent loss of neurons accompanied by reactive gliosis, degeneration of fibers from the deteriorating neurons, and clinical symptoms reflecting the locations of the lost neurons. The degenerative changes affect specific neuronal groups while others remain preserved, and these diseases can therefore be viewed as system degenerations. The SCAs result from either genetically transmitted diseases with dominant inheritance or unknown causes with sporadic occurrence. Most of these disorders affect the cerebellum and its pathways, resulting in progressive deterioration of cerebellar function manifested by increasing unsteadiness of gait, incoordination of limb movements with impairment of skilled movements such as handwriting, and a distinctive dysarthria. Other neuronal systems are affected in some of these disorders, notably the corticospinal pathway, basal ganglia, and autonomic nuclei of the brain stem and spinal cord.

  2. The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons

    PubMed Central

    2011-01-01

    Background Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. Results We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. Conclusions These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. PMID:21762482

  3. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons.

    PubMed

    Moore, Aleisha M; Campbell, Rebecca E

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament tripletmore » H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.« less

  5. Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit

    PubMed Central

    Arima, Yasunobu; Ohki, Takuto; Nishikawa, Naoki; Higuchi, Kotaro; Ota, Mitsutoshi; Tanaka, Yuki; Nio-Kobayashi, Junko; Elfeky, Mohamed; Sakai, Ryota; Mori, Yuki; Kawamoto, Tadafumi; Stofkova, Andrea; Sakashita, Yukihiro; Morimoto, Yuji; Kuwatani, Masaki; Iwanaga, Toshihiko; Yoshioka, Yoshichika; Sakamoto, Naoya; Yoshimura, Akihiko; Takiguchi, Mitsuyoshi; Sakoda, Saburo; Prinz, Marco; Kamimura, Daisuke; Murakami, Masaaki

    2017-01-01

    Impact of stress on diseases including gastrointestinal failure is well-known, but molecular mechanism is not understood. Here we show underlying molecular mechanism using EAE mice. Under stress conditions, EAE caused severe gastrointestinal failure with high-mortality. Mechanistically, autoreactive-pathogenic CD4+ T cells accumulated at specific vessels of boundary area of third-ventricle, thalamus, and dentate-gyrus to establish brain micro-inflammation via stress-gateway reflex. Importantly, induction of brain micro-inflammation at specific vessels by cytokine injection was sufficient to establish fatal gastrointestinal failure. Resulting micro-inflammation activated new neural pathway including neurons in paraventricular-nucleus, dorsomedial-nucleus-of-hypothalamus, and also vagal neurons to cause fatal gastrointestinal failure. Suppression of the brain micro-inflammation or blockage of these neural pathways inhibited the gastrointestinal failure. These results demonstrate direct link between brain micro-inflammation and fatal gastrointestinal disease via establishment of a new neural pathway under stress. They further suggest that brain micro-inflammation around specific vessels could be switch to activate new neural pathway(s) to regulate organ homeostasis. DOI: http://dx.doi.org/10.7554/eLife.25517.001 PMID:28809157

  6. Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila

    PubMed Central

    Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.

    2011-01-01

    Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639

  7. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock. PMID:26630286

  8. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input.

    PubMed

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.

  9. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    PubMed

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Amyloid-β oligomer Aβ*56 induces specific alterations of tau phosphorylation and neuronal signaling

    PubMed Central

    Amar, Fatou; Sherman, Mathew A.; Rush, Travis; Larson, Megan; Boyle, Gabriel; Chang, Liu; Götz, Jürgen; Buisson, Alain; Lesné, Sylvain E.

    2018-01-01

    Oligomeric forms of amyloid-forming proteins are believed to be the principal initiating bioactive species in many neurodegenerative disorders, including Alzheimer’s disease (AD). Amyloid-β (Aβ) oligomers are implicated in pathological modification and aggregation of the microtubule-associated protein tau. To investigate the specific molecular pathways activated by different assemblies, we isolated various forms of Aβ from Tg2576 mice. We found that the Aβ*56, which is linked with preclinical AD, interacted with NMDA receptors (NMDARs) in primary cortical neurons, increased NMDAR-dependent Ca2+ influx and, consequently, increased intracellular calcium concentrations and the activation of Ca2+-dependent calmodulin kinase IIα (CaMKIIα). In neurons in mice and in culture, activated CaMKIIα induced increased phosphorylation and missorting of tau, which is associated with AD pathology. In contrast, exposure of cultured primary cortical neurons to other oligomeric Aβ forms (dimers and trimers) did not trigger these effects. Our results indicate that distinct Aβ assemblies activate neuronal signaling pathways in a selective manner, and that dissecting the molecular events caused by each may inform more effective therapeutic strategies. PMID:28487416

  11. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    PubMed

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  12. Anatomical study of the final common pathway for vocalization in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1989-01-01

    Results are presented of an anatomical study of the neuronal pathways in the cat, via which the periaqueductal gray (PAG) produces excitation of motoneurons involved in vocalization. It is shown that a specific cell group in the lateral part of the caudal PAG and in the tegmentum just lateral to it projects bilaterally to the nucleus retroambiguus (NRA) in the caudal medulla oblongata. Neurons in the NRA in turn project, via a contralateral pathway through the ventral funiculus of the spinal cord, to the motoneuronal cell groups innervating intercostal and abdominal muscles. In the brainstem, the NRA neurons project to the motoneuronal cell groups innervating mouth-opening and perioral muscles as well as to motoneurons innervating the pharynx, soft palate, and tongue. These results indicate that the projections from PAG via NRA to vocalization motoneurons form the final common pathway in vocalization.

  13. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer.

    PubMed

    Leung, Beatrice K; Balleine, Bernard W

    2015-03-25

    Outcome-specific Pavlovian-instrumental transfer (PIT) demonstrates the way that reward-related cues influence choice between instrumental actions. The nucleus accumbens shell (NAc-S) contributes critically to this effect, particularly through its output to the rostral medial ventral pallidum (VP-m). Using rats, we investigated in two experiments the role in the PIT effect of the two major outputs of this VP-m region innervated by the NAc-S, the mediodorsal thalamus (MD) and the ventral tegmental area (VTA). First, two retrograde tracers were injected into the MD and VTA to compare the neuronal activity of the two populations of projection neurons in the VP-m during PIT relative to controls. Second, the functional role of the connection between the VP-m and the MD or VTA was assessed using asymmetrical pharmacological manipulations before a PIT test. It was found that, whereas neurons in the VP-m projecting to the MD showed significantly more neuronal activation during PIT than those projecting to the VTA, neuronal activation of these latter neurons correlated with the size of the PIT effect. Disconnection of the two pathways during PIT also revealed different deficits in performance: disrupting the VP-m to MD pathway removed the response biasing effects of reward-related cues, whereas disrupting the VP-m to VTA pathway preserved the response bias but altered the overall rate of responding. The current results therefore suggest that the VP-m exerts distinct effects on the VTA and MD and that these latter structures mediate the motivational and cognitive components of specific PIT, respectively. Copyright © 2015 the authors 0270-6474/15/354953-12$15.00/0.

  14. Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons.

    PubMed

    Dorval, Véronique; Smith, Pascal Y; Delay, Charlotte; Calvo, Ezequiel; Planel, Emmanuel; Zommer, Nadège; Buée, Luc; Hébert, Sébastien S

    2012-01-01

    The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25) misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR) of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.

  15. Prolactin receptor in regulation of neuronal excitability and channels

    PubMed Central

    Patil, Mayur J; Henry, Michael A; Akopian, Armen N

    2014-01-01

    Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL. PMID:24758841

  16. A hypothalamic circuit that controls body temperature.

    PubMed

    Zhao, Zheng-Dong; Yang, Wen Z; Gao, Cuicui; Fu, Xin; Zhang, Wen; Zhou, Qian; Chen, Wanpeng; Ni, Xinyan; Lin, Jun-Kai; Yang, Juan; Xu, Xiao-Hong; Shen, Wei L

    2017-02-21

    The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.

  17. Regulatory role of calpain in neuronal death

    PubMed Central

    Cheng, Si-ying; Wang, Shu-chao; Lei, Ming; Wang, Zhen; Xiong, Kun

    2018-01-01

    Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases. PMID:29623944

  18. Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization

    PubMed Central

    Philippidou, Polyxeni; Dasen, Jeremy S.

    2013-01-01

    Summary The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This review highlights the functions and mechanisms of Hox gene networks, and their multifaceted roles during neuronal specification and connectivity. PMID:24094100

  19. Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe

    2016-01-01

    In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders. PMID:27688915

  20. Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders.

  1. Sex-specific activation of cell death signalling pathways in cerebellar granule neurons exposed to oxygen glucose deprivation followed by reoxygenation

    PubMed Central

    Sharma, Jaswinder; Nelluru, Geetha; Ann Wilson, Mary; Johnston, Michael V; Ahamed Hossain, Mir

    2011-01-01

    Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox. PMID:21382016

  2. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    PubMed Central

    Bucci, Cecilia; Alifano, Pietro; Cogli, Laura

    2014-01-01

    Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways. PMID:25295627

  3. A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.

    PubMed

    Fleming, Michael S; Li, Jian J; Ramos, Daniel; Li, Tong; Talmage, David A; Abe, Shin-Ichi; Arber, Silvia; Luo, Wenqin

    2016-10-05

    Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET + mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells. Copyright © 2016 the authors 0270-6474/16/3610337-19$15.00/0.

  4. Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network.

    PubMed

    Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C

    2015-08-27

    The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    PubMed

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  6. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  7. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway.

    PubMed

    Maday, Sandra; Holzbaur, Erika L F

    2014-07-14

    Autophagy is an essential degradative pathway in neurons, yet little is known about mechanisms driving autophagy in highly polarized cells. Here, we use dual-color live-cell imaging to investigate the neuron-specific mechanisms of constitutive autophagosome biogenesis in primary dorsal root ganglion (DRG) and hippocampal cultures. Under basal conditions, autophagosomes are continuously generated in the axon tip. There is an ordered assembly of proteins recruited with stereotypical kinetics onto the developing autophagosome. Plasma- or mitochondrial-derived membranes were not incorporated into nascent autophagosomes in the distal axon. Rather, autophagosomes are generated at double FYVE-containing protein 1 (DFCP1)-positive subdomains of the endoplasmic reticulum (ER), distinct from ER exit sites. Biogenesis events are enriched distally; autophagosomes form infrequently in dendrites, the soma, or midaxon, consistent with a compartmentalized pathway for constitutive autophagy in primary neurons. Distal biogenesis may facilitate degradation of damaged mitochondria and long-lived cytoplasmic proteins reaching the axon tip via slow axonal transport. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function

    PubMed Central

    2015-01-01

    Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 22, 486–504. PMID:24735331

  9. Cholinergic Mesopontine Signals Govern Locomotion and Reward Through Dissociable Midbrain Pathways

    PubMed Central

    Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B.; Chan, Ken; McKinney, Sheri L.; Yang, Bin; Gradinaru, Viviana

    2016-01-01

    The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons, however although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197

  10. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway

    PubMed Central

    Renard, Justine; Loureiro, Michael; Rosen, Laura G.; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J.

    2016-01-01

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. PMID:27147666

  11. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway.

    PubMed

    Renard, Justine; Loureiro, Michael; Rosen, Laura G; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J; Laviolette, Steven R

    2016-05-04

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. Copyright © 2016 the authors 0270-6474/16/365160-10$15.00/0.

  12. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    NASA Astrophysics Data System (ADS)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  13. Spinal projection neurons control turning behaviors in zebrafish.

    PubMed

    Huang, Kuo-Hua; Ahrens, Misha B; Dunn, Timothy W; Engert, Florian

    2013-08-19

    Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1-9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Spinal Projection Neurons Control Turning Behaviors in Zebrafish

    PubMed Central

    Huang, Kuo-Hua; Ahrens, Misha B.; Dunn, Timothy W.; Engert, Florian

    2013-01-01

    Summary Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1–9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. PMID:23910662

  15. FEFsem neuronal response during combined volitional and reflexive pursuit.

    PubMed

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J

    2017-05-01

    Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations-whether the addition or subtraction of retinal input-may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals.

  16. FEFsem neuronal response during combined volitional and reflexive pursuit

    PubMed Central

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J.

    2017-01-01

    Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations—whether the addition or subtraction of retinal input—may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals. PMID:28538993

  17. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  18. A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus

    PubMed Central

    Bailey, T W; Hermes, S M; Whittier, K L; Aicher, S A; Andresen, M C

    2007-01-01

    The solitary tract nucleus (NTS) conveys visceral information to diverse central networks involved in homeostatic regulation. Although afferent information content arriving at various CNS sites varies substantially, little is known about the contribution of processing within the NTS to these differences. Using retrograde dyes to identify specific NTS projection neurons, we recently reported that solitary tract (ST) afferents directly contact NTS neurons projecting to caudal ventrolateral medulla (CVLM) but largely only indirectly contact neurons projecting to the hypothalamic paraventricular nucleus (PVN). Since intrinsic properties impact information transmission, here we evaluated potassium channel expression and somatodendritic morphology of projection neurons and their relation to afferent information output directed to PVN or CVLM pathways. In slices, tracer-identified projection neurons were classified as directly or indirectly (polysynaptically) coupled to ST afferents by EPSC latency characteristics (directly coupled, jitter < 200 μs). In each neuron, voltage-dependent potassium currents (IK) were evaluated and, in representative neurons, biocytin-filled structures were quantified. Both CVLM- and PVN-projecting neurons had similar, tetraethylammonium-sensitive IK. However, only PVN-projecting NTS neurons displayed large transient, 4aminopyridine-sensitive, A-type currents (IKA). PVN-projecting neurons had larger cell bodies with more elaborate dendritic morphology than CVLM-projecting neurons. ST shocks faithfully (> 75%) triggered action potentials in CVLM-projecting neurons but spike output was uniformly low (< 20%) in PVN-projecting neurons. Pre-conditioning hyperpolarization removed IKA inactivation and attenuated ST-evoked spike generation along PVN but not CVLM pathways. Thus, multiple differences in structure, organization, synaptic transmission and ion channel expression tune the overall fidelity of afferent signals that reach these destinations. PMID:17510187

  19. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons.

    PubMed

    Orellana, D I; Quintanilla, R A; Gonzalez-Billault, C; Maccioni, R B

    2005-11-01

    Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.

  20. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    PubMed

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.

  1. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    PubMed Central

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  2. Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury.

    PubMed

    D'Orsi, Beatrice; Engel, Tobias; Pfeiffer, Shona; Nandi, Saheli; Kaufmann, Thomas; Henshall, David C; Prehn, Jochen H M

    2016-04-20

    Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activities in vitro and in vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins. Copyright © 2016 the authors 0270-6474/16/364564-15$15.00/0.

  3. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders.

    PubMed

    Paul, Evan D; Lowry, Christopher A

    2013-12-01

    Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.

  4. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  5. Dynamic change of SGK expression and its role in neuron apoptosis after traumatic brain injury.

    PubMed

    Wu, Xinmin; Mao, Hui; Liu, Jiao; Xu, Jian; Cao, Jianhua; Gu, Xingxing; Cui, Gang

    2013-01-01

    Activation of specific signaling pathways in response to mechanical trauma causes delayed neuronal apoptosis; GSK-3β/β-catenin signaling plays a critical role in the apoptosis of neurons in CNS diseases, SGK was discovered as a regulator of GSK-3β/β-catenin pathway, The goal of this study was to determine if the mechanism of cell death or survival mediated by the SGK/GSK-3β/β-catenin pathway is involved in a rat model of TBI. Here, an acute traumatic brain injury model was applied to investigate the expression change and possible roles of SGK, Expression of SGK, and total-GSK-3β, phospho-GSK3β on ser-9, beta-catenin, and caspase-3 were examined by immunohistochemistry and Western blot analysis. Double immunofluorescent staining was used to observe the SGK localizations. Si-RNA was performed to identify whether SGK regulates neuron apoptosis via GSK-3β/β-catenin pathway, ultimately inhibit caspase-3 activation. Temporally, SGK expression showed an increase pattern after TBI and reached a peak at day 3. Spatially, SGK was widely expressed in the neuron, rarely in astrocytes and oligodendrocytes; in addition, the expression patterns of active caspase-3 and phospho-GSK3β were parallel with that of SGK, at the same time, the expression of β-catenin shows similarity with SGK. In vitro, to further investigate the function of SGK, a neuronal cell line PC12 was employed to establish an apoptosis model. We analyzed the association of SGK with apoptosis on PC12 cells by western blot, immunofluorescent labeling and siRNA. the results implied that SGK plays an important role in neuron apoptosis via the regulation of GSK3β/β-catenin signaling pathway; ultimately inhibit caspase-3 activation. Taken together, we inferred traumatic brain injury induced an upregulation of SGK in the central nervous system, which show a protective role in neuron apoptosis.

  6. Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system

    PubMed Central

    Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.

    2012-01-01

    Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767

  7. Gluconeogenesis: An ancient biochemical pathway with a new twist

    PubMed Central

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-01-01

    ABSTRACT Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects—and possibly in some vertebrates—gluconeogenesis may be used as a means of neuronal signaling. PMID:28121487

  8. Gluconeogenesis: An ancient biochemical pathway with a new twist.

    PubMed

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-07-03

    Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects-and possibly in some vertebrates-gluconeogenesis may be used as a means of neuronal signaling.

  9. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development

    PubMed Central

    Di Bonito, Maria; Studer, Michèle

    2017-01-01

    During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways. PMID:28469562

  10. Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

    PubMed Central

    de Kock, Christiaan P. J.; Bruno, Randy M.; Ramirez, Alejandro; Meyer, Hanno S.; Dercksen, Vincent J.; Helmstaedter, Moritz; Sakmann, Bert

    2012-01-01

    Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution. PMID:22089425

  11. A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt dependent pathways.

    PubMed

    Tang, G; Dong, X; Huang, X; Huang, X-J; Liu, H; Wang, Y; Ye, W-C; Shi, L

    2015-09-10

    Neuronal differentiation is a critical developmental process that determines accurate synaptic connection and circuit wiring. A wide variety of naturally occurring compounds have been shown as promising drug leads for the generation and differentiation of neurons. Here we report that a diarylheptanoid from the plant Alpinia officinarum, 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one (Cpd 1), exhibited potent activities in neuronal differentiation and neurite outgrowth. Cpd 1 induced differentiation of neuroblastoma Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of cultured hippocampal neurons. Moreover, Cpd 1 promoted neurite extension in both Neuro-2a cells and neurons. We showed that the effects of Cpd 1 on neuronal differentiation and neurite growth were specifically dependent on the activation of extracellular signal-regulated kinases (ERKs) and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Importantly, intraperitoneal administration of Cpd 1 promoted the differentiation of new-born progenitor cells into mature neurons in the adult hippocampal dentate gyrus. Collectively, this study identifies a naturally occurring diarylheptanoid with beneficial effects on neuronal differentiation and neurite outgrowth in vitro and in vivo. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. The role of Drosophila TNF Eiger in developmental and damage-induced neuronal apoptosis.

    PubMed

    Shklover, Jeny; Levy-Adam, Flonia; Kurant, Estee

    2015-04-02

    Eiger, the sole Drosophila TNF-alpha homolog, causes ectopic apoptosis through JNK pathway activation. Yet, its role in developmental apoptosis remains unclear. eiger mutant flies are viable and fertile but display compromised elimination of oncogenic cells and extracellular bacteria. Here we show that Eiger, specifically expressed in embryonic neurons and glia, is not involved in developmental neuronal apoptosis or in apoptotic cell clearance. Instead, we provide evidence that Eiger is required for damage-induced apoptosis in the embryonic CNS through regulation of the pro-apoptotic gene hid independently of the JNK pathway. Our study thus reveals a new requirement for Eiger in eliminating damaged cells during development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Sensory specificity and speciation: a potential neuronal pathway for host fruit odour discrimination in Rhagoletis pomonella

    PubMed Central

    Batra, Srishti; Ramaswamy, Sree Subha; Feder, Jeffrey L.

    2016-01-01

    Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis. PMID:28003447

  14. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer

    PubMed Central

    Vizin, Tjasa; Kos, Janko

    2015-01-01

    Background Gamma-enolase, known also as neuron-specific enolase (NSE), is an enzyme of the glycolytic pathway, which is expressed predominantly in neurons and cells of the neuroendocrine system. As a tumour marker it is used in diagnosis and prognosis of cancer; however, the mechanisms enrolling it in malignant progression remain elusive. As a cytoplasmic enzyme gamma-enolase is involved in increased aerobic glycolysis, the main source of energy in cancer cells, supporting cell proliferation. However, different cellular localisation at pathophysiological conditions, proposes other cellular engagements. Conclusions The C-terminal part of the molecule, which is not related to glycolytic pathway, was shown to promote survival of neuronal cells by regulating neuronal growth factor receptor dependent signalling pathways, resulting also in extensive actin cytoskeleton remodelling. This additional function could be important also in cancer cells either to protect cells from stressful conditions and therapeutic agents or to promote tumour cell migration and invasion. Gamma-enolase might therefore have a multifunctional role in cancer progression: it supports increased tumour cell metabolic demands, protects tumour cells from stressful conditions and promotes their invasion and migration. PMID:26401126

  15. Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    PubMed Central

    Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter

    2010-01-01

    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723

  16. Intricate interplay between astrocytes and motor neurons in ALS

    PubMed Central

    Phatnani, Hemali P.; Guarnieri, Paolo; Friedman, Brad A.; Carrasco, Monica A.; Muratet, Michael; O’Keeffe, Sean; Nwakeze, Chiamaka; Pauli-Behn, Florencia; Newberry, Kimberly M.; Meadows, Sarah K.; Tapia, Juan Carlos; Myers, Richard M.; Maniatis, Tom

    2013-01-01

    ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1G93A (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-β signaling pathways. PMID:23388633

  17. In search for a gold-standard procedure to count motor neurons in the spinal cord.

    PubMed

    Ferrucci, Michela; Lazzeri, Gloria; Flaibani, Marina; Biagioni, Francesca; Cantini, Federica; Madonna, Michele; Bucci, Domenico; Limanaqi, Fiona; Soldani, Paola; Fornai, Francesco

    2018-03-14

    Counting motor neurons within the spinal cord and brainstem represents a seminal step to comprehend the anatomy and physiology of the final common pathway sourcing from the CNS. Motor neuron loss allows to assess the severity of motor neuron disorders while providing a tool to assess disease modifying effects. Counting motor neurons at first implies gold standard identification methods. In fact, motor neurons may occur within mixed nuclei housing a considerable amount of neurons other than motor neurons. In the present review, we analyse various approaches to count motor neurons emphasizing both the benefits and bias of each protocol. A special emphasis is placed on discussing automated stereology. When automated stereology does not take into account site-specificity and does not distinguish between heterogeneous neuronal populations, it may confound data making such a procedure a sort of "guide for the perplex". Thus, if on the one hand automated stereology improves our ability to quantify neuronal populations, it may also hide false positives/negatives in neuronal counts. For instance, classic staining for antigens such as SMI-32, SMN and ChAT, which are routinely considered to be specific for motor neurons, may also occur in other neuronal types of the spinal cord. Even site specificity within Lamina IX may be misleading due to neuronal populations having a size and shape typical of motor neurons. This is the case of spinal border cells, which often surpass the border of Lamina VII and intermingle with motor neurons of Lamina IX. The present article discusses the need to join automated stereology with a dedicated knowledge of each specific neuroanatomical setting.

  18. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    PubMed

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. NF-κB signaling pathways: role in nervous system physiology and pathology.

    PubMed

    Mincheva-Tasheva, Stefka; Soler, Rosa M

    2013-04-01

    Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor-κB (NF-κB). The activity of this pathway leads to the nuclear translocation of the NF-κB transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-κB transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system.

  1. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway.

    PubMed

    Yang, Hai Jie; Ma, Shuang Ping; Ju, Fei; Zhang, Ya Ping; Li, Zhi Chao; Zhang, Bin Bin; Lian, Jun Jiang; Wang, Lei; Cheng, Bin Feng; Wang, Mian; Feng, Zhi Wei

    2016-12-01

    NG2-expressing neural progenitors can produce neurons in the central nervous system, providing a potential cell resource of therapy for neurological disorders. However, the mechanism underlying neuronal differentiation of NG2 cells remains largely unknown. In this report, we found that a thrombospondin (TSP) family member, TSP4, is involved in the neuronal differentiation of NG2 cells. When TSP4 was overexpressed, NG2 cells underwent spontaneous neuronal differentiation, as demonstrated by the induction of various neuronal differentiation markers such as NeuN, Tuj1, and NF200, at the messenger RNA and protein levels. In contrast, TSP4 silencing had an opposite effect on the expression of neuronal differentiation markers in NG2 cells. Next, the signaling pathway responsible for TSP4-mediated NG2 cell differentiation was investigated. We found that ERK but not p38 and AKT signaling was affected by TSP4 overexpression. Furthermore, when ERK signaling was blocked by the inhibitor U0126, the neuronal marker expression of NG2 cells was substantially increased. Together, these findings suggested that TSP4 promoted neuronal differentiation of NG2 cells by inhibiting ERK/MAPK signaling, revealing a novel role of TSP4 in cell fate specification of NG2 cells.

