Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S
2014-01-01
The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.
Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.
2014-01-01
The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812
Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi
2014-07-01
The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beliav, Alex; Qiu, Dongru; Fredrickson, James K.
Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our resultsmore » showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.« less
Fiber Type-Specific Effects of Dietary Nitrate.
Jones, Andrew M; Ferguson, Scott K; Bailey, Stephen J; Vanhatalo, Anni; Poole, David C
2016-04-01
Dietary nitrate supplementation increases circulating nitrite concentration, and the subsequent reduction of nitrite to nitric oxide is promoted in hypoxic environments. Given that PO2 is lower in Type II compared with Type I muscle, this article examines the hypothesis that the ergogenicity of nitrate supplementation is linked to specific effects on vascular, metabolic, and contractile function in Type II muscle.
NASA Astrophysics Data System (ADS)
Krasae, Nalinee; Wantala, Kitirote
2016-09-01
The aims of this work were to study the effect of Cu-nZVI with and without TiO2 on nitrate reduction and to study the pathway of nitrate reduction utilizing to nitrogen gas. The chemical and physical properties of Cu-nZVI and Cu-nZVI/TiO2 such as specific surface area, crystalline phase, oxidation state of Cu and Fe and morphology were determined by N2 adsorption-desorption Brunauer-Emmett-Teller (BET) analytical technique, X-ray diffraction (XRD), X-ray Absorption Near Edge Structure (XANES) technique and Transmittance Electron Microscopy (TEM). The full factorial design (FFD) was used in this experiment for the effect of Cu-nZVI with and without TiO2, where the initial solution pH was varied at 4, 5.5, and 7 and initial nitrate concentration was varied at 50, 75, and 100 ppm. Finally, the pathway of nitrate reduction was examined to calculate the nitrogen gas selectivity. The specific area of Cu-nZVI and Cu-nZVI/TiO2 was found to be about 4 and 36 m2/g, respectively. The XRD pattern of Fe0 in Cu-nZVI was found at 45° (2θ), whereas Cu-nZVI/TiO2 cannot be observed. TEM images can confirm the position of the core and the shell of nZVI for Fe0 and ferric oxide. Cu-nZVI/TiO2 proved to have higher activity in nitrogen reduction performance than that without TiO2 and nitrate can be completely degraded in both of solution pH of 4 and 7 in 75 ppm of initial nitrate concentration. It can be highlighted that the nitrogen gas selectivity of Cu-nZVI/TiO2 greater than 82% was found at an initial solution pH of 4 and 7. The main effects of Cu-nZVI with and without TiO2 and the initial nitrate concentration on nitrate reduction were significant. The interaction between solution pH and initial nitrate concentration and the interaction of all effects at a reaction time of 15 min on nitrate reduction were also significant.
Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho
2016-08-01
Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less
Nitrate reduction in a simulated free-water surface wetland system.
Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G
2011-11-01
The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vavilin, V A; Rytov, S V
2015-09-01
A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Asanuma, Narito; Yokoyama, Shota; Hino, Tsuneo
2015-04-01
This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen. © 2014 Japanese Society of Animal Science.
Shen, Yin; An, Dongshan; Voordouw, Gerrit
2017-01-01
ABSTRACT Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both. Our data also suggest that propionate is a good substrate to enumerate oil field SRB. PMID:28130297
Akob, Denise M.; Kerkhof, Lee; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.
2011-01-01
Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [13C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions. PMID:21948831
Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria
Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.
1999-01-01
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.
Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conservedmore » in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.« less
Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D
2015-06-01
We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.
NASA Astrophysics Data System (ADS)
Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie
2015-07-01
Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.
Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie
2015-01-01
Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053
Chen, Chuan; Shen, Yin; An, Dongshan; Voordouw, Gerrit
2017-04-01
Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera ( Paracoccus - Thauera ), Desulfobulbus , and Syntrophomonas - Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 10 7 /ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO 2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO 2 was needed to prevent souring in both. Our data also suggest that propionate is a good substrate to enumerate oil field SRB. Copyright © 2017 American Society for Microbiology.
Hammes, Walter P
2012-04-01
Within the universe of food fermentation processes the multi-purpose use of nitrate and/or nitrite is a unique characteristic of meat fermentations. These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The use of nitrate is the traditional method in curing processes and requires its reduction to reactive nitrite. Thus, nitrate reduction is the key event that is exclusively performed by microorganisms. Under controlled fermentation conditions starter cultures are used that contain staphylococci and/or Kocuria varians, which in addition to strongly affecting sensory properties exhibit efficient nitrate reductase activity. To obtain clean label products some plant sources of nitrate have been in use. When producing thermally treated sausages (e.g. of emulsion type), starter cultures are used that form nitrite before cooking takes place. Staphylococci reduce nitrite to ammonia after nitrate has been consumed. K. varians is devoid of nitrite reductase activity. Nitrate and nitrite reductases are also present in certain strains of lactobacilli. It was shown that their application as starter cultures warrants efficient activity in sausages made with either nitrate or nitrite. NO is formed from nitrite in numerous chemical reactions among which disproportionation and reaction with reductants either added or endogenous in meat are of practical importance. Numerous nitrosation and nitrosylation reactions take place in the meat matrix among which the formation of nitrosomyoglobin is of major sensory importance. Safety considerations in meat fermentation relate to the safe nature of the starter organisms and to the use of nitrate/nitrite. Staphylococci ("micrococci") in fermented meat have a long tradition in food use but have not received the QPS status from the EFSA. They require, therefore, thorough assessment with regard to toxigenicity and pathogenicity determinants as well as presence of transferable antibiotic resistance. Nitrate and nitrite are still considered basically undesired in food. The main objections are based on their potential to form nitrosamines with carcinogenic potential. In view of new results from intensive research of NO, potential risks are opposed by positive effects on human health. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Doudrick, Kyle
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4 +, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2 -. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
2014-01-01
Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718
Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten
2014-02-11
A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
Su, Chunming; Puls, Robert W
2004-05-01
Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L(-1) (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe0 at 200 rpm on a rotational shaker at 23 degrees C for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4). These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R2 = 0.701) or Fe3+ (R2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe0 relative to the chloride system.
Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria
Steinberg, Nisan A.; Blum, Jodi Switzer; Hochstein , Lawrence; Oremland, Ronald S.
1992-01-01
An anaerobic, freshwater enrichment grew with either nitrate or selenate as an electron acceptor. With both ions present, nitrate reduction preceded selenate reduction. An isolate from the enrichment grew on either ion, but the presence of nitrate precluded the reduction of selenate. Stock cultures of denitrifiers grew anaerobically on nitrate but not on selenate.
Stock, Willem; Heylen, Kim; Sabbe, Koen; Willems, Anne; De Troch, Marleen
2014-01-01
The present study aims at evaluating the impact of diatoms and copepods on microbial processes mediating nitrate removal in fine-grained intertidal sediments. More specifically, we studied the interactions between copepods, diatoms and bacteria in relation to their effects on nitrate reduction and denitrification. Microcosms containing defaunated marine sediments were subjected to different treatments: an excess of nitrate, copepods, diatoms (Navicula sp.), a combination of copepods and diatoms, and spent medium from copepods. The microcosms were incubated for seven and a half days, after which nutrient concentrations and denitrification potential were measured. Ammonium concentrations were highest in the treatments with copepods or their spent medium, whilst denitrification potential was lowest in these treatments, suggesting that copepods enhance dissimilatory nitrate reduction to ammonium over denitrification. We hypothesize that this is an indirect effect, by providing extra carbon for the bacterial community through the copepods' excretion products, thus changing the C/N ratio in favour of dissimilatory nitrate reduction. Diatoms alone had no effect on the nitrogen fluxes, but they did enhance the effect of copepods, possibly by influencing the quantity and quality of the copepods' excretion products. Our results show that small-scale biological interactions between bacteria, copepods and diatoms can have an important impact on denitrification and hence sediment nitrogen fluxes. PMID:25360602
Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment
Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils
2014-01-01
Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351
Luo, Jinghuan; Song, Guangyu; Liu, Jianyong; Qian, Guangren; Xu, Zhi Ping
2014-12-01
Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. Copyright © 2014 Elsevier Inc. All rights reserved.
Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1
Warner, Robert L.; Huffaker, Ray C.
1989-01-01
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465
Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings
NASA Technical Reports Server (NTRS)
Warner, R. L.; Huffaker, R. C.
1989-01-01
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.
Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi
2017-01-29
Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.
Geochemical controls on microbial nitrate-dependent U(IV) oxidation
Senko, John M.; Suflita, Joseph M.; Krumholz, Lee R.
2005-01-01
After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.
Respiration of Nitrate and Nitrite.
Cole, Jeffrey A; Richardson, David J
2008-09-01
Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.
Babaei, Ali Akbar; Azari, Ali; Kalantary, Roshanak Rezaei; Kakavandi, Babak
2015-01-01
Herein, multi-wall carbon nanotubes (MWCNTs) were used as the carrier of nano-zero valent iron (nZVI) particles to fabricate a composite known as nZVI@MWCNTs. The composite was then characterized and applied in the nitrate removal process in a batch system under anoxic conditions. The influential parameters such as pH, various concentrations of nitrate and composite were investigated within 240 min of the reaction. The mechanism, kinetics and end-products of nitrate reduction were also evaluated. Results revealed that the removal nitrate percentage for nZVI@MWCNTs composite was higher than that of nZVI and MWCNTs alone. Experimental data from nitrate reduction were fitted to the Langmuir-Hinshelwood kinetic model. The values of observed rate constant (kobs) decreased with increasing the initial concentration of nitrate. Our experiments proved that the nitrate removal efficiency was favorable once both high amounts of nZVI@MWCNTs and low concentrations of nitrate were applied. The predominant end-products of the nitrate reduction were ammonium (84%) and nitrogen gas (15%). Our findings also revealed that ZVI@MWCNTs is potentially a good composite for removal/reduction of nitrate from aqueous solutions.
Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.
2006-01-01
The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.« less
Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT
Schilling, K.E.; Wolter, C.F.
2009-01-01
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.
Alefounder, P R; Ferguson, S J
1980-01-01
1. A method is described for preparing spheroplasts from Paracoccus denitrificans that are substantially depleted of dissimilatory nitrate reductase (cytochrome cd) activity. Treatment of cells with lysozyme + EDTA together with a mild osmotic shock, followed by centrifugation, yielded a pellet of spheroplasts and a supernatant that contained d-type cytochrome. The spheroplasts were judged to have retained an intact plasma membrane on the basis that less than 1% of the activity of a cytoplasmic marker protein, malate dehydrogenase, was released from the spheroplasts. In addition to a low activity towards added nitrite, the suspension of spheroplasts accumulated the nitrite that was produced by respiratory chain-linked reduction of nitrate. It is concluded that nitrate reduction occurs at the periplasmic side of the plasma membrane irrespective of whether nitrite is generated by nitrate reduction or is added exogenously. 2. Further evidence for the integrity of the spheroplasts was that nitrate reduction was inhibited by O2, and that chlorate was reduced at a markedly lower rate than nitrate. These data are taken as evidence for an intact plasma membrane because it was shown that cells acquire the capability to reduce nitrate under aerobic conditions after addition of low amounts of Triton X-100 which, with the same titre, also overcame the permeability barrier to chlorate reduction by intact cells. The close relationship between the appearance of chlorate reduction and the loss of the inhibitory effect of O2 on nitrate reduction also suggests that the later feature of nitrate respiration is due to a control on the accessibility of nitrate to its reductase rather than on the flow of electrons to nitrate reductase. PMID:7197918
In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination
Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.
2001-01-01
In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.
REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER
The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 Determination of Nitrate-Nitrite by Automated Colorimetry, employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...
Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.
2011-01-01
Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679
Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J
2015-10-15
The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
Liu, Hongyuan; Guo, Min; Zhang, Yan
2014-01-01
Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.
Regulation of nitrate assimilation in cyanobacteria.
Ohashi, Yoshitake; Shi, Wei; Takatani, Nobuyuki; Aichi, Makiko; Maeda, Shin-ichi; Watanabe, Satoru; Yoshikawa, Hirofumi; Omata, Tatsuo
2011-02-01
Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.
David, Mark B; Flint, Courtney G; Gentry, Lowell E; Dolan, Mallory K; Czapar, George F; Cooke, Richard A; Lavaire, Tito
2015-03-01
Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-central Illinois. Long-term water quality monitoring on these watersheds showed that nitrate losses averaged 30.6 and 23.0 kg nitrate N ha yr (Embarras and Upper Salt Fork watersheds, respectively), with maximum nitrate concentrations between 14 and 18 mg N L. With a series of on-farm studies, we conducted tile monitoring to evaluate several possible nitrate reduction conservation practices. Fertilizer timing and cover crops reduced nitrate losses (30% reduction in a year with large nitrate losses), whereas drainage water management on one tile system demonstrated the problems with possible retrofit designs (water flowed laterally from the drainage water management tile to the free drainage system nearby). Tile woodchip bioreactors had good nitrate removal in 2012 (80% nitrate reduction), and wetlands had previously been shown to remove nitrate (45% reductions) in the Embarras watershed. Interviews and surveys indicated strong environmental concern and stewardship ethics among landowners and farmers, but the many financial and operational constraints that they operate under limited their willingness to adopt conservation practices that targeted nitrate reduction. Under the policy and production systems currently in place, large-scale reductions in nitrate losses from watersheds such as these in east-central Illinois will be difficult. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai
2014-06-01
Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Hocheol; Jeon, Byong-Hun; Chon, Chul-Min; Kim, Yongje; Nam, In-Hyun; Schwartz, Franklin W; Cho, Dong-Wan
2013-11-01
The feasibility of using granular ferric hydroxide (GFH) with zero-valent iron (Fe(0)) for its potential utility in enhancing nitrate reduction was investigated. The addition of 10gL(-1) GFH to 25gL(-1) Fe(0) significantly enhanced nitrate removal, resulting in 93% removal of 52.2mg-NL(-1) in 36-h as compared to 23% removal with Fe(0) alone. Surface analyses of the reacted Fe(0)/GFH revealed the presence of magnetite on the Fe(0) surface, which probably served as an electron mediator for nitrate reduction. Addition of GFH to Fe(0) also resulted in lower solution pH compared to Fe(0). The rate enhancing effect of GFH on nitrate reduction was attributed to the combined effects of magnetite formation and pH buffering by GFH. GFH amendment (100gL(-1)) significantly increased reduction capacity and longevity of Fe(0) to complete several nitrate reduction cycles before inactivation, giving a total nitrate removal of 205mg-NL(-1), while unamended Fe(0) gave only 20mg-NL(-1) before inactivation during the first reduction cycle. The overall result demonstrated the potential utility of Fe(0)/GFH system that may be developed into a viable technology for removal of nitrate from groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kristjansson, J K; Hollocher, T C
1979-01-01
Escherichia coli grown anaerobically on nitrate exhibited the same transport barrier to reduction of chlorate, relative to nitrate, as that exhibited by Paracoccus denitrificans. This establishes that the nitrate binding site of nitrate reductase (EC 1.7.99.4) in E. coli must also lie on the cell side of the nitrate transporter which is associated with the plasma membrane. Because nitrate reductase is membrane bound, the nitrate binding site is thus located on the inner aspect of the membrane. Nitrate pulse studies on E. coli in the absence of valinomycin showed a small transient alkalinization (leads to H+/NO3- congruent to --0.07) which did not occur with oxygen pulses. By analogy with P. denitrificans, the alkaline transient is interpreted to arise from proton-linked nitrate uptake which is closely followed by nitrite efflux. The result is consistent with internal reduction of nitrate, whereas external reduction would be expected to give leads to H+/NO3-ratios approaching --2. PMID:374343
Respiratory Nitrate Ammonification by Shewanella oneidensis MR-1▿
Cruz-García, Claribel; Murray, Alison E.; Klappenbach, Joel A.; Stewart, Valley; Tiedje, James M.