  2. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway.

    PubMed

    Yan, Yong-Xin; Zhao, Jun-Xia; Han, Shuo; Zhou, Na-Jing; Jia, Zhi-Qiang; Yao, Sheng-Jie; Cao, Cui-Li; Wang, Yan-Ling; Xu, Yan-Nan; Zhao, Juan; Yan, Yun-Li; Cui, Hui-Xian

    2015-12-01

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality. Copyright © 2017, American Association for the Advancement of Science.

  4. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  5. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    PubMed Central

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  6. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    PubMed Central

    Almeida, Sandra; Zhang, Zhijun; Coppola, Giovanni; Mao, Wenjie; Futai, Kensuke; Karydas, Anna; Geschwind, Michael D.; Tartaglia, M. Carmela; Gao, Fuying; Gianni, Davide; Sena-Esteves, Miguel; Geschwind, Daniel H.; Miller, Bruce L.; Farese, Robert V.; Gao, Fen-Biao

    2012-01-01

    SUMMARY The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell (iPSC) lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel GRN mutation (PGRN S116X). In neurons and microglia differentiated from PGRN S116X iPSCs, the levels of intracellular and secreted progranulin were reduced, establishing patient-specific cellular models of progranulin haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the PI3K and MAPK pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by progranulin expression. Our findings identify cell-autonomous, reversible defects in patient neurons with progranulin deficiency and provide a new model for studying progranulin-dependent pathogenic mechanisms and testing potential therapies. PMID:23063362

  7. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense

    PubMed Central

    2011-01-01

    Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation. PMID:21270352

  8. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  9. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans.

    PubMed

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.

  10. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans

    PubMed Central

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939

  11. Wnt transmembrane signaling and long-term spatial memory

    PubMed Central

    Tabatadze, Nino; Tomas, Caroline; McGonigal, Rhona; Lin, Brian; Schook, Andrew; Routtenberg, Aryeh

    2011-01-01

    Transmembrane signaling mechanisms are critical for regulating the plasticity of neuronal connections underlying the establishment of long-lasting memory (e.g., Linden and Routtenberg, 1989, Brain Res Rev. 14: 279–296; Sossin, 1996, Trends Neurosci 19: 215–218; Mayr and Montminy, 2001, Nat Rev Mol Cell Biol. 2: 599–609; Chen et al., 2011, Nature 469: 491–497). One signaling mechanism that has received surprisingly little attention in this regard is the well-known Wnt transmembrane signaling pathway even though this pathway in the adult plays a significant role, for example, in postsynaptic dendritic spine morphogenesis and presynaptic terminal neurotransmitter release (Inestrosa and Arenas, 2010, Nature Rev Neurosci 11: 77–86). The present report now provides the first evidence of Wnt signaling in spatial information storage processes. Importantly, this Wnt participation is specific and selective. Thus, spatial, but not cued, learning in a water maze selectively elevates the levels in hippocampus of Wnt 7 and Wnt 5a, but not the Wnt 3 isoform, indicating behavioral selectivity and isoform specificity. Wnt 7 elevation is subfield-specific: granule cells show an increase with no detectable change in CA3 neurons. Wnt 7 elevation is temporally specific: increased Wnt signaling is not observed during training, but is seen 7 days and, unexpectedly, 30 days later. If the Wnt elevation after learning is activity-dependent, then it may be possible to model this effect in primary hippocampal neurons in culture. Here we evaluate the consequence of potassium or glutamate depolarization on Wnt signaling. This represents, to our knowledge, the first demonstration of an activation-dependent elevation of Wnt levels. Additionally, the novel finding emerged of an increased number of Wnt-stained puncta in neuritis suggestive of trafficking from the cell body to neuronal processes, probably dendrites. It is proposed that Wnt signaling pathways, both canonical and non-canonical, regulate long-term information storage in a behavioral-, cellular- and isoform-specific manner. PMID:22180023

  12. Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity

    PubMed Central

    Kleberg, Florence I.; Fukai, Tomoki; Gilson, Matthieu

    2014-01-01

    Spike-timing-dependent plasticity (STDP) has been well established between excitatory neurons and several computational functions have been proposed in various neural systems. Despite some recent efforts, however, there is a significant lack of functional understanding of inhibitory STDP (iSTDP) and its interplay with excitatory STDP (eSTDP). Here, we demonstrate by analytical and numerical methods that iSTDP contributes crucially to the balance of excitatory and inhibitory weights for the selection of a specific signaling pathway among other pathways in a feedforward circuit. This pathway selection is based on the high sensitivity of STDP to correlations in spike times, which complements a recent proposal for the role of iSTDP in firing-rate based selection. Our model predicts that asymmetric anti-Hebbian iSTDP exceeds asymmetric Hebbian iSTDP for supporting pathway-specific balance, which we show is useful for propagating transient neuronal responses. Furthermore, we demonstrate how STDPs at excitatory–excitatory, excitatory–inhibitory, and inhibitory–excitatory synapses cooperate to improve the pathway selection. We propose that iSTDP is crucial for shaping the network structure that achieves efficient processing of synchronous spikes. PMID:24847242

  13. Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

    PubMed Central

    Shevtsova, Natalia A; Talpalar, Adolfo E; Markin, Sergey N; Harris-Warrick, Ronald M; Kiehn, Ole; Rybak, Ilya A

    2015-01-01

    Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits. Key points Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V0D and excitatory V0V CINs and ipsilaterally projecting excitatory V2a interneurons were shown to secure left–right alternation at different locomotor speeds. We have developed computational models of neuronal circuits in the spinal cord that include left and right rhythm-generating centres interacting bilaterally via three parallel pathways mediated by V0D, V2a–V0V and V3 neuron populations. The models reproduce the experimentally observed speed-dependent left–right coordination in normal mice and the changes in coordination seen in mutants lacking specific neuron classes. The models propose an explanation for several experimental results and provide insights into the organization of the spinal locomotor network and parallel CIN pathways involved in gait control at different locomotor speeds. PMID:25820677

  14. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee

    PubMed Central

    Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level. PMID:29351552

  15. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.

    PubMed

    Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees

    2018-06-07

    The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.

  16. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons.

    PubMed

    Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B

    2016-07-06

    AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  18. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice

    PubMed Central

    Beitzel, Christy S.; Houck, Brenda D.; Lewis, Samantha M.

    2017-01-01

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. PMID:28916520

  19. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice.

    PubMed

    Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L

    2017-10-18

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. Copyright © 2017 the authors 0270-6474/17/3710085-12$15.00/0.

  20. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  1. The c-FOS Protein Immunohistological Detection: A Useful Tool As a Marker of Central Pathways Involved in Specific Physiological Responses In Vivo and Ex Vivo

    PubMed Central

    Perrin-Terrin, Anne-Sophie; Jeton, Florine; Pichon, Aurelien; Frugière, Alain; Richalet, Jean-Paul; Bodineau, Laurence; Voituron, Nicolas

    2016-01-01

    Many studies seek to identify and map the brain regions involved in specific physiological regulations. The proto-oncogene c-fos, an immediate early gene, is expressed in neurons in response to various stimuli. The protein product can be readily detected with immunohistochemical techniques leading to the use of c-FOS detection to map groups of neurons that display changes in their activity. In this article, we focused on the identification of brainstem neuronal populations involved in the ventilatory adaptation to hypoxia or hypercapnia. Two approaches were described to identify involved neuronal populations in vivo in animals and ex vivo in deafferented brainstem preparations. In vivo, animals were exposed to hypercapnic or hypoxic gas mixtures. Ex vivo, deafferented preparations were superfused with hypoxic or hypercapnic artificial cerebrospinal fluid. In both cases, either control in vivo animals or ex vivo preparations were maintained under normoxic and normocapnic conditions. The comparison of these two approaches allows the determination of the origin of the neuronal activation i.e., peripheral and/or central. In vivo and ex vivo, brainstems were collected, fixed, and sliced into sections. Once sections were prepared, immunohistochemical detection of the c-FOS protein was made in order to identify the brainstem groups of cells activated by hypoxic or hypercapnic stimulations. Labeled cells were counted in brainstem respiratory structures. In comparison to the control condition, hypoxia or hypercapnia increased the number of c-FOS labeled cells in several specific brainstem sites that are thus constitutive of the neuronal pathways involved in the adaptation of the central respiratory drive. PMID:27167092

  2. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly.

    PubMed

    Heinze, Stanley; Florman, Jeremy; Asokaraj, Surainder; El Jundi, Basil; Reppert, Steven M

    2013-02-01

    Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX. Copyright © 2012 Wiley Periodicals, Inc.

  3. Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration

    PubMed Central

    Byrne, Alexandra B.; Walradt, Trent; Gardner, Kathryn E.; Hubbert, Austin; Reinke, Valerie; Hammarlund, Marc

    2014-01-01

    Summary The ability of injured axons to regenerate declines with age yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2’s function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron specific, and genetically regulated process. In addition, we found that daf-18/PTEN inhibits regeneration independently of age and FOXO signaling, via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and is required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons, and that this mechanism is independent of PTEN and TOR. PMID:24440228

  4. Do the Images of Neuronal Pathways in the Human Central Nervous System Show Feed-back? A Comparative Study in Fifteen Countries.

    ERIC Educational Resources Information Center

    Clement, Pierre; Mouelhi, Lassaad; Kochkar, Momahed; Valanides, Nicos; Nisiforou, Olia; Thiaw, Seyni Mame; Ndiaye, Valdiodio; Jeanbart, Paula; Horvath, Daniel; Ferreira, Claudia; Carvalho, Graca S.

    2010-01-01

    In the human brain, the neuronal pathways are networks which support our learning, memory and thought, and which work with permanent feedback. However, only 19% of illustrations of these neuronal pathways, in the 55 analysed school textbooks coming from 15 countries, were showing feedbacks. The neuronal pathways related to movements were generally…

  5. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    PubMed

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  6. Control of arousal by the orexin neurons

    PubMed Central

    Alexandre, Chloe; Andermann, Mark L; Scammell, Thomas E

    2013-01-01

    The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins. PMID:23683477

  7. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal andmore » glial cultures, and protects neurons against glutamate-induced excitotoxicity.« less

  8. Neuronal pathway finding: from neurons to initial neural networks.

    PubMed

    Roscigno, Cecelia I

    2004-10-01

    Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.

  9. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway.

    PubMed

    Maejima, Yuko; Sedbazar, Udval; Suyama, Shigetomo; Kohno, Daisuke; Onaka, Tatsushi; Takano, Eisuke; Yoshida, Natsu; Koike, Masato; Uchiyama, Yasuo; Fujiwara, Ken; Yashiro, Takashi; Horvath, Tamas L; Dietrich, Marcelo O; Tanaka, Shigeyasu; Dezaki, Katsuya; Oh-I, Shinsuke; Hashimoto, Koushi; Shimizu, Hiroyuki; Nakata, Masanori; Mori, Masatomo; Yada, Toshihiko

    2009-11-01

    The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.

  10. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling.

    PubMed

    Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min

    2017-05-01

    Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.

  11. PGC-1α/ERRα-Sirt3 Pathway Regulates DAergic Neuronal Death by Directly Deacetylating SOD2 and ATP Synthase β

    PubMed Central

    Zhang, Xuefei; Ren, Xiaoqing; Zhang, Qi; Li, Zheyi; Ma, Shuaipeng; Bao, Jintao; Li, Zeyang; Bai, Xue; Zheng, Liangjun; Zhang, Zhong; Shang, Shujiang; Zhang, Chen; Wang, Chuangui; Cao, Liu

    2016-01-01

    Abstract Aims: Parkinson's disease (PD) heavily affects humans and little is known about its cause and pathogenesis. Sirtuin 3 (Sirt3) plays a key role in regulating mitochondrial dysfunction, which is the main cause of DAergic neuronal loss in PD. We investigated the mechanisms of neuroprotective role of Sirt3 in DAergic neuronal survival. Results: Sirt3 was reduced in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated neurons with its overexpression being neuroprotective. We identified that Sirt3 interacted with manganese superoxide dismutase (SOD2) and adenosine triphosphate (ATP) synthase β and modulated their activities by deacetylating SOD2 (K130) and ATP synthase β (K485) to prevent reactive oxygen species accumulation and ATP depletion, and to alleviate DAergic neuronal death upon MPTP treatment. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) interacted with estrogen-related receptor alpha (ERRα) that bound to the Sirt3 promoter as its transcription factor to regulate Sirt3 expression and DAergic neuronal death. In the mouse midbrain, MPTP administration led to the loss of PGC-1α and Sirt3, high acetylation level of SOD2 and ATP synthase β, and the specific loss of DAergic neurons, while Sirt3 overexpression could protect against DAergic neuronal loss. Sirt3 knockout mice exhibited more sensitive and more DAergic neuronal loss to MPTP treatment. Innovation: The study provides new insights into a critical PGC-1α/ERRα-Sirt3 pathway, linking regulation of mitochondrial protein acetylation and DAergic neuronal death in PD pathogenesis, which provide a potential therapeutic strategy and target in PD treatment. Conclusion: These results provide a vital PGC-1α/ERRα-Sirt3 pathway that protects against DAergic neuronal death by directly deacetylating SOD2 (K130) and ATP synthase β (K485) in PD. Antioxid. Redox Signal. 24, 312–328. PMID:26421366

  12. Formation of neuronal pathways in the imaginal discs of Drosophila melanogaster.

    PubMed

    Jan, Y N; Ghysen, A; Christoph, I; Barbel, S; Jan, L Y

    1985-09-01

    We have followed the formation of neuronal pathways in different imaginal discs of Drosophila. The pattern is highly reproducible for a given disc type but distinct for each type of discs: in leg discs, several neurons are present before metamorphosis and provide two major pathways that are joined by later neurons; in the wing and haltere discs, a few pairs of neurons appear after the onset of metamorphosis and pioneer the major pathways; in antenna discs, no pioneers are detected before massive neuronal differentiation begins. The mechanisms used for axonal guidance seem common to all discs, and the differences between discs can be accounted for simply by differences in the arrangement and birth time of pioneer neurons. Different subsets of pioneer neurons are deleted by mutations such as scute and engrailed.

  13. Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons.

    PubMed

    Triana-Baltzer, Gallen B; Liu, Zhaoping; Gounko, Natalia V; Berg, Darwin K

    2008-09-01

    Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.

  14. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex

    PubMed Central

    Wagener, Robin J.; Witte, Mirko; Guy, Julien; Mingo-Moreno, Nieves; Kügler, Sebastian; Staiger, Jochen F.

    2016-01-01

    Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory “barrel” cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position. PMID:26564256

  15. Similar PDK1-AKT-mTOR pathway activation in balloon cells and dysmorphic neurons of type II focal cortical dysplasia with refractory epilepsy.

    PubMed

    Lin, Yuan-xiang; Lin, Kun; Kang, De-zhi; Liu, Xin-xiu; Wang, Xing-fu; Zheng, Shu-fa; Yu, Liang-hong; Lin, Zhang-ya

    2015-05-01

    Dysmorphic neurons and balloon cells constitute the neuropathological hallmarks of type II focal cortical dysplasias (FCDs) with refractory epilepsy. The genesis of these cells may be critical to the histological findings in type II FCD. Recent work has shown enhanced activation of the mTOR cascade in both balloon cells and dysmorphic neurons, suggesting a common pathogenesis for these two neuropathological hallmarks. A direct comparative analysis of balloon cells and dysmorphic neurons might identify a molecular link between balloon cells and dysmorphic neurons. Here, we addressed whether PDK1-AKT-mTOR activation differentiates balloon cells from dysmorphic neurons. We used immunohistochemistry with antibodies against phosphorylated (p)-PDK1 (Ser241), p-AKT (Thr308), p-AKT (Ser473), p-mTOR (Ser2448), p-P70S6K (Thr229), and p-p70S6 kinase (Thr389) in balloon cells compared with dysmorphic neurons. Strong or moderate staining for components of the PDK1-AKT-mTOR signaling pathway was observed in both balloon cells and dysmorphic neurons. However, only a few pyramidal neurons displayed weak staining in control group (perilesional neocortex and histologically normal neocortex). Additionally, p-PDK1 (Ser241) and p-AKT (Thr308) staining in balloon cells were stronger than in dysmorphic neurons, whereas p-P70S6K (Thr229) and p-p70S6 kinase (Thr389) staining in balloon cells was weaker than in dysmorphic neurons. In balloon cells, p-AKT (Ser473) and p-mTOR (Ser2448) staining was comparable with the staining in dysmorphic neurons. Our data support the previously suggested pathogenic relationship between balloon cells and dysmorphic neurons concerning activation of the PDK1-AKT-mTOR, which may play important roles in the pathogenesis of type II FCD. Differential expression of some components of the PDK1-AKT-mTOR pathway between balloon cells and dysmorphic neurons may result from cell-specific gene expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    PubMed

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  17. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia.

    PubMed

    Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu

    2016-06-13

    Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.

  18. Insulin-like Growth Factor 1 Rescues R28 Retinal Neurons from Apoptotic Death through ERK-mediated BimEL Phosphorylation Independent of Akt

    PubMed Central

    Kong, Dejuan; Gong, Lijie; Arnold, Edith; Shanmugam, Sumathi; Fort, Patrice E.; Gardner, Thomas W.; Abcouwer, Steven F.

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response. PMID:27511131

  19. A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development*

    PubMed Central

    Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo

    2011-01-01

    Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518

  20. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10

    PubMed Central

    Zheng, Qun; Schaefer, Anneliese M.; Nonet, Michael L.

    2011-01-01

    Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation. PMID:21115607

  1. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10.

    PubMed

    Zheng, Qun; Schaefer, Anneliese M; Nonet, Michael L

    2011-01-01

    Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.

  2. Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation

    PubMed Central

    Zhang, Jianyu; Ghosh, Debabrata; McIntyre, Cameron C.; Vitek, Jerrold L.

    2012-01-01

    Clinical evidence has suggested that subtle changes in deep brain stimulation (DBS) settings can have differential effects on bradykinesia and rigidity in patients with Parkinson's disease. In this study, we first investigated the degree of improvement in bradykinesia and rigidity during targeted globus pallidus DBS in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus macaques. Behavioral outcomes of DBS were then coupled with detailed, subject-specific computational models of neurons in the globus pallidus internus (GPi), globus pallidus externus (GPe), and internal capsule (IC) to determine which neuronal pathways when modulated with high-frequency electrical stimulation best correlate with improvement in motor symptoms. The modeling results support the hypothesis that multiple neuronal pathways can underlie the therapeutic effect of DBS on parkinsonian bradykinesia and rigidity. Across all three subjects, improvements in rigidity correlated most strongly with spread of neuronal activation into IC, driving a small percentage of fibers within this tract (<10% on average). The most robust effect on bradykinesia resulted from stimulating a combination of sensorimotor axonal projections within the GP, specifically at the site of the medial medullary lamina. Thus the beneficial effects of pallidal DBS for parkinsonian symptoms may occur from multiple targets within and near the target nucleus. PMID:22514292

  3. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans.

    PubMed

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2009-08-01

    G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.

  4. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain

    PubMed Central

    Imlach, Wendy L.; Bhola, Rebecca F.; Mohammadi, Sarasa A.; Christie, Macdonald J.

    2016-01-01

    The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain. PMID:27841371

  5. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase

    PubMed Central

    Qiu, Shenfeng; Anderson, Charles T.; Levitt, Pat; Shepherd, Gordon M. G.

    2011-01-01

    Local hyperconnectivity in the neocortex is a hypothesized pathophysiological state in autism spectrum disorder (ASD). MET, a receptor tyrosine kinase that regulates dendrite and spine morphogenesis, has been established as a risk gene for ASD. Here, we analyzed the synaptic circuit organization of identified pyramidal neurons in the anterior frontal cortex of mice with a dorsal pallium derived, conditional knockout (cKO) of Met. Synaptic mapping by glutamate uncaging identified layer 2/3 as the main source of local excitatory input to layer 5 projection neurons in controls. In both cKO and heterozygotes this pathway was stronger by a factor of ~2. This increase was both sub-layer and projection-class specific, restricted to corticostriatal neurons in upper layer 5B, and not neighboring corticopontine neurons. Paired recordings in cKO slices demonstrated increased unitary connectivity. We propose that excitatory hyperconnectivity in specific neocortical microcircuits constitutes a physiological basis for Met-mediated ASD risk. PMID:21490227

  6. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase.

    PubMed

    Qiu, Shenfeng; Anderson, Charles T; Levitt, Pat; Shepherd, Gordon M G

    2011-04-13

    Local hyperconnectivity in the neocortex is a hypothesized pathophysiological state in autism spectrum disorder (ASD). MET, a receptor tyrosine kinase that regulates dendrite and spine morphogenesis, has been established as a risk gene for ASD. Here, we analyzed the synaptic circuit organization of identified pyramidal neurons in the anterior frontal cortex of mice with a dorsal pallium-derived, conditional knock-out (cKO) of Met. Synaptic mapping by glutamate uncaging identified layer 2/3 as the main source of local excitatory input to layer 5 projection neurons in controls. In both cKO and heterozygotes, this pathway was stronger by a factor of approximately 2. This increase was both sublayer and projection-class specific, restricted to corticostriatal neurons in upper layer 5B and not neighboring corticopontine neurons. Paired recordings in cKO slices demonstrated increased unitary connectivity. We propose that excitatory hyperconnectivity in specific neocortical microcircuits constitutes a physiological basis for Met-mediated ASD risk.

  7. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway.

    PubMed

    Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2018-08-01

    Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic reticulum-associated degradation (ERAD) pathway and induce neuronal apoptosis through endoplasmic reticulum stress, which is mainly mediated by abnormal CDK5-regulated Tau phosphorylation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    PubMed

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Induction of apoptosis by thrombin in the cultured neurons of dorsal motor nucleus of the vagus.

    PubMed

    Wu, X; Zhang, W; Li, J-Y; Chai, B-X; Peng, J; Wang, H; Mulholland, M W

    2011-03-01

    A previous study demonstrated the presence of protease-activated receptor (PAR) 1 and 2 in the dorsal motor nucleus of vagus (DMV). The aim of this study is to characterize the effect of thrombin on the apoptosis of DMV neurons. The dorsal motor nucleus of vagus neurons were isolated from neonatal rat brainstems using micro-dissection and enzymatic digestion and cultured. Apoptosis of DMV neurons were examined in cultured neurons. Apoptotic neuron was examined by TUNEL and ELISA. Data were analyzed using anova and Student's t-test. Exposure of cultured DMV neurons to thrombin (0.1 to 10 U mL(-1)) for 24 h significantly increased apoptosis. Pretreatment of DMV neurons with hirudin attenuated the apoptotic effect of thrombin. Similar induction of apoptosis was observed for the PAR1 receptor agonist SFLLR, but not for the PAR3 agonist TFRGAP, nor for the PAR4 agonist YAPGKF. Protease-activated receptors 1 receptor antagonist Mpr(Cha) abolished the apoptotic effect of thrombin, while YPGKF, a specific antagonist for PAR4, demonstrated no effect. After administration of thrombin, phosphorylation of JNK and P38 occurred as early as 15 min, and remained elevated for up to 45 min. Pretreatment of DMV neurons with SP600125, a specific inhibitor for JNK, or SB203580, a specific inhibitor for P38, significantly inhibited apoptosis induced by thrombin. Thrombin induces apoptosis in DMV neurons through a mechanism involving the JNK and P38 signaling pathways. © 2010 Blackwell Publishing Ltd.

  10. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    PubMed Central

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  11. The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing

    PubMed Central

    Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan

    2017-01-01

    Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014

  12. Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus.

    PubMed

    Biro, Laszlo; Sipos, Eszter; Bruzsik, Biborka; Farkas, Imre; Zelena, Dora; Balazsfi, Diana; Toth, Mate; Haller, Jozsef

    2018-04-25

    An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles. SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections. Copyright © 2018 the authors 0270-6474/18/384065-11$15.00/0.

  13. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    PubMed

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Splicing factor NSSR1 reduces neuronal injury after mouse transient global cerebral ischemia.

    PubMed

    Qi, Yao; Li, Ya; Cui, Shi-Chao; Zhao, Jing-Jing; Liu, Xiao-Yan; Ji, Chun-Xia; Sun, Feng-Yan; Xu, Ping; Chen, Xian-Hua

    2015-05-01

    This study focuses on the function of NSSR1, a splicing factor, in neuronal injury in the ischemic mouse brain using the transient global cerebral ischemic mouse model and the cultured cells treated with oxygen-glucose deprivation (OGD). The results showed that the cerebral ischemia triggers the expression of NSSR1 in hippocampal astrocytes, predominantly the dephosphorylated NSSR1 proteins, and the Exon3 inclusive NCAM-L1 variant and the Exon4 inclusive CREB variant. While in the hippocampus of astrocyte-specific NSSR1 conditional knockdown (cKD) mice, where cerebral ischemia no longer triggers NSSR1 expression in astrocytes, the expression of Exon3 inclusive NCAM-L1 variant and Exon4 inclusive CREB variant were no longer triggered as well. In addition, the injury of hippocampal neurons was more severe in astrocyte-specific NSSR1 cKD mice compared with in wild-type mice after brain ischemia. Of note, the culture media harvested from the astrocytes with overexpression of NSSR1 or the Exon3 inclusive NCAM-L1 variant, or Exon4 inclusive CREB variant were all able to reduce the neuronal injury induced by OGD. The results provide the evidence demonstrating that: (1) Splicing factor NSSR1 is a new factor involved in reducing ischemic injury. (2) Ischemia induces NSSR1 expression in astrocytes, not in neurons. (3) NSSR1-mediated pathway in astrocytes is required for reducing ischemic neuronal injury. (4) NCAM-L1 and CREB are probably mediators in NSSR1-mediated pathway. In conclusion, our results suggest for the first time that NSSR1 may provide a novel mechanism for reducing neuronal injury after ischemia, probably through regulation on alternative splicing of NCAM-L1 and CREB in astrocytes. © 2014 Wiley Periodicals, Inc.

  15. Control of arousal by the orexin neurons.

    PubMed

    Alexandre, Chloe; Andermann, Mark L; Scammell, Thomas E

    2013-10-01

    The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow

    PubMed Central

    Contreras-Hernández, E; Chávez, D; Rudomin, P

    2015-01-01

    Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a distributed network of dorsal horn neurones play a relevant role in the configuration of structured (non-random) patterns of functional connectivity that shape the interaction of sensory inputs with spinal reflex pathways subserving different functional tasks. PMID:25653206

  17. Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma.

    PubMed

    Raad, Mohamad; El Tal, Tala; Gul, Rukhsana; Mondello, Stefania; Zhang, Zhiqun; Boustany, Rose-Mary; Guingab, Joy; Wang, Kevin K; Kobeissy, Firas

    2012-12-01

    Several common degenerative mechanisms and mediators underlying the neuronal injury pathways characterize several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's disease, as well as brain neurotrauma. Such common ground invites the emergence of new approaches and tools to study the altered pathways involved in neural injury alongside with neuritogenesis, an intricate process that commences with neuronal differentiation. Achieving a greater understanding of the impaired pathways of neuritogenesis would significantly help in uncovering detailed mechanisms of axonal regeneration. Among the several agents involved in neuritogenesis are the Rho and Rho kinases (ROCKs), which constitute key integral points in the Rho/ROCK pathway that is known to be disrupted in multiple neuropathologies such as spinal cord injury, traumatic brain injury, and Alzheimer's disease. This in turn renders ROCK inhibition as a promising candidate for therapeutic targets for treatment of neurodegenerative diseases. Among the novel tools to investigate the mechanisms involved in a specific disorder is the use of neuroproteomics/systems biology approach, a growing subfield of bioinformatics aiming to study and establishing a global assessment of the entire neuronal proteome, addressing the dynamic protein changes and interactions. This review aims to examine recent updates regarding how neuroproteomics aids in the understanding of molecular mechanisms of activation and inhibition in the area of neurogenesis and how Rho/ROCK pathway/ROCK inhibitors, primarily Y-27632 and Fasudil compounds, are applied in biological settings, promoting neuronal survival and neuroprotection that has direct future implications in neurotrauma. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.

    PubMed

    Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W

    2012-01-01

    Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.

  19. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  20. Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease.

    PubMed

    Wang, Fengli; Yang, Yeran; Lin, Xiwen; Wang, Jiu-Qiang; Wu, Yong-Sheng; Xie, Wenjuan; Wang, Dandan; Zhu, Shu; Liao, You-Qi; Sun, Qinmiao; Yang, Yun-Gui; Luo, Huai-Rong; Guo, Caixia; Han, Chunsheng; Tang, Tie-Shan

    2013-09-15

    5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.

  1. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

    PubMed Central

    Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

    2016-01-01

    Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119

  2. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    PubMed Central

    Keefe, Kathleen M.; Sheikh, Imran S.; Smith, George M.

    2017-01-01

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord. PMID:28273811

  3. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury.

    PubMed

    Keefe, Kathleen M; Sheikh, Imran S; Smith, George M

    2017-03-03

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  4. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination.

    PubMed

    Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto

    2011-11-23

    The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.

  5. Canceling actions involves a race between basal ganglia pathways

    PubMed Central

    Schmidt, Robert; Leventhal, Daniel K.; Mallet, Nicolas; Chen, Fujun; Berke, Joshua D.

    2013-01-01

    Salient cues can prompt the rapid interruption of planned actions. It has been proposed that fast, reactive behavioral inhibition involves specific basal ganglia pathways, and we tested this by comparing activity in multiple rat basal ganglia structures during performance of a stop-signal task. Subthalamic nucleus (STN) neurons showed low-latency responses to Stop cues, irrespective of whether actions were successfully canceled or not. By contrast, neurons downstream in the substantia nigra pars reticulata (SNr) responded to Stop cues only in trials with successful cancellation. Recordings and simulations together indicate that this sensorimotor gating arises from the relative timing of two distinct inputs to neurons in the SNr dorsolateral “core” subregion: cue-related excitation from STN and movement-related inhibition from striatum. Our results support race models of action cancellation, with successful stopping requiring Stop cue information to be transmitted from STN to SNr before increased striatal input creates a point of no return. PMID:23852117

  6. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  7. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway.

    PubMed

    Wang, Pei; Xu, Tian-Ying; Guan, Yun-Feng; Tian, Wei-Wei; Viollet, Benoit; Rui, Yao-Cheng; Zhai, Qi-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2011-02-01

    Stroke is a leading cause of mortality and disability. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD)(+) biosynthesis and contributes to cell fate decisions. However, the role of Nampt in brain and stroke remains to be investigated. We used lentivirus-mediated Nampt overexpression and knockdown to manipulate Nampt expression and explore the effects of Nampt in neuronal survival on ischemic stress both in vivo and in vitro. We also used adenosine monophosphate (AMP)-activated kinase-α2 (AMPKα2) and silent mating type information regulation 2 homolog 1 (SIRT1) knockout mice to investigate the underlying mechanisms of Nampt neuroprotection. Nampt inhibition by a highly-specific Nampt inhibitor, FK866, aggravated brain infarction in experimentally cerebral ischemia rats, whereas Nampt overexpression in local brain and Nampt enzymatic product nicotinamide mononucleotide (NMN) reduced ischemia-induced cerebral injuries. Nampt overexpression and knockdown regulated neuron survival via the AMPK pathway. Neuroprotection of Nampt was abolished in AMPKα2(-/-) neurons. In neurons, Nampt positively modulated NAD(+) levels and thereby controlled SIRT1 activity. SIRT1 coprecipitated with serine/threonine kinase 11 (LKB1), an upstream kinase of AMPK, and promoted LKB1 deacetylation in neurons. Nampt-induced LKB1 deacetylation and AMPK activation disappeared in SIRT1(-/-) neurons. In contrast, Ca(2+) /calmodulin-dependent protein kinase kinase-β (CaMKK-β), another upstream kinase of AMPK, was not involved in the neuroprotection of Nampt. More important, Nampt overexpression-induced neuroprotection was abolished in SIRT1(+/-) and AMPKα2(-/-) mice. Our findings reveal that Nampt protects against ischemic stroke through rescuing neurons from death via the SIRT1-dependent AMPK pathway and indicate that Nampt is a new therapeutic target for stroke. Copyright © 2011 American Neurological Association.

  8. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon

    2008-04-01

    The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.

  9. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice

    PubMed Central

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A.; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J.; Chan, Lawrence

    2015-01-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity. PMID:26375425

  10. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice.

    PubMed

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Chan, Lawrence; Xu, Yong

    2015-12-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity.

  11. Alternative Splicing in Neurogenesis and Brain Development.

    PubMed

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  12. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    PubMed

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  13. Decoding the ubiquitous role of microRNAs in neurogenesis.

    PubMed

    Nampoothiri, Sreekala S; Rajanikant, G K

    2017-04-01

    Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.

  14. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in the amount of excitatory neurons that migrate along the radial scaffold. PMID:26834572

  15. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  16. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.

    PubMed

    Sessa, Alessandro; Ciabatti, Ernesto; Drechsel, Daniela; Massimino, Luca; Colasante, Gaia; Giannelli, Serena; Satoh, Takashi; Akira, Shizuo; Guillemot, Francois; Broccoli, Vania

    2017-06-01

    The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Cell Class-Dependent Intracortical Connectivity and Output Dynamics of Layer 6 Projection Neurons of the Rat Primary Visual Cortex.

    PubMed

    Cotel, Florence; Fletcher, Lee N; Kalita-de Croft, Simon; Apergis-Schoute, John; Williams, Stephen R

    2018-07-01

    Neocortical information processing is powerfully influenced by the activity of layer 6 projection neurons through control of local intracortical and subcortical circuitry. Morphologically distinct classes of layer 6 projection neuron have been identified in the mammalian visual cortex, which exhibit contrasting receptive field properties, but little information is available on their functional specificity. To address this we combined anatomical tracing techniques with high-resolution patch-clamp recording to identify morphological and functional distinct classes of layer 6 projection neurons in the rat primary visual cortex, which innervated separable subcortical territories. Multisite whole-cell recordings in brain slices revealed that corticoclaustral and corticothalamic layer 6 projection neurons exhibited similar somatically recorded electrophysiological properties. These classes of layer 6 projection neurons were sparsely and reciprocally synaptically interconnected, but could be differentiated by cell-class, but not target-cell-dependent rules of use-dependent depression and facilitation of unitary excitatory synaptic output. Corticoclaustral and corticothalamic layer 6 projection neurons were differentially innervated by columnar excitatory circuitry, with corticoclaustral, but not corticothalamic, neurons powerfully driven by layer 4 pyramidal neurons, and long-range pathways conveyed in neocortical layer 1. Our results therefore reveal projection target-specific, functionally distinct, streams of layer 6 output in the rodent neocortex.

  18. nocte Is Required for Integrating Light and Temperature Inputs in Circadian Clock Neurons of Drosophila.

    PubMed

    Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf

    2018-05-21

    Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Striatal Mechanisms Underlying Movement, Reinforcement, and Punishment

    PubMed Central

    Kravitz, Alexxai V.; Kreitzer, Anatol C.

    2013-01-01

    Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion. PMID:22689792

  20. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons.

    PubMed

    Wang, Yan; Zhang, Heng; Shi, Meng; Liou, Yih-Cherng; Lu, Lei; Yu, Fengwei

    2017-05-15

    Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg). © 2017. Published by The Company of Biologists Ltd.

  1. Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development

    PubMed Central

    Chen, Fei; Zhou, Yu; Qi, Yingchuan B.; Khivansara, Vishal; Li, Hairi; Chun, Sang Young; Kim, John K.; Fu, Xiang-Dong; Jin, Yishi

    2015-01-01

    Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system. PMID:26588990

  2. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.

    PubMed

    Genabai, Naresh K; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A; Gangwani, Laxman

    2015-12-15

    Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Activation of G-protein-coupled receptor 30 increases T-type calcium currents in trigeminal ganglion neurons via the cholera toxin-sensitive protein kinase A pathway.

    PubMed

    Yue, Jingxia; Zhang, Yi; Li, Xuemin; Gong, Shan; Tao, Jin; Jiang, Xinghong

    2014-11-01

    G protein-coupled receptor 30 (GPR30) is a seven transmembrane domain G protein coupled receptor. In our study, GPR30 expression was found in trigeminal ganglia (TG) in mice, detected by RT-PCR and western blotting. We examined the effects of GPR30 activation on T-type calcium channels using GPR30-specific compound 1 (G-1), a GPR30-selective agonist, in TG neurons and demonstrated that G-1 induced an increase in T-type calcium channel currents (T-currents) in TGs. Intracellular infusion of GDP-β-S and pre-treatment of the neurons with cholera toxin (CTX) blocked the effects of G-1, suggesting that the G(s)-protein was involved. Intracellular application of the protein kinase A (PKA) inhibitor PKI 6-22 or pretreatment of the neurons with H89 abolished G-1 -induced enhancement of T-currents in TG neurons. However, incubation with PKC inhibitor elicited no such effects. In conclusion, our study shows that activation of GPR30 by G-1 increases T-currents via the CTX-sensitive and PKA-dependent pathway.

  4. Neurogenic gene regulatory pathways in the sea urchin embryo.

    PubMed

    Wei, Zheng; Angerer, Lynne M; Angerer, Robert C

    2016-01-15

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo. © 2016. Published by The Company of Biologists Ltd.

  5. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells

    PubMed Central

    Koch, Jan Christoph; Tönges, Lars; Michel, Uwe; Bähr, Mathias; Lingor, Paul

    2014-01-01

    The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush. PMID:25249936

  6. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    PubMed Central

    2010-01-01

    Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons. PMID:20804625

  7. Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling.

    PubMed

    Song, Yonghee; Lee, Somyung; Jho, Eek-Hoon

    2018-06-08

    Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells. Copyright © 2018. Published by Elsevier Inc.

  8. Cell-autonomous inactivation of the Reelin pathway impairs adult neurogenesis in the hippocampus

    PubMed Central

    Teixeira, Catia M.; Kron, Michelle M.; Masachs, Nuria; Zhang, Helen; Lagace, Diane C.; Martinez, Albert; Reillo, Isabel; Duan, Xin; Bosch, Carles; Pujadas, Lluis; Brunso, Lucas; Song, Hongjun; Eisch, Amelia J.; Borrell, Victor; Howell, Brian W.; Parent, Jack M.; Soriano, Eduardo

    2012-01-01

    Adult hippocampal neurogenesis is thought to be essential for learning and memory and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of disabled-1 (Dab1), an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain- and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders. PMID:22933789

  9. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    PubMed

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2013-12-23

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  10. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans

    PubMed Central

    Russell, Joshua; Vidal-Gadea, Andrés G.; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T.

    2014-01-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  11. Mixed input to olfactory glomeruli from two subsets of ciliated sensory neurons does not impede relay neuron specificity in the crucian carp.

    PubMed

    Hansson, Kenth-Arne; Døving, Kjell B; Skjeldal, Frode M

    2015-10-01

    The consensus view of olfactory processing is that the axons of receptor-specific primary olfactory sensory neurons (OSNs) converge to a small subset of glomeruli, thus preserving the odour identity before the olfactory information is processed in higher brain centres. In the present study, we show that two different subsets of ciliated OSNs with different odorant specificities converge to the same glomeruli. In order to stain different ciliated OSNs in the crucian carp Carassius carassius we used two different chemical odorants, a bile salt and a purported alarm substance, together with fluorescent dextrans. The dye is transported within the axons and stains glomeruli in the olfactory bulb. Interestingly, the axons from the ciliated OSNs co-converge to the same glomeruli. Despite intermingled innervation of glomeruli, axons and terminal fields from the two different subsets of ciliated OSNs remained mono-coloured. By 4-6 days after staining, the dye was transported trans-synaptically to separately stained axons of relay neurons. These findings demonstrate that specificity of the primary neurons is retained in the olfactory pathways despite mixed innervation of the olfactory glomeruli. The results are discussed in relation to the emerging concepts about non-mammalian glomeruli. © 2015. Published by The Company of Biologists Ltd.

  12. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus

    PubMed Central

    Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N.; Beyer, Lisa A.; Swiderski, Donald L.; Kanicki, Ariane C.; Kabara, Lisa L.; Dolan, David F.; Shore, Susan E.; Raphael, Yehoash

    2016-01-01

    In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus. However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and cochlear nucleus neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879

  13. A neuronal pathway that controls sperm ejection and storage in female Drosophila.

    PubMed

    Lee, Kang-Min; Daubnerová, Ivana; Isaac, R Elwyn; Zhang, Chen; Choi, Sekyu; Chung, Jongkyeong; Kim, Young-Joon

    2015-03-16

    In polyandrous females, sperm storage permits competition between sperm of different mates, and in some species females influence the relative fertilization success of competing sperm in favor of a preferred mate [1, 2]. In female Drosophila melanogaster, sperm competition is strongly influenced by the timing of sperm ejection from the uterus [3, 4]. Understanding how female behavior influences sperm competition requires knowledge of the neuronal mechanisms controlling sperm retention and storage, which is currently lacking. Here, we show that D. melanogaster females eject male ejaculates from the uterus 1-6 hr after mating with a stereotypic behavior regulated by a brain signaling pathway composed of diuretic hormone 44 (Dh44), a neuropeptide related to vertebrate corticotropin-releasing factor (CRF), and its receptor, Dh44R1. Suppression of Dh44 signals in the brain expedites sperm ejection from the uterus, resulting in marked reduction of sperm in the storage organs and decreased fecundity, whereas enhancement of Dh44 signals delays sperm expulsion. The Dh44 function was mapped to six neurons located in the pars intercerebralis of the brain together with a small subset of Dh44R1 neurons that express the sex-specific transcription factor doublesex. This study identifies a neuronal pathway by which females can control sperm retention and storage and provides new insight into how the female might exercise post-copulatory sexual selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Spiking Models for Level-Invariant Encoding

    PubMed Central

    Brette, Romain

    2012-01-01

    Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals. PMID:22291634

  15. Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid.

    PubMed

    de Bittencourt Pasquali, Matheus Augusto; de Ramos, Vitor Miranda; Albanus, Ricardo D Oliveira; Kunzler, Alice; de Souza, Luis Henrinque Trentin; Dalmolin, Rodrigo Juliani Siqueira; Gelain, Daniel Pens; Ribeiro, Leila; Carro, Luigi; Moreira, José Cláudio Fonseca

    2016-01-01

    SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.

  16. Identification of 526 conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal microtubule homeostasis.

    PubMed

    Frédéric, Melissa Y; Lundin, Victor F; Whiteside, Matthew D; Cueva, Juan G; Tu, Domena K; Kang, S Y Catherine; Singh, Hansmeet; Baillie, David L; Hutter, Harald; Goodman, Miriam B; Brinkman, Fiona S L; Leroux, Michel R

    2013-01-01

    The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation.

  17. Cerebral Gluconeogenesis and Diseases.

    PubMed

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2016-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions.

  18. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    PubMed

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  19. Strain-specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice

    PubMed Central

    Neal, Kathleen B; Parry, Laura J; Bornstein, Joel C

    2009-01-01

    Serotonin (5-HT) powerfully affects small intestinal motility and 5-HT-immunoreactive (IR) neurones are highly conserved between species. 5-HT synthesis in central neurones and gastrointestinal mucosa depends on tissue-specific isoforms of the enzyme tryptophan hydroxylase (TPH). RT-PCR identified strain-specific expression of a polymorphism (1473C/G) of the tph2 gene in longitudinal muscle–myenteric plexus preparations of C57Bl/6 and Balb/c mice. The former expressed the high-activity C allele, the latter the low-activity G allele. Confocal microscopy was used to examine close contacts between 5-HT-IR varicosities and myenteric neurones immunoreactive for neuronal nitric oxide synthase (NOS) or calretinin in these two strains. Significantly more close contacts were identified to NOS- (P < 0.05) and calretinin-IR (P < 0.01) neurones in C57Bl/6 jejunum (NOS 1.6 ± 0.3, n= 52; calretinin 5.2 ± 0.4, n= 54), than Balb/c jejunum (NOS 0.9 ± 0.2, n= 78; calretinin 3.5 ± 0.3, n= 98). Propagating contractile complexes (PCCs) were identified in the isolated jejunum by constructing spatiotemporal maps from video recordings of cannulated segments in vitro. These clusters of contractions usually arose towards the anal end and propagated orally. Regular PCCs were initiated at intraluminal pressures of 6 cmH2O, and abolished by tetrodotoxin (1 μm). Jejunal PCCs from C57Bl/6 mice were suppressed by a combination of granisetron (1 μm, 5-HT3 antagonist) and SB207266 (10 nm, 5-HT4 antagonist), but PCCs from Balb/c mice were unaffected. There were, however, no strain-specific differences in sensitivity of longitudinal muscle contractions to exogenous 5-HT or blockade of 5-HT3 and 5-HT4 receptors. These data associate a genetic difference with significant structural and functional consequences for enteric neural serotonergic pathways in the jejunum. PMID:19064621

  20. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17

    PubMed Central

    Yang, Yang; Cui, Yiting; Tang, Beisha

    2017-01-01

    Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment. SIGNIFICANCE STATEMENT Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both in vivo and in vitro evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment. PMID:28821675

  1. On the role of phosphatidylinositol 3-kinase, protein kinase b/Akt, and glycogen synthase kinase-3β in photodynamic injury of crayfish neurons and glial cells.

    PubMed

    Komandirov, Maxim A; Knyazeva, Evgeniya A; Fedorenko, Yulia P; Rudkovskii, Mikhail V; Stetsurin, Denis A; Uzdensky, Anatoly B

    2011-10-01

    Photodynamic treatment that causes intense oxidative stress and cell death is currently used in neurooncology. However, along with tumor cells, it may damage healthy neurons and glia. To study the involvement of signaling processes in photodynamic injury or protection of neurons and glia, we used crayfish mechanoreceptor consisting of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens. Application of specific inhibitors showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glia but its components, Akt and glycogen synthase kinase-3β, independently and cell specifically regulated death of neurons and glial cells. According to these data, necrosis in this system was a controlled but not a non-regulated cell death mode. The obtained results may be used for the search of pharmacological agents selectively modulating death and survival of normal neurons and glial cells during photodynamic therapy of brain tumors.

  2. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila.

    PubMed

    Poe, Amy R; Tang, Lingfeng; Wang, Bei; Li, Yun; Sapar, Maria L; Han, Chun

    2017-09-19

    Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila .

  3. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function

    PubMed Central

    Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill

    2014-01-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680

  4. Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice

    PubMed Central

    Manzke, Till; Niebert, Marcus; Koch, Uwe R.; Caley, Alex; Vogelgesang, Steffen; Hülsmann, Swen; Ponimaskin, Evgeni; Müller, Ulrike; Smart, Trevor G.; Harvey, Robert J.; Richter, Diethelm W.

    2010-01-01

    Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A–specific (5-HTR1A–specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A–GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A–GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction. PMID:20978350

  5. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  6. Dissecting Nck/Dock signaling pathways in Drosophila visual system.

    PubMed

    Rao, Yong

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.

  7. Dissecting Nck/Dock Signaling Pathways in Drosophila Visual System

    PubMed Central

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility. PMID:15951852

  8. Selective Activation of Basal Forebrain Cholinergic Neurons Attenuates Polymicrobial Sepsis-Induced Inflammation via the Cholinergic Anti-Inflammatory Pathway.

    PubMed

    Zhai, Qian; Lai, Dengming; Cui, Ping; Zhou, Rui; Chen, Qixing; Hou, Jinchao; Su, Yunting; Pan, Libiao; Ye, Hui; Zhao, Jing-Wei; Fang, Xiangming

    2017-10-01

    Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Animal research. University research laboratory. Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.

  9. Migration Pathways of Thalamic Neurons and Development of Thalamocortical Connections in Humans Revealed by Diffusion MR Tractography.

    PubMed

    Wilkinson, Molly; Kane, Tara; Wang, Rongpin; Takahashi, Emi

    2017-12-01

    The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    PubMed

    Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  11. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex

    PubMed Central

    Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction. PMID:29095902

  12. Contributions of the 12 neuron classes in the fly lamina to motion vision

    PubMed Central

    Tuthill, John C.; Nern, Aljoscha; Holtz, Stephen L.; Rubin, Gerald M.; Reiser, Michael B.

    2013-01-01

    SUMMARY Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type, and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing, and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. PMID:23849200

  13. Contributions of the 12 neuron classes in the fly lamina to motion vision.

    PubMed

    Tuthill, John C; Nern, Aljoscha; Holtz, Stephen L; Rubin, Gerald M; Reiser, Michael B

    2013-07-10

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Reassessment of the structural basis of the ascending arousal system

    PubMed Central

    Fuller, Patrick M.; Sherman, David; Pedersen, Nigel P.; Saper, Clifford B.; Lu, Jun

    2011-01-01

    The “ascending reticular activating system” theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencepahlic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first place large cell-body specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on EEG or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive, had a monotonous sub-1 Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent pre-coeruleus area. Cell specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, while the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process. PMID:21280045

  15. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

    PubMed

    Makeyev, Eugene V; Zhang, Jiangwen; Carrasco, Monica A; Maniatis, Tom

    2007-08-03

    Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.

  16. Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt.

    PubMed

    Kong, Dejuan; Gong, Lijie; Arnold, Edith; Shanmugam, Sumathi; Fort, Patrice E; Gardner, Thomas W; Abcouwer, Steven F

    2016-10-01

    Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Over-expressed Bax inhibitor 1 (BI-1) inhibits apoptosis of hippocampal neurons via endoplasmic reticulum IRE1-JNK pathway in rats with subarachnoid hemorrhage].