2007-01-01
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification. PMID:17098906
Cozzarelli, I.M.; Herman, J.S.; Baedecker, M. Jo
1995-01-01
A combined field and laboratory study was undertaken to understand the distribution and geochemical conditions that influence the prevalence of low molecular weight organic acids in groundwater of a shallow aquifer contaminated with gasoline. Aromatic hydrocarbons from gasoline were degraded by microbially mediated oxidation-reduction reactions, including reduction of nitrate, sulfate, and Fe(III). The biogeochemical reactions changed overtime in response to changes in the hydrogeochemical conditions in the aquifer. Aliphatic and aromatic organic acids were associated with hydrocarbon degradation in anoxic zones of the aquifer. Laboratory microcosms demonstrated that the biogeochemical fate of specific organic acids observed in groundwater varied with the structure of the acid and the availability of electron acceptors. Benzoic and phenylacetic acid were degraded by indigenous aquifer microorganisms when nitrate was supplied as an electron acceptor. Aromatic acids with two or more methyl substituants on the benzene ring persisted under nitrate-reducing conditions. Although iron reduction and sulfate reduction were important processes in situ and occurred in the microcosms, these reactions were not coupled to the biological oxidation of aromatic organic acids that were added to the microcosms as electron donors. ?? 1995 American Chemical Society.
Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.
2014-01-01
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases. PMID:24728381
Production and reduction of nitrous oxide in agricultural and forest soils.
Yu, K; Chen, G; Struwe, S; Kjøller, A
2000-06-01
A soil-water slurry experiment was conducted to study the potentials of N2O production and reduction in denitrification of agricultural and beech forest soils in Denmark. The effects of nitrate and ammonium additions on denitrification were also investigated. The forest soil showed a higher denitrification potential than the agricultural soil. However, N2O reduction potential of the agricultural soil was higher than the beech forest soil, shown by the ratio of N2O/N2 approximately 0.11 and 3.65 in the agricultural and the beech forest soils, respectively. Both nitrate and ammonium additions stimulated the N2O production in the two soils, but reduced the N2O reduction rates in the agricultural soil slurries. In contrast to the effect on the agricultural soil, nitrate reduced the N2O reduction rate in the beech forest soil, while ammonium showed a stimulating effect on the N2O reduction activity. After one week incubation, all of the N2O produced was reduced to N2 in the agricultural soil when nitrate was still present. Nitrous oxide reduction in the beech forest soil occurred only when nitrate almost disappeared. The different nitrate inhibitory effect on the N2O reduction activity in the two soils was due to the difference in soil pH. Inhibition of nitrate on N2O reduction was significant under acidic condition. Consequently, soil could serve as a sink of atmospheric N2O under the conditions of anaerobic, pH near neutral and low nitrate content.
Nitrate reduction in sulfate-reducing bacteria.
Marietou, Angeliki
2016-08-01
Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker
2016-01-01
ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777
Dziewinski, Jacek J.; Marczak, Stanislaw
2000-01-01
Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.
Law, Audrey D; Fisher, Colin; Jack, Anne; Moe, Luke A
2016-07-01
Tobacco-specific nitrosamines are carcinogenic N-nitrosamine compounds present at very low levels in freshly harvested tobacco leaves that accumulate during leaf curing. Formation of N-nitrosamine compounds is associated with high nitrate levels in the leaf at harvest, and nitrate is presumed to be the source from which the N-nitrosation species originates. More specifically, nitrite is considered to be a direct precursor, and nitrite is linked with N-nitrosation in many environmental matrices where it occurs via microbial nitrate reduction. Here, we initiate work exploring the role of leaf microbial communities in formation of tobacco-specific nitrosamines. Leaves from burley tobacco line TN90H were air cured under various temperature and relative humidity levels, and 22 cured tobacco samples were analyzed for their microbial communities and leaf chemistry. Analysis of nitrate, nitrite, and total tobacco-specific nitrosamine levels revealed a strong positive correlation between the three variables, as well as a strong positive correlation with increasing relative humidity during cure conditions. 16S rRNA gene amplicon sequencing was used to assess microbial communities in each of the samples. In most samples, Proteobacteria predominated at the phylum level, accounting for >90 % of the OTUs. However, a distinct shift was noted among members of the high tobacco-specific nitrosamine group, with increases in Firmicutes and Actinobacteria. Several OTUs were identified that correlate strongly (positive and negative) with tobacco-specific nitrosamine content. Copy number of bacterial nitrate reductase genes, obtained using quantitative PCR, did not correlate strongly with tobacco-specific nitrosamine content. Incomplete denitrification is potentially implicated in tobacco-specific nitrosamine levels.
Generation of Reduced Nicotinamide Adenine Dinucleotide for Nitrate Reduction in Green Leaves 1
Klepper, Lowell; Flesher, Donna; Hageman, R. H.
1971-01-01
An in vivo assay of nitrate reductase activity was developed by vacuum infiltration of leaf discs or sections with a solution of 0.2 m KNO3 (with or without phosphate buffer, pH 7.5) and incubation of the infiltrated tissue and medium under essentially anaerobic conditions in the dark. Nitrite production, for computing enzyme activity, was determined on aliquots of the incubation media, removed at intervals. By adding, separately, various metabolites of the glycolytic, pentose phosphate, and citric acid pathways to the infiltrating media, it was possible to use the in vivo assay to determine the prime source of reduced nicotinamide adenine dinucleotide (NADH) required by the cytoplasmically located NADH-specific nitrate reductase. It was concluded that sugars that migrate from the chloroplast to the cytoplasm were the prime source of energy and that the oxidation of glyceraldehyde 3-phosphate was ultimately the in vivo source of NADH for nitrate reduction. This conclusion was supported by experiments that included: inhibition studies with iodoacetate; in vitro studies that established the presence and functionality of the requisite enzymes; and studies showing the effect of light (photosynthate) and exogenous carbohydrate on loss of endogenous nitrate from plant tissue. The level of nitrate reductase activity obtained with the in vitro assay is higher (2.5- to 20-fold) than with the in vivo assay for most plant species. The work done to date would indicate that the in vivo assays are proportional to the in vitro assays with respect to ranking genotypes for nitrate-reducing potential of a given species. The in vivo assay is especially useful in studying nitrate assimilation in species like giant ragweed from which only traces of active nitrate reductase can be extracted. PMID:16657841
Nitrate reduction in water by aluminum alloys particles.
Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin
2017-07-01
Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L) 1.5 /min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L) 1.5 /min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.
Sun, Yihua; De Vos, Paul; Heylen, Kim
2016-01-19
Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ.
Nitratreduktion in einem quartären Grundwasserleiter in Ostwestfalen, NRW
NASA Astrophysics Data System (ADS)
Wisotzky, Frank; Wohnlich, Stefan; Böddeker, Martin
2018-06-01
Groundwater chemistry and sediment chemistry are characterized in a catchment of a water works in the lower terrace of the river Ems, in east-Westphalia (Germany). In spite of strong nitrate input in the shallow groundwater, the nitrate concentration in the wells is very low, suggesting strong nitrate reduction. The aims of this study were to determine the type of nitrate reduction and to determine the depth of these reactions. As part of the groundwater investigation, soil samples were also used. All soil samples have low sulfide-sulfur contents but high organic-carbon contents. The shallow groundwater has nitrate concentrations up to 185 mg/l. Enhanced carbon-dioxide concentrations in the deeper part of the aquifer indicate a dominant organotrophic nitrate reduction. Data from a multi-level observation well show a 25% lithotrophic and 75% organotrophic nitrate reduction. Investigations of nitrate isotopes (δ15N-NO3-values and δ18O-NO3-values) and sulfate isotopes (δ34S-SO4-values and δ18O-SO4-values) support the findings.
NASA Astrophysics Data System (ADS)
Jang, E.; He, W.; Savoy, H.; Dietrich, P.; Kolditz, O.; Rubin, Y.; Schüth, C.; Kalbacher, T.
2017-01-01
Nitrate reduction reactions in groundwater systems are strongly influenced by various aquifer heterogeneity factors that affect the transport of chemical species, spatial distribution of redox reactive substances and, as a result, the overall nitrate reduction efficiency. In this study, we investigated the influence of physical and chemical aquifer heterogeneity, with a focus on nitrate transport and redox transformation processes. A numerical modeling study for simulating coupled hydrological-geochemical aquifer heterogeneity was conducted in order to improve our understanding of the influence of the aquifer heterogeneity on the nitrate reduction reactions and to identify the most influential aquifer heterogeneity factors throughout the simulation. Results show that the most influential aquifer heterogeneity factors could change over time. With abundant presence of electron donors in the high permeable zones (initial stage), physical aquifer heterogeneity significantly influences the nitrate reduction since it enables the preferential transport of nitrate to these zones and enhances mixing of reactive partners. Chemical aquifer heterogeneity plays a comparatively minor role. Increasing the spatial variability of the hydraulic conductivity also increases the nitrate removal efficiency of the system. However, ignoring chemical aquifer heterogeneity can lead to an underestimation of nitrate removals in long-term behavior. With the increase of the spatial variability of the electron donor, i.e. chemical heterogeneity, the number of the ;hot spots; i.e. zones with comparably higher reactivity, should also increase. Hence, nitrate removal efficiencies will also be spatially variable but overall removal efficiency will be sustained if longer time scales are considered and nitrate fronts reach these high reactivity zones.
Patton, C.J.; Fischer, A.E.; Campbell, W.H.; Campbell, E.R.
2002-01-01
Development, characterization, and operational details of an enzymatic, air-segmented continuous-flow analytical method for colorimetric determination of nitrate + nitrite in natural-water samples is described. This method is similar to U.S. Environmental Protection Agency method 353.2 and U.S. Geological Survey method 1-2545-90 except that nitrate is reduced to nitrite by soluble nitrate reductase (NaR, EC 1.6.6.1) purified from corn leaves rather than a packed-bed cadmium reactor. A three-channel, air-segmented continuous-flow analyzer-configured for simultaneous determination of nitrite (0.020-1.000 mg-N/L) and nitrate + nitrite (0.05-5.00 mg-N/L) by the nitrate reductase and cadmium reduction methods-was used to characterize analytical performance of the enzymatic reduction method. At a sampling rate of 90 h-1, sample interaction was less than 1% for all three methods. Method detection limits were 0.001 mg of NO2- -N/L for nitrite, 0.003 mg of NO3-+ NO2- -N/L for nitrate + nitrite by the cadmium-reduction method, and 0.006 mg of NO3- + NO2- -N/L for nitrate + nitrite by the enzymatic-reduction method. Reduction of nitrate to nitrite by both methods was greater than 95% complete over the entire calibration range. The difference between the means of nitrate + nitrite concentrations in 124 natural-water samples determined simultaneously by the two methods was not significantly different from zero at the p = 0.05 level.
Tiso, Mauro; Schechter, Alan N.
2015-01-01
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health. PMID:25803049
Microbial Reduction of Chromate in the Presence of Nitrate by Three Nitrate Respiring Organisms
Chovanec, Peter; Sparacino-Watkins, Courtney; Zhang, Ning; Basu, Partha; Stolz, John F.