    PubMed

    Liu, Jiaxin; Zhou, Shuai; Qian, Xiying; Zhang, Yueting; Zhao, Jianhua

    2017-10-01

    Objective To investigate the protective effect of lentivirus-mediated BI-1 overexpression on hippocampal neurons in rats with subarachnoid hemorrhage (SAH) and the relationship with endoplasmic reticulum IRE1-JNK signaling pathway. Methods The lentivirus solution of BI-1 over-expression was injected into the brain of rats 24 hours before SAH rat model was established by intravascular puncture method. At 24 hours after modeling, the brain water content and neurological score of the rats were measured. The apoptosis of hippocampal neurons was detected by TUNEL assay. Western blotting was used to detect the expressions of BI-1 protein and endoplasmic reticulum stress (ERS) marker proteins GRP78 and IRE1. ERS in hippocampal neurons of the rats with SAH was intervened by IRE1α-specific inhibitor KIRA6, and then the protein expressions of p-IRE1, p-JNK, Bax, Bcl2 and caspase-3 were detected by Western blotting. Results BI-1 over-expression improved neurobehavioral score, decreased brain water content and hippocampal neuron apoptosis rate, and also down-regulated GRP78 and IRE1 protein levels in the rats with SAH. Both the interference of KIRA6 and the over-expression of BI-1 inhibited the expressions of p-IRE1, p-JNK, Bax and caspase-3, and promoted the expression of anti-apoptotic protein Bcl2. Conclusion Over-expression of BI-1 can inhibit the apoptosis of hippocampal neurons in rats with SAH by inhibiting the activation of ERS-mediated IRE1-JNK signaling pathway, thus ultimately attenuating the early brain injury following SAH.

  18. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats.

    PubMed

    Gordon, Rita; Podolski, Igor; Makarova, Ekaterina; Deev, Alexander; Mugantseva, Ekaterina; Khutsyan, Sergey; Sengpiel, Frank; Murashev, Arkady; Vorobyov, Vasily

    2017-01-01

    Primary memory impairments associated with increased level of amyloid-β (Aβ) in the brain have been shown to be linked, partially, with early pathological changes in the entorhinal cortex (EC) which spread on the whole limbic system. While the hippocampus is known to play a key role in learning and memory mechanisms, it is as yet unclear how its structures are involved in the EC pathology. In this study, changes in memory and neuronal morphology in male Wistar rats intrahippocampally injected with Aβ25-35 were correlated on days 14 and 45 after the injection to reveal specific cognitive-structural associations. The main focus was on the dentate gyrus (DG) and hippocampal areas of CA1 and CA3 because of their involvement in afferent flows from EC to the hippocampus through tri-synaptic (EC → DG → CA3 → CA1) and/or mono-synaptic (EC → CA1) pathways. Evident memory impairments were observed at both time points after Aβ25-35 injection. However, on day 14, populations of morphological intact neurons were decreased in CA3 and, drastically, in CA1, and the DG supramedial bundle was significantly damaged. On day 45, this bundle largely and CA1 neurons partially recovered, whereas CA3 neurons remained damaged. We suggest that Aβ25-35 primarily affects the tri-synaptic pathway, destroying the granular cells in the DG supramedial area and neurons in CA3 and, through the Schaffer collaterals, in CA1. Intrahippocampal pretreatment with hydrated fullerene C60 allows the neurons and their connections to survive the amyloidosis, thus supporting the memory mechanisms.

  19. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  20. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain.

    PubMed

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-02-24

    Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. © 2016. Published by The Company of Biologists Ltd.

  1. A PITX3-EGFP Reporter Line Reveals Connectivity of Dopamine and Non-dopamine Neuronal Subtypes in Grafts Generated from Human Embryonic Stem Cells.

    PubMed

    Niclis, Jonathan C; Gantner, Carlos W; Hunt, Cameron P J; Kauhausen, Jessica A; Durnall, Jennifer C; Haynes, John M; Pouton, Colin W; Parish, Clare L; Thompson, Lachlan H

    2017-09-12

    Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes.

    PubMed

    Annis, Ryan P; Swahari, Vijay; Nakamura, Ayumi; Xie, Alison X; Hammond, Scott M; Deshmukh, Mohanish

    2016-12-01

    Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival. © 2016 Federation of European Biochemical Societies.

  3. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less

  4. PI3K/AKT/mTOR Signaling Mediates Valproic Acid-Induced Neuronal Differentiation of Neural Stem Cells through Epigenetic Modifications.

    PubMed

    Zhang, Xi; He, Xiaosong; Li, Qingqing; Kong, Xuejian; Ou, Zhenri; Zhang, Le; Gong, Zhuo; Long, Dahong; Li, Jianhua; Zhang, Meng; Ji, Weidong; Zhang, Wenjuan; Xu, Liping; Xuan, Aiguo

    2017-05-09

    Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  6. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division.

    PubMed

    Oshikawa, Mio; Okada, Kei; Tabata, Hidenori; Nagata, Koh-Ichi; Ajioka, Itsuki

    2017-09-15

    Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance. © 2017. Published by The Company of Biologists Ltd.

  7. Homeostatic circuits selectively gate food cue responses in insular cortex

    PubMed Central

    Livneh, Yoav; Ramesh, Rohan n.; Burgess, christian R.; Levandowski, Kirsten M.; Madara, Joseph c.; Fenselau, henning; Goldey, Glenn J.; Diaz, Veronica E.; Jikomes, nick; Resch, Jon M.; Lowell, Bradford B.; Andermann, Mark L.

    2017-01-01

    Physiological needs bias perception and attention to relevant sensory cues. This process is ‘hijacked’ by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how ‘cognitive’ cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food- cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic ‘hunger neurons’ (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues. PMID:28614299

  8. Differential Phosphorylation of Smad1 Integrates BMP and Neurotrophin Pathways through Erk/Dusp in Axon Development

    PubMed Central

    Finelli, Mattéa J.; Murphy, Kevin J.; Chen, Lei; Zou, Hongyan

    2013-01-01

    SUMMARY Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2—two key neurotrophin effectors. Specifically, BMPs signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2, and constituting a negative feedback loop to prevent axon overgrowth. Together, BMP and neurotrophin pathways are integrated in a tightly regulated signaling network with balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. PMID:23665221

  9. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  10. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal aging is strongly affected by disrupted proteostasis and expression of disease-associated, misfolded proteins such as human polyQ-Htt species. PMID:27347427

  11. Induction of specific neuron types by overexpression of single transcription factors.

    PubMed

    Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A

    2016-10-01

    Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.

  12. Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice.

    PubMed

    Kong, Lingzhi; Xiong, Colin; Li, Liang; Yan, Jun

    2014-01-01

    The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.

  13. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.

    PubMed

    Rash, J E; Yasumura, T; Dudek, F E; Nagy, J I

    2001-03-15

    The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.

  14. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    PubMed

    Berthet, Pierre; Lansner, Anders

    2014-01-01

    Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.

  15. Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae

    PubMed Central

    Yamamoto, Kurumi; Ishimaru, Yoshiro; Ohmoto, Makoto; Matsumoto, Ichiro; Asakura, Tomiko; Abe, Keiko

    2011-01-01

    Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate and foliate papillae located in the posterior region of the tongue, though not in fungiform papillae or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in circumvallate and foliate papillae, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal nerve bundles in the nodose/petrosal ganglion. WGA signals were also observed in a small population of neurons in the geniculate ganglion. This result demonstrates the anatomical connection between taste receptor cells in the foliate papillae and the chorda tympani nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract. These findings demonstrate that the approximately 10 kb 5’-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from taste receptor cells in the posterior region of the tongue. PMID:21883212

  16. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways.

    PubMed

    Kim, Jisung; Lee, Siyoung; Choi, Bo-Ryoung; Yang, Hee; Hwang, Youjin; Park, Jung Han Yoon; LaFerla, Frank M; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Mouse primary cortical neurons and a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD-95 in primary cortical neurons and 3 × Tg-AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg-AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach

    PubMed Central

    Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto; Yokohari, Fumio

    2017-01-01

    In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information. PMID:28529476

  18. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model tomore » study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in cortical progenitors.« less

  19. A Cullin1-Based SCF E3 Ubiquitin Ligase Targets the InR/PI3K/TOR Pathway to Regulate Neuronal Pruning

    PubMed Central

    Wong, Jack Jing Lin; Wang, Cheng; Zhang, Heng; Kirilly, Daniel; Wu, Chunlai; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2013-01-01

    Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning. PMID:24068890

  20. Central neural control of thermoregulation and brown adipose tissue

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  1. Central neural control of thermoregulation and brown adipose tissue.

    PubMed

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    PubMed

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  3. The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion

    PubMed Central

    Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.

    2012-01-01

    Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113

  4. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    NASA Astrophysics Data System (ADS)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin in the ventral and lateral nuclei of the trapezoid body (MVPO and LVPO). Bilateral projections from the nucleus reticularis pontis oralis (RPOo), to the VLL were also identified as glycinergic. This projection may link motor output systems to ascending auditory input, generating the auditory behavioral responses seen with glycine antagonism in animal models of myoclonus and seizure.

  5. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity

    PubMed Central

    Dorfman, Mauricio D.; Krull, Jordan E.; Scarlett, Jarrad M.; Guyenet, Stephan J.; Sajan, Mini P.; Damian, Vincent; Nguyen, Hong T.; Leitges, Michael; Morton, Gregory J.; Farese, Robert V.; Schwartz, Michael W.

    2017-01-01

    Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons. PMID:28073831

  6. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    PubMed

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  7. Modulation of neuronal signal transduction and memory formation by synaptic zinc.

    PubMed

    Sindreu, Carlos; Storm, Daniel R

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.

  8. Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc

    PubMed Central

    Sindreu, Carlos; Storm, Daniel R.

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630

  9. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex

    PubMed Central

    Clare, Alison J.; Wicky, Hollie E.; Empson, Ruth M.; Hughes, Stephanie M.

    2017-01-01

    Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes. PMID:28936162

  10. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    PubMed

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  12. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation

    PubMed Central

    Cromer, Jason A; Waitzman, David M

    2006-01-01

    Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information within the brainstem. PMID:16308353

  14. Cerebral Gluconeogenesis and Diseases

    PubMed Central

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2017-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions. PMID:28101056

  15. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    PubMed

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic structures that regulate alcohol intake, it has been difficult to disentangle how separate projections between them may control different aspects of these complex behaviors. Here, we demonstrate a new approach for noninvasively ablating each of these pathways and testing their necessity for both extinction and relapse. We show that inputs to the nucleus accumbens from medial prefrontal cortex and amygdala regulate alcohol-seeking behaviors differentially, adding to our understanding of the neural control of alcoholism. Copyright © 2017 the authors 0270-6474/17/374462-10$15.00/0.

  16. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala

    PubMed Central

    Bond, Colin W.; DiLeone, Ralph J.

    2017-01-01

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic structures that regulate alcohol intake, it has been difficult to disentangle how separate projections between them may control different aspects of these complex behaviors. Here, we demonstrate a new approach for noninvasively ablating each of these pathways and testing their necessity for both extinction and relapse. We show that inputs to the nucleus accumbens from medial prefrontal cortex and amygdala regulate alcohol-seeking behaviors differentially, adding to our understanding of the neural control of alcoholism. PMID:28336571

  17. Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    PubMed Central

    Kinnunen, Tarja K.

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease. PMID:25054285

  18. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.

    PubMed

    Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W

    2015-11-01

    Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway

    PubMed Central

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng

    2015-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia–reperfusion injury. PMID:26350953

  20. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β.

    PubMed

    Yang, Jin-Wei; Ru, Jin; Ma, Wei; Gao, Yan; Liang, Zhang; Liu, Jia; Guo, Jian-Hui; Li, Li-Yan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance.

    PubMed

    Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A

    2017-11-01

    Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.

  2. Female-Specific Glucose Sensitivity of GnRH1 Neurons Leads to Sexually Dimorphic Inhibition of Reproduction in Medaka.

    PubMed

    Hasebe, Masaharu; Kanda, Shinji; Oka, Yoshitaka

    2016-11-01

    Close interaction exists between energy-consuming reproduction and nutritional status. However, there are differences in costs and priority for reproduction among species and even between sexes, which leads to diversification of interactions between reproduction and nutritional status. Despite such diversified interactions among species and sexes, most of the analysis of the nutritional status-dependent regulation of reproduction has been limited to an endothermic vertebrate, mammalian species of either sex. Therefore, the mechanisms underlying the diversified interactions remain elusive. In the present study, we demonstrated the effects of malnutritional status on reproduction at both organismal and cellular levels in an ectothermic vertebrate, a teleost medaka of both sexes. First, we analyzed the effects of malnutrition by fasting on gonadosomatic index, number of spawned/fertilized eggs, and courtship behavior. Fasting strongly suppressed reproduction in females but, surprisingly, not in males. Next, we analyzed the effects of fasting on firing activity of hypothalamic GnRH1 neurons, which form the final common pathway for the control of reproduction. An electrophysiological analysis showed that low glucose, which is induced by fasting, directly suppresses the firing activity of GnRH1 neurons specifically in females through intracellular ATP-sensitive potassium channels and AMP-activated protein kinase pathways. Based on the fact that such suppressions occurred only in females, we conclude that nutritional status-dependent, glucose-sensing in GnRH1 neurons may contribute to the most fitted reproductive regulation for each sex.

  3. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway.

    PubMed

    Schwarz, Lindsay A; Hall, Benjamin J; Patrick, Gentry N

    2010-12-08

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.

  4. Activity-Dependent Ubiquitination of GluA1 Mediates a Distinct AMPAR Endocytosis and Sorting Pathway

    PubMed Central

    Schwarz, Lindsay A.; Hall, Benjamin J.; Patrick, Gentry N.

    2010-01-01

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, while dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer’s disease. Previous work has shown that ubiquitination of integral membrane proteins is a common post-translational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its carboxy-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA, but not for internalization of AMPARs in response to the NMDA receptor (NMDAR) agonist NMDA. Through over-expression or RNAi-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1, is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues, and suggest that changes to this pathway may occur as neurons mature. PMID:21148011

  5. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-04

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).

  6. Sleep-Active Neurons: Conserved Motors of Sleep

    PubMed Central

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  7. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia.

    PubMed

    Brose, Stephen A; Golovko, Svetlana A; Golovko, Mikhail Y

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  8. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  9. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  10. Neuroimaging and Neuromodulation: Complementary Approaches for Identifying the Neuronal Correlates of Tinnitus

    PubMed Central

    Langguth, Berthold; Schecklmann, Martin; Lehner, Astrid; Landgrebe, Michael; Poeppl, Timm Benjamin; Kreuzer, Peter Michal; Schlee, Winfried; Weisz, Nathan; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal “awareness” network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus. PMID:22509155

  11. The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome*

    PubMed Central

    Trazzi, Stefania; Fuchs, Claudia; Valli, Emanuele; Perini, Giovanni; Bartesaghi, Renata; Ciani, Elisabetta

    2013-01-01

    Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS. PMID:23740250

  12. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function.

    PubMed

    Bagley, Joshua A; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill; Jan, Lily Yeh; Jan, Yuh Nung

    2014-09-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology. © 2014 Bagley et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    PubMed

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.

  14. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  15. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    PubMed Central

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  16. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  17. Combined small-molecule inhibition accelerates the derivation of functional, early-born, cortical neurons from human pluripotent stem cells

    PubMed Central

    Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz

    2017-01-01

    Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759

  18. Trio’s Rho-specific GEF domain is the missing Gαq effector in C. elegans

    PubMed Central

    Williams, Stacey L.; Lutz, Susanne; Charlie, Nicole K.; Vettel, Christiane; Ailion, Michael; Coco, Cassandra; Tesmer, John J.G.; Jorgensen, Erik M.; Wieland, Thomas; Miller, Kenneth G.

    2007-01-01

    The Gαq pathway is essential for animal life and is a central pathway for driving locomotion, egg laying, and growth in Caenorhabditis elegans, where it exerts its effects through EGL-8 (phospholipase Cβ [PLCβ]) and at least one other effector. To find the missing effector, we performed forward genetic screens to suppress the slow growth and hyperactive behaviors of mutants with an overactive Gαq pathway. Four suppressor mutations disrupted the Rho-specific guanine-nucleotide exchange factor (GEF) domain of UNC-73 (Trio). The mutations produce defects in neuronal function, but not neuronal development, that cause sluggish locomotion similar to animals lacking EGL-8 (PLCβ). Strains containing null mutations in both EGL-8 (PLCβ) and UNC-73 (Trio RhoGEF) have strong synthetic phenotypes that phenocopy the arrested growth and near-complete paralysis of Gαq-null mutants. Using cell-based and biochemical assays, we show that activated C. elegans Gαq synergizes with Trio RhoGEF to activate RhoA. Activated Gαq and Trio RhoGEF appear to be part of a signaling complex, because they coimmunoprecipitate when expressed together in cells. Our results show that Trio’s Rho-specific GEF domain is a major Gαq effector that, together with PLCβ, mediates the Gαq signaling that drives the locomotion, egg laying, and growth of the animal. PMID:17942708

  19. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.

  20. The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing

    PubMed Central

    Makeyev, Eugene V.; Zhang, Jiangwen; Carrasco, Monica A.; Maniatis, Tom

    2011-01-01

    SUMMARY Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing. PMID:17679093

  1. ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway.

    PubMed

    Mercado, Gabriela; Castillo, Valentina; Soto, Paulina; Sidhu, Anita

    2016-10-01

    The major clinical feature of Parkinson's disease (PD) is impairment in motor control as a result of extensive dopaminergic neuron loss in the substantia nigra pars compacta. The central pathological hallmark of PD is the formation of neuronal cytoplasmic inclusions of insoluble proteins called Lewy bodies, of which fibrillar aggregates of misfolded αSynuclein are the major components. Despite intense research on the pathogenic mechanism that trigger neuronal loss and disease progression, the neurogenesis of PD remains unknown. However, studies on genetics of PD have identified specific genes and proteins linked to this disease. Genetic mutations linked with different forms of familial PD have unveiled a closer relationship between pathology and impairments at different points in the secretory pathway. Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum and disruptions in protein clearance mechanisms result in activation of an adaptive stress pathway known as the unfolded protein response (UPR). UPR signaling is mediated by three stress sensors that induce independent and convergent signaling branches that help to maintain homeostasis, or eventually trigger cell death under chronic stress conditions. Signs of ER stress are observed in post-mortem tissue from sporadic human PD cases and in most animal models of the disease, implicating all three branches of this cellular response. However, the exact contribution of the UPR in the progression of PD or in dopaminergic neuron survival is not yet well understood. A large number of studies reveal a clear activation of the UPR in toxicological models resembling sporadic PD, where ATF6, XBP1 and CHOP have a functional role in controlling dopaminergic neuron survival in neurotoxin-based models of PD in vivo. Also pharmacological and gene therapy approaches aimed to target different points of this pathway have revealed an important functional role in PD pathogenesis. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    PubMed

    Boulanger, Ana; Farge, Morgane; Ramanoudjame, Christophe; Wharton, Kristi; Dura, Jean-Maurice

    2012-01-01

    Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  3. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  4. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  5. Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs.

    PubMed

    van Eyk, Clare L; O'Keefe, Louise V; Lawlor, Kynan T; Samaraweera, Saumya E; McLeod, Catherine J; Price, Gareth R; Venter, Deon J; Richards, Robert I

    2011-07-15

    Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.

  6. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011

  7. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  8. Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway.

    PubMed

    Kaufling, Jennifer; Girard, Delphine; Maitre, Marlène; Leste-Lasserre, Thierry; Georges, François

    2017-05-01

    The anteromedial part of the bed nucleus of the stria terminalis (amBNST) is a limbic structure innervating the ventral tegmental area (VTA) that is remarkably constant across species. The amBNST modulates fear and anxiety, and activation of VTA dopamine (DA) neurons by amBNST afferents seems to be the way by which stress controls motivational states associated with reward or aversion. Because fear learning and anxiety states can be expressed differently between rats and mice, we compared the functional connectivity between amBNST and the VTA-DA neurons in both species using consistent methodological approaches. Using a combination of in vivo electrophysiological, neuroanatomical tracing and laser capture approaches we explored the BNST influences on VTA-DA neuron activity. First, we characterised in rats the molecular phenotype of the amBNST neurons projecting to the VTA. We found that this projection is complex, including both GABAergic and glutamatergic neurons. Then, VTA injections of a conventional retrograde tracer, the β-sub-unit of the cholera toxin (CTB), revealed a stronger BNST-VTA projection in mice than in rats. Finally, electrical stimulations of the BNST during VTA-DA neuron recording demonstrated a more potent excitatory influence of the amBNST on VTA-DA neuron activity in rats than in mice. These data illustrate anatomically, but also functionally, a significant difference between rats and mice in the amBNST-VTA pathway. More generally, together with previous findings, our research highlights the importance of species differences for the interpretation and the generalisation of research data. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin.

    PubMed

    Haissaguerre, Magalie; Ferrière, Amandine; Simon, Vincent; Saucisse, Nicolas; Dupuy, Nathalie; André, Caroline; Clark, Samantha; Guzman-Quevedo, Omar; Tabarin, Antoine; Cota, Daniela

    2018-06-01

    Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H 2 O 2 ) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. Icv administration of H 2 O 2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H 2 O 2 . H 2 O 2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation.

    PubMed

    Yano, Masato; Okano, Hirotaka J; Okano, Hideyuki

    2005-04-01

    The Hu family is a group of neuronal RNA-binding proteins required for neuronal differentiation in the developing nervous system. Previously, Hu proteins have been shown to enhance the stabilization and/or translation of target mRNAs, such as p21 (CIP1), by binding to AU-rich elements in untranslated regions (UTRs). In this study, we show that Hu induces p21 expression, cell cycle arrest, and neuronal differentiation in mouse neuroblastoma N1E-115 cells. p21 expression is also up-regulated during Me2SO-induced differentiation in N1E-115 cells and is controlled by post-transcriptional mechanisms through its 3'-UTR. To investigate the molecular mechanisms of Hu functions, we used a proteomics strategy to isolate Hu-interacting proteins and identified heterogeneous nuclear ribonucleoprotein (hnRNP) K. hnRNP K also specifically binds to CU-rich sequences in p21 mRNA 3'-UTR and represses its translation in both nonneuronal and neuronal cells. Further, using RNA interference experiments, we show that the Hu-p21 pathway contributes to the regulation of neurite outgrowth and proliferation in N1E-115 cells, and this pathway is antagonized by hnRNP K. Our results suggest a model in which the mutually antagonistic action of two RNA-binding proteins, Hu and hnRNP K, control the timing of the switch from proliferation to neuronal differentiation through the post-transcriptional regulation of p21 mRNA.

  11. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems.

    PubMed

    Al-Nedawi, Khalid; Mian, M Firoz; Hossain, Nazia; Karimi, Khalil; Mao, Yu-Kang; Forsythe, Paul; Min, Kevin K; Stanisz, Andrew M; Kunze, Wolfgang A; Bienenstock, John

    2015-02-01

    Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems. © FASEB.

  12. Axonal transport: cargo-specific mechanisms of motility and regulation.

    PubMed

    Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F

    2014-10-22

    Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.

  13. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  14. The mevalonate pathway in neurons: It's not just about cholesterol.

    PubMed

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    PubMed

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  16. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans.

    PubMed

    Kennedy, Lisa M; Grishok, Alla

    2014-05-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.

  17. Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-Binding Factor ZFP-1/AF10 in Caenorhabditis elegans

    PubMed Central

    Kennedy, Lisa M.; Grishok, Alla

    2014-01-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning. PMID:24558261

  18. Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology.

    PubMed

    Pei, Fen; Li, Hongchun; Henderson, Mark J; Titus, Steven A; Jadhav, Ajit; Simeonov, Anton; Cobanoglu, Murat Can; Mousavi, Seyed H; Shun, Tongying; McDermott, Lee; Iyer, Prema; Fioravanti, Michael; Carlisle, Diane; Friedlander, Robert M; Bahar, Ivet; Taylor, D Lansing; Lezon, Timothy R; Stern, Andrew M; Schurdak, Mark E

    2017-12-19

    Quantitative Systems Pharmacology (QSP) is a drug discovery approach that integrates computational and experimental methods in an iterative way to gain a comprehensive, unbiased understanding of disease processes to inform effective therapeutic strategies. We report the implementation of QSP to Huntington's Disease, with the application of a chemogenomics platform to identify strategies to protect neuronal cells from mutant huntingtin induced death. Using the STHdh Q111 cell model, we investigated the protective effects of small molecule probes having diverse canonical modes-of-action to infer pathways of neuronal cell protection connected to drug mechanism. Several mechanistically diverse protective probes were identified, most of which showed less than 50% efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. Computational analysis of these probes revealed a convergence of pathways indicating activation of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdh Q111 cells compared to wild type STHdh Q7 cells, and these levels were increased by several of the protective compounds. Pharmacological inhibition of PKA activity reduced protection supporting the hypothesis that protection may be working, in part, through activation of the PKA network. The systems-level studies described here can be broadly applied to any discovery strategy involving small molecule modulation of disease phenotype.

  19. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    PubMed Central

    Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.

    2014-01-01

    Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220

  20. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization.

    PubMed

    Nawaz, Mohammad Sarfaraz; Giarda, Elisa; Bedogni, Francesco; La Montanara, Paolo; Ricciardi, Sara; Ciceri, Dalila; Alberio, Tiziana; Landsberger, Nicoletta; Rusconi, Laura; Kilstrup-Nielsen, Charlotte

    2016-01-01

    In the last years, the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with epileptic encephalopathies characterized by the early onset of intractable epilepsy, severe developmental delay, autistic features, and often the development of Rett syndrome-like features. Still, the role of CDKL5 in neuronal functions is not fully understood. By way of a yeast two hybrid screening we identified the interaction of CDKL5 with shootin1, a brain specific protein acting as a determinant of axon formation during neuronal polarization. We found evidence that CDKL5 is involved, at least in part, in regulating neuronal polarization through its interaction with shootin1. Indeed, the two proteins interact in vivo and both are localized in the distal tip of outgrowing axons. By using primary hippocampal neurons as model system we find that adequate CDKL5 levels are required for axon specification. In fact, a significant number of neurons overexpressing CDKL5 is characterized by supernumerary axons, while the silencing of CDKL5 disrupts neuronal polarization. Interestingly, shootin1 phosphorylation is reduced in neurons silenced for CDKL5 suggesting that the kinase affects, directly or indirectly, the post-translational modification of shootin1. Finally, we find that the capacity of CDKL5 to generate surplus axons is attenuated in neurons with reduced shootin1 levels, in agreement with the notion that two proteins act in a common pathway. Altogether, these results point to a role of CDKL5 in the early steps of neuronal differentiation that can be explained, at least in part, by its association with shootin1.

  1. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization

    PubMed Central

    Nawaz, Mohammad Sarfaraz; Giarda, Elisa; Bedogni, Francesco; La Montanara, Paolo; Ricciardi, Sara; Ciceri, Dalila; Alberio, Tiziana; Landsberger, Nicoletta; Rusconi, Laura; Kilstrup-Nielsen, Charlotte

    2016-01-01

    In the last years, the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with epileptic encephalopathies characterized by the early onset of intractable epilepsy, severe developmental delay, autistic features, and often the development of Rett syndrome-like features. Still, the role of CDKL5 in neuronal functions is not fully understood. By way of a yeast two hybrid screening we identified the interaction of CDKL5 with shootin1, a brain specific protein acting as a determinant of axon formation during neuronal polarization. We found evidence that CDKL5 is involved, at least in part, in regulating neuronal polarization through its interaction with shootin1. Indeed, the two proteins interact in vivo and both are localized in the distal tip of outgrowing axons. By using primary hippocampal neurons as model system we find that adequate CDKL5 levels are required for axon specification. In fact, a significant number of neurons overexpressing CDKL5 is characterized by supernumerary axons, while the silencing of CDKL5 disrupts neuronal polarization. Interestingly, shootin1 phosphorylation is reduced in neurons silenced for CDKL5 suggesting that the kinase affects, directly or indirectly, the post-translational modification of shootin1. Finally, we find that the capacity of CDKL5 to generate surplus axons is attenuated in neurons with reduced shootin1 levels, in agreement with the notion that two proteins act in a common pathway. Altogether, these results point to a role of CDKL5 in the early steps of neuronal differentiation that can be explained, at least in part, by its association with shootin1. PMID:26849555

  2. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    PubMed Central

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  3. Prolyl Isomerase Pin1 Regulates Neuronal Differentiation via β-Catenin

    PubMed Central

    Nakamura, Kazuhiro; Kosugi, Isao; Lee, Daniel Y.; Hafner, Angela; Sinclair, David A.

    2012-01-01

    The Wnt/β-catenin pathway promotes proliferation of neural progenitor cells (NPCs) at early stages and induces neuronal differentiation from NPCs at late stages, but the molecular mechanisms that control this stage-specific response are unclear. Pin1 is a prolyl isomerase that regulates cell signaling uniquely by controlling protein conformation after phosphorylation, but its role in neuronal differentiation is not known. Here we found that whereas Pin1 depletion suppresses neuronal differentiation, Pin1 overexpression enhances it, without any effects on gliogenesis from NPCs in vitro. Consequently, Pin1-null mice have significantly fewer upper layer neurons in the motor cortex and severely impaired motor activity during the neonatal stage. A proteomic approach identified β-catenin as a major substrate for Pin1 in NPCs, in which Pin1 stabilizes β-catenin. As a result, Pin1 knockout leads to reduced β-catenin during differentiation but not proliferation of NPCs in developing brains. Importantly, defective neuronal differentiation in Pin1 knockout NPCs is fully rescued in vitro by overexpression of β-catenin but not a β-catenin mutant that fails to act as a Pin1 substrate. These results show that Pin1 is a novel regulator of NPC differentiation by acting on β-catenin and provides a new postphosphorylation signaling mechanism to regulate developmental stage-specific functioning of β-catenin signaling in neuronal differentiation. PMID:22645310

  4. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellularmore » energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.« less

  5. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  6. The sex of specific neurons controls female body growth in Drosophila.

    PubMed

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  7. The sex of specific neurons controls female body growth in Drosophila

    PubMed Central

    Sawala, Annick

    2017-01-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs. PMID:28976974

  8. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.

    PubMed

    Cheung, Yuen-Ting; Lau, Way Kwok-Wai; Yu, Man-Shan; Lai, Cora Sau-Wan; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-01-01

    Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied. Therefore, we aim to re-evaluate the differentiation property of RA on this cell line. We hypothesize that modulation of signaling pathways and neuronal properties during RA-mediated differentiation in SH-SY5Y cells can affect their susceptibility to neurotoxins. The differentiation property of RA was confirmed by showing an extensive outgrowth of neurites, increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin and synaptic associated protein-97, and decreased expression of inhibitor of differentiation-1. While undifferentiated SH-SY5Y cells were susceptible to 6-OHDA and MPP+, RA-differentiation conferred SH-SY5Y cells higher tolerance, potentially by up-regulating survival signaling, including Akt pathway as inhibition of Akt removed RA-induced neuroprotection against 6-OHDA. As a result, the real toxicity cannot be revealed in RA-differentiated cells. Therefore, undifferentiated SH-SY5Y is more appropriate for studying neurotoxicity or neuroprotection in experimental Parkinson's disease research.

  9. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  11. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  12. Convergent evolution of neural systems in ctenophores

    PubMed Central

    Moroz, Leonid L.

    2015-01-01

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers – features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and ‘classical’ neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine – consistent with the hypothesis that ctenophore neural systems evolved independently from those in other animals. Glutamate and a diverse range of secretory peptides are first candidates for ctenophore neurotransmitters. Nevertheless, it is expected that other classes of signal and neurogenic molecules would be discovered in ctenophores as the next step to decipher one of the most distinct types of neural organization in the animal kingdom. PMID:25696823

  13. Concurrent activation of striatal direct and indirect pathways during action initiation.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Pham, Michael D; Vogel, Steven S; Lovinger, David M; Costa, Rui M

    2013-02-14

    The basal ganglia are subcortical nuclei that control voluntary actions, and they are affected by a number of debilitating neurological disorders. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum--the so-called direct and indirect pathways--have opposing effects on movement: activity of direct-pathway SPNs is thought to facilitate movement, whereas activity of indirect-pathway SPNs is presumed to inhibit movement. This model has been difficult to test owing to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. Here we develop a novel in vivo method to specifically measure direct- and indirect-pathway SPN activity, using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCaMP3 in the dorsal striatum of D1-Cre (direct-pathway-specific) and A2A-Cre (indirect-pathway-specific) mice. Using fibre optics and time-correlated single-photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function and may have implications for understanding the origin of motor symptoms in basal ganglia disorders.

  14. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans Models of Parkinson's Disease

    PubMed Central

    Martinez, Bryan A.; Petersen, Daniel A.; Gaeta, Anthony L.

    2017-01-01

    Due to environmental insult or innate genetic deficiency, protein folding environments of the mitochondrial matrix are prone to dysregulation, prompting the activation of a specific organellar stress-response mechanism, the mitochondrial unfolded protein response (UPRMT). In Caenorhabditis elegans, mitochondrial damage leads to nuclear translocation of the ATFS-1 transcription factor to activate the UPRMT. After short-term acute stress has been mitigated, the UPRMT is eventually suppressed to restore homeostasis to C. elegans hermaphrodites. In contrast, and reflective of the more chronic nature of progressive neurodegenerative disorders such as Parkinson's disease (PD), here, we report the consequences of prolonged, cell-autonomous activation of the UPRMT in C. elegans dopaminergic neurons. We reveal that neuronal function and integrity decline rapidly with age, culminating in activity-dependent, non-apoptotic cell death. In a PD-like context wherein transgenic nematodes express the Lewy body constituent protein α-synuclein (αS), we not only find that this protein and its PD-associated disease variants have the capacity to induce the UPRMT, but also that coexpression of αS and ATFS-1-associated dysregulation of the UPRMT synergistically potentiate dopaminergic neurotoxicity. This genetic interaction is in parallel to mitophagic pathways dependent on the C. elegans PINK1 homolog, which is necessary for cellular resistance to chronic malfunction of the UPRMT. Given the increasingly recognized role of mitochondrial quality control in neurodegenerative diseases, these studies illustrate, for the first time, an insidious aspect of mitochondrial signaling in which the UPRMT pathway, under disease-associated, context-specific dysregulation, exacerbates disruption of dopaminergic neurons in vivo, resulting in the neurodegeneration characteristic of PD. SIGNIFICANCE STATEMENT Disruptions or alterations in the activation of pathways that regulate mitochondrial quality control have been linked to neurodegenerative diseases due in part to the central role of mitochondria in metabolism, ROS regulation, and proteostasis. The extent to which these pathways, including the mitochondrial unfolded protein response (UPRMT) and mitophagy, are active may predict severity and progression of these disorders, as well as sensitivity to compounding stressors. Furthermore, therapeutic strategies that aim to induce these pathways may benefit from increased study into cellular responses that arise from long-term or ectopic stimulation, especially in neuronal compartments. By demonstrating the detrimental consequences of prolonged cellular activation of the UPRMT, we provide evidence that this pathway is not a universally beneficial mechanism because dysregulation has neurotoxic consequences. PMID:29030433

  15. Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development.

    PubMed

    Finelli, Mattéa J; Murphy, Kevin J; Chen, Lei; Zou, Hongyan

    2013-05-30

    Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    PubMed

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  17. En1 directs superior olivary complex neuron positioning, survival, and expression of FoxP1.

    PubMed

    Altieri, Stefanie C; Jalabi, Walid; Zhao, Tianna; Romito-DiGiacomo, Rita R; Maricich, Stephen M

    2015-12-01

    Little is known about the genetic pathways and transcription factors that control development and maturation of central auditory neurons. En1, a gene expressed by a subset of developing and mature superior olivary complex (SOC) cells, encodes a homeodomain transcription factor important for neuronal development in the midbrain, cerebellum, hindbrain and spinal cord. Using genetic fate-mapping techniques, we show that all En1-lineal cells in the SOC are neurons and that these neurons are glycinergic, cholinergic and GABAergic in neurotransmitter phenotype. En1 deletion does not interfere with specification or neural fate of these cells, but does cause aberrant positioning and subsequent death of all En1-lineal SOC neurons by early postnatal ages. En1-null cells also fail to express the transcription factor FoxP1, suggesting that FoxP1 lies downstream of En1. Our data define important roles for En1 in the development and maturation of a diverse group of brainstem auditory neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway.

    PubMed

    Thotala, D K; Hallahan, D E; Yazlovitskaya, E M

    2012-03-01

    Exposure of the brain to ionizing radiation can cause neurocognitive deficiencies. The pathophysiology of these neurological changes is complex and includes radiation-induced apoptosis in the subgranular zone of the hippocampus. We have recently found that inhibition of glycogen synthase kinase 3β (GSK-3β) resulted in significant protection from radiation-induced apoptosis in hippocampal neurons. The molecular mechanisms of this cytoprotection include abrogation of radiation-induced accumulation of p53. Here we show that pretreatment of irradiated HT-22 hippocampal-derived neurons with small molecule inhibitors of GSK-3β SB216763 or SB415286, or with GSK-3β-specific shRNA resulted in accumulation of the p53-specific E3 ubiquitin ligase MDM2. Knockdown of MDM2 using specific shRNA or chemical inhibition of MDM2-p53 interaction prevented the protective changes triggered by GSK-3β inhibition in irradiated HT-22 neurons and restored radiation cytotoxicity. We found that this could be due to regulation of apoptosis by subcellular localization and interaction of GSK-3β, p53 and MDM2. These data suggest that the mechanisms of radioprotection by GSK-3β inhibitors in hippocampal neurons involve regulation of MDM2-dependent p53 accumulation and interactions between GSK-3β, MDM2 and p53.

  19. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    PubMed

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  1. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  2. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation

    PubMed Central

    Sosulina, L.; Strippel, C.; Romo-Parra, H.; Walter, A. L.; Kanyshkova, T.; Sartori, S. B.; Lange, M. D.; Singewald, N.

    2015-01-01

    Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at −101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K+ conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar9,Met(O2)11]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala. PMID:26334021

  3. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation.

    PubMed

    Sosulina, L; Strippel, C; Romo-Parra, H; Walter, A L; Kanyshkova, T; Sartori, S B; Lange, M D; Singewald, N; Pape, H-C

    2015-10-01

    Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala. Copyright © 2015 the American Physiological Society.

  4. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    PubMed

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent stimulation of Ang II's neuromodulatory actions.

  5. Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons.

    PubMed

    Trilck, Michaela; Peter, Franziska; Zheng, Chaonan; Frank, Marcus; Dobrenis, Kostantin; Mascher, Hermann; Rolfs, Arndt; Frech, Moritz J

    2017-02-15

    Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    PubMed

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons.

    PubMed

    Monshausen, Michaela; Gehring, Niels H; Kosik, Kenneth S

    2004-01-01

    Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.

  8. Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation.

    PubMed

    Lonic, Ana; Powell, Jason A; Kong, Yang; Thomas, Daniel; Holien, Jessica K; Truong, Nhan; Parker, Michael W; Guthridge, Mark A

    2013-05-24

    The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCε can phosphorylate Ser(779) in vitro, whereas overexpression of PKCε results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCε reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.

  9. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in rat nucleus accumbens

    PubMed Central

    Marin, Marcelo T.; Berkow, Alexander; Golden, Sam A.; Koya, Eisuke; Planeta, Cleopatra S.; Hope, Bruce T.

    2009-01-01

    Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug paired environment. Neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of CREB phosphorylation and four upstream kinases in nucleus accumbens that phosphorylate CREB, including ERK, PKA, CaMKII and IV. Rats received seven once daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the Paired or the Non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry while phosphorylation of the remaining kinases, as well as CREB and ERK, were assessed by Western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB and phosphoERK immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. The corresponding cocaine and context-specific phosphorylation of ERK and CREB in cocaine-activated accumbens neurons in the present study suggests that this signal transduction pathway is also selectively activated in the same set of accumbens neurons. PMID:19912338

  10. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta

    2015-01-01

    In brain, glycogen metabolism is predominantly restricted to astrocytes but it also indirectly supports neuronal functions. Increased accumulation of glycogen in neurons is mysteriously pathogenic triggering neurodegeneration as seen in "Lafora disease" (LD) and in other transgenic animal models of neuronal glycogen accumulation. LD is a fatal neurodegenerative disorder with excessive glycogen inclusions in neurons. Autophagy, a pathway for bulk degradation of obsolete cellular constituents also degrades metabolites like lipid and glycogen. Recently, defects in this pathway emerged as a plausible reason for glycogen accumulation in neurons in LD, although some contradictions prevail. Albeit surprising, a reciprocal regulation of autophagy by glycogen in neurons has also just been proposed. Notably, increasing evidences of interaction between proteins of autophagy and glycogen metabolism from diverse model systems indicate a conserved, dynamic, and regulatory cross-talk between these two pathways. Concerning these findings, we herein provide certain models for the molecular basis of this cross-talk and discuss its potential implication in the pathophysiology of LD.

  11. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  12. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by high to very high ratios. Such density trends may correspond to differential representation of corticocortically (and corticosubcortically) projecting neurons at several functional steps in the integration of the visual stimuli. In this context, it is possible that neurofilament protein is crucial for the unique capacity of certain subsets of neurons to perform the highly precise mapping functions of the monkey visual system.

  13. Functional analysis of neuronal microRNAs in Caenorhabditis elegans dauer formation by combinational genetics and Neuronal miRISC immunoprecipitation.

    PubMed

    Than, Minh T; Kudlow, Brian A; Han, Min

    2013-06-01

    Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic "enhancer" approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions.

  14. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    PubMed

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  15. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing.

    PubMed

    Vélez-Fort, Mateo; Rousseau, Charly V; Niedworok, Christian J; Wickersham, Ian R; Rancz, Ede A; Brown, Alexander P Y; Strom, Molly; Margrie, Troy W

    2014-09-17

    Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro

    2017-05-01

    Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.

  17. Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone.

    PubMed

    Kawai, Hiroki; Kawaguchi, Daichi; Kuebrich, Benjamin D; Kitamoto, Takeo; Yamaguchi, Masahiro; Gotoh, Yukiko; Furutachi, Shohei

    2017-12-06

    In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner. SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ. Copyright © 2017 the authors 0270-6474/17/3711867-14$15.00/0.

  18. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambaldorj, Jamiyansuren; Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585; Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1),more » which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.« less

  19. Transneuronal pathways to the vestibulocerebellum

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Mustari, M. J.; Miselis, R. R.; Perachio, A. A.

    1996-01-01

    The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included among, flocculus-projecting supragenual neurons. PRV transport from the vestibular labyrinth and cervical muscles also resulted in CNS infections. Virus propagation in situ provides specific connectivity information based on the functional transport across synapses. The findings support and extend anatomical data regarding vestibulo-olivo-cerebellar pathways.

  20. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    PubMed

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  1. Concentration dependent requirement for local protein synthesis in motor neuron subtype specific response to axon guidance cues

    PubMed Central

    Nedelec, Stephane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W.; Kam, Lance C.; Wichterle, Hynek

    2012-01-01

    Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell (ESC) derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f and Sema3a in a concentration dependent manner. At low doses, ES-MNs exhibit segmental or subtype specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins relies on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation. PMID:22279234

  2. The dusp1 Immediate Early Gene is Regulated by Natural Stimuli Predominantly in Sensory Input Neurons

    PubMed Central

    Horita, Haruhito; Wada, Kazuhiro; Rivas, Miriam V.; Hara, Erina; Jarvis, Erich D.

    2010-01-01

    Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. PMID:20506480

  3. Lessons from sleeping flies: insights from Drosophila melanogaster on the neuronal circuitry and importance of sleep.

    PubMed

    Potdar, Sheetal; Sheeba, Vasu

    2013-06-01

    Sleep is a highly conserved behavior whose role is as yet unknown, although it is widely acknowledged as being important. Here we provide an overview of many vital questions regarding this behavior, that have been addressed in recent years using the genetically tractable model organism Drosophila melanogaster in several laboratories around the world. Rest in D. melanogaster has been compared to mammalian sleep and its homeostatic and circadian regulation have been shown to be controlled by intricate neuronal circuitry involving circadian clock neurons, mushroom bodies, and pars intercerebralis, although their exact roles are not entirely clear. We draw attention to the yet unanswered questions and contradictions regarding the nature of the interactions between the brain regions implicated in the control of sleep. Dopamine, octopamine, γ-aminobutyric acid (GABA), and serotonin are the chief neurotransmitters identified as functioning in different limbs of this circuit, either promoting arousal or sleep by modulating membrane excitability of underlying neurons. Some studies have suggested that certain brain areas may contribute towards both sleep and arousal depending on activation of specific subsets of neurons. Signaling pathways implicated in the sleep circuit include cyclic adenosine monophosphate (cAMP) and epidermal growth factor receptor-extracellular signal-regulated kinase (EGFR-ERK) signaling pathways that operate on different neural substrates. Thus, this field of research appears to be on the cusp of many new and exciting findings that may eventually help in understanding how this complex physiological phenomenon is modulated by various neuronal circuits in the brain. Finally, some efforts to approach the "Holy Grail" of why we sleep have been summarized.

  4. Convergent pathogenic pathways in Alzheimer’s and Huntington disease: Shared targets for drug development

    PubMed Central

    Ehrnhoefer, Dagmar E.; Wong, Bibiana K.Y.; Hayden, Michael R.

    2011-01-01

    Neurodegenerative diseases exemplified by Alzheimer’s and Huntington disease are characterized by the progressive neuropsychiatric dysfunction and loss of specific neuronal subtypes. Even though there are differences in the exact sites of pathology and clinical profiles only partially overlap, considerable similarities in disease mechanisms and pathogenic pathways can be observed. These shared mechanisms raise the possibility of common therapeutic targets for drug development. Huntington disease with a monogenic cause and the possibility to accurately identify pre-manifest mutation carriers could be exploited as a ‘model’ for Alzheimer’s disease to test the efficacy of therapeutic interventions targeting shared pathogenic pathways. PMID:22015920

  5. Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons.

    PubMed

    Chiricozzi, Elena; Fernandez-Fernandez, Seila; Nardicchi, Vincenza; Almeida, Angeles; Bolaños, Juan Pedro; Goracci, Gianfrancesco

    2010-03-01

    Phospholipases A(2) (PLA(2)) participate in neuronal death signalling pathways because of their ability to release lipid mediators, although the contribution of each isoform and mechanism of neurotoxicity are still elusive. Using a novel fluorogenic method to assess changes in a PLA(2) activity by flow cytometry, here we show that the group IIA secretory phospholipase A(2) isoform (GIIA) was specifically activated in cortical neurons following stimulation of N-methyl-d-aspartate glutamate receptor subtype (NMDAR). For activation, GIIA required Ca(2+) and reactive oxygen/nitrogen species, and inhibition of its activity fully prevented NMDAR-mediated neuronal apoptotic death. Superoxide, nitric oxide or peroxynitrite donors stimulated GIIA activity, which mediated neuronal death. Intriguingly, we also found that GIIA activity induced mitochondrial superoxide production after NMDAR stimulation. These results reveal a novel role for GIIA in excitotoxicity both as target and producer of superoxide in a positive-loop of activation that may contribute to the propagation of neurodegeneration.

  6. Why does the brain (not) have glycogen?

    PubMed

    DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico

    2011-05-01

    In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.

  7. Inhibition of Apoptosis Blocks Human Motor Neuron Cell Death in a Stem Cell Model of Spinal Muscular Atrophy

    PubMed Central

    Heins, Brittany M.; McGivern, Jered V.; Ornelas, Loren; Svendsen, Clive N.

    2012-01-01

    Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients. PMID:22723941

  8. Foxp2 regulates neuronal differentiation and neuronal subtype specification.

    PubMed

    Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei

    2014-07-01

    Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain. © 2014 Wiley Periodicals, Inc.

  9. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    PubMed Central

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  10. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex

    PubMed Central

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán

    2016-01-01

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949

  11. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.

    PubMed

    Barik, Jacques; Marti, Fabio; Morel, Carole; Fernandez, Sebastian P; Lanteri, Christophe; Godeheu, Gérard; Tassin, Jean-Pol; Mombereau, Cédric; Faure, Philippe; Tronche, François

    2013-01-18

    Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.

  12. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  13. Emerging roles for neurosteroids in sexual behavior and function.

    PubMed

    King, Steven R

    2008-01-01

    Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.

  14. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions.

    PubMed

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-04-28

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.

  15. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  16. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    PubMed

    Avet-Rochex, Amélie; Carvajal, Nancy; Christoforou, Christina P; Yeung, Kelvin; Maierbrugger, Katja T; Hobbs, Carl; Lalli, Giovanna; Cagin, Umut; Plachot, Cedric; McNeill, Helen; Bateman, Joseph M

    2014-09-01

    Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR)/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk), which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc) as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem/progenitor cells, suggesting that the role of Unk in neurogenesis may be conserved in mammals.

  17. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain

    PubMed Central

    HATANAKA, Yumiko; ZHU, Yan; TORIGOE, Makio; KITA, Yoshiaki; MURAKAMI, Fujio

    2016-01-01

    Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons’ site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits. PMID:26755396

  18. Stimulus-specific adaptation and deviance detection in the inferior colliculus

    PubMed Central

    Ayala, Yaneri A.; Malmierca, Manuel S.

    2013-01-01

    Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the “mismatch negativity,” (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed. PMID:23335883

  19. Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation

    PubMed Central

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Pham, Michael D.