2012-01-01
A major challenge for the bioremediation of toxic metals is the co-occurrence of nitrate, as it can inhibit metal transformation. Geobacter metallireducens, Desulfovibrio desulfuricans, and Sulfurospirillum barnesii are three soil bacteria that can reduce chromate [Cr(VI)] and nitrate, and may be beneficial for developing bioremediation strategies. All three organisms respire through dissimilatory nitrate reduction to ammonia (DNRA), employing different nitrate reductases but similar nitrite reductase (Nrf). G. metallireducens reduces nitrate to nitrite via the membrane bound nitrate reductase (Nar), while S. barnesii and D. desulfuricans strain 27774 have slightly different forms of periplasmic nitrate reductase (Nap). We investigated the effect of DNRA growth in the presence of Cr(VI) in these three organisms and the ability of each to reduce Cr(VI) to Cr(III), and found that each organisms responded differently. Growth of G. metallireducens on nitrate was completely inhibited by Cr(VI). Cultures of D. desulfuricans on nitrate media was initially delayed (48 h) in the presence of Cr(VI), but ultimately reached comparable cell yields to the non-treated control. This prolonged lag phase accompanied the transformation of Cr(VI) to Cr(III). Viable G. metallireducens cells could reduce Cr(VI), whereas Cr(VI) reduction by D. desulfuricans during growth, was mediated by a filterable and heat stable extracellular metabolite. S. barnesii growth on nitrate was not affected by Cr(VI), and Cr(VI) was reduced to Cr(III). However, Cr(VI) reduction activity in S. barnesii, was detected in both the cell free spent medium and cells, indicating both extracellular and cell associated mechanisms. Taken together, these results have demonstrated that Cr(VI) affects DNRA in the three organisms differently, and that each have a unique mechanism for Cr(VI) reduction. PMID:23251135
Meena, Amanda H.; Arai, Yuji
2016-04-29
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (< a few hr) reduction of soluble Cr(VI) to insoluble Cr(III) species by Fe(II) in magnetite has been the primary focus of the Cr(VI) removal process in the past. However, the contribution of simultaneous Cr(VI) adsorption processes in aged magnetite has been largely ignored, leaving uncertainties in evaluating the application of in situ Cr remediation technologies for aqueous systems. In this study, effects of common groundwater ions (i.e., nitrate and sulfate) on Cr(VI) sorption to magnetite were investigated using batchmore » geochemical experiments in conjunction with X-ray absorption spectroscopy. As a result, in both nitrate and sulfate electrolytes, batch sorption experiments showed that Cr(VI) sorption decreases with increasing pH from 4 to 8. In this pH range, Cr(VI) sorption decreased with increasing ionic strength of sulfate from 0.01 to 0.1 M whereas nitrate concentrations did not alter the Cr(VI) sorption behavior. This indicates the background electrolyte specific Cr(VI) sorption process in magnetite. Under the same ionic strength, Cr(VI) removal in sulfate containing solutions was greater than that in nitrate solutions. This is because the oxidation of Fe(II) by nitrate is more thermodynamically favorable than by sulfate, leaving less reduction capacity of magnetite to reduce Cr(VI) in the nitrate media. X-ray absorption spectroscopy analysis supports the macroscopic evidence that more than 75 % of total Cr on the magnetite surfaces was adsorbed Cr(VI) species after 48 h. In conclusion, this experimental geochemical study showed that the adsorption process of Cr(VI) anions was as important as the reductive precipitation of Cr(III) in describing the removal of Cr(VI) by magnetite, and these interfacial adsorption processes could be impacted by common groundwater ions like sulfate and nitrate. The results of this study highlight new information about the large quantity of adsorbed Cr(VI) surface complexes at the magnetite-water interface. It has implications for predicting the long-term stability of Cr at the magnetite-water interface.« less
Siegert, Michael; Taubert, Martin; Seifert, Jana; von Bergen-Tomm, Martin; Basen, Mirko; Bastida, Felipe; Gehre, Matthias; Richnow, Hans-Hermann; Krüger, Martin
2013-11-01
Anaerobic methanotrophic (ANME) mats host methane-oxidizing archaea and sulfate-reducing prokaryotes. Little is known about the nitrogen cycle in these communities. Here, we link the anaerobic oxidation of methane (AOM) to the nitrogen cycle in microbial mats of the Black Sea by using stable isotope probing. We used four different (15)N-labeled sources of nitrogen: dinitrogen, nitrate, nitrite and ammonium. We estimated the nitrogen incorporation rates into the total biomass and the methyl coenzyme M reductase (MCR). Dinitrogen played an insignificant role as nitrogen source. Assimilatory and dissimilatory nitrate reduction occurred. High rates of nitrate reduction to dinitrogen were stimulated by methane and sulfate, suggesting that oxidation of reduced sulfur compounds such as sulfides was necessary for AOM with nitrate as electron acceptor. Nitrate reduction to dinitrogen occurred also in the absence of methane as electron donor but at six times slower rates. Dissimilatory nitrate reduction to ammonium was independent of AOM. Ammonium was used for biomass synthesis under all conditions. The pivotal enzyme in AOM coupled to sulfate reduction, MCR, was synthesized from nitrate and ammonium. Results show that AOM coupled to sulfate reduction along with biomass decomposition drive the nitrogen cycle in the ANME mats of the Black Sea and that MCR enzymes are involved in this process. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Meena, Amanda H; Arai, Yuji
2016-01-01
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (
Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin
2018-02-01
Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Management options to limit nitrate leaching from grassland
NASA Astrophysics Data System (ADS)
Cuttle, S. P.; Scholefield, D.
1995-12-01
Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.
NASA Astrophysics Data System (ADS)
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J. K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation-reduction reaction.
Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali
2016-02-01
The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.
Ellington, M J K; Richardson, D J; Ferguson, S J
2003-04-01
Rhodobacter capsulatus N22DNAR(+) possesses a periplasmic nitrate reductase and is capable of reducing nitrate to nitrite under anaerobic conditions. In the absence of light this ability cannot support chemoheterotrophic growth in batch cultures. This study investigated the effect of nitrate reduction on the growth of R. capsulatus N22DNAR(+) during multiple light-dark cycles of anaerobic photoheterotrophic/dark chemoheterotrophic growth conditions in carbon-limited continuous cultures. The reduction of nitrate did not affect the photoheterotrophic growth yield of R. capsulatus N22DNAR(+). After a transition from photoheterotrophic to dark chemoheterotrophic growth conditions, the reduction of nitrate slowed the initial washout of a R. capsulatus N22DNAR(+) culture. Towards the end of a period of darkness nitrate-reducing cultures maintained higher viable cell counts than non-nitrate-reducing cultures. During light-dark cycling of a mixed culture, the strain able to reduce nitrate (N22DNAR(+)) outcompeted the strain which was unable to reduce nitrate (N22). The evidence indicates that the periplasmic nitrate reductase activity supports slow growth that retards the washout of a culture during anaerobic chemoheterotrophic conditions, and provides a protonmotive force for cell maintenance during the dark period before reillumination. This translates into a selective advantage during repeated light-dark cycles, such that in mixed culture N22DNAR(+) outcompetes N22. Exposure to light-dark cycles will be a common feature for R. capsulatus in its natural habitats, and this study shows that nitrate respiration may provide a selective advantage under such conditions.
Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)
NASA Astrophysics Data System (ADS)
Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.
2009-12-01
In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.
Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo
2008-02-01
The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.
Nitrous oxide production kinetics during nitrate reduction in river sediments.
Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L
2010-03-01
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.
Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor.
Chung, Jinwook; Ahn, Chang-Hoon; Chen, Zhuo; Rittmann, Bruce E
2008-01-01
N-Nitrosodimethylamine (NDMA) is a disinfection by-product shown to be carcinogenic, mutagenic, and teratogenic. A feasible detoxification pathway for NDMA is a three-step bio-reduction that leads to ammonia and dimethylamine. This study examines the bio-reduction of NDMA in a H2-based membrane biofilm reactor (MBfR) that also is active in nitrate and sulfate reductions. In particular, the study investigates the effects of H2 availability and the relative loadings of NDMA, nitrate, and sulfate, which potentially are competing electron acceptors. The results demonstrate that NDMA was bio-reduced to a major extent (i.e., at least 96%) in a H2-based MBfR in which the electron-equivalent fluxes from H2 oxidation were dominated by nitrate and sulfate reductions. NDMA reduction kinetics responded to NDMA concentration, H2 pressure, and the presence of competing acceptors. The most important factor controlling NDMA-reduction kinetics was the H2 availability, controlled primarily by the H2 pressure, and secondarily by competition from nitrate reduction.
The inorganic aerosol system of sulfate, nitrate, and ammonium can respond nonlinearly to changes in precursor sulfur dioxide (SO2) emissions. The potential increase in nitrate, when sulfate is reduced and the associated ammonia is released, can negate the sulfate mass...
INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads
NASA Astrophysics Data System (ADS)
Flynn, N. J.; Paddison, T.; Whitehead, P. G.
The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.
Koch, Carl D; Gladwin, Mark T; Freeman, Bruce A; Lundberg, Jon O; Weitzberg, Eddie; Morris, Alison
2017-04-01
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of Coating Materials and Mineral Additives on Nitrate Reduction by Zerovalent Iron
NASA Astrophysics Data System (ADS)
Kim, K. H.; Jeong, H. Y.; Lee, S.; Kang, N.; Choi, H. J.; Park, M.
2015-12-01
In efforts to facilitate nitrate removal, a variety of coating materials and mineral additives were assessed for their effects on the nitrate reduction by zerovalent iron (ZVI). Coated ZVIs were prepared by reacting Fe particles with Cr(III), Co(II), Ni(II), Cu(II), and S(-II) solutions under anoxic conditions, with the resultant materials named Cr/Fe, Co/Fe, Ni/Fe, Cu/Fe, and FeS/Fe, respectively. The mineral additives used, synthesized or purchased, included goethite, magnetite, and hydrous ferric oxide (HFO). Kinetic experiments were performed using air-tight serum vials containing 1.0 g Fe (uncoated or coated forms) in 15 mL of 100 mg NO3×N/L solutions with pH buffered at 7.0. To monitor the reaction progress, the solution phase was analyzed for NO3-, NO2-, and NH4+ on an ion chromatography, while the headspace was analyzed for H2, N2, and O2 on a gas chromatography. By uncoated Fe, ca. 60% of nitrate was reductively transformed for 3.6 h, with NH4+ being the predominant product. Compared with uncoated one, Cr/Fe, Co/Fe, and Cu/Fe showed faster removal rates of nitrate. The observed reactivity enhancement was thought to result from additional reduction of nitrate by H atoms adsorbed on the surface of Cr, Co, or Cu metal. In contrast, both Ni/Fe and FeS/Fe showed slower removal of nitrate than uncoated Fe. In both cases, the coating, which highly disfavors the adsorption of nitrate, would form on the Fe surface. When goethite, HFO, and magnetite were amended, the nitrate reduction by Fe was significantly increased, with the effect being most evident with HFO. Although not capable of reducing nitrate, the mineral additives would serve as crystal nuclei for the corrosion products of Fe, thus making the development of passivation layers on the Fe surface less. In the future, we will perform a kinetic modeling of the experimental data to assess the relative contribution of multiple reaction paths in the nitrate reduction by Fe.
Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.
Elrod, Lee Taylor; Kim, Eunsuk
2018-03-05
The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.
Nitrate uptake and nitrite release by tomato roots in response to anoxia.
Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry
2004-07-01
Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.
Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1
Riens, Burgi; Heldt, Hans Walter
1992-01-01
In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679
Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment
Underwood, Jennifer C.; Harvey, Ronald W.; Metge, David W.; Repert, Deborah A.; Baumgartner, Laura K.; Smith, Richard L.; Roane, Timberly M.; Barber, Larry B.
2011-01-01
The effects of “trace” (environmentally relevant) concentrations of the antimicrobial agent sulfamethoxazole (SMX) on the growth, nitrate reduction activity, and bacterial composition of an enrichment culture prepared with groundwater from a pristine zone of a sandy drinking-water aquifer on Cape Cod, MA, were assessed by laboratory incubations. When the enrichments were grown under heterotrophic denitrifying conditions and exposed to SMX, noticeable differences from the control (no SMX) were observed. Exposure to SMX in concentrations as low as 0.005 μM delayed the initiation of cell growth by up to 1 day and decreased nitrate reduction potential (total amount of nitrate reduced after 19 days) by 47% (p = 0.02). Exposure to 1 μM SMX, a concentration below those prescribed for clinical applications but higher than concentrations typically detected in aqueous environments, resulted in additional inhibitions: reduced growth rates (p = 5 × 10−6), lower nitrate reduction rate potentials (p = 0.01), and decreased overall representation of 16S rRNA gene sequences belonging to the genus Pseudomonas. The reduced abundance of Pseudomonas sequences in the libraries was replaced by sequences representing the genus Variovorax. Results of these growth and nitrate reduction experiments collectively suggest that subtherapeutic concentrations of SMX altered the composition of the enriched nitrate-reducing microcosms and inhibited nitrate reduction capabilities.
Trevisi, P; Casini, L; Nisi, I; Messori, S; Bosi, P
2011-04-01
Ingested nitrate is absorbed in the small intestine, recirculated into the saliva and reduced to nitrite by oral bacteria. In pigs receiving a moderate dietary addition of nitrate, the recirculation into the saliva is modest, so we aimed to assess the effect of higher nitrate doses to find out how the animal reacts to this new situation and to evaluate if a higher nitrate level could enhance the nitrate reduction process, improving the nitrite production Trial 1. Six piglets received 100 g of a commercial diet with 2.45% KNO(3) . In relation to baseline values, nitrate in blood serum and saliva increased 15 times, and declined after 6 h vs. 2 h. Salivary nitrite increased seven times after the addition and declined after 6 h vs. 2 h. Trial 2. Six piglets were fed a diet with or without 1.22% KNO(3) for 2 weeks. Salivary nitrate and nitrite increased with the addition of KNO3: nitrate increased from d0 to the end of the trial, nitrite increased 15 times after 1 week, but decreased after 2 weeks to 4.5-fold the control. After 2 weeks, nitrate reduced Shan diversity index of salivary microbiota. The present results indicate that the long exposure to high quantities of nitrates impairs the oral reduction of nitrate to nitrite and engenders a reduction of the mouth's microbiota diversity. © 2010 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Henson, W. R.; Huang, L.; Graham, W. D.; Ogram, A.
2017-05-01
This study integrates push-pull tracer tests (PPTT) with microbial characterization of extracted water via quantitative polymerase chain reaction (qPCR) and reverse transcriptase qPCR (RT-qPCR) of selected functional N transformation genes to quantify nitrate reduction mechanisms and rates in sites with different redox potential in a karst aquifer. PPTT treatments with nitrate (AN) and nitrate-fumarate (ANC) were executed in two wells representing anoxic and oxic geochemical end-members. Oxic aquifer zero-order nitrate loss rates (mmol L-1 h-1) were similar for AN and ANC treatment, ranging from 0.03 ± 0.01 to 0.05 ± 0.01. Anoxic aquifer zero-order nitrate loss rates ranged from 0.03 ± 0.02 (AN) to 0.13 ± 0.02 (ANC). Microbial characterization indicates mechanisms influencing these rates were dissimilatory nitrate reduction to ammonium (DNRA) at the anoxic site with AN treatment, assimilatory reduction of nitrate to ammonium (ANRA) with ANC treatment in the water column at both sites, and additional documented nitrate reduction that occurred in unsampled biofilms. With carbon treatment, total numbers of microbes (16S rRNA genes) significantly increased (fourteenfold to thirtyfold), supporting stimulated growth with resulting ANRA. Decreased DNRA gene concentrations (nrfA DNA) and increased DNRA activity ratio (nrfA-cDNA/DNA) supported the assertion that DNRA occurred in the anoxic zone with AN and ANC treatment. Furthermore, decreased DNRA gene copy numbers at the anoxic site with ANC treatment suggests that DNRA microbes in the anoxic site are chemolithoautotrophic. Increased RT-qPCR denitrification gene expression (nirK and nirS) was not observed in water samples, supporting that any observed NO3-N loss due to denitrification may be occurring in unsampled microbial biofilms.
NASA Astrophysics Data System (ADS)
Brodie, E. L.; Beller, H. R.; Goldfarb, K. C.; Han, R.; Santee, C. A.
2009-12-01
In situ reductive immobilization, whereby highly soluble Cr(VI) species are reduced to poorly soluble Cr(III) species, is a favored approach for remediating Cr-contaminated groundwater. How microbial populations respond phylogenetically and functionally to the injection of an organic electron donor to stimulate Cr(VI) reduction is unclear, as are the relative contributions of direct enzymatic Cr(VI) reduction versus indirect (e.g. sulfide-mediated) reduction. In this study, we inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site (WA) and supplemented them with lactate and the electron acceptors nitrate, sulfate, and amorphous ferric oxyhydroxide. The microcosms progressed successively through nitrate-reducing, sulfate-reducing, and Fe(III)-reducing conditions, and after a second nitrate amendment, nitrate-dependent Fe(II)-oxidizing conditions. Cr(VI) reduction occurred during both the denitrification and the sulfate/iron reduction phases. DNA and RNA were harvested during each major biogeochemical phase and were subjected to PhyloChip analysis, qPCR, and transcript sequencing. Bacterial community succession followed a trajectory related to the sequential use of electron acceptors. During denitrification, bacterial communities were enriched in known denitrifiers within the Beta- and Gamma-proteobacteria and became phylogenetically clustered. Fermenters became enriched following nitrate reduction, preceding both iron and sulfate reduction. Iron reduction was stoichiometrically related to the formation of hydrogen sulfide and, although iron reducers were detected during this phase, their iron-reducing activity was not confirmed. Following the depletion of lactate and sulfate, iron reduction rates decreased and acetate and propionate concentrations stabilized, indicating a marginal contribution of acetate-coupled iron reduction. Rapid Fe(II) oxidation occurred following the nitrate amendment with a concomitant reduction of nitrate to nitrite and an increased abundance of Beta-proteobacterial species related to known anaerobic Fe(II)-oxidizing bacteria. To uncover the microbial mechanisms contributing to the biogeochemical complexity encountered, even under controlled laboratory incubations, requires alternatives to standard phylogenetic analyses. Our ongoing efforts in analyzing the community transcriptomes (mRNA) should provide valuable insight into the relative rates of direct versus indirect mechanisms of Cr(VI) immobilization in contaminated aquifers.
Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments
Dowdle, P.R.; Laverman, A.M.; Oremland, R.S.
1996-01-01
Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat- sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H2, or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate- respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-14C]acetate to 14CO2 by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).
NASA Astrophysics Data System (ADS)
Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey
2014-05-01
Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the pasteurized experiment, suggesting either different populations of NRM or a population of NRM that was not resistant to the 80°C pre-treatment. These results demonstrate that thermophilic NRM exist in cold marine sediments from Aarhus Bay and can be enriched under appropriate conditions. Effective microbial control of SRM activity at high temperature in our Aarhus Bay sediment model system depends on the addition of nitrate to stimulate this group of microorganisms.
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T
2017-12-31
About 50% of U.S. water pollution problems are caused by non-point source (NPS) pollution, primarily sediment and nutrients from agricultural areas, despite the widespread implementation of agricultural Best Management Practices (BMPs). However, the effectiveness of implementation strategies and type of BMPs at watershed scale are still not well understood. In this study, the Soil and Water Assessment Tool (SWAT) ecohydrological model was used to assess the effectiveness of pollutant mitigation strategies in the Raccoon River watershed (RRW) in west-central Iowa, USA. We analyzed fourteen management scenarios based on systematic combinations of five strategies: fertilizer/manure management, changing row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems, specifically aimed at reducing nitrate and total suspended sediment yields from hotspot areas in the RRW. Moreover, we assessed implications of climate change on management practices, and the impacts of management practices on water availability, row crop yield, and total agricultural production. Our results indicate that sufficient reduction of nitrate load may require either implementation of multiple management practices (38.5% with current setup) or conversion of extensive areas into perennial grass (up to 49.7%) to meet and maintain the drinking water standard. However, climate change may undermine the effectiveness of management practices, especially late in the 21st century, cutting the reduction by up to 65% for nitrate and more for sediment loads. Further, though our approach is targeted, it resulted in a slight decrease (~5%) in watershed average crop yield and hence an overall reduction in total crop production, mainly due to the conversion of row-crop lands to perennial grass. Such yield reductions could be quite spatially heterogeneously distributed (0 to 40%). Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan
2009-10-01
Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayedmore » by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.« less
Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean
2017-01-01
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e.g., rye and early planting), due to warmer temperatures. According to simulation results, WCCs were effective to mitigate nitrate loads accelerated by FCCs and therefore the role of WCCs in mitigating nitrate loads is even more important in the given FCCs.
Leblanc, Antonin; Segura, Raphaël; Deleu, Carole; Le Deunff, Erwan
2013-01-01
In plants, the nitrate transporters, NRT1.1 and NRT2.1, are mainly responsible for nitrate uptake. Intriguingly, both nitrate transporters are located in a complementary manner in different cells layers of the mature root suggesting that their coordination should occur during nitrate uptake and plant growth. This hypothesis was examined on 5-d-old rape seedlings grown on agar medium supplemented with 1 or 5mM nitrate. Seedlings were treated with increasing potassium glutamate concentrations in order to uncouple the two nitrate transporters by inhibiting BnNRT2.1 expression and activity specifically. In both nitrate treatments, increasing the glutamate concentrations from 0.5 to 10mM induced a reduction in 15NO3- uptake and an inhibition of N assimilation. The decrease in 15NO3- uptake was caused by downregulation of BnNRT2.1 expression but surprisingly it was not compensated by the upregulation of BnNRT1.1. This created an unprecedented physiological situation where the effects of the nitrate signal on shoot growth were solely modulated by nitrate absorption. In these conditions, the osmotic water flow for volumetric shoot growth was mainly dependent on active nitrate transport and nitrate signaling. This behavior was confirmed by the allometric relationships found between changes in the root length with 15N and water accumulation in the shoot. These findings demonstrate that the BnNRT2.1 transporter is essential for nitrate uptake and growth, and renew the question of the respective roles of the NRT2.1 and NRT1.1 transporters in nitrate uptake and sensing at the whole plant level. PMID:23299418
Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne
2015-01-01
The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.
Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne
2015-01-01
The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms. PMID:26528270
Thorup, Casper; Schramm, Andreas
2017-01-01
ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. PMID:28720728
Electrochemical process for the preparation of nitrogen fertilizers
Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V
2015-04-14
Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.
Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won
2011-03-28
The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.
Electrochemical reduction of nitrate in the presence of an amide
Dziewinski, Jacek J.; Marczak, Stanislaw
2002-01-01
The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.
Hoffman, Lauren K; Raymond, Isabelle; Kircik, Leon
2018-02-01
Tinea pedis is the most common dermatophyte infection. Treatment is critical to alleviate pruritic symptoms, to reduce the risk for secondary bacterial infection, and to limit the spread of infection to other body sites or other individuals. The objective of this study was to compare the abilities of econazole nitrate topical foam, 1% and ketoconazole cream (2%) to reduce pruritus, thus improving quality of life, and to determine patient preference for the foam product versus the cream product in patients with interdigital tinea pedis. A single-center, investigator-blinded, observational pilot study was conducted to compare econazole nitrate topical foam (1%) to ketoconazole cream (2%). In this split-body study, 20 subjects received both econazole nitrate topical foam and ketoconazole cream and applied the medications daily to either the right or left foot for 14 days. Improvements in patient quality of life (pruritus) and patient preference were measured using the pruritus visual analog scale (VAS), Skindex-16, and patient preference questionnaires. Nineteen subjects completed the study and one subject was lost to follow-up. Reductions in VAS scores of econazole nitrate topical foam were significantly greater than those of ketoconazole cream, indicating the superiority of the econazole nitrate foam in reducing pruritus. Skindex-16 data showed significant reductions in total scores and individual domains, including patient symptom, emotional, and functional domains, by the final visit. Since each subject received both medications the questionnaire was not medication-specific. Responses to patient preference questionnaires showed that econazole nitrate topical foam,1% was rated as "good" or "excellent" in all measures assessed. One adverse event was noted. In patients with interdigital tinea pedis, application of econazole nitrate topical foam 1% twice daily for two weeks was clinically effective and significantly superior to ketoconazole cream 2% in reducing pruritus. J Drugs Dermatol. 2018;17(2):229-232.
The Abundance and Activity of Nitrate-Reducing Microbial Populations in Estuarine Sediments
NASA Astrophysics Data System (ADS)
Cardarelli, E.; Francis, C. A.
2014-12-01
Estuaries are productive ecosystems that ameliorate nutrient and metal contaminants from surficial water supplies. At the intersection of terrestrial and aquatic environments, estuarine sediments host major microbially-mediated geochemical transformations. These include denitrification (the conversion of nitrate to nitrous oxide and/or dinitrogen) and dissimilatory nitrate reduction to ammonium (DNRA). Denitrification has historically been seen as the predominant nitrate attenuation process and functions as an effective sink for nitrate. DNRA has previously been believed to be a minor nitrate reduction process and transforms nitrate within the ecosystem to ammonium, a more biologically available N species. Recent studies have compared the two processes in coastal environments and determined fluctuating environmental conditions may suppress denitrification, supporting an increased role for DNRA in the N cycle. Nitrate availability and salinity are factors thought to influence the membership of the microbial communities present, and the nitrate reduction process that predominates. The aim of this study is to investigate how nitrate concentration and salinity alter the transcript abundances of N cycling functional gene markers for denitrification (nirK, nirS) and DNRA (nrfA) in estuarine sediments at the mouth of the hypernutrified Old Salinas River, CA. Short-term whole core incubations amended with artificial freshwater/artificial seawater (2 psu, 35 psu) and with varying NO3- concentrations (200mM, 2000mM) were conducted to assess the activity as well as the abundance of the nitrate-reducing microbial populations present. Gene expression of nirK, nirS, and nrfA at the conclusion of the incubations was quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). High abundances of nirK, nirS, and nrfA under particular conditions coupled with the resulting geochemical data ultimately provides insight onto how the aforementioned factors influence N cycling related gene expression and rates of nitrate reduction.
Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.
1994-01-01
A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.
Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs
2017-10-01
In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1 s -1 and 149.5 ± 5.8 M -1 s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during chloramination decreased with increasing specific ozone doses. A good correlation was obtained between NDMA-FP abatement and nitrate formation. Therefore, nitrate formation after pre-ozonation may be a useful parameter to estimate the reduction of the NDMA-FP during post-chloramination. Overall, the results of this study suggest that nitrate formation (possibly in combination with UVA 254 abatement) during ozonation of DON-containing waters may be a good surrogate for assessing the abatement of micropollutants and the NDMA-FP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kauffman, Leon J.; Baehr, Arthur L.; Ayers, Mark A.; Stackelberg, Paul E.
2001-01-01
Residents of the southern New Jersey Coastal Plain are increasingly reliant on the unconfined Kirkwood-Cohansey aquifer system for public water supply as a result of increasing population and restrictions on withdrawals from the deeper, confined aquifers. Elevated nitrate concentrations above background levels have been found in wells in the surficial aquifer system in agricultural and urban parts of this area. A three-dimensional steady-state ground-water-flow model of a 400-square-mile study area near Glassboro, New Jersey, was used in conjunction with particle tracking to examine the effects of land use and travel time on the distribution of nitrate in ground and surface water in southern New Jersey. Contributing areas and ground-water ages, or travel times, of water at ground-water discharge points (streams and wells) in the study area were simulated. Concentrations of nitrate were computed by linking land use and age-dependent nitrate concentrations in recharge to the discharge points. Median concentrations of nitrate in water samples collected during 1996 from shallow monitoring wells in different land-use areas were used to represent the concentration of nitrate in aquifer recharge since 1990. On the basis of upward trends in the use of nitrogen fertilizer, the concentrations of nitrate in aquifer recharge in agricultural and urban areas were assumed to have increased linearly from the background value in 1940 (0.07 mg/L as N) to the 1990 (2.5-14 mg/L as N) concentrations. Model performance was evaluated by comparing the simulation results to measured nitrate concentrations and apparent ground-water ages. Apparent ground-water ages at 32 monitoring wells in the study area determined from tritium/helium-3 ratios and sulfur hexafluoride concentrations favorably matched simulated travel times to these wells. Simulated nitrate concentrations were comparable to concentrations measured in 27 water-supply wells in the study area. A time series (1987-98) of nitrate concentrations at base-flow conditions in three streams that drain basins of various sizes and with various land uses was compared to simulated concentrations in these streams. In all three of the streams, a reasonable fit to the measured concentrations was achieved by multiplying the simulated concentration by 0.6. Because nitrate appeared to move conservatively (not degraded or adsorbed) in ground water to wells, the apparent non-conservative behavior in streams indicates that about 40 percent of the nitrate in aquifer recharge is removed by denitrification in the aquifer near the streams and (or) by in-stream processes. The model was used to evaluate the effects of various nitrate management options on the concentration of nitrate in streams and water-supply wells. Nitrate concentrations were simulated under the following management alternatives: an immediate ban on nitrate input, reduction of input at a constant rate, and fixed input at the current (2000) level. The time required for water to move through the aquifer results in a time lag between the reduction of nitrate input in recharge and the reduction of nitrate concentration in streams and wells. In the gradual-reduction alternative, nitrate concentrations in streams and wells continued to increase for several years after the reduction was enacted. In both the immediate-ban and gradual-reduction alternatives, nitrate concentrations remained elevated above background concentrations long after nitrate input ceased. In the fixed-use alternative, concentrations in streams and wells continued to increase for 30 to 40 years before reaching a constant level. The spatial distributions of simulated nitrate concentrations in streams in 2000 and 2050 were examined with the assumption of no change in land use, nitrate concentration in recharge, or ground-water withdrawals. As expected, nitrate concentrations were highest in agricultural areas and lowest in largely undeveloped areas. Changes in concentration
Schilling, K.E.; Wolter, C.F.
2007-01-01
Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.
Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju
2006-03-01
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.
Cheng, Lv; Li, Xiaofei; Lin, Xianbiao; Hou, Lijun; Liu, Min; Li, Ye; Liu, Sai; Hu, Xiaoting
2016-12-01
Urbanizations have increased the loadings of reactive nitrogen in urban riverine environments. However, limited information about dissimilatory nitrate reduction processes and associated contributions to nitrogen removal is available for urban riverine environments. In this study, sediment slurry experiments were conducted with nitrogen isotope-tracing technique to investigate the potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) and their contributions to nitrate reduction in sediments of urban river networks, Shanghai. The potential rates of denitrification, anammox and DNRA measured in the study area ranged from 0.193 to 98.7 nmol N g -1 h -1 dry weight (dw), 0.0387-23.7 nmol N g -1 h -1 dw and 0-10.3 nmol N g -1 h -1 dw, respectively. Denitrification and DNRA rates were higher in summer than in winter, while anammox rates were greater in winter than in summer for most sites. Dissolved oxygen, total organic carbon, nitrate, ammonium, sulfide, Fe(II) and Fe(III) were found to have significant influence on these nitrate reduction processes. Denitrification contributed 11.5-99.5%% to total nitrate reduction, as compared to 0.343-81.6% for anammox and 0-52.3% for DNRA. It is estimated that nitrogen loss of approximately 1.33 × 10 5 t N year -1 was linked to both denitrification and anammox processes, which accounted for about 20.1% of total inorganic nitrogen transported annually into the urban river networks of Shanghai. Overall, these results show the potential importance of denitrification and anammox in nitrogen removal and provide new insight into the mechanisms of nitrogen cycles in urban riverine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi
2016-01-01
Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population.
Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine
Yang, Ting; Doudrick, Kyle; Westerhoff, Paul
2016-01-01
Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting byproduct selectivity of ammonium and gaseous N species (e.g., N2, N2O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 1024 photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH4+. To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. PMID:23276425
Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.
Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei
2015-04-09
The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Jiang, Yufeng; Zhang, Baogang; He, Chao; Shi, Jiaxin; Borthwick, Alistair G L; Huang, Xueyang
2018-05-21
Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor. V(V) removal efficiency of 91.0 ± 3.2% was achieved in test bioreactors within 7 d, with synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which precipitated naturally under near-neutral conditions, and nitrate tended to be converted to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA gene sequencing and metagenomic analyses revealed the evolutionary behavior of microbial communities and functional genes. The genera Dechloromonas and Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic mechanism, with VFAs acting as organic carbon sources for heterotrophically functional bacteria while reducing V(V) and nitrate. These findings are likely to be useful in revealing biogeochemical fates of V(V) and nitrate in aquifer and developing technology for removing them simultaneously from groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Henson, Wesley; Huang, Laibin; Graham, Wendy D.; Ogram, Andrew
2017-01-01
This study integrates push-pull tracer tests (PPTT) with microbial characterization of extracted water via quantitative polymerase chain reaction (qPCR) and reverse transcriptase qPCR (RT-qPCR) of selected functional N transformation genes to quantify nitrate reduction mechanisms and rates in sites with different redox potential in a karst aquifer. PPTT treatments with nitrate (AN) and nitrate-fumarate (ANC) were executed in two wells representing anoxic and oxic geochemical end-members. Oxic aquifer zero-order nitrate loss rates (mmol L−1 h−1) were similar for AN and ANC treatment, ranging from 0.03 ± 0.01 to 0.05 ± 0.01. Anoxic aquifer zero-order nitrate loss rates ranged from 0.03 ± 0.02 (AN) to 0.13 ± 0.02 (ANC). Microbial characterization indicates mechanisms influencing these rates were dissimilatory nitrate reduction to ammonium (DNRA) at the anoxic site with AN treatment, assimilatory reduction of nitrate to ammonium (ANRA) with ANC treatment in the water column at both sites, and additional documented nitrate reduction that occurred in unsampled biofilms. With carbon treatment, total numbers of microbes (16S rRNA genes) significantly increased (fourteenfold to thirtyfold), supporting stimulated growth with resulting ANRA. Decreased DNRA gene concentrations (nrfA DNA) and increased DNRA activity ratio (nrfA-cDNA/DNA) supported the assertion that DNRA occurred in the anoxic zone with AN and ANC treatment. Furthermore, decreased DNRA gene copy numbers at the anoxic site with ANC treatment suggests that DNRA microbes in the anoxic site are chemolithoautotrophic. Increased RT-qPCR denitrification gene expression (nirK and nirS) was not observed in water samples, supporting that any observed NO3-N loss due to denitrification may be occurring in unsampled microbial biofilms.
Jeong, Hanseok; Bhattarai, Rabin
2018-05-01
It is vital to manage the excessive use of nitrogen (N) fertilizer in corn production, the single largest consumer of N fertilizer in the United States, in order to achieve more sustainable agroecosystems. This study comprehensively explored the effects of N fertilization alternatives on nitrate loss and crop yields using the Root Zone Water Quality Model (RZWQM) in tile-drained fields in central Illinois. The RZWQM was tested for the prediction of tile flow, nitrate loss, and crop yields using eight years (1993-2000) of observed data and showed satisfactory model performances from statistical and graphical evaluations. Our model simulations demonstrated the maximum return to nitrogen (MRTN) rate (193 kgha -1 ), a newly advised N recommendation by the Illinois Nutrient Loss Reduction Strategy (INLRS), can be further reduced. Nitrate loss was reduced by 10.3% and 29.8%, but corn yields decreased by 0.3% and 1.9% at 156 and 150 kgha -1 of N fertilizer rate in the study sites A and E, respectively. Although adjustment of N fertilization timing presented a further reduction in nitrate loss, there was no optimal timing to ensure nitrate loss reduction and corn productivity. For site A, 100% spring application was the most productive and 40% fall, 10% pre-plant, and 50% side dress application generated the lowest nitrate loss. For site E, the conventional N application timing was verified as the best practice in both corn production and nitrate loss reduction. Compared to surface broadcast placement, injected N fertilizer in spring increased corn yield, but may also escalate nitrate loss. This study presented the need of an adaptive N fertilizer management due to the heterogeneity in agricultural systems, and raised the importance of timing and placement of N fertilizer, as well as further reduction in fertilizer rate to devise a better in-field N management practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chemical removal of nitrate from water by aluminum-iron alloys.
Xu, Jie; Pu, Yuan; Qi, Wei-Kang; Yang, Xiao Jin; Tang, Yang; Wan, Pingyu; Fisher, Adrian
2017-01-01
Zero-valent iron has been intensively investigated in chemical reduction of nitrate in water, but the reduction requires acidic or weak acidic pH conditions and the product of the reduction is exclusively ammonium, an even more toxic substance. Zero-valent aluminum is a stronger reductant than iron, but its use for the reduction of aqueous nitrate requires considerably alkaline pH conditions. In this study, aluminum-iron alloys with an iron content of 10%, 20% and 58% (termed Al-Fe10, Al-Fe20 and Al-Fe58, respectively) were investigated for the reduction of aqueous nitrate. Al-Fe alloys were efficient to reduce nitrate in water in an entire pH range of 2-12 and the reduction proceeded in a pseudo-first order at near neutral pH conditions. The observed reaction rate constant (K obs ) of Al-Fe10 was 3 times higher than that of Fe and the K obs of Al-Fe20 doubled that of Al-Fe10. The nitrogen selectivity of the reduction by Al-Fe10, Al-Fe20 and Al-Fe58 was 17.6%, 23.9% and 40.3%, respectively at pH 7 and the nitrogen selectivity by Al-Fe20 increased from 18.9% at pH 2-60.3% at pH 12. The enhanced selectivity and reactivity of Al-Fe alloys were likely due to the presence of an intermetallic Al-Fe compound (Al 13 Fe 4 ). Copyright © 2016 Elsevier Ltd. All rights reserved.
Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, John D.
2005-06-01
A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less
Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai
2017-10-01
In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.
In-situ evidence for uranium immobilization and remobilization
Senko, John M.; Istok, Jonathan D.; Suflita, Joseph M.; Krumholz, Lee R.
2002-01-01
The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push−pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.5 μM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push−pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 μM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that in-situ subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium.
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua
2013-03-19
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
Chung, J; Shin, S; Oh, J
2010-05-01
In this study we have investigated whether electron acceptors, such as nitrate or sulphate ions, competitively inhibit the reduction of perchlorate in brine in continuous up-flow packed bed bioreactors. The effect of pH and hydraulic retention time (HRT) on the reduction of perchlorate at high salinity has also been examined. Reduction of perchlorate was found to be only moderately influenced by nitrate (under 163 mg N L-'), implying that there was no significant microbial competition for electron acceptors. As a result of microbial diversity, there were few differences between microbial communities fed with a variety of media, suggesting that most nitrate-reducing bacteria are able to reduce perchlorate at high salinity. Reduction of perchlorate was almost complete at relatively high sulfate levels (1000 mg L(-1)), neutral pH (6-8) and relatively long HRTs (> 10 h).
Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A
2014-10-15
Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N
1995-06-01
High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.
Kilic, Arzu; Sahinkaya, Erkan; Cinar, Ozer
2014-01-01
Kinetics of sulphur-limestone autotrophic denitrification process in batch assays and the impact of sulphur/limestone ratio on the process performance in long-term operated packed-bed bioreactors were evaluated. The specific nitrate and nitrite reduction rates increased almost linearly with the increasing initial nitrate and nitrite concentrations, respectively. The process performance was evaluated in three parallel packed-bed bioreactors filled with different sulphur/limestone ratios (1:1, 2:1 and 3:1, v/v). Performances of the bioreactors were studied under varying nitrate loadings (0.05 - 0.80 gNO(-)(3) - NL⁻¹ d⁻¹) and hydraulic retention times (3-12 h). The maximum nitrate reduction rate of 0.66 g L⁻¹ d⁻¹ was observed at the loading rate of 0.80 g NO(-)(3) - N L⁻¹ d⁻¹ in the reactor with sulphur/limestone ratio of 3:1. Throughout the study, nitrite concentrations remained quite low (i.e. below 0.5 mg L⁻¹ NO(-)(2) -N. The reactor performance increased in the order of sulphur/limestone ratio of 3:1, 2:1 and 1:1. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes showed quite stable communities in the reactors with the presence of Methylo virgulaligni, Sulfurimonas autotrophica, Sulfurovum lithotrophicum, Thiobacillus aquaesulis and Sulfurimonas autotrophica related species.
Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.
2015-01-01
This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763
Suri, Navreet; Voordouw, Johanna; Voordouw, Gerrit
2017-01-01
The injection of nitrate is one of the most commonly used technologies to impact the sulfur cycle in subsurface oil fields. Nitrate injection enhances the activity of nitrate-reducing bacteria, which produce nitrite inhibiting sulfate-reducing bacteria (SRB). Subsequent reduction of nitrate to di-nitrogen (N2) alleviates the inhibition of SRB by nitrite. It has been shown for the Medicine Hat Glauconitic C (MHGC) field, that alkylbenzenes especially toluene are important electron donors for the reduction of nitrate to nitrite and N2. However, the rate and extent of reduction of nitrate to nitrite and of nitrite to nitrogen have not been studied for multiple oil fields. Samples of light oil (PNG, CPM, and Tundra), light/heavy oil (Gryphon and Obigbo), and of heavy oil (MHGC) were collected from locations around the world. The maximum concentration of nitrate in the aqueous phase, which could be reduced in microcosms inoculated with MHGC produced water, increased with the toluene concentration in the oil phase. PNG, Gryphon, CPM, Obigbo, MHGC, and Tundra oils had 77, 17, 5.9, 4.0, 2.6, and 0.8 mM toluene, respectively. In incubations with 49 ml of aqueous phase and 1 ml of oil these were able to reduce 22.2, 12.3, 7.9, 4.6, 4.0, and 1.4 mM of nitrate, respectively. Nitrate reduced increased to 35 ± 4 mM upon amendment of all these oils with 570 mM toluene prior to incubation. Souring control by nitrate injection requires that the nitrate is directed toward oxidation of sulfide, not toluene. Hence, the success of nitrate injections will be inversely proportional to the toluene content of the oil. Oil composition is therefore an important determinant of the success of nitrate injection to control souring in a particular field. PMID:28620357
Antiinflammatory actions of inorganic nitrate stabilize the atherosclerotic plaque
Khambata, Rayomand S.; Ghosh, Suborno M.; Rathod, Krishnaraj S.; Thevathasan, Tharssana; Filomena, Federica; Xiao, Qingzhong; Ahluwalia, Amrita
2017-01-01
Reduced bioavailable nitric oxide (NO) plays a key role in the enhanced leukocyte recruitment reflective of systemic inflammation thought to precede and underlie atherosclerotic plaque formation and instability. Recent evidence demonstrates that inorganic nitrate (NO3−) through sequential chemical reduction in vivo provides a source of NO that exerts beneficial effects upon the cardiovascular system, including reductions in inflammatory responses. We tested whether the antiinflammatory effects of inorganic nitrate might prove useful in ameliorating atherosclerotic disease in Apolipoprotein (Apo)E knockout (KO) mice. We show that dietary nitrate treatment, although having no effect upon total plaque area, caused a reduction in macrophage accumulation and an elevation in smooth muscle accumulation within atherosclerotic plaques of ApoE KO mice, suggesting plaque stabilization. We also show that in nitrate-fed mice there is reduced systemic leukocyte rolling and adherence, circulating neutrophil numbers, neutrophil CD11b expression, and myeloperoxidase activity compared with wild-type littermates. Moreover, we show in both the ApoE KO mice and using an acute model of inflammation that this effect upon neutrophils results in consequent reductions in inflammatory monocyte expression that is associated with elevations of the antiinflammatory cytokine interleukin (IL)-10. In summary, we demonstrate that inorganic nitrate suppresses acute and chronic inflammation by targeting neutrophil recruitment and that this effect, at least in part, results in consequent reductions in the inflammatory status of atheromatous plaque, and suggest that this effect may have clinical utility in the prophylaxis of inflammatory atherosclerotic disease. PMID:28057862
He, Tengxia; Xie, Deti; Li, Zhenlun; Ni, Jiupai; Sun, Quan
2017-09-01
The ability of Arthrobacter arilaitensis Y-10 for nitrogen removal from simulated wastewater was studied. Results showed that ammonium was the best inorganic nitrogen for strain Y-10's cell growth, which could also promote nitrate reduction. Approximately 100.0% of ammonium was removed in the nitrogen removal experiments. The nitrate removal efficiency was 73.3% with nitrate as sole nitrogen source, and then the nitrate efficiency was increased to 85.3% and 100.0% with ammonium and nitrate (both about 5 or 100mg/L) as the mixed nitrogen sources. Nitrite accumulation was observed in presence of ammonium and nitrate. When the concentration of sole nitrite nitrogen was 10.31mg/L, the nitrite removal efficiency was 100.0%. Neither ammonium nor nitrate was accumulated during the whole experimental process. All experimental results indicated that A. arilaitensis Y-10 could remove ammonium, nitrate and nitrite at 15°C from wastewater, and could also perform simultaneous nitrification and denitrification under aerobic condition. Copyright © 2017. Published by Elsevier Ltd.
Jones, Richard Wyn; Sheard, Robert W.
1977-01-01
Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity. PMID:16659888
Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.
Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D
2015-03-17
Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.
Physiology and enzymology involved in denitrification by Shewanella putrefaciens
NASA Technical Reports Server (NTRS)
Krause, B.; Nealson, K. H.
1997-01-01
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.
Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.