    2014-01-01

    Summary The basal ganglia are subcortical nuclei that control voluntary actions, and are affected by a number of debilitating neurological disorders1–4. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum5,6 - the so-called direct and indirect pathways - have opposing effects on movement: while activity of direct-pathway SPNs purportedly facilitates movement, activity of indirect-pathway SPNs inhibits movement1,2. This model has been difficult to test due to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. We developed a novel in-vivo method that allowed us to specifically measure direct- and indirect-pathway SPN activity using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCAMP3 in the dorsal striatum of D1-Cre (direct-pathway specific6,7) and A2A-Cre (indirect-pathway specific8,9) mice10. Using fiber optics and time-correlated single photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements, and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function, and may have implications for understanding the origin of motor symptoms in basal ganglia disorders. PMID:23354054

  20. Neurophysiology of pruritus: interaction of itch and pain.

    PubMed

    Ikoma, Akihiko; Rukwied, Roman; Ständer, Sonja; Steinhoff, Martin; Miyachi, Yoshiki; Schmelz, Martin

    2003-11-01

    The discovery of an itch-specific neuronal pathway, which is distinct from the pain-processing pathway, has clarified the neuronal basis for the itch sensation. Albeit being distinct, there are complex interactions between pain and itch. The inhibition of itch by pain is well known and can explain the antipruritic effect of scratching. However, the opposite effect also exists and has major clinical implications: inhibition of pain processing (eg, by spinal opioids) can generate itch. Conversely, blockade of spinal opioid receptors can be used as an antipruritic therapy. Moreover, the spinal processing of pain and itch can be modulated, resulting in a hypersensitivity or hyposensitivity to pain or itch: similar to chronic painful conditions, ongoing activity of pruriceptors can induce a spinal hypersensitivity for itch in patients with chronic pruritus. Therapeutic antipruritic approaches therefore should target both local inflammation and spinal sensitization of itch processing.

  1. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse.

    PubMed

    Kazdoba, Tatiana M; Sunnen, C Nicole; Crowell, Beth; Lee, Gum Hwa; Anderson, Anne E; D'Arcangelo, Gabriella

    2012-01-01

    The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability. Copyright © 2012 S. Karger AG, Basel.

  2. Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish.

    PubMed

    Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman; Chandrasekhar, Anand

    2014-02-01

    Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  4. New Insights into c-Ret Signalling Pathway in the Enteric Nervous System and Its Relationship with ALS

    PubMed Central

    Luesma, M. J.; Cantarero, I.; Álvarez-Dotu, J. M.; Santander, S.; Junquera, C.

    2014-01-01

    The receptor tyrosine kinase Ret (c-Ret) transduces the glial cell line-derived neurotrophic factor (GDNF) signal, one of the neurotrophic factors related to the degeneration process or the regeneration activity of motor neurons in amyotrophic lateral sclerosis (ALS). The phosphorylation of several tyrosine residues of c-Ret seems to be altered in ALS. c-Ret is expressed in motor neurons and in the enteric nervous system (ENS) during the embryonic period. The characteristics of the ENS allow using it as model for central nervous system (CNS) study and being potentially useful for the research of human neurological diseases such as ALS. The aim of the present study was to investigate the cellular localization and quantitative evaluation of marker c-Ret in the adult human gut. To assess the nature of c-Ret positive cells, we performed colocalization with specific markers of cells that typically are located in the enteric ganglia. The colocalization of PGP9.5 and c-Ret was preferentially intense in enteric neurons with oval morphology and mostly peripherally localized in the ganglion, so we concluded that the c-Ret receptor is expressed by a specific subtype of enteric neurons in the mature human ENS of the gut. The functional significance of these c-Ret positive neurons is discussed. PMID:24868525

  5. Why do motor neurons degenerate? Actualization in the pathogenesis of amyotrophic lateral sclerosis.

    PubMed

    Riancho, J; Gonzalo, I; Ruiz-Soto, M; Berciano, J

    2016-02-04

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons. Although a small proportion of ALS cases are familial in origin and linked to mutations in specific genes, most cases are sporadic and have a multifactorial aetiology. Some recent studies have increased our knowledge of ALS pathogenesis and raised the question of whether this disorder is a proteinopathy, a ribonucleopathy, an axonopathy, or a disease related to the neuronal microenvironment. This article presents a review of ALS pathogenesis. To this end, we have reviewed published articles describing either ALS patients or ALS animal models and we discuss how the main cellular pathways (gene processing, protein metabolism, oxidative stress, axonal transport, relationship with neuronal microenvironment) may be involved in motor neurons degeneration. ALS pathogenesis has not been fully elucidated. Recent studies suggest that although initial triggers may differ among patients, the final motor neurons degeneration mechanisms are similar in most patients once the disease is fully established. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons.

    PubMed

    Zhao, Zhen; Wang, Zheng; Gu, Ying; Feil, Robert; Hofmann, Franz; Ma, Le

    2009-02-04

    Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.

  7. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.

    PubMed

    Griesi-Oliveira, K; Acab, A; Gupta, A R; Sunaga, D Y; Chailangkarn, T; Nicol, X; Nunez, Y; Walker, M F; Murdoch, J D; Sanders, S J; Fernandez, T V; Ji, W; Lifton, R P; Vadasz, E; Dietrich, A; Pradhan, D; Song, H; Ming, G-L; Gu, X; Haddad, G; Marchetto, M C N; Spitzer, N; Passos-Bueno, M R; State, M W; Muotri, A R

    2015-11-01

    An increasing number of genetic variants have been implicated in autism spectrum disorders (ASDs), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, induced pluripotent stem cell (iPSC)-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with insulin-like growth factor-1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway may benefit from these drugs. We also demonstrate that methyl CpG binding protein-2 (MeCP2) levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.

  8. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons

    PubMed Central

    Griesi-Oliveira, Karina; Acab, Allan; Gupta, Abha R.; Sunaga, Daniele Yumi; Chailangkarn, Thanathom; Nicol, Xavier; Nunez, Yanelli; Walker, Michael F.; Murdoch, John D.; Sanders, Stephan J.; Fernandez, Thomas V.; Ji, Weizhen; Lifton, Richard P.; Vadasz, Estevão; Dietrich, Alexander; Pradhan, Dennis; Song, Hongjun; Ming, Guo-li; Guoe, Xiang; Haddad, Gabriel; Marchetto, Maria C. N.; Spitzer, Nicholas; Passos-Bueno, Maria Rita; State, Matthew W.; Muotri, Alysson R.

    2014-01-01

    An increasing number of genetic variants have been implicated in autism spectrum disorders (ASD), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, iPSC-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology, and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with IGF1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway might benefit from these drugs. We also demonstrate that MeCP2 levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells. PMID:25385366

  9. Activity-dependent downregulation of M-Type (Kv7) K⁺ channels surface expression requires the activation of iGluRs/Ca²⁺/PKC signaling pathway in hippocampal neuron.

    PubMed

    Li, Cai; Lu, Qing; Huang, Pengcheng; Fu, Tianli; Li, Changjun; Guo, Lianjun; Xu, Xulin

    2015-08-01

    M-type (Kv7) K(+) channels, encoded by KCNQ2-KCNQ5 genes, play a pivotal role in controlling neuronal excitability. However, precisely how neuronal activity regulates Kv7 channel translocation has not yet been fully defined. Here we reported activity-dependent changes in Kv7 channel subunits Kv7.2 and Kv7.3 surface expression by glutamate (glu). In the present study, we found that treatment with glutamate rapidly caused a specific decrease in M-current as well as Kv7 channel surface expression in primary cultured hippocampal neurons. The glutamate effects were mimicked by NMDA and AMPA. The glutamate effects on Kv7 channels were partially attenuated by pre-treatment of NMDA receptors antagonist d,l-APV or AMPA-KA receptors antagonist CNQX. The signal required Ca(2+) influx through L-type Ca(2+) channel and intracellular Ca(2+) elevations. PKC activation was involved in the glutamate-induced reduction of Kv7 channel surface expression. Moreover, a significant reduction of Kv7 channel surface expression occurred following glycine-induced "chem"-LTP in vitro and hippocampus-dependent behavioral learning training in vivo. These results demonstrated that activity-dependent reduction of Kv7 channel surface expression through activation of ionotropic glutamate receptors (iGluRs)/Ca(2+)/PKC signaling pathway might be an important molecular mechanism for regulation of neuronal excitability and synaptic plasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Striatal Direct and Indirect Pathway Output Structures are Differentially Altered in Mouse Models of Huntington's Disease.

    PubMed

    Barry, Joshua; Akopian, Garnik; Cepeda, Carlos; Levine, Michael S

    2018-04-24

    The present study examined synaptic communication between direct and indirect output pathway striatal medium-sized spiny neurons (MSNs) and their target structures, the substantia nigra pars reticulata (SNr) and the external globus pallidus (GPe) in two mouse models of Huntington's disease (HD). Cre-recombination, optogenetics, and whole-cell patch clamp recordings were used to determine alterations in intrinsic and synaptic properties of SNr and GPe neurons from both male and female symptomatic R6/2 (>60 days) and pre- (2 months) or symptomatic (10-12 months) YAC128 mice. Cell membrane capacitance was decreased whereas input resistance was increased in SNr neurons from R6/2, but not YAC128 mice. The amplitude of GABAergic responses evoked by optogenetic stimulation of direct pathway terminals was reduced in SNr neurons of symptomatic mice of both models. A decrease in spontaneous GABA synaptic activity, in particular large-amplitude events, in SNr neurons also was observed. Passive membrane properties of GPe neurons were not different between R6/2 or YAC128 mice and their control littermates. Similarly, the amplitude of GABA responses evoked by activation of indirect pathway MSN terminals and the frequency of spontaneous GABA synaptic activity were similar in HD and control animals. In contrast, the decay time of the evoked GABA response was significantly longer in cells from HD mice. Interestingly, activation of indirect pathway MSNs within the striatum evoked larger-amplitude responses in direct pathway MSNs. Together, these results demonstrate differential alterations in responses evoked by direct and indirect pathway terminals in SNr and GPe leading to striatal output imbalance and motor dysfunction. SIGNIFICANCE STATEMENT Previous work on Huntington's disease (HD) focused on striatal medium-sized spiny neurons (MSNs) almost exclusively. Little is known about the effects that alterations in the striatum have on output structures of the direct and indirect pathways, the substantia nigra pars reticulata (SNr) and the external segment of the globus pallidus (GPe), respectively. We combined electrophysiological and optogenetic methods to examine responses evoked by selective activation of terminals of direct and indirect pathway MSNs in SNr and GPe neurons in two mouse models of HD. We show a differential disruption of synaptic communication between the direct and indirect output pathways of the striatum with their target regions leading to an imbalance of striatal output, which will contribute to motor dysfunction. Copyright © 2018 the authors.

  11. R-type Ca(2+) channels contribute to fast synaptic excitation and action potentials in subsets of myenteric neurons in the guinea pig intestine.

    PubMed

    Naidoo, V; Dai, X; Galligan, J J

    2010-12-01

    R-type Ca(2+) channels are expressed by myenteric neurons in the guinea pig ileum but the specific function of these channels is unknown. In the present study, we used intracellular electrophysiological techniques to determine the function of R-type Ca(2+) channels in myenteric neurons in the acutely isolated longitudinal musclemyenteric plexus. We used immunohistochemical methods to localize the Ca(V)2.3 subunit of the R-type Ca(2+) channel in myenteric neurons. We also studied the effects of the non-selective Ca(2+) channel antagonist, CdCl₂ (100 μmol L⁻¹), the R-type Ca(2+) channel blockers NiCl₂ (50 μmol L⁻¹) and SNX-482 (0.1 μmol L⁻¹), and the N-type Ca(2+) channel blocker x-conotoxin GVIA (CTX 0.1 μmol L⁻¹) on action potentials and fast and slow excitatory postsynaptic potentials (fEPSPs and sEPSPs) in S and AH neurons in vitro. Ca(V)2.3 co-localized with calretinin and calbindin in myenteric neurons. NiCl₂ and SNX-482 reduced the duration and amplitude of action potentials in AH but not S neurons. NiCl₂ inhibited the afterhyperpolarization in AH neurons. x-conotoxin GVIA, but not NiCl₂, blocked sEPSPs in AH neurons. NiCl₂ and SNX-482 inhibited cholinergic, but not cholinergic/purinergic, fEPSPs in S neurons. These data show that R-type Ca(2+) channels contribute to action potentials, but not slow synaptic transmission, in AH neurons. R-type Ca(2+) channels contribute to release of acetylcholine as the mediator of fEPSPs in some S neurons. These data indicate that R-type Ca(2+) channels may be a target for drugs that selectively modulate activity of AH neurons or could alter fast synaptic excitation in specific pathways in the myenteric plexus.

  12. The mouse cerebellar cortex in organotypic slice cultures: an in vitro model to analyze the consequences of mutations and pathologies on neuronal survival, development, and function.

    PubMed

    Lonchamp, Etienne; Dupont, Jean-Luc; Beekenkamp, Huguette; Poulain, Bernard; Bossu, Jean-Louis

    2006-01-01

    Thin acute slices and dissociated cell cultures taken from different parts of the brain have been widely used to examine the function of the nervous system, neuron-specific interactions, and neuronal development (specifically, neurobiology, neuropharmacology, and neurotoxicology studies). Here, we focus on an alternative in vitro model: brain-slice cultures in roller tubes, initially introduced by Beat Gähwiler for studies with rats, that we have recently adapted for studies of mouse cerebellum. Cultured cerebellar slices afford many of the advantages of dissociated cultures of neurons and thin acute slices. Organotypic slice cultures were established from newborn or 10-15-day-old mice. After 3-4 weeks in culture, the slices flattened to form a cell monolayer. The main types of cerebellar neurons could be identified with immunostaining techniques, while their electrophysiological properties could be easily characterized with the patch-clamp recording technique. When slices were taken from newborn mice and cultured for 3 weeks, aspects of the cerebellar development were displayed. A functional neuronal network was established despite the absence of mossy and climbing fibers, which are the two excitatory afferent projections to the cerebellum. When slices were made from 10-15-day-old mice, which are at a developmental stage when cerebellum organization is almost established, the structure and neuronal pathways were intact after 3-4 weeks in culture. These unique characteristics make organotypic slice cultures of mouse cerebellar cortex a valuable model for analyzing the consequences of gene mutations that profoundly alter neuronal function and compromise postnatal survival.

  13. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis.

    PubMed

    Bhinge, Akshay; Namboori, Seema C; Zhang, Xiaoyu; VanDongen, Antonius M J; Stanton, Lawrence W

    2017-04-11

    Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila

    PubMed Central

    Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.

    2017-01-01

    Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520

  16. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  17. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    PubMed

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  18. PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans.

    PubMed

    Barrios, Arantza; Ghosh, Rajarshi; Fang, Chunhui; Emmons, Scott W; Barr, Maureen M

    2012-12-01

    Appetitive behaviors require complex decision making that involves the integration of environmental stimuli and physiological needs. C. elegans mate searching is a male-specific exploratory behavior regulated by two competing needs: food and reproductive appetite. We found that the pigment dispersing factor receptor (PDFR-1) modulates the circuit that encodes the male reproductive drive that promotes male exploration following mate deprivation. PDFR-1 and its ligand, PDF-1, stimulated mate searching in the male, but not in the hermaphrodite. pdf-1 was required in the gender-shared interneuron AIM, and the receptor acted in internal and external environment-sensing neurons of the shared nervous system (URY, PQR and PHA) to produce mate-searching behavior. Thus, the pdf-1 and pdfr-1 pathway functions in non-sex-specific neurons to produce a male-specific, goal-oriented exploratory behavior. Our results indicate that secretin neuropeptidergic signaling is involved in regulating motivational internal states.

  19. Voltage-Independent Inhibition of the Tetrodotoxin-Sensitive Sodium Currents by Oxotremorine and Angiotensin II in Rat Sympathetic Neurons.

    PubMed

    Puente, Erika I; De la Cruz, Lizbeth; Arenas, Isabel; Elias-Viñas, David; Garcia, David E

    2016-04-01

    Tetrodotoxin-sensitive Na(+) currents have been extensively studied because they play a major role in neuronal firing and bursting. In this study, we showed that voltage-dependent Na(+) currents are regulated in a slow manner by oxotremorine (oxo-M) and angiotensin II in rat sympathetic neurons. We found that these currents can be readily inhibited through a signaling pathway mediated by G proteins and phospholipase C (PLC) β1. This inhibition is slowly established, pertussis toxin-insensitive, partially reversed within tens of seconds after oxo-M washout, and not relieved by a strong depolarization, suggesting a voltage-insensitive mechanism of inhibition. Specificity of the M1 receptor was tested by the MT-7 toxin. Activation and inactivation curves showed no shift in the voltage dependency under the inhibition by oxo-M. This inhibition is blocked by a PLC inhibitor (U73122, 1-(6-{[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione), and recovery from inhibition is prevented by wortmannin, a PI3/4 kinase inhibitor. Hence, the pathway involves Gq/11 and is mediated by a diffusible second messenger. Oxo-M inhibition is occluded by screening phosphatidylinositol 4,5-bisphosphate (PIP2)-negative charges with poly-l-lysine and prevented by intracellular dialysis with a PIP2 analog. In addition, bisindolylmaleimide I, a specific ATP-competitive protein kinase C (PKC) inhibitor, rules out that this inhibition may be mediated by this protein kinase. Furthermore, oxo-M-induced suppression of Na(+) currents remains unchanged when neurons are treated with calphostin C, a PKC inhibitor that targets the diacylglycerol-binding site of the kinase. These results support a general mechanism of Na(+) current inhibition that is widely present in excitable cells through modulation of ion channels by specific G protein-coupled receptors. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in Transgenic Female Medaka.

    PubMed

    Zempo, Buntaro; Karigo, Tomomi; Kanda, Shinji; Akazome, Yasuhisa; Oka, Yoshitaka

    2018-02-01

    Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone. Copyright © 2018 Endocrine Society.

  1. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon.

    PubMed

    Smolilo, D J; Costa, M; Hibberd, T J; Wattchow, D A; Spencer, Nick J

    2018-07-01

    The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility. © 2018 Wiley Periodicals, Inc.

  2. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    PubMed

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  3. Progression of hippocampal degeneration in amyotrophic lateral sclerosis with or without memory impairment: distinction from Alzheimer disease.

    PubMed

    Takeda, Takahiro; Uchihara, Toshiki; Arai, Nobutaka; Mizutani, Toshio; Iwata, Makoto

    2009-01-01

    The hippocampal involvement in amyotrophic lateral sclerosis (ALS) patients has been known for more than a decade, however, its relationship to clinical manifestations including memory deficits and topographical differentiation from Alzheimer disease (AD) remain unclear. In order to clarify the anatomopathological features in the hippocampus and their relevance to disease-specific memory deficits in ALS patients, topography and cytopathology of the hippocampal lesions along the perforant pathway were quantitatively and semiquantitatively surveyed in 14 ALS patients with extramotor involvement. These pathological findings were compared with clinical characteristics assessed from their clinical records. Cytoplasmic inclusions initially appear in the granular cells of the dentate gyrus (DG) and superficial small neurons of the transentorhinal cortex (TEC) with mild subicular degeneration (stage I: inclusion stage). Subsequent gliosis and neuronal loss of the TEC, concomitant with presynaptic degeneration of the outer molecular layer of the DG, suggests an extension of the degeneration through the perforant pathway (stage II: early perforant stage). In a more advanced stage, the presynaptic degeneration is more evident with moderate to severe neuronal loss in the TEC (stage III: advanced perforant stage). This advanced stage was associated with episodic memory deficits mimicking AD in some ALS patients. This ALS pathology initiated by cytoplasmic inclusions and neuronal loss in layer II-III of the TEC is different from neurofibrillary tangles of AD, dominant in layer II-III of the entorhinal cortex. Because this involvement of the TEC-molecular DG projection and subiculum is specific to ALS, it will provide a basis for clinical characterization of memory deficits of ALS, which could be distinct from those of AD.

  4. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis.

    PubMed

    Vallejo, Mario

    2009-04-01

    Astrocytes constitute a very abundant cell type in the mammalian central nervous system and play critical roles in brain function. During development, astrocytes are generated from neural progenitor cells only after these cells have generated neurons. This so called gliogenic switch is tightly regulated by intrinsic factors that inhibit the generation of astrocytes during the neurogenic period. Once neural progenitors acquire gliogenic competence, they differentiate into astrocytes in response to specific extracellular signals. Some of these signals are delivered by neurotrophic cytokines via activation of the gp130-JAK-signal transducer and activator of transcription system, whereas others depend on the activity of pituitary adenylate cyclase-activating polypeptide (PACAP) on specific PAC1 receptors that stimulate the production of cAMP. This results in the activation of the small GTPases Rap1 and Ras, and in the cAMP-dependent entry of extracellular calcium into the cell. Calcium, in turn, stimulates the transcription factor downstream regulatory element antagonist modulator (DREAM), which is bound to specific sites of the promoter of the glial fibrillary acidic protein gene, stimulating its expression during astrocyte differentiation. Lack of DREAM in vivo results in alterations in the number of neurons and astrocytes generated during development. Thus, the PACAP-cAMP-Ca(2+)-DREAM signaling cascade constitutes an important pathway to activate glial-specific gene expression during astrocyte differentiation.

  5. Employing TDMA Protocol in Neural Nanonetworks in Case of Neuron Specific Faults.

    PubMed

    Tezcan, Hakan; Oktug, Sema F; Kök, Fatma Neşe

    2015-09-01

    Many neurodegenerative diseases arise from the malfunctioning neurons in the pathway where the signal is carried. In this paper, we propose neuron specific TDMA/multiplexing and demultiplexing mechanisms to convey the spikes of a receptor neuron over a neighboring path in case of an irreversible path fault existing in its original path. The multiplexing mechanism depends on neural delay box (NDB) which is composed of a relay unit and a buffering unit. The relay unit can be realized as a nanoelectronic device. The buffering unit can be implemented either via neural delay lines as employed in optical switching systems or via nanoelectronic delay lines, i.e., delay flip flops. Demultiplexing is realized by a demultiplexer unit according to the time slot assignment information. Besides, we propose the use of neural interfaces in the NDBs and the demultiplexer unit for detecting and stimulating the generation of spikes. The objective of the proposed mechanisms is to substitute a malfunctioning path, increase the number of spikes delivered and correctly deliver the spikes to the intended part of the somatosensory cortex. The results demonstrate that significant performance improvement on the successively delivered number of spikes is achievable when delay lines are employed as neural buffers in NDBs.

  6. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention

    PubMed Central

    Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V.

    2012-01-01

    Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3′-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context. PMID:22661231

  7. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention.

    PubMed

    Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V

    2012-06-01

    Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.

  8. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example

    PubMed Central

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F.; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C.

    2017-01-01

    Background Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Objective Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Methods Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson’s disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Results Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Conclusion Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation. PMID:28441410

  9. Cell-Specific Activity-Dependent Fractionation of Layer 2/3→5B Excitatory Signaling in Mouse Auditory Cortex

    PubMed Central

    Joshi, Ankur; Middleton, Jason W.; Anderson, Charles T.; Borges, Katharine; Suter, Benjamin A.; Shepherd, Gordon M. G.

    2015-01-01

    Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input–output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input–output functions. PMID:25698747

  10. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period.

    PubMed

    Roh, Junyeop D; Choi, Su-Yeon; Cho, Yi Sul; Choi, Tae-Yong; Park, Jong-Sil; Cutforth, Tyler; Chung, Woosuk; Park, Hanwool; Lee, Dongsoo; Kim, Myeong-Heui; Lee, Yeunkum; Mo, Seojung; Rhee, Jeong-Seop; Kim, Hyun; Ko, Jaewon; Choi, Se-Young; Bae, Yong Chul; Shen, Kang; Kim, Eunjoon; Han, Kihoon

    2017-01-01

    Copy number variants and point mutations of NEPH2 (also called KIRREL3 ) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2 -/- mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2 -/- mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.

  12. Analytical Calculation of Mutual Information between Weakly Coupled Poisson-Spiking Neurons in Models of Dynamically Gated Communication.

    PubMed

    Cannon, Jonathan

    2017-01-01

    Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.

  13. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    PubMed

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neuronal Dysregulation in Stroke-Associated Pseudobulbar Affect (PBA): Diagnostic Scales and Current Treatment Options.

    PubMed

    Lapchak, Paul A

    2015-10-01

    Until recently there was little understanding of the exact pathophysiology and treatment choices for stroke patients with Pseudobulbar affect (PBA). PBA is typically characterized by outbursts or uncontrollable laughing or crying and in the majority of patients, the outbursts being involuntary and incompatible with the patients' emotional state. PBA is a behavioral syndrome reported to be displayed in 28-52% of stroke patients with first or multiple strokes, and incidence may be higher in patients who have had prior stroke events, and higher in females. There is typically involvement of glutaminergic, serotoninergic and dopaminergic neuronal circuits of the corticolimbic-subcorticothalamic-pontocerebellar network. PBA is now understood to be a disinhibition syndrome in which specific pathways involving serotonin and glutamate are disrupted or modulated causing reduced cortical inhibition of a cerebellar/brainstem-situated "emotional" laughing or crying focal center. Stroke-induced disruption of one or more neuronal pathway circuits may "disinhibit" voluntary laughing and crying making the process involuntary. With a "new" treatment currently being marketed to treat PBA patients, this article will delve into the neurological and physiological basis for PBA in stroke, and review progress with the diagnosis and treatment of PBA.

  15. Neuronal Dysregulation in Stroke-Associated Pseudobulbar Affect (PBA): Diagnostic Scales and Current Treatment Options

    PubMed Central

    Lapchak, Paul A

    2015-01-01

    Until recently there was little understanding of the exact pathophysiology and treatment choices for stroke patients with Pseudobulbar affect (PBA). PBA is typically characterized by outbursts or uncontrollable laughing or crying and in the majority of patients, the outbursts being involuntary and incompatible with the patients’ emotional state. PBA is a behavioral syndrome reported to be displayed in 28–52% of stroke patients with first or multiple strokes, and incidence may be higher in patients who have had prior stroke events, and higher in females. There is typically involvement of glutaminergic, serotoninergic and dopaminergic neuronal circuits of the corticolimbic-subcorticothalamic-pontocerebellar network. PBA is now understood to be a disinhibition syndrome in which specific pathways involving serotonin and glutamate are disrupted or modulated causing reduced cortical inhibition of a cerebellar/brainstem-situated “emotional” laughing or crying focal center. Stroke-induced disruption of one or more neuronal pathway circuits may “disinhibit” voluntary laughing and crying making the process involuntary. With a “new” treatment currently being marketed to treat PBA patients, this article will delve into the neurological and physiological basis for PBA in stroke, and review progress with the diagnosis and treatment of PBA. PMID:26693049

  16. Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.

    PubMed

    Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong

    2018-04-25

    To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.

  17. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    PubMed Central

    Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon

    2017-01-01

    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257

  18. Immunohistochemical localization of calcium-binding proteins in the brainstem vestibular nuclei of the jaundiced Gunn rat.

    PubMed

    Shaia, Wayne T; Shapiro, Steven M; Heller, Andrew J; Galiani, David L; Sismanis, Aristides; Spencer, Robert F

    2002-11-01

    Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.

  19. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression.

    PubMed

    Jiang, J-J; Liu, C-M; Zhang, B-Y; Wang, X-W; Zhang, M; Saijilafu; Zhang, S-R; Hall, P; Hu, Y-W; Zhou, F-Q

    2015-08-27

    MicroRNAs are emerging to be important epigenetic factors that control axon regeneration. Here, we report that microRNA-26a (miR-26a) is a physiological regulator of mammalian axon regeneration in vivo. We demonstrated that endogenous miR-26a acted to target specifically glycogen synthase kinase 3β (GSK3β) in adult mouse sensory neurons in vitro and in vivo. Inhibition of endogenous miR-26a in sensory neurons impaired axon regeneration in vitro and in vivo. Moreover, the regulatory effect of miR-26a was mediated by increased expression of GSK3β because downregulation or pharmacological inhibition of GSK3β fully rescued axon regeneration. Our results also suggested that the miR-26a-GSK3β pathway regulated axon regeneration at the neuronal soma by controlling gene expression. We provided biochemical and functional evidences that the regeneration-associated transcription factor Smad1 acted downstream of miR-26a and GSK3β to control sensory axon regeneration. Our study reveals a novel miR-26a-GSK3β-Smad1 signaling pathway in the regulation of mammalian axon regeneration. Moreover, we provide the first evidence that, in addition to inhibition of GSK3β kinase activity, maintaining a lower protein level of GSK3β in neurons by the microRNA is necessary for efficient axon regeneration.

  20. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    PubMed

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.

    PubMed

    Ogueta, Maite; Hardie, Roger C; Stanewsky, Ralf

    2018-06-04

    The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons

    PubMed Central

    Lin, Hua V.; Plum, Leona; Ono, Hiraku; Gutiérrez-Juárez, Roger; Shanabrough, Marya; Borok, Erzsebet; Horvath, Tamas L.; Rossetti, Luciano; Accili, Domenico

    2010-01-01

    OBJECTIVE The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS To distinguish neurons that mediate insulin's effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K+ channel (KATP channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program. PMID:19933998

  3. Serotonin–mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila

    PubMed Central

    Lee, Pei-Tseng; Lin, Hsuan-Wen; Chang, Yu-Hsuan; Fu, Tsai-Feng; Dubnau, Josh; Hirsh, Jay; Lee, Tzumin; Chiang, Ann-Shyn

    2011-01-01

    Pavlovian olfactory learning in Drosophila produces two genetically distinct forms of intermediate-term memories: anesthesia-sensitive memory, which requires the amnesiac gene, and anesthesia-resistant memory (ARM), which requires the radish gene. Here, we report that ARM is specifically enhanced or inhibited in flies with elevated or reduced serotonin (5HT) levels, respectively. The requirement for 5HT was additive with the memory defect of the amnesiac mutation but was occluded by the radish mutation. This result suggests that 5HT and Radish protein act on the same pathway for ARM formation. Three supporting lines of evidence indicate that ARM formation requires 5HT released from only two dorsal paired medial (DPM) neurons onto the mushroom bodies (MBs), the olfactory learning and memory center in Drosophila: (i) DPM neurons were 5HT-antibody immunopositive; (ii) temporal inhibition of 5HT synthesis or release from DPM neurons, but not from other serotonergic neurons, impaired ARM formation; (iii) knocking down the expression of d5HT1A serotonin receptors in α/β MB neurons, which are innervated by DPM neurons, inhibited ARM formation. Thus, in addition to the Amnesiac peptide required for anesthesia-sensitive memory formation, the two DPM neurons also release 5HT acting on MB neurons for ARM formation. PMID:21808003

  4. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  5. Inductive specification and axonal orientation of spinal neurons mediated by divergent bone morphogenetic protein signaling pathways

    PubMed Central

    2011-01-01

    Background Bone morphogenetic protein (BMP)7 evokes both inductive and axon orienting responses in dorsal interneurons (dI neurons) in the developing spinal cord. These events occur sequentially during the development of spinal neurons but in these and other cell types such inductive and acute chemotactic responses occur concurrently, highlighting the requirement for divergent intracellular signaling. Both type I and type II BMP receptor subtypes have been implicated selectively in orienting responses but it remains unclear how, in a given cell, divergence occurs. We have examined the mechanisms by which disparate BMP7 activities are generated in dorsal spinal neurons. Results We show that widely different threshold concentrations of BMP7 are required to elicit the divergent inductive and axon orienting responses. Type I BMP receptor kinase activity is required for activation of pSmad signaling and induction of dI character by BMP7, a high threshold response. In contrast, neither type I BMP receptor kinase activity nor Smad1/5/8 phosphorylation is involved in the low threshold orienting responses of dI axons to BMP7. Instead, BMP7-evoked axonal repulsion and growth cone collapse are dependent on phosphoinositide-3-kinase (PI3K) activation, plausibly through type II receptor signaling. BMP7 stimulates PI3K-dependent signaling in dI neurons. BMP6, which evokes neural induction but does not have orienting activity, activates Smad signaling but does not stimulate PI3K. Conclusions Divergent signaling through pSmad-dependent and PI3K-dependent (Smad-independent) mechanisms mediates the inductive and orienting responses of dI neurons to BMP7. A model is proposed whereby selective engagement of BMP receptor subunits underlies choice of signaling pathway. PMID:22085733

  6. A computational developmental model for specificity and transfer in perceptual learning.

    PubMed

    Solgi, Mojtaba; Liu, Taosheng; Weng, Juyang

    2013-01-04

    How and under what circumstances the training effects of perceptual learning (PL) transfer to novel situations is critical to our understanding of generalization and abstraction in learning. Although PL is generally believed to be highly specific to the trained stimulus, a series of psychophysical studies have recently shown that training effects can transfer to untrained conditions under certain experimental protocols. In this article, we present a brain-inspired, neuromorphic computational model of the Where-What visuomotor pathways which successfully explains both the specificity and transfer of perceptual learning. The major architectural novelty is that each feature neuron has both sensory and motor inputs. The network of neurons is autonomously developed from experience, using a refined Hebbian-learning rule and lateral competition, which altogether result in neuronal recruitment. Our hypothesis is that certain paradigms of experiments trigger two-way (descending and ascending) off-task processes about the untrained condition which lead to recruitment of more neurons in lower feature representation areas as well as higher concept representation areas for the untrained condition, hence the transfer. We put forward a novel proposition that gated self-organization of the connections during the off-task processes accounts for the observed transfer effects. Simulation results showed transfer of learning across retinal locations in a Vernier discrimination task in a double-training procedure, comparable to previous psychophysical data (Xiao et al., 2008). To the best of our knowledge, this model is the first neurally-plausible model to explain both transfer and specificity in a PL setting.

  7. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

    PubMed

    Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2018-06-25

    Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W.-B., Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

  9. A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans

    PubMed Central

    Cochella, Luisa; Flowers, Eileen B.; Hobert, Oliver

    2011-01-01

    One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo. PMID:21698137

  10. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NO• pathway in vitro

    PubMed Central

    Davis, David A.; Akopian, Garnik; Walsh, John P.; Sioutas, Constantinos; Morgan, Todd E.; Finch, Caleb E.

    2013-01-01

    Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered postsynaptic proteins in CA1 neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1 or mGlur5; increased PSD95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NO• production by slices was increased within 15 min of exposure to nPM with dose dependence, 1–10 µg/ml. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NO• and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory postsynaptic currents (EPSCs) of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NO• production and nitrosylation reactions during nPM-mediated neurotoxicity. PMID:23927064

  11. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Takumi; Saitoh, Sachie; Hosaka, Manami

    2009-02-06

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activationmore » of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had similar properties of cysteine binding as TBHQ and CA, which compounds were associated with the transcriptional activation and an increase in the level of reduced glutathione. These results suggest that para- and ortho-dihydroquinones may be neuroprotective compounds active against oxidative stress.« less

  12. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    PubMed

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis. Copyright © 2017 the authors 0270-6474/17/3711854-13$15.00/0.

  13. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia.

    PubMed

    Han, Qingdong; Liu, Shengwen; Li, Zhengwei; Hu, Feng; Zhang, Qiang; Zhou, Min; Chen, Jingcao; Lei, Ting; Zhang, Huaqiu

    2014-01-13

    Accumulating evidence indicates that extensive microglia activation-mediated local inflammation contributes to neuronal injury in cerebral ischemia. We have previously shown that 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), a potent volume-regulated anion channel (VRAC) inhibitor, suppresses pathological glutamate release and excitatory neurotoxicity in reversible middle cerebral artery occlusion (rMCAO) model in vivo. In the present study, we sought to determine whether DCPIB also attenuates microglia activation that could contribute to neuronal injury in the cerebral ischemia/reperfusion pathology. We show that oxygen-glucose deprivation (OGD) induced microglia proliferation, migration, and secretion of cytokines and all these pathological changes were effectively inhibited by DCPIB in vitro. In the microglia/neuron co-cultures, OGD induced neuronal damage was reduced markedly in the presence of DCPIB. In rat rMCAO animal model, DCPIB significantly attenuated microglia activation and neuronal death. Activation of mitogen-activated protein kinase (MAPK) signaling pathway is known to be a critical signaling pathway for microglia activation. We further explored a potential involvement of DCPIB in this pathway by western blot analysis. Under the conditions that MAPK pathway was activated either by lipopolysaccharides (LPS) or OGD, the levels of phosphorylated ERK1/2, JNK and p38 were reduced significantly in the presence of DCPIB. Altogether, our study demonstrated that DCPIB inhibits microglia activation potently under ischemic conditions both in vitro and in vivo. The DCPIB effect is likely attributable to both direct inhibition VRAC and indirect inhibition of MAPK pathway in microglia that are beneficial for the survival of neurons in cerebral ischemic conditions. © 2013 Elsevier B.V. All rights reserved.

  14. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes

    PubMed Central

    Lasiecka, Zofia M.; Winckler, Bettina

    2011-01-01

    Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782

  16. Hsp27 binding to the 3′UTR of bim mRNA prevents neuronal death during oxidative stress–induced injury: a novel cytoprotective mechanism

    PubMed Central

    Dávila, David; Jiménez-Mateos, Eva M.; Mooney, Claire M.; Velasco, Guillermo; Henshall, David C.; Prehn, Jochen H. M.

    2014-01-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3′-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress–induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3′UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3′UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons. PMID:25187648

  17. Computational model of cerebral blood flow redistribution during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  18. Neuronal responses to face-like stimuli in the monkey pulvinar.

    PubMed

    Nguyen, Minh Nui; Hori, Etsuro; Matsumoto, Jumpei; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    The pulvinar nuclei appear to function as the subcortical visual pathway that bypasses the striate cortex, rapidly processing coarse facial information. We investigated responses from monkey pulvinar neurons during a delayed non-matching-to-sample task, in which monkeys were required to discriminate five categories of visual stimuli [photos of faces with different gaze directions, line drawings of faces, face-like patterns (three dark blobs on a bright oval), eye-like patterns and simple geometric patterns]. Of 401 neurons recorded, 165 neurons responded differentially to the visual stimuli. These visual responses were suppressed by scrambling the images. Although these neurons exhibited a broad response latency distribution, face-like patterns elicited responses with the shortest latencies (approximately 50 ms). Multidimensional scaling analysis indicated that the pulvinar neurons could specifically encode face-like patterns during the first 50-ms period after stimulus onset and classify the stimuli into one of the five different categories during the next 50-ms period. The amount of stimulus information conveyed by the pulvinar neurons and the number of stimulus-differentiating neurons were consistently higher during the second 50-ms period than during the first 50-ms period. These results suggest that responsiveness to face-like patterns during the first 50-ms period might be attributed to ascending inputs from the superior colliculus or the retina, while responsiveness to the five different stimulus categories during the second 50-ms period might be mediated by descending inputs from cortical regions. These findings provide neurophysiological evidence for pulvinar involvement in social cognition and, specifically, rapid coarse facial information processing. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Synaptic Circuit Organization of Motor Corticothalamic Neurons

    PubMed Central

    Yamawaki, Naoki

    2015-01-01

    Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383

  20. Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway.

    PubMed

    Liu, Rui-Li; Xiong, Qiu-Ju; Shu, Qing; Wu, Wen-Ning; Cheng, Jin; Fu, Hui; Wang, Fang; Chen, Jian-Guo; Hu, Zhuang-Li

    2012-08-21

    Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca(2+)](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway.

    PubMed

    Qian, Zhong-Ming; He, Xuan; Liang, Tuo; Wu, Ka-Chun; Yan, Yik-Chun; Lu, Li-Na; Yang, Guang; Luo, Qian Qian; Yung, Wing-Ho; Ke, Ya

    2014-12-01

    Neuroinflammation is closely related to brain iron homeostasis. Our previous study demonstrated that lipopolysaccharides (LPS) can regulate expression of iron-regulatory peptide hepcidin; however, the mechanism is undefined. Here, we demonstrated that intracerebroventricular injection of LPS in rat brain upregulated hepcidin and downregulated ferroportin 1 in the cortex and substantia nigra. LPS increased hepcidin expression in neurons only when they were co-cultured with BV-2 microglia, and the upregulation was suppressed by IL-6 neutralizing antibody in vitro. In addition, IL-6 but not IL-1α, IL-1β, or tumor necrosis factor-alpha increased hepcidin expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation in cortical neurons and MES23.5 dopaminergic neurons. These effects were blocked by the STAT3 inhibitor, stattic. Our results show that neurons are the major source of increased hepcidin expression in response to LPS challenge but microglia play a key mediator role by releasing IL-6 and recruiting the STAT3 pathway. We conclude that LPS upregulates hepcidin expression in neurons via microglia and the IL-6/STAT3 signaling pathway.

  2. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  3. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    PubMed

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  4. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway

    PubMed Central

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-01-01

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury. PMID:27456198

  5. Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons.

    PubMed

    Cao, Jun-Li; Vialou, Vincent F; Lobo, Mary Kay; Robison, Alfred J; Neve, Rachael L; Cooper, Donald C; Nestler, Eric J; Han, Ming-Hu

    2010-09-28

    Excessive inhibition of brain neurons in primary or slice cultures can induce homeostatic intrinsic plasticity, but the functional role and underlying molecular mechanisms of such plasticity are poorly understood. Here, we developed an ex vivo locus coeruleus (LC) slice culture system and successfully recapitulated the opiate-induced homeostatic adaptation in electrical activity of LC neurons seen in vivo. We investigated the mechanisms underlying this adaptation in LC slice cultures by use of viral-mediated gene transfer and genetic mutant mice. We found that short-term morphine treatment of slice cultures almost completely abolished the firing of LC neurons, whereas chronic morphine treatment increased LC neuronal excitability as revealed during withdrawal. This increased excitability was mediated by direct activation of opioid receptors and up-regulation of the cAMP pathway and accompanied by increased cAMP response-element binding protein (CREB) activity. Overexpression of a dominant negative CREB mutant blocked the increase in LC excitability induced by morphine- or cAMP-pathway activation. Knockdown of CREB in slice cultures from floxed CREB mice similarly decreased LC excitability. Furthermore, the ability of morphine or CREB overexpression to up-regulate LC firing was blocked by knockout of the CREB target adenylyl cyclase 8. Together, these findings provide direct evidence that prolonged exposure to morphine induces homeostatic plasticity intrinsic to LC neurons, involving up-regulation of the cAMP-CREB signaling pathway, which then enhances LC neuronal excitability.

  6. Movement interference in autism-spectrum disorder.

    PubMed

    Gowen, E; Stanley, J; Miall, R C

    2008-03-07

    Movement interference occurs when concurrently observing and executing incompatible actions and is believed to be due to co-activation of conflicting populations of mirror neurons. It has also been suggested that mirror neurons contribute towards the imitation of observed actions. However, the exact neural substrate of imitation may depend on task demands: a processing route for goal-directed meaningful actions may be distinct from one for non-goal-directed actions. A more controversial role proposed for these neurons is in theory of mind processing, along with the subsequent suggestion that impairment in the mirror neuron circuit can contribute to autism-spectrum disorder (ASD) where individuals have theory of mind deficits. We have therefore examined movement interference in nine ASD participants and nine matched controls while performing actions congruent and incongruent with observed meaningless arm movements. We hypothesised that if the mirror neuron system was impaired, reduced interference should be observed in the ASD group. However, control and ASD participants demonstrated an equivalent interference effect in an interpersonal condition, with greater movement variability in the incongruent compared to the congruent condition. A component of movement interference which is independent of congruency did differ between groups: ASD participants made generally more variable movements for the interpersonal task than for biological dot-motion task, while the reverse was true for the control participants. We interpret these results as evidence that the ASD participant group either rely to a greater extent on the goal-directed imitation pathway, supporting claims that they have a specific deficit of the non-goal-directed imitation pathway, or exhibit reduced visuomotor integration.

  7. Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.

    PubMed

    Van Horn, Marion R; Cullen, Kathleen E

    2008-10-01

    To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.

  8. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals.

    PubMed

    Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki

    2015-08-13

    Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.

  9. Dysregulated LRRK2 Signaling in Response to Endoplasmic Reticulum Stress Leads to Dopaminergic Neuron Degeneration in C. elegans

    PubMed Central

    Yuan, Yiyuan; Cao, Pengxiu; Smith, Mark A.; Kramp, Kristopher; Huang, Ying; Hisamoto, Naoki; Matsumoto, Kunihiro; Hatzoglou, Maria; Jin, Hui; Feng, Zhaoyang

    2011-01-01

    Mutation of leucine-rich repeat kinase 2 (LRRK2) is the leading genetic cause of Parkinson's Disease (PD), manifested as age-dependent dopaminergic neurodegeneration, but the underlying molecular mechanisms remain unclear. Multiple roles of LRRK2 may contribute to dopaminergic neurodegeneration. Endoplasmic reticulum (ER) stress has also been linked to PD pathogenesis, but its interactive mechanism with PD genetic factors is largely unknown. Here, we used C. elegans, human neuroblastoma cells and murine cortical neurons to determine the role of LRRK2 in maintaining dopaminergic neuron viability. We found that LRRK2 acts to protect neuroblastoma cells and C. elegans dopaminergic neurons from the toxicity of 6-hydroxydopamine and/or human α-synuclein, possibly through the p38 pathway, by supporting upregulation of GRP78, a key cell survival molecule during ER stress. A pathogenic LRRK2 mutant (G2019S), however, caused chronic p38 activation that led to death of murine neurons and age-related dopaminergic-specific neurodegeneration in nematodes. These observations establish a critical functional link between LRRK2 and ER stress. PMID:21857923

  10. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex

    PubMed Central

    Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M

    2016-01-01

    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828

  11. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells.

    PubMed

    Valdiglesias, Vanessa; Costa, Carla; Sharma, Vyom; Kiliç, Gözde; Pásaro, Eduardo; Teixeira, João Paulo; Dhawan, Alok; Laffon, Blanca

    2013-07-01

    Titanium dioxide (TiO2) are among most frequently used nanoparticles (NPs). They are present in a variety of consumer products, including food industry in which they are employed as an additive. The potential toxic effects of these NPs on mammal cells have been extensively studied. However, studies regarding neurotoxicity and specific effects on neuronal systems are very scarce and, to our knowledge, no studies on human neuronal cells have been reported so far. Therefore, the main objective of this work was to investigate the effects of two types of TiO₂ NPs, with different crystalline structure, on human SHSY5Y neuronal cells. After NPs characterization, a battery of assays was performed to evaluate the viability, cytotoxicity, genotoxicity and oxidative damage in TiO₂ NP-exposed SHSY5Y cells. Results obtained showed that the behaviour of both types of NPs resulted quite comparable. They did not reduce the viability of neuronal cells but were effectively internalized by the cells and induced dose-dependent cell cycle alterations, apoptosis by intrinsic pathway, and genotoxicity not related with double strand break production. Furthermore, all these effects were not associated with oxidative damage production and, consequently, further investigations on the specific mechanisms underlying the effects observed in this study are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    PubMed

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  13. Transcriptional activation of JC virus by human T-lymphotropic virus type I Tax protein in human neuronal cell lines.

    PubMed

    Okada, Y; Sawa, H; Tanaka, S; Takada, A; Suzuki, S; Hasegawa, H; Umemura, T; Fujisawa, J; Tanaka, Y; Hall, W W; Nagashima, K

    2000-06-02

    Polyomavirus JC (JCV) causes the human demyelinating disease, progressive multifocal leukoencephalopathy (PML). The recent demonstration of cases of PML in association with human T-lymphotropic virus type I (HTLV-I) infection prompted us to examine whether the HTLV-I-encoded regulatory protein Tax activates JCV transcription. By employing a dual luciferase assay, we initially found that the expression of Tax activated the transcriptional potential of both early and late promoters of JCV in human neuronal but not in non-neuronal cells. We subsequently analyzed the mechanism of Tax-induced activation of the JCV promoter in neuronal cells with the following results: 1) the JCV promoter that lacks the NF-kappaB-binding motif could not be activated by Tax; 2) the overexpression of IkappaBalpha abolished Tax-induced transcriptional activation of the JCV promoter; 3) a Tax mutant (M22) lacking the potential for activation via the NF-kappaB pathway did not activate the JCV promoter. Furthermore, Tax enhances the gene expression of JCV T antigen and VP1. We examined mechanisms of the cell-specific activation of the JCV promoter by Tax. Electrophoretic mobility shift assay demonstrated the presence of Tax-bound protein(s) that were specifically present in non-neuronal cells. This study is the first demonstration of the activation of JCV promoter by HTLV-I Tax in an NF-kappaB-dependent manner.

  14. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  15. Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development.

    PubMed

    Levin, Barry E; Lutz, Thomas A

    2017-02-01

    While the regulation of energy homeostasis by amylin is already well-characterized, emerging data suggest that amylin is also crucial for the development of neural pathways in the hypothalamus and caudal hindbrain (area postrema, AP; nucleus tractus solitarius, NTS). Exciting new findings demonstrate crucial amylin-leptin interactions in altering the activity of specific hypothalamic and AP neurons, and a role for amylin as a novel class of 'leptin sensitizers' which enhance leptin signaling in both leptin-sensitive and -resistant individuals, in part by stimulating IL-6 production by hypothalamic microglia. This review summarizes these findings and provides a hypothetical framework for future studies to elucidate the mechanisms by which amylin and leptin act individually and as co-conspirators to alter energy homeostasis and neuronal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development

    PubMed Central

    Goossens, Tim; Kang, Yuan Y.; Wuytens, Gunther; Zimmermann, Pascale; Callaerts-Végh, Zsuzsanna; Pollarolo, Giulia; Islam, Rafique; Hortsch, Michael; Callaerts, Patrick

    2011-01-01

    The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1. PMID:21389050

  17. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development.

    PubMed

    Goossens, Tim; Kang, Yuan Y; Wuytens, Gunther; Zimmermann, Pascale; Callaerts-Végh, Zsuzsanna; Pollarolo, Giulia; Islam, Rafique; Hortsch, Michael; Callaerts, Patrick

    2011-04-01

    The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.

  18. Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex.

    PubMed

    Held, Martina; Berz, Annuska; Hensgen, Ronja; Muenz, Thomas S; Scholl, Christina; Rössler, Wolfgang; Homberg, Uwe; Pfeiffer, Keram

    2016-01-01

    While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.

  19. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of corticocortically projecting neurons with distinct regional and laminar distribution in the monkey visual system. It is possible that the preferential distribution of neurofilament protein within feedforward connections to area MT and all feedback projections is related to other distinctive properties of these corticocortical projection neurons.

  20. Phosphorylation mechanisms in dopamine transporter regulation.

    PubMed

    Foster, James D; Vaughan, Roxanne A

    2017-10-01

    The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.