Yang, Ting; Doudrick, Kyle; Westerhoff, Paul
2013-03-01
Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting by-product selectivity of ammonium and gaseous N species (e.g., N(2), N(2)O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 10(24) photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH(4)(+). To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Davidson, Andrew N; Chee-Sanford, Joanne; Lai, Hoi Yi Mandy; Ho, Chi-hua; Klenzendorf, J Brandon; Kirisits, Mary Jo
2011-11-15
The objective of the current study was to isolate and characterize several bromate-reducing bacteria and to examine their potential for bioaugmentation to a drinking water treatment process. Fifteen bromate-reducing bacteria were isolated from three sources. According to 16S rRNA gene sequencing, the bromate-reducing bacteria are phylogenetically diverse, representing the Actinobacteria, Bacteroidetes, Firmicutes, and α-, β-, and γ-Proteobacteria. The broad diversity of bromate-reducing bacteria suggests the widespread capability for microbial bromate reduction. While the cometabolism of bromate via nitrate reductase and (per)chlorate reductase has been postulated, five of our bromate-reducing isolates were unable to reduce nitrate or perchlorate. This suggests that a bromate-specific reduction pathway might exist in some microorganisms. Bioaugmentation of activated carbon filters with eight of the bromate-reducing isolates did not significantly decrease start-up time or increase bromate removal as compared to control filters. To optimize bromate reduction in a biological drinking water treatment process, the predominant mechanism of bromate reduction (i.e., cometabolic or respiratory) needs to be assessed so that appropriate measures can be taken to improve bromate removal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Haixiang; Zhang, Zhiqiang; Xu, Xiaoyin; Liang, Jun; Xia, Siqing
2014-04-01
A continuous-stirred, hydrogen-based, hollow-fiber membrane biofilm reactor (HFMBfR) that was active in nitrate and sulfate reductions was shown to be effective for degradation or detoxification of para-chloronitrobenzene (p-CNB) in water by biotransforming it first to para-chloroaniline (nitro-reduction) and then to aniline (reductive dechlorination) with hydrogen (H2) as an electron donor. A series of short-term experiments examined the effects of nitrate and sulfate on p-CNB bioreduction. The results obtained showed both higher nitrate and sulfate concentration declined the p-CNB bioreduction in the biofilm, and this suggests the competition for H2 caused less H2 available for the p-CNB bioreduction when the H2 demand for the reductions was larger. Denitrification and sulfate reduction intermediates were thought to be potential factors inhibiting the p-CNB bioreduction. Analysis of electron-equivalent fluxes and reaction orders in the biofilm further demonstrated both denitrification and sulfate reduction competed more strongly for H2 availability than p-CNB bioreduction. These findings have significant implications for the HFMBfR used for degrading p-CNB under denitrifying and/or sulfate reducing conditions.
Paik, Hyun-Dong; Lee, Joo-Yeon
2014-08-01
Lactobacillus brevis KGR3111, Lactobacillus curvatus KGR 2103, Lactobacillus plantarum KGR 5105, and Lactobacillus sakei KGR 4108 isolated from kimchi were investigated for their potential to be used as starter culture for fermented sausages with the capability to reduce and tolerate nitrate/nitrite. The reduction capability of tested strains for nitrate was not dramatic. All tested strains, however, showed the capability to produce nitrite reductase with the reduction amount of 58.46-75.80 mg/l of NO(2)(-). L. brevis and L. plantarum showed nitrate tolerance with the highest number of 8.71 log cfu/ml and 8.81 log cfu/ml, and L. brevis and L. sakei exhibited nitrite tolerance with the highest number of 8.24 log cfu/ml and 8.25 log cfu/ml, respectively. As a result, L. brevis, L. plantarum, and L. sakei isolated from kimchi showed a tolerance against nitrate or nitrite with a good nitrite reduction capability, indicating the satisfaction of one of the selection criteria to be used as starter culture for fermented sausages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan
2018-01-01
Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842
Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer
2015-07-15
Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.
Gallmetzer, Andreas; Silvestrini, Lucia; Schinko, Thorsten; Gesslbauer, Bernd; Hortschansky, Peter; Dattenböck, Christoph; Muro-Pastor, María Isabel; Kungl, Andreas; Brakhage, Axel A; Scazzocchio, Claudio; Strauss, Joseph
2015-07-01
The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169). This oxidation depends on FmoB, a flavin-containing monooxygenase which in vitro uses methionine and cysteine, but not glutathione, as oxidation substrates. The function of FmoB cannot be replaced by alternative Fmo proteins present in A. nidulans. Exposure of A. nidulans cells to nitrate led to rapid reduction of NirA-Metox169 to Met169; this reduction being independent from thioredoxin and classical methionine sulfoxide reductases. Replacement of Met169 by isoleucine, a sterically similar but not oxidizable residue, led to partial loss of NirA activity and insensitivity to FmoB-mediated nuclear export. In contrast, replacement of Met169 by alanine transformed the protein into a permanently nuclear and active transcription factor. Co-immunoprecipitation analysis of NirA-KapK interactions and subcellular localization studies of NirA mutants lacking different parts of the protein provided evidence that Met169 oxidation leads to a change in NirA conformation. Based on these results we propose that in the presence of nitrate the activation domain is exposed, but the NES is masked by a central portion of the protein (termed nitrate responsive domain, NiRD), thus restricting active NirA molecules to the nucleus. In the absence of nitrate, Met169 in the NES is oxidized by an FmoB-dependent process leading to loss of protection by the NiRD, NES exposure, and relocation of the inactive NirA to the cytosol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Lin Li; Robertson, D.H.; Chambers, J.Q.
1996-10-01
This work describes the electrochemical reduction of nitrate in alkaline solutions. Conditions which maximize the current efficiency for the production of dinitrogen and/or ammonia gases could be very important for the treatment of radioactive waste solutions.
Effect of temperature and benzalkonium chloride on nitrate reduction.
Hajaya, Malek G; Tezel, Ulas; Pavlostathis, Spyros G
2011-04-01
The effect of temperature and benzalkonium chloride (BAC) on nitrate reduction was investigated in batch assays using a mixed nitrate reducing culture. Nitrate was transformed completely, mainly through denitrification, to dinitrogen at 5, 10, 15 and 22 °C. In the absence of BAC, reduction of individual nitrogen oxides had different susceptibility to temperature and transient nitrite accumulation was observed at low temperatures. When the effect of BAC was tested up to 100 mg/L from 5 to 22 °C, denitrification was inhibited at and above 50mg BAC/L with transient nitrite accumulation at all temperatures. The effect of BAC was described by a competitive inhibition model. Nitrite reduction was the denitrification step most susceptible to BAC, especially at low temperatures. BAC was not degraded during the batch incubation and was mostly biomass-adsorbed. Overall, this study shows that low temperatures exacerbate the BAC inhibitory effect, which in turn is controlled by adsorption to biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun
2017-07-13
Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.
Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi
2014-08-15
Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.
Summers, David P
2005-08-01
One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species).
NASA Astrophysics Data System (ADS)
Summers, David P.
2005-08-01
One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species)
Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments
NASA Astrophysics Data System (ADS)
Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.
2011-12-01
Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.
NASA Astrophysics Data System (ADS)
Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.
2012-04-01
Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic influences in the study area, spatially different responses of crop growth and nitrate leaching were obtained and different management areas were defined. The efficiency of the policies were measured in terms of reduction in nitrate leaching; however, is of interest to estimate the influence of the reduce nitrate leaching on the groundwater nitrate concentration. Furthermore, we introduced the nitrate leaching results from the different scenarios into a flow a transport model, in order to relate the nitrate leaching reduction with its influence upon nitrate concentrations in groundwater. The results show that fertilizer taxes are the most cost-effective measure. ACKNOWLEDGEMENTS The study has been partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems and from the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Laverman, Anniet M; Cazier, Thibaut; Yan, Chen; Roose-Amsaleg, Céline; Petit, Fabienne; Garnier, Josette; Berthe, Thierry
2015-09-01
Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.
Leachate pre-treatment strategies before recirculation in landfill bioreactors.
Vigneron, V; Bouchez, T; Bureau, C; Mailly, N; Mazeas, L; Duquennoi, C; Audic, J M; Hébé, L; Bernet, N
2005-01-01
Nitrified leachate recirculation represents a promising strategy for a more sustainable landfill management. Our objective was to determine the reactions involved in nitrate reduction in municipal solid waste batch biodegradation tests. Anaerobic digestion of waste in the three control reactors showed a good reproducibility. In two test reactors, nitrate was added at various moments of the waste degradation process. We observed that: (1) H2S concentration controlled the nitrate reduction pathway: above a certain threshold of H2S, dissimilatory nitrate reduction to ammonium (DNRA) replaced denitrification. (2) N2O/N2 ratio varied with the organic carbon concentration: the lower the easily biodegradable carbon concentration, the higher the N2O/N2 ratio. (3) N2 was consumed after denitrification. The possibility of a nitrogen fixation reaction in the presence of NH4 is discussed. Nitrified leachate recirculation during acidogenesis should be avoided because of higher H2S production which could induce DNRA.
Kaspar, H F; Tiedje, J M
1981-03-01
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; De Geus, D.; Ekkelenkamp, R.
2016-12-01
Sociological surveys suggest that farmers understand that agriculture contributes to nutrient pollution but the same surveys also indicate that in the absence of on-farm nitrate data, farmers assume someone else is causing the problem. This tendency to overestimate our own abilities is common to all of us and often described as "Lake Wobegon Syndrome" after the mythical town where "where all the women are strong, all the men are good-looking, and all the children are above average." We developed the Nitrate App for smartphones to enable farmers and citizens to collect and share nitrate concentration measurements. The app accurately reads and interprets nitrate test strips, directly displays the measured concentration, and gives the option to share the result. The shared results are immediately visualised in the online Delta Data Viewer. Within this viewer, user group specific combinations of background maps, monitoring data, and study area characteristics can be configured. Through the Nitrate App's mapping function project managers can more accurately target conservation practices to areas with the highest nitrate concentrations and loads. Furthermore, we expect that the actual on-farm data helps to overcome the "Lake Wobegon Effect" and will encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. After implementing these BMP's, the farmers can keep monitoring to evaluate the reduction in nitrate losses. In this presentation, we explain the Nitrate App technology and present the results of the first field applications in The Netherlands. We expect this free to download app to have wide transferability across watershed projects worldwide focusing on nitrate contamination of groundwater or surface water. Its simple design requires no special equipment outside of the nitrate test strips, a reference card, and a smartphone. The technology is also transferable to other relevant solutes for which test strips are available, like ammonium, phosphate, sulphate, chloride, and pH.
Effects of nitrates on mortality in acute myocardial infarction and in heart failure
Held, P.
1992-01-01
1 Seven randomized controlled trials of intravenous nitroglycerin in a total of about 850 patients have been reported. Overall, there were 51 deaths (12.5%) in the nitroglycerin group and 87 (20%) in the control group. This indicates a 48% reduction in the odds of death (P < 0.001, 95% confidence limits (25% to 64%)). 2 There are five randomized trials of oral nitrates after acute myocardial infarction. In these trials, 11.8% of the patients in the nitrate group compared with 13.3% in the control group died. This indicates a nonsignificant 12% reduction in the odds of death but the 95% confidence interval overlaps widely with the i.v. trials. If all trials of i.v. or oral nitrates are considered the reduction in the odds of death is 32% (P < 0.01). 3 Nitrates have a beneficial effect on haemodynamics in heart failure but the data on mortality effects are sparse. In combination with hydralazine, however, long-term mortality was reduced in the V-HEFT trial of chronic heart failure. PMID:1633075
Puigserver, Diana; Cortés, Amparo; Viladevall, Manuel; Nogueras, Xènia; Parker, Beth L; Carmona, José M
2014-11-01
This work dealt with the physical and biogeochemical processes that favored the natural attenuation of chloroethene plumes of aged sources located close to influent rivers in the presence of co-contaminants, such as nitrate and sulfate. Two working hypotheses were proposed: i) Reductive dechlorination is increased in areas where the river-aquifer relationship results in the groundwater dilution of electron acceptors, the reduction potential of which exceeds that of specific chloroethenes; ii) zones where silts predominate or where textural changes occur are zones in which biodegradation preferentially takes place. A field site on a Quaternary alluvial aquifer at Torelló, Catalonia (Spain) was selected to validate these hypotheses. This aquifer is adjacent to an influent river, and its redox conditions favor reductive dechlorination. The main findings showed that the low concentrations of nitrate and sulfate due to dilution caused by the input of surface water diminish the competition for electrons between microorganisms that reduce co-contaminants and chloroethenes. Under these conditions, the most bioavailable electron acceptors were PCE and metabolites, which meant that their biodegradation was favored. This led to the possibility of devising remediation strategies based on bioenhancing natural attenuation. The artificial recharge with water that is low in nitrates and sulfates may favor dechlorinating microorganisms if the redox conditions in the mixing water are sufficiently maintained as reducing and if there are nutrients, electron donors and carbon sources necessary for these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.
Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M
1996-02-25
This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.
Wu, Yuzhi; Qiu, Jian-Wen; Qian, Pei-Yuan; Wang, Yong
2018-05-01
In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.
Yadav, Sunita; David, Anisha; Baluška, František; Bhatla, Satish C.
2013-01-01
Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development. PMID:23299324
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl
2015-01-01
Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959
FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE
Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.
1962-06-26
A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)
Laboratory study of biological retention for urban stormwater management.
Davis, A P; Shokouhian, M; Sharma, H; Minami, C
2001-01-01
Urban stormwater runoff contains a broad range of pollutants that are transported to natural water systems. A practice known as biological retention (bioretention) has been suggested to manage stormwater runoff from small, developed areas. Bioretention facilities consist of porous soil, a topping layer of hardwood mulch, and a variety of different plant species. A detailed study of the characteristics and performance of bioretention systems for the removal of several heavy metals (copper, lead, and zinc) and nutrients (phosphorus, total Kjeldahl nitrogen [TKN], ammonium, and nitrate) from a synthetic urban stormwater runoff was completed using batch and column adsorption studies along with pilot-scale laboratory systems. The roles of the soil, mulch, and plants in the removal of heavy metals and nutrients were evaluated to estimate the treatment capacity of laboratory bioretention systems. Reductions in concentrations of all metals were excellent (> 90%) with specific metal removals of 15 to 145 mg/m2 per event. Moderate reductions of TKN, ammonium, and phosphorus levels were found (60 to 80%). Little nitrate was removed, and nitrate production was noted in several cases. The importance of the mulch layer in metal removal was identified. Overall results support the use of bioretention as a stormwater best management practice and indicate the need for further research and development.
Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B
2015-12-15
Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.
Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.
Samuelsson, M O
1985-10-01
The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.
Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson
2015-06-01
Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.
Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen
2018-02-01
The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.
Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata
2015-02-01
A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Nitrate ammonification in mangrove soils: a hidden source of nitrite?
Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.
2015-01-01
Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903
Nitrate ammonification in mangrove soils: a hidden source of nitrite?
Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J
2015-01-01
Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.
Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro
2018-04-01
Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.
The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...
Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.
Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A
2012-01-01
Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for <0-72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide.
Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds
Latham, Elizabeth A.; Anderson, Robin C.; Pinchak, William E.; Nisbet, David J.
2016-01-01
Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium is identified as contributing appreciably to nitrocompound metabolism. Appropriate doses of the nitrocompounds and nitrate, singly or in combination with probiotic bacteria selected for nitrite and nitrocompound detoxification activity promise to alleviate risks of toxicity. Further studies are needed to more clearly define benefits and risk of these technologies to make them saleable for livestock producers. PMID:26973609
Catalyst and method for reduction of nitrogen oxides
Ott, Kevin C [Los Alamos, NM
2008-05-27
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Catalyst and method for reduction of nitrogen oxides
Ott, Kevin C [Los Alamos, NM
2008-08-19
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Catalyst for reduction of nitrogen oxides
Ott, Kevin C.
2010-04-06
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Antarctic Ocean Nutrient Conditions During the Last Two Glacial Cycles
NASA Astrophysics Data System (ADS)
Studer, A.; Sigman, D. M.; Martinez-Garcia, A.; Benz, V.; Winckler, G.; Kuhn, G.; Esper, O.; Lamy, F.; Jaccard, S.; Wacker, L.; Oleynik, S.; Gersonde, R.; Haug, G. H.