  1. Neurogenic effects of β-amyloid in the choroid plexus epithelial cells in Alzheimer's disease.

    PubMed

    Bolos, Marta; Spuch, Carlos; Ordoñez-Gutierrez, Lara; Wandosell, Francisco; Ferrer, Isidro; Carro, Eva

    2013-08-01

    β-amyloid (Aβ) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer's disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aβ on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aβ regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aβ increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aβ-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aβ-induced neuronal proliferation. Taken together, our results support a role of Aβ in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer's disease.

  2. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.

    PubMed

    Paulk, Angelique C; Gronenberg, Wulfila

    2008-11-01

    To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.

  3. Midline thalamic neurons are differentially engaged during hippocampus network oscillations.

    PubMed

    Lara-Vásquez, Ariel; Espinosa, Nelson; Durán, Ernesto; Stockle, Marcelo; Fuentealba, Pablo

    2016-07-14

    The midline thalamus is reciprocally connected with the medial temporal lobe, where neural circuitry essential for spatial navigation and memory formation resides. Yet, little information is available on the dynamic relationship between activity patterns in the midline thalamus and medial temporal lobe. Here, we report on the functional heterogeneity of anatomically-identified thalamic neurons and the differential modulation of their activity with respect to dorsal hippocampal rhythms in the anesthetized mouse. Midline thalamic neurons expressing the calcium-binding protein calretinin, irrespective of their selective co-expression of calbindin, discharged at overall low levels, did not increase their activity during hippocampal theta oscillations, and their firing rates were inhibited during hippocampal sharp wave-ripples. Conversely, thalamic neurons lacking calretinin discharged at higher rates, increased their activity during hippocampal theta waves, but remained unaffected during sharp wave-ripples. Our results indicate that the midline thalamic system comprises at least two different classes of thalamic projection neuron, which can be partly defined by their differential engagement by hippocampal pathways during specific network oscillations that accompany distinct behavioral contexts. Thus, different midline thalamic neuronal populations might be selectively recruited to support distinct stages of memory processing, consistent with the thalamus being pivotal in the dialogue of cortical circuits.

  4. Type 1 Cannabinoid Receptor Ligands Display Functional Selectivity in a Cell Culture Model of Striatal Medium Spiny Projection Neurons*

    PubMed Central

    Laprairie, Robert B.; Bagher, Amina M.; Kelly, Melanie E. M.; Dupré, Denis J.; Denovan-Wright, Eileen M.

    2014-01-01

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227

  5. Characterization of Puma-Dependent and Puma-Independent Neuronal Cell Death Pathways following Prolonged Proteasomal Inhibition▿

    PubMed Central

    Tuffy, Liam P.; Concannon, Caoimhín G.; D'Orsi, Beatrice; King, Matthew A.; Woods, Ina; Huber, Heinrich J.; Ward, Manus W.; Prehn, Jochen H. M.

    2010-01-01

    Proteasomal stress and the accumulation of polyubiquitinated proteins are key features of numerous neurodegenerative disorders. Previously we demonstrated that stabilization of p53 and activation of its target gene, puma (p53-upregulated mediator of apoptosis), mediated proteasome inhibitor-induced apoptosis in cancer cells. Here we demonstrated that Puma also contributed to proteasome inhibitor-induced apoptosis in mouse neocortical neurons. Although protection afforded by puma gene deletion was incomplete, we found little evidence indicating contributions from other proapoptotic BH3-only proteins. Attenuation of bax expression did not further reduce Puma-independent apoptosis, suggesting that pathways other than the mitochondrial apoptosis pathway were activated. Real-time imaging experiments in wild-type and puma-deficient neurons using a fluorescence resonance energy transfer (FRET)-based caspase sensor confirmed the involvement of a second cell death pathway characterized by caspase activation prior to mitochondrial permeabilization and, more prominently, a third, caspase-independent and Puma-independent pathway characterized by rapid cell shrinkage and nuclear condensation. This pathway involved lysosomal permeabilization in the absence of autophagy activation and was sensitive to cathepsin but not autophagy inhibition. Our data demonstrate that proteasomal stress activates distinct cell death pathways in neurons, leading to both caspase-dependent and caspase-independent apoptosis, and demonstrate independent roles for Puma and lysosomal permeabilization in this model. PMID:20921277

  6. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria

    PubMed Central

    Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.

    2017-01-01

    Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995

  7. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    PubMed Central

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543

  8. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    PubMed

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-02-16

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  9. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    PubMed

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  10. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    NASA Astrophysics Data System (ADS)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  11. Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J.

    2016-01-01

    Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082

  12. Autophagy in the control of food intake.

    PubMed

    Singh, Rajat

    2012-04-01

    The cellular nutrient sensing apparatus detects nutritional depletion and transmits this information to downstream effectors that generate energy from alternate sources. Autophagy is a crucial catabolic pathway that turns over redundant cytoplasmic components in lysosomes to provide energy to the starved cell. Recent studies have described a role for hypothalamic autophagy in the control of food intake and energy balance. Activated autophagy in hypothalamic neurons during starvation mobilized neuron-intrinsic lipids to generate free fatty acids that increased AgRP levels. AgRP neuron-specific inhibition of autophagy decreased fasting-induced increases in AgRP levels and food intake. Deletion of autophagy in AgRP neurons led to constitutive increases in levels of proopiomelanocortin and its active processed product, α-melanocyte stimulating hormone that contributed to reduced adiposity in these rodents. The current manuscript discusses these new findings and raises additional questions that may help understand how hypothalamic autophagy controls food intake and energy balance. These studies may have implications for designing new therapies against obesity and insulin resistance.

  13. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

    PubMed

    Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S

    2018-03-01

    Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  14. Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

    PubMed

    Vogt, Johannes; Kirischuk, Sergei; Unichenko, Petr; Schlüter, Leslie; Pelosi, Assunta; Endle, Heiko; Yang, Jenq-Wei; Schmarowski, Nikolai; Cheng, Jin; Thalman, Carine; Strauss, Ulf; Prokudin, Alexey; Bharati, B Suman; Aoki, Junken; Chun, Jerold; Lutz, Beat; Luhmann, Heiko J; Nitsch, Robert

    2017-01-01

    Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation. © The Author 2016. Published by Oxford University Press.

  15. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    PubMed

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  16. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.

    PubMed

    Ibos, Guilhem; Freedman, David J

    2016-08-17

    Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Morphological properties of vestibulospinal neurons in primates

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Johanson, Curt

    2003-01-01

    The lateral and medial vestibulospinal tracts constitute the major descending pathways controlling extensor musculature of the body. We examined the axon morphology and synaptic input patterns and targets in the cervical spinal segments from these tract cells using intracellular recording and biocytin labeling in the squirrel monkey. Lumbosacral projecting cells represent a private, and mostly rapid, communication pathway between the dorsal Deiters' nucleus and the motor circuits controlling the lower limbs and tail. The cervical projecting cells provide both redundant and variable synaptic input to spinal cell groups, suggesting both general and specific control of the head and neck reflexes.

  18. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival

    PubMed Central

    Wijayatunge, Ranjula; Chen, Liang-Fu; Cha, Young May; Zannas, Anthony S.; Frank, Christopher L.; West, Anne E.

    2014-01-01

    Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic+4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic+4AP induced preconditioning of neuronal survival. Prior exposure to Bic+4AP promoted neuronal survival in control neurons upon growth factor withdrawal, however this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity. PMID:24983519

  19. Visceral and somatic pain modalities reveal NaV1.7‐independent visceral nociceptive pathways

    PubMed Central

    Hockley, James R. F.; González‐Cano, Rafael; McMurray, Sheridan; Tejada‐Giraldez, Miguel A.; McGuire, Cian; Torres, Antonio; Wilbrey, Anna L.; Cibert‐Goton, Vincent; Nieto, Francisco R.; Pitcher, Thomas; Knowles, Charles H.; Baeyens, José Manuel; Wood, John N.; Winchester, Wendy J.; Bulmer, David C.; Cendán, Cruz Miguel

    2017-01-01

    Key points Voltage‐gated sodium channels play a fundamental role in determining neuronal excitability.Specifically, voltage‐gated sodium channel subtype NaV1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown.Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling.These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality‐specific manner and help to direct drug discovery efforts towards novel visceral analgesics. Abstract Voltage‐gated sodium channel NaV1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor‐specific NaV1.7 knockout mouse (NaV1.7Nav1.8) and selective small‐molecule NaV1.7 antagonist PF‐5198007. NaV1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve–gut preparations in mouse, or following antagonism of NaV1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage‐gated sodium channel α subunits revealed NaV1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV1.7 (in NaV1.8‐expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV1.7 antagonist PF‐5198007. Our data demonstrate that NaV1.7 (in NaV1.8‐expressing neurons) contributes to defined pain pathways in a modality‐dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV1.7 alone in the viscera may be insufficient in targeting chronic visceral pain. PMID:28105664

  20. BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway.

    PubMed

    Klenke, Ulrike; Constantin, Stephanie; Wray, Susan

    2016-05-01

    Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.

  1. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  2. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  3. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans.

    PubMed

    Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T

    2017-10-01

    The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. AhR-mediated gene expression in the developing mouse telencephalon.

    PubMed

    Gohlke, Julia M; Stockton, Pat S; Sieber, Stella; Foley, Julie; Portier, Christopher J

    2009-11-01

    We hypothesize that TCDD-induced developmental neurotoxicity is modulated through an AhR-dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR-/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR-dependent, as no statistically significant gene expression changes are evident after TCDD exposure in AhR-/- mice. Based on a gene regulatory network for neuronal specification in the developing telencephalon, the present analysis suggests differentiation of GABAergic neurons in the ventral telencephalon is compromised in TCDD exposed and AhR-/- mice. In addition, our analysis suggests Sox11 may be directly regulated by AhR based on gene expression and comparative genomics analyses. In conclusion, this analysis supports the hypothesis that AhR has a specific role in the normal development of the telencephalon and provides a mechanistic framework for neurodevelopmental toxicity of chemicals that perturb AhR signaling.

  5. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1.

    PubMed

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-12-23

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

  6. The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat.

    PubMed

    Thigpen, Nina N; Bartsch, Felix; Keil, Andreas

    2017-04-01

    Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS.

    PubMed

    Englund, C; Uv, A E; Cantera, R; Mathies, L D; Krasnow, M A; Samakovlis, C

    1999-04-01

    Neurons and glial cells provide guidance cues for migrating neurons. We show here that migrating epithelial cells also contact specific neurons and glia during their pathfinding, and we describe the first gene required in the process. In wild-type Drosophila embryos, the ganglionic tracheal branch navigates a remarkably complex path along specific neural and glial substrata, switching substrata five times before reaching its ultimate target in the CNS. In adrift mutants, ganglionic branches migrate normally along the intersegmental nerve, but sporadically fail to switch to the segmental nerve and enter the CNS; they wind up meandering along the ventral epidermis instead. adrift encodes a novel nuclear protein with an evolutionarily conserved motif. The gene is required in the trachea and is expressed in the leading cells of migrating ganglionic branches where it is induced by the branchless FGF pathway. We propose that Adrift regulates expression of tracheal genes required for pathfinding on the segmental nerve, and FGF induction of adrift expression in migrating tracheal cells promotes the switch from the intersegmental to the segmental nerve.

  8. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  9. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    PubMed

    Masek, Pavel; Keene, Alex C

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  10. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning.

    PubMed

    Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I

    2018-01-17

    In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway

    PubMed Central

    Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.

    2009-01-01

    Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250

  12. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy.

    PubMed

    Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B

    2016-01-01

    Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in CP. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. DMH1, a Highly Selective Small Molecule BMP Inhibitor Promotes Neurogenesis of hiPSCs: Comparison of PAX6 and SOX1 Expression during Neural Induction

    PubMed Central

    2012-01-01

    Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-β1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors. PMID:22860217

  14. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    PubMed

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.

  16. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  17. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  18. Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra.

    PubMed

    Zhou, F C; Chiang, Y H; Wang, Y

    1996-11-01

    The physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.

  19. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon.

    PubMed

    Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J

    2018-01-01

    The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.

  20. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258

  1. Ptf1a determines horizontal and amacrine cell fates during mouse retinal development.

    PubMed

    Fujitani, Yoshio; Fujitani, Shuko; Luo, Huijun; Qiu, Feng; Burlison, Jared; Long, Qiaoming; Kawaguchi, Yoshiya; Edlund, Helena; MacDonald, Raymond J; Furukawa, Takahisa; Fujikado, Takashi; Magnuson, Mark A; Xiang, Mengqing; Wright, Christopher V E

    2006-11-01

    The vertebrate neural retina comprises six classes of neurons and one class of glial cells, all derived from a population of multipotent progenitors. There is little information on the molecular mechanisms governing the specification of cell type identity from multipotent progenitors in the developing retina. We report that Ptf1a, a basic-helix-loop-helix (bHLH) transcription factor, is transiently expressed by post-mitotic precursors in the developing mouse retina. Recombination-based lineage tracing analysis in vivo revealed that Ptf1a expression marks retinal precursors with competence to exclusively produce horizontal and amacrine neurons. Inactivation of Ptf1a leads to a fate-switch in these precursors that causes them to adopt a ganglion cell fate. This mis-specification of neurons results in a complete loss of horizontal cells, a profound decrease of amacrine cells and an increase in ganglion cells. Furthermore, we identify Ptf1a as a primary downstream target for Foxn4, a forkhead transcription factor involved in the genesis of horizontal and amacrine neurons. These data, together with the previous findings on Foxn4, provide a model in which the Foxn4-Ptf1a pathway plays a central role in directing the differentiation of retinal progenitors towards horizontal and amacrine cell fates.

  2. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel channel-mediated choline transport in cholinergic neurons of the mouse retina.

    PubMed

    Ishii, Toshiyuki; Homma, Kohei; Mano, Asuka; Akagi, Takumi; Shigematsu, Yasuhide; Shimoda, Yukio; Inoue, Hiroyoshi; Kakinuma, Yoshihiko; Kaneda, Makoto

    2017-10-01

    Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X 2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X 2 purinoceptors acquire permeability to large cations, such as N -methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X 2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X 2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina. NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X 2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X 2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo. Copyright © 2017 the American Physiological Society.

  4. Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling

    PubMed Central

    Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy

    2014-01-01

    In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072

  5. A proteomics study of hyperhomocysteinemia injury of the hippocampal neurons using iTRAQ.

    PubMed

    Fang, Min; Wang, Jing; Yan, Han; Zhao, Yan-Xin; Liu, Xue-Yuan

    2014-11-01

    High levels of homocysteine, caused by abnormal methionine metabolism, can induce degeneration of mouse hippocampal neurons. iTRAQ™ technology has been widely used in the field of proteomics research and through employing this technology, the present study identified that hyperhomocysteinemia induced the downregulation of 52 proteins and upregulation of 44 proteins in the mouse hippocampus. Through gene ontology and pathway analysis, the upregulation of components of the cytoskeleton, actin, regulators of focal adhesion, calcium signaling pathways, tight junctions, ErbB and gonadotrophin‑releasing hormone signaling, leukocyte, transendothelial migration, propanoate and pyruvate metabolism, valine, leucine and isoleucine biosynthesis, synthesis and degradation of ketone bodies and benzoate degradation via CoA ligation pathway, was identified. It was additionally verified that tau protein was highly expressed in the hyperhomocysteinemic neurons. Further analysis revealed that tau network proteins played functional roles in homocysteine‑induced neuronal damage.

  6. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  7. [The role of RKIP mediated ERK pathway in hippocampus neurons injured by electromagnetic radiation].

    PubMed

    Zuo, Hong-Yan; Wang, De-Wen; Peng, Rui-Yun; Wang, Shui-Ming; Gao, Ya-Bing; Zhang, Zhi-Yi; Xiao, Feng-Jun

    2008-07-01

    To study the effects of electromagnetic radiation on RKIP and phosphorylated ERK in primary cultured hippocampus neurons. The inhibitor of MEK U0126 was applied to investigate the role of RKIP mediated ERK pathway in radiation injury. Primary hippocampus neurons were cultured in vitro. X-HPM, S-HPM and EMP were taken as radiation source respectively to establish three cell models exposed to electromagnetic radiation. RKIP and phosphorylated ERK were measured by immunofluorescent labelling and laser scanning confocal microscope. Apoptosis and death fraction of the cells were detected by Annexin V-PI double labelling and flow cytometry. After three kinds of electromagnetic radiation, the expression of RKIP in hippocampus neurons decreased but the expression of phosphorylated ERK increased, and its nuclear translocation occurred. No significant differences were seen between radiation groups. Apoptosis and death fraction of the neurons in U0126 pretreatment groups was significantly lower than that in radiation groups but they were still higher than those in sham-radiation group. The excessive activation of RKIP mediated ERK pathway is one of the important mechanisms for the apoptosis and death of hippocampus neurons induced by electromagnetic radiation. U0126 have some protective effects on radiation injury.

  8. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  9. Millisecond-timescale local network coding in the rat primary somatosensory cortex.

    PubMed

    Eldawlatly, Seif; Oweiss, Karim G

    2011-01-01

    Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.

  10. Gene expression analysis of Drosophilaa Manf mutants reveals perturbations in membrane traffic and major metabolic changes.

    PubMed

    Palgi, Mari; Greco, Dario; Lindström, Riitta; Auvinen, Petri; Heino, Tapio I

    2012-04-11

    MANF and CDNF are evolutionarily conserved neurotrophic factors that specifically support dopaminergic neurons. To date, the receptors and signalling pathways of this novel MANF/CDNF family have remained unknown. Independent studies have showed upregulation of MANF by unfolded protein response (UPR). To enlighten the role of MANF in multicellular organism development we carried out a microarray-based analysis of the transcriptional changes induced by the loss and overexpression of Drosophila Manf. The most dramatic change of expression was observed with genes coding membrane transport proteins and genes related to metabolism. When evaluating in parallel the ultrastructural data and transcriptome changes of maternal/zygotic and only zygotic Manf mutants, the endoplasmic reticulum (ER) stress and membrane traffic alterations were evident. In Drosophila Manf mutants the expression of several genes involved in Parkinson's disease (PD) was altered as well. We conclude that besides a neurotrophic factor, Manf is an important cellular survival factor needed to overcome the UPR especially in tissues with high secretory function. In the absence of Manf, the expression of genes involved in membrane transport, particularly exocytosis and endosomal recycling pathway was altered. In neurodegenerative diseases, such as PD, correct protein folding and proteasome function as well as neurotransmitter synthesis and uptake are crucial for the survival of neurons. The degeneration of dopaminergic neurons is the hallmark for PD and our work provides a clue on the mechanisms by which the novel neurotrophic factor MANF protects these neurons.

  11. Axon Response to Guidance Cues Is Stimulated by Acetylcholine in Caenorhabditis elegans

    PubMed Central

    Xu, Yan; Ren, Xing-Cong; Quinn, Christopher C.; Wadsworth, William G.

    2011-01-01

    Gradients of acetylcholine can stimulate growth cone turning when applied to neurons grown in culture, and it has been suggested that acetylcholine could act as a guidance cue. However, the role acetylcholine plays in directing axon migrations in vivo is not clear. Here, we show that acetylcholine positively regulates signaling pathways that mediate axon responses to guidance cues in Caenorhabditis elegans. Mutations that disrupt acetylcholine synthesis, transportation, and secretion affect circumferential axon guidance of the AVM neuron and in these mutants exogenously supplied acetylcholine improves AVM circumferential axon guidance. These effects are not observed for the circumferential guidance of the DD and VD motor neuron axons, which are neighbors of the AVM axon. Circumferential guidance is directed by the UNC-6 (netrin) and SLT-1 (slit) extracellular cues, and exogenously supplied acetylcholine can improve AVM axon guidance in mutants when either UNC-6– or SLT-1–induced signaling is disrupted, but not when both signaling pathways are perturbed. Not in any of the mutants does exogenously supplied acetylcholine improve DD and VD axon guidance. The ability of acetylcholine to enhance AVM axon guidance only in the presence of either UNC-6 or SLT-1 indicates that acetylcholine potentiates UNC-6 and SLT-1 guidance activity, rather than acting itself as a guidance cue. Together, our results show that for specific neurons acetylcholine plays an important role in vivo as a modulator of axon responses to guidance cues. PMID:21868605

  12. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract

    PubMed Central

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe

    2016-01-01

    The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589

  13. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    PubMed

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  14. Anti-nociceptive effect of a conjugate of substance P and light chain of botulinum neurotoxin type A.

    PubMed

    Mustafa, Golam; Anderson, Ethan M; Bokrand-Donatelli, Yvonne; Neubert, John K; Caudle, Robert M

    2013-11-01

    Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. Then, once inside the cell the toxin would inhibit the neurons' activity without killing the neurons, thereby providing pain relief without lesioning the nervous system. In an effort to inactivate the nociceptive neurons in the trigeminal nucleus caudalis in mice, we targeted the NK1 receptor (NK1R) using substance P (SP). The catalytically active light chain of botulinum neurotoxin type A (LC/A) was conjugated with SP. Our results indicate that the conjugate BoNT/A-LC:SP is internalized in cultured NK1R-expressing neurons and also cleaves the target of botulinum toxin, a component-docking motif necessary for release of neurotransmitters called SNAP-25. The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Pyrethroids Differentially Alter Voltage-Gated Sodium Channels from the Honeybee Central Olfactory Neurons

    PubMed Central

    Kadala, Aklesso; Charreton, Mercedes; Jakob, Ingrid; Cens, Thierry; Rousset, Matthieu; Chahine, Mohamed; Le Conte, Yves; Charnet, Pierre; Collet, Claude

    2014-01-01

    The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway. PMID:25390654

  16. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model.

    PubMed

    Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J

    2015-01-15

    Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).

  17. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model

    PubMed Central

    Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J

    2015-01-01

    Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice). PMID:25590804

  18. Lesions along the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest: a case-review analysis.

    PubMed

    Abdulla, Susanne; Conrad, Anton; Schwemm, Karl-Peter; Stienstra, Mark P; Gorsselink, Edward L; Dengler, Reinhard; Abdulla, Walied

    2014-01-01

    This study describes a case of lesions of the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest. A case-review analysis. In a 29-year-old male who was hit by a lightning strike during farming activities, cardiopulmonary resuscitation was provided first by co-workers and continued with success by the medical rescue service. After conducting advanced life support under monitoring and therapeutic hypothermia, quadriplegia with facial diplegia was recognized. A review was undertaken detailing the clinical course. MR imaging presented signs consistent with hypoxia-induced damage and diffusion-weighted MR images revealed pronounced damages along the upper motor neuronal pathway. A reactive electroencephalogram pattern, sustained eye movement and the patient communicating via eye-blinking were interpreted as locked-in features. Two weeks after admission the patient was transferred to a neurological rehabilitation centre for further professional care. Direct damage of the upper motor neuron pathway due to the current of the lightning should be considered, albeit the relative contribution of hypoxia-induced damage cannot be separated.

  19. A novel central pathway links arterial baroreceptors and pontine parasympathetic neurons in cerebrovascular control.

    PubMed

    Agassandian, Khristofor; Fazan, Valeria P S; Margaryan, Naira; Dragon, Deidre Nitschke; Riley, Jeffrey; Talman, William T

    2003-10-01

    1. We tested the hypothesis that arterial baroreceptor reflexes modulate cerebrovascular tone through a pathway that connects the cardiovascular nucleus tractus solitarii with parasympathetic preganglionic neurons in the pons. 2. Anesthetized rats were used in all studies. Laser flowmetry was used to measure cerebral blood flow. We assessed cerebrovascular responses to increases in arterial blood pressure in animals with lesions of baroreceptor nerves, the nucleus tractus solitarii itself, the pontine preganglionic parasympathetic neurons, or the parasympathetic ganglionic nerves to the cerebral vessels. Similar assessments were made in animals after blockade of synthesis of nitric oxide, which is released by the parasympathetic nerves from the pterygopalatine ganglia. Finally the effects on cerebral blood flow of glutamate stimulation of pontine preganglionic parasympathetic neurons were evaluated. 3. We found that lesions at any one of the sites in the putative pathway or interruption of nitric oxide synthesis led to prolongation of autoregulation as mean arterial pressure was increased to levels as high as 200 mmHg. Conversely, stimulation of pontine parasympathetic preganglionic neurons led to cerebral vasodilatation. The second series of studies utilized classic anatomical tracing methods to determine at the light and electron microscopic level whether neurons in the cardiovascular nucleus tractus solitarii, the site of termination of baroreceptor afferents, projected to the pontine preganglionic neurons. Fibers were traced with anterograde tracer from the nucleus tractus solitarii to the pons and with retrograde tracer from the pons to the nucleus tractus solitarii. Using double labeling techniques we further studied synapses made between labeled projections from the nucleus tractus solitarii and preganglionic neurons that were themselves labeled with retrograde tracer placed into the pterygopalatine ganglion. 4. These anatomical studies showed that the nucleus tractus solitarii directly projects to pontine preganglionic neurons and makes asymmetric, seemingly excitatory, synapses with those neurons. These studies provide strong evidence that arterial baroreceptors may modulate cerebral blood flow through direct connections with pontine parasympathetic neurons. Further study is needed to clarify the role this pathway plays in integrative physiology.

  20. BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway

    PubMed Central

    Klenke, Ulrike; Constantin, Stephanie

    2016-01-01

    Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons. PMID:26934298

Top