2014-12-01
The high concentration of the major nutrients nitrate and phosphate in the Antarctic Zone of the Southern Ocean dictates the nature of Southern Ocean ecosystems and permits these nutrients to be carried from the deep ocean into the nutrient-limited low latitudes. Incomplete nutrient consumption in the Antarctic also allows the leakage of deeply sequestered carbon dioxide (CO2) back to the atmosphere, and changes in this leakage may have driven glacial/interglacial cycles in atmospheric CO2. In a sediment core from the Pacific sector of the Antarctic Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two assemblages of diatom species. These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Measurements in the same sediment core indicate that export production was reduced during ice ages, pointing to an ice age reduction in the supply of deep ocean-sourced nitrate to the Antarctic Ocean surface. The reduced export production of peak ice ages also implies a weaker winter-to-summer decline (i.e. reduced seasonality) in mixed layer nitrate concentration, providing a plausible explanation for an observed reduction in the inter-assemblage δ15Ndb difference during these coldest times. Despite the weak summertime productivity, the reduction in wintertime nitrate supply from deep waters left the Antarctic mixed layer with a low nitrate concentration, and this wintertime change also would have reduced the outgassing of CO2. Relief of light limitation fails to explain the intermediate degree of nitrate consumption that characterizes early glacial conditions, as improved light limitation coincident with reduced nitrate supply would drive nitrate consumption to completion. Thus, the data favor iron availability as the dominant control on annual Antarctic Ocean export production over glacial cycles.
A modified procedure for measuring oxygen-18 content of nitrate
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Aly, A. I. M.; Abdel Monem, N.; Hanafy, M.; Gomaa, H. E.
2012-11-01
SummaryMass spectrometric analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. Through this work, rapid, reliable, precise, broadly applicable, catalyst-free, low-priced and less labor intensive procedure for measuring δ18O of nitrate using Isotope Ratio Mass Spectrometer has been developed and implemented. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing anions and dissolved organic carbon (DOC) without scarifying the isotopic signature of nitrate were investigated. The developed procedure consists of two main parts: (1) wet chemistry train for extraction and purification of nitrate from the liquid matrix; (2) off-line pyrolysis of extracted nitrate salt with activated graphite at 550 °C for 30 min. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing compounds were investigated. Dramatic reduction in processing times needed for analysis of δ18O of nitrate at natural abundance level was achieved. Preservation experiments revealed that chloroform (99.8%) is an effective preservative. Isotopic contents of some selected nitrate salts were measured using the modified procedure and some other well established methods at two laboratories in Egypt and Germany. Performance assessment of the whole developed analytical train was made using internationally distributed nitrate isotopes reference materials and real world sample of initial zero-nitrate content. The uncertainty budget was evaluated using the graphical nested hierarchal approach. The obtained results proved the suitability for handling samples of complicated matrices. Reduction of consumables cost by about 80% was achieved.
Chemical catalysis of nitrate reduction by iron (II)
NASA Astrophysics Data System (ADS)
Ottley, C. J.; Davison, W.; Edmunds, W. M.
1997-05-01
Experiments have been conducted to investigate the chemical reduction of nitrate under conditions relevant to the often low organic carbon environment of groundwaters. At pH 8 and 20 ± 2°C, in the presence of Cu(II), NO 3- was chemically reduced by Fe(II) to NH 4+ with an average stoichiometric liberation of 8 protons. The rate of the reaction systematically increased with pH in the range pH 7-8.5. The half-life for nitrate reduction, t 1/2, was inversely related to the total molar copper concentration, [Cu T], by the equation log t 1/2 = -1.35 log [Cu T] -2.616, for all measured values of t 1/2 from 23 min to 15 days. At the Cu(II) concentrations used of 7 × 10 -6 -10 -3 M, Cu was present mainly as a solid phase, either adsorbed to the surfaces of precipitated iron oxides or as a saturated solid. It is this solid phase copper rather than CU 2+ in solution which is catalytically active. Neither magnetite, which was formed as a product of the reaction, nor freshly prepared lepidocrocite catalysed the reaction, but goethite did. Although traces of oxygen accelerated the reaction, at higher partial pressures (>0.01 atm) the reduction of nitrate was inhibited, probably due to competition between NO 3- and O 2 for Fe(II). Appreciable catalytic effects were also observed for solid phase forms of Ag(I), Cd(H), Ni(H), Hg(II), and Pb(II). Mn(II) enhanced the rate slightly, and there was evidence for slow abiotic reduction in the absence of any added metal catalysts. These results suggest that the chemical reduction of nitrate at catalytic concentrations and temperatures appropriate to groundwater conditions is feasible on a timescale of months to years.
Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for nitrate remediation in groundwater; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate re...
NASA Technical Reports Server (NTRS)
Summers, David P.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
FeS reduces nitrite to, ammonia at pHs lower than the corresponding reduction by aqueous Fe+2. The reduction follows a reasonable first order decay, in nitrite concentration, with a half life of about 150 min (room temperature, CO2, pH 6.25). The highest ammonia product yield measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate at higher pH interferes with the reaction. Bicarbonate interference is shown by comparing runs under N2 and CO2. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears as if nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+2 (which also can be sensitive to binding by certain species).
NASA Astrophysics Data System (ADS)
Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith
The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on this upwind material was small. A 50% reduction in NO x emissions applied to sources within the SJV reduced the predicted concentration of total nitrate by approximately 25% during the study episode. VOC emissions controls were less effective, while reasonable NH 3 emissions controls had the smallest effect on the amount of ammonium nitrate produced. A 50% reduction in VOC emissions lowered predicted concentrations of total nitrate by 17.5%, while a 50% reduction in NH 3 emissions lowered predicted concentrations of total nitrate by only 10%. This latter result is expected since the formation of ammonium nitrate aerosol is limited by the availability of gas-phase nitric acid, with large amounts of excess NH 3 available. NO x emissions controls appear to be the most efficient method to reduce the concentration of locally generated particulate nitrate in the SJV under the conditions experienced on 4-6 January, 1996.
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Ji, Qixing; Angell, John H.; Kearns, Patrick J.; Yang, Hannah J.; Bowen, Jennifer L.; Ward, Bess B.
2016-08-01
Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient overenrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen/80% helium). Nitrification and denitrification rates were more than tenfold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.
Luo, Weiming; Tweedie, David; Beedie, Shaunna L; Vargesson, Neil; Figg, William D; Greig, Nigel H; Scerba, Michael T
2018-05-01
A library of 15 novel and heretofore uncharacterized adamantyl and noradamantyl phthalimidines was synthesized and evaluated for neuroprotective and anti-angiogenic properties. Phthalimidine treatment in LPS-challenged cells effected reductions in levels of secreted TNF-α and nitrite relative to basal amounts. The primary SAR suggests nitration of adamantyl phthalimidines has marginal effect on TNF-α activity but promotes anti-nitrite activity; thioamide congeners retain anti-nitrite activity but are less effective reducing TNF-α. Site-specific nitration and thioamidation provided phthalimidine 24, effecting an 88.5% drop in nitrite concurrent with only a 4% drop in TNF-α. Notable anti-angiogenesis activity was observed for 20, 21 and 22. Published by Elsevier Ltd.
Kaspar, H F; Tiedje, J M
1981-01-01
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat. PMID:7224631
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Q.; He, Z.; Joyner, D.C.
2010-07-15
Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation thatmore » significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.« less
The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...
Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.
2012-01-01
The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770
Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J
2012-01-01
The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.
Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria.
Subedi, Gaurav; Taylor, Jon; Hatam, Ido; Baldwin, Susan A
2017-09-01
Increasing selenium concentrations in aquatic environments downstream of mine sites is of great concern due to selenium's bioaccumulation propensity and teratogenic toxicity. Removal of selenium from mine influenced water is complicated by the presence of nitrate, which is also elevated in mine influenced water due to the use of explosives in mining. In many biological treatment processes, nitrate as a thermodynamically more preferable electron acceptor inhibits selenate reduction. Here we report on an enrichment of a bacterial assemblage from a mine impacted natural marsh sediment that was capable of simultaneous selenate reduction and denitrification. Selenate reduction followed first order kinetics with respect to the concentration of total dissolved selenium. The kinetic rate constant was independent of initial nitrate concentration over the range 3-143 mg L -1 -NO 3 - -N. The initial concentration of selenate inhibited selenate reduction kinetics over the range 1-24 mg-Se L -1 . Dominant taxa that grew in selenate only medium were classified in the genera Pseudomonas, Lysinibacillus and Thauera. When nitrate was introduced in addition to selenate, previously rare taxa that became dominant were relatives of Exiguobacterium, Tissierella and Clostridium. Open reading frames (ORFs) associated with dissimilatory denitrification were identified for Pseudomonas, Thauera and Clostridium. In addition, ORFs were found that were homologous with known selenate reductase subunits (SerA and SerB). These findings suggest that native mine site bacteria can be used for removing selenate and nitrate from mine wastewater. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.
Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R
2012-01-01
The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.
Nitrate and Nitrite Reduction by Wolffia arrhiza1
Swader, J. A.; Stocking, C. R.
1971-01-01
Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components. PMID:16657592
Nitrate and Nitrite Reduction by Wolffia arrhiza.
Swader, J A; Stocking, C R
1971-02-01
Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components.
Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi
2016-11-01
Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Latham, Elizabeth A; Pinchak, William E; Trachsel, Julian; Allen, Heather K; Callaway, Todd R; Nisbet, David J; Anderson, Robin C
2018-04-30
The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log 10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4. Nitrogen gas was the predominant final product of nitrite reduction by 79R4. When tested with nitrate-treated incubations of rumen microbes, 79R4 inoculation (provided to achieve 10 6 cells/mL rumen fluid volume) complemented the ruminal methane-decreasing potential of nitrate (P < 0.05) while concurrently increasing fermentation efficiency and enhancing ruminal nitrate and nitrite-metabolizing activity (P < 0.05) compared to untreated and nitrate only-treated incubations. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...
Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herting, Daniel L.
2014-01-29
Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodiummore » phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.« less
Nizzoli, Daniele; Carraro, Elisa; Nigro, Valentina; Viaroli, Pierluigi
2010-05-01
We analyzed benthic fluxes of inorganic nitrogen, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates in hypolimnetic sediments of lowland lakes. Two neighbouring mesotrophic (Ca' Stanga; CS) and hypertrophic (Lago Verde; LV) lakes, which originated from sand and gravel mining, were considered. Lakes are affected by high nitrate loads (0.2-0.7 mM) and different organic loads. Oxygen consumption, dissolved inorganic carbon, methane and nitrogen fluxes, denitrification and DNRA were measured under summer thermal stratification and late winter overturn. Hypolimnetic sediments of CS were a net sink of dissolved inorganic nitrogen (-3.5 to -4.7 mmol m(-2)d(-1)) in both seasons due to high nitrate consumption. On the contrary, LV sediments turned from being a net sink during winter overturn (-3.5 mmol m(-2)d(-1)) to a net source of dissolved inorganic nitrogen under summer conditions (8.1 mmol m(-2)d(-1)), when significant ammonium regeneration was measured at the water-sediment interface. Benthic denitrification (0.7-4.1 mmol m(-2)d(-1)) accounted for up to 84-97% of total NO(3)(-) reduction and from 2 to 30% of carbon mineralization. It was mainly fuelled by water column nitrate. In CS, denitrification rates were similar in winter and in summer, while in LV summer rates were 4 times lower. DNRA rates were generally low in both lakes (0.07-0.12 mmol m(-2)d(-1)). An appreciable contribution of DNRA was only detected in the more reducing sediments of LV in summer (15% of total NO(3)(-) reduction), while during the same period only 3% of reduced NO(3)(-) was recycled into ammonium in CS. Under summer stratification benthic denitrification was mainly nitrate-limited due to nitrate depletion in hypolimnetic waters and parallel oxygen depletion, hampering nitrification. Organic enrichment and reducing conditions in the hypolimnetic sediment shifted nitrate reduction towards more pronounced DNRA, which resulted in the inorganic nitrogen recycling and retention within the bottom waters. The prevalence of DNRA could favour the accumulation of mineral nitrogen with detrimental effects on ecosystem processes and water quality. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wagner, David A.; Young, Vernon R.; Tannenbaum, Steven R.
1983-07-01
Incorporation of an oral dose of [15N]ammonium acetate into urinary [15N]nitrate has been demonstrated in the rat. Investigation of the regulation of nitrate synthesis has shown that Escherichia coli lipopolysaccharide potently stimulates urinary nitrate excretion (9-fold increase). It was further shown that the enhanced rate of nitrate excretion by lipopolysaccharide was due not to a reduction in nitrate metabolic loss but rather to an increased rate of synthesis. This conclusion was based on finding a proportionally increased incorporation of [15N]ammonium into nitrate nitrogen with lipopolysaccharide treatment. Nitrate biosynthesis was also increased by intraperitoneal injection of carrageenan and subcutaneous injection of turpentine. It is proposed that the pathway of nitrate biosynthesis may be the result of oxidation of reduced nitrogen compounds by oxygen radicals generated by an activated reticuloendothelial system.
Li, Yating; Wang, Yanru; Fu, Lin; Gao, Yizhan; Zhao, Haixia; Zhou, Weizhi
2017-04-01
An aerobic marine bacterium Vibrio sp. Y1-5 was screened to achieve efficient nitrate and ammonium removal simultaneously and fix nitrogen in cells without N loss. Approximately 98.0% of nitrate (100mg/L) was removed in 48h through assimilatory nitrate reduction and nitrate reductase was detected in the cytoplasm. Instead of nitrification, the strain assimilated ammonium directly, and it could tolerate as high as 1600mg/L ammonium concentration while removing 844.6mg/L. In addition, ammonium assimilation occurred preferentially in the medium containing nitrate and ammonium with a total nitrogen (TN) removal efficiency of 80.4%. The results of nitrogen balance and Fourier infrared spectra illustrated that the removed nitrogen was all transformed to protein or stored as organic nitrogen substances in cells and no N was lost in the process. Toxicological studies with the brine shrimp species Artemia naupliia indicated that Vibrio sp. Y1-5 can be applied in aquatic ecosystems safely. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boari, Francesca; Cefola, Maria; Di Gioia, Francesco; Pace, Bernardo; Serio, Francesco; Cantore, Vito
2013-11-01
Wild edible plants (WEP), traditionally consumed in the Mediterranean diet, are considered a rich source of natural antioxidants but can also accumulate significant amount of nitrates. Most WEP are cooked before consumption, therefore, a study was conducted to evaluate the effects of boiling, steaming and microwave cooking processes on the total antioxidant activity (TAA) and nitrate content of eight common WEP. Boiling caused the highest losses of TAA, resulting in a reduction of the TAA on dry weight (DW) basis ranging from 5.5% in Beta vulgaris up to 100% in Urtica dioica. Steaming and microwaving produced the highest increase of TAA on DW basis in Helminthotheca echioides (249.7%) and Taraxacum officinale (60.7%). Boiling caused the highest reduction of nitrate content in all species excluding Asparagus acutifolius that maintained almost unvaried its already low nitrate content. These results suggest that cooking has not always negative effect on product quality, since in certain cases, it may even enhance the nutritional value of WEP by increasing their TAA and reducing the nitrate content.
Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.
Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J
2016-01-01
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.
Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.
Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia
2011-11-01
Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Windman, T. O.; Zolotova, N.; Shock, E.
2004-12-01
Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron minerals, sulfide, carbon monoxide or methane in Yellowstone hot springs. This difference suggests that small organic compounds in hydrothermal fluids can be major sources of metabolic energy for microbes, and may explain why so many heterotrophs are found in themophilic microbial culture experiments.
Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories
NASA Astrophysics Data System (ADS)
Bertron, A.; Ranaivomanana, H.; Jacquemet, N.; Erable, B.; Sablayrolles, C.; Escadeillas, G.; Albrecht, A.
2013-07-01
This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium, ammonium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+). The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.
NASA Astrophysics Data System (ADS)
Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.
2016-12-01
Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.
Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico
2009-01-01
The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. 15N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells. PMID:19888436
Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium
Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; LokaBharathi, P. A.
2012-01-01
Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727
Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico
2009-01-01
The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. (15)N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells.
Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev
2016-09-01
We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2) h(-1) ) and 5.5 (mmol m(-2) h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2) h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2) h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. Biotechnol. Bioeng. 2016;113: 1881-1891. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, R.
2015-12-01
The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance state. This study illustrated the microbial nitrogen transformation accompanying the early diagenesis of organic matter in marine sediments, which scenario might be occurring in a wide range of stratified environments on Earth.
The Fate of Nitrate in Intertidal Permeable Sediments
Marchant, Hannah K.; Lavik, Gaute; Holtappels, Moritz; Kuypers, Marcel M. M.
2014-01-01
Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the intertidal permeable sediments of the eutrophied Wadden Sea. Still, denitrification alone can often account for only half of the substantial nitrate (NO3 −) consumption. Therefore, to investigate alternative NO3 − sinks such as dissimilatory nitrate reduction to ammonium (DNRA), intracellular nitrate storage by eukaryotes and isotope equilibration effects we carried out 15NO3 − amendment experiments. By considering all of these sinks in combination, we could quantify the fate of the 15NO3 − added to the sediment. Denitrification was the dominant nitrate sink (50–75%), while DNRA, which recycles N to the environment accounted for 10–20% of NO3 − consumption. Intriguingly, we also observed that between 20 and 40% of 15NO3 − added to the incubations entered an intracellular pool of NO3 − and was subsequently respired when nitrate became limiting. Eukaryotes were responsible for a large proportion of intracellular nitrate storage, and it could be shown through inhibition experiments that at least a third of the stored nitrate was subsequently also respired by eukaryotes. The environmental significance of the intracellular nitrate pool was confirmed by in situ measurements which revealed that intracellular storage can accumulate nitrate at concentrations six fold higher than the surrounding porewater. This intracellular pool is so far not considered when modeling N-loss from intertidal permeable sediments; however it can act as a reservoir for nitrate during low tide. Consequently, nitrate respiration supported by intracellular nitrate storage can add an additional 20% to previous nitrate reduction estimates in intertidal sediments, further increasing their contribution to N-loss. PMID:25127459
The fate of nitrate in intertidal permeable sediments.
Marchant, Hannah K; Lavik, Gaute; Holtappels, Moritz; Kuypers, Marcel M M
2014-01-01
Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the intertidal permeable sediments of the eutrophied Wadden Sea. Still, denitrification alone can often account for only half of the substantial nitrate (NO3-) consumption. Therefore, to investigate alternative NO3- sinks such as dissimilatory nitrate reduction to ammonium (DNRA), intracellular nitrate storage by eukaryotes and isotope equilibration effects we carried out 15NO3- amendment experiments. By considering all of these sinks in combination, we could quantify the fate of the 15NO3- added to the sediment. Denitrification was the dominant nitrate sink (50-75%), while DNRA, which recycles N to the environment accounted for 10-20% of NO3- consumption. Intriguingly, we also observed that between 20 and 40% of 15NO3- added to the incubations entered an intracellular pool of NO3- and was subsequently respired when nitrate became limiting. Eukaryotes were responsible for a large proportion of intracellular nitrate storage, and it could be shown through inhibition experiments that at least a third of the stored nitrate was subsequently also respired by eukaryotes. The environmental significance of the intracellular nitrate pool was confirmed by in situ measurements which revealed that intracellular storage can accumulate nitrate at concentrations six fold higher than the surrounding porewater. This intracellular pool is so far not considered when modeling N-loss from intertidal permeable sediments; however it can act as a reservoir for nitrate during low tide. Consequently, nitrate respiration supported by intracellular nitrate storage can add an additional 20% to previous nitrate reduction estimates in intertidal sediments, further increasing their contribution to N-loss.
Morilla, Camila A.; Boyer, J. S.; Hageman, R. H.
1973-01-01
Desiccation of 8- to 13-day-old seedlings, achieved by withholding nutrient solution from the vermiculite root medium, caused a reduction in nitrate reductase activity of the leaf tissue. Activity declined when leaf water potentials decreased below −2 bars and was 25% of the control at a leaf water potential of −13 bars. Experiments were conducted to determine whether the decrease in nitrate reductase activity was due to reduced levels of nitrate in the tissue, direct inactivation of the enzyme by low leaf water potentials, or to changes in rates of synthesis or decay of the enzyme. Although tissue nitrate content decreased with the onset of desiccation, it did not continue to decline with tissue desiccation and loss of enzyme activity. Nitrate reductase activity recovered when the plants were rewatered with nitrate-free medium, suggesting that the nitrate in the plant was adequate for high nitrate reductase activity. The rate of decay of nitrate reductase activity from desiccated tissue was essentially identical to that of the control, in vivo or in vitro, regardless of the rapidity of desiccation of the tissue. Direct inactivation of the enzyme by the low water potentials was not detected. Polyribosomal content of the tissue declined with the decrease in water potential, prior to the decline in nitrate reductase activity. Changes in ribosomal profiles occurred during desiccation, regardless of whether the tissue had been excised or not and whether desiccation was rapid or slow. Reduction in polyribosomal content did not appear to be associated with changes in ribonuclease activity. Nitrate reductase activity and the polyribosomal content of the tissue recovered upon rewatering, following the recovery in water potential. The increase in polyribosomal content preceded the increase in nitrate reductase activity. Recovery of enzyme activity was prevented by cycloheximide. Based on these results, it appears that nitrate reductase activity was affected primarily by a decrease in the rate of enzyme synthesis at low leaf water potentials. PMID:16658419
Several sources of bacterial inocula were tested for their ability to reduce nitrate and perchlorate in synthetic ion-exchange spent brine (3-4.5% salinity) using a hydrogen-based membrane biofilm reactor (MBfR). Nitrate and perchlorate removal fluxes reached as high as 5.4 g N ...
Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc
2017-01-01
Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729
Callbeck, Cameron M.; Agrawal, Akhil
2013-01-01
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914
Callbeck, Cameron M; Agrawal, Akhil; Voordouw, Gerrit
2013-08-01
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266-269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.
Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars
2017-07-18
This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process. Copyright © 2017 Thorup et al.
Use of continuous monitoring to assess stream nitrate flux and transformation patterns.
Jones, Christopher; Kim, Sea-Won; Schilling, Keith
2017-01-01
Delivery of nitrogen from farmed fields to the stream network is an ongoing water quality issue in central North America and other parts of the world. Although fertilization and other farming practices have been refined to produce environmental improvements, stemming loss of nitrogen, especially in the soluble nitrate form, is a problem that has seemingly defied solution. The Iowa Nutrient Reduction Strategy is a policy initiative designed to implement conservation and other farm management practices to produce reductions in nitrate loading. The strategy does not focus on how the streams themselves may or may not be processing nitrogen and reducing downstream loading. We used continuous high-frequency nitrate and discharge monitoring over 3 years at two sites separated by 18 km in a low-order, agricultural stream in eastern Iowa to estimate how nitrogen is processed, and whether or not these processes are reducing downstream loading. We conclude that the upstream to downstream nitrate concentration decline between the two sites was not driven by denitrification. These data also show that nitrate concentrations are closely coupled to discharge during periods of adequate moisture, but decoupling of concentration from discharge occurs during dry periods. This decoupling is a possible indicator of in-stream nitrate processing. Finally, nitrate concentrations are likely diluted by water sourced from non-row crop land covers in the lower reaches of the watershed.
Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit
2015-10-20
Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.
Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias
2017-10-01
Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, S.; Yeo, I. W.; Yeum, Y.; Kim, Y.
2016-12-01
Previous studies showed that groundwater of rural areas in Korea is often contaminated with nitrate highly exceeding the drinking water standard of 10 mg/L (NO3-N), which poses a major threat in human and livestock health. In-situ bioremediation method has been developed to reduce high nitrate-nitrogen concentration in groundwater using slowly released encapsulated carbon source. Collaborative research of this study revealed that fumarate was found to be a very effective carbon source in terms of cost and nitrate reduction against formate, propionate, and lactate. For reactive transport modeling of the bioremediation of nitrate using fumarate, the BTEX module of RT3D incorporated in GMS, a commercial groundwater modeling software developed by AQUAVEO, was adopted, where BTEX was replaced with fumarate as a carbon source. Column tests were carried out to determine transport and reaction parameters for numerical modeling such as dispersity and first order degradation rate of nitrate by fumarate. The calibration of the numerical model against column tests strongly indicated that nitrate, known to be not reactive in groundwater system, appeared to be retarded due to sorption by fumarate. The calibrated model was tested for field-scale application to the composting facility in Gimje, Korea. The numerical results showed that the model could simulate the nitrate reduction by fumarate in field scale groundwater system. The reactive transport model for nitrate can be used as a tool for optimum design of in-situ nitrate bioremediation system, such as released depth and amount of fumarate and the spacing of wells that encapsulated fumarate is released through.
Understanding nitrate assimilation and its regulation in microalgae
Sanz-Luque, Emanuel; Chamizo-Ampudia, Alejandro; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio
2015-01-01
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed. PMID:26579149
Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.
Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima
2014-06-01
This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).
A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport
NASA Astrophysics Data System (ADS)
Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.
2017-12-01
The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.
O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias
2011-01-01
When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.
Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.
Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk
2012-11-01
We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
A Single-Chamber Microbial Fuel Cell without an Air Cathode
Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo
2012-01-01
Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater. PMID:22489190
Structural aspects of denitrifying enzymes.
Moura, I; Moura, J J
2001-04-01
The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.
Cabeza, Ricardo; Koester, Beke; Liese, Rebecca; Lingner, Annika; Baumgarten, Vanessa; Dirks, Jan; Salinas-Riester, Gabriela; Pommerenke, Claudia; Dittert, Klaus; Schulze, Joachim
2014-01-01
The mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application. At that point in time, a strong shift in nodule gene expression (RNA sequencing) had occurred (1,120 differentially expressed genes). The most pronounced effect was the down-regulation of 127 genes for nodule-specific cysteine-rich peptides. Various other nodulins were also strongly down-regulated, in particular all the genes for leghemoglobins. In addition, shifts in the expression of genes involved in cellular iron allocation and mitochondrial ATP synthesis were observed. Furthermore, the expression of numerous genes for the formation of proteins and glycoproteins with no obvious function in nodules (e.g. germins, patatin, and thaumatin) was strongly increased. This occurred in conjunction with an up-regulation of genes for proteinase inhibitors, in particular those containing the Kunitz domain. The additionally formed proteins might possibly be involved in reducing nodule oxygen permeability. Between 4 and 28 h of nitrate exposure, a further reduction in nodule activity occurred, and the number of differentially expressed genes almost tripled. In particular, there was a differential expression of genes connected with emerging senescence. It is concluded that nitrate exerts rapid and manifold effects on nitrogenase activity. A certain degree of nitrate tolerance might be achieved when the down-regulatory effect on late nodulins can be alleviated. PMID:24285852
NASA Astrophysics Data System (ADS)
Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael
2012-11-01
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.
Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
2015-05-05
Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or nickel fluoborate must... Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant property BAT effluent limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2014 CFR
2014-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2012 CFR
2012-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or nickel fluoborate must... Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant property BAT effluent limitations...
Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...
Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C
Wu, Qingzhong; Sanford, Robert A.; Löffler, Frank E.
2006-01-01
Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization. PMID:16672509
In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.
Paradis, Charles J; Jagadamma, Sindhu; Watson, David B; McKay, Larry D; Hazen, Terry C; Park, Melora; Istok, Jonathan D
2016-04-01
Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions
Paradis, Charles J.; Jagadamma, Sindhu; Watson, David B.; ...
2016-02-11
Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. Here in this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM)more » and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. Lastly, the results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species.« less
NASA Astrophysics Data System (ADS)
Eslava, José L.; Iglesias-Juez, Ana; Fernández-García, Marcos; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada
2018-07-01
The effect of using two different promoter precursors on the Fischer-Tropsch synthesis was studied over cesium promoted ruthenium catalysts supported on a high surface area graphite support. In this work we reveal significant modifications in the selectivity values for Fischer-Tropsch reaction depending on the Cs promoter precursor (CsCl vs CsNO3). Specifically the bimetallic catalyst (4Ru-4Cs), prepared from nitrates both for metal and promoter precursors, showed a high selectivity to CO2 during reaction. By modifying the cesium precursor, it was possible to inhibit the water gas shift reaction, decreasing significantly the selectivity to CO2. In order to understand the chemical origin of these modifications a careful characterization of the materials was performed including: X-ray absorption near edge spectroscopy, transmission electron microscopy measurements, temperature programmed reduction studies, determination of the CO uptakes on the catalysts and the evolution of the CO adsorption heats as a function of surface coverages. It was found that upon reduction and under reaction atmosphere the promoter in the ex-nitrate catalyst appears as Cs2O which is considered responsible of the CO2 production, while in the catalysts prepared with Cs chloride the promoter remains as CsCl suffering a slight partial reduction.
Morgan, David S.; Hinkle, Stephen R.; Weick, Rodney J.
2007-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Environmental Quality and Deschutes County, to develop a better understanding of the effects of nitrogen from on-site wastewater disposal systems on the quality of ground water near La Pine in southern Deschutes County and northern Klamath County, Oregon. Simulation models were used to test the conceptual understanding of the system and were coupled with optimization methods to develop the Nitrate Loading Management Model, a decision-support tool that can be used to efficiently evaluate alternative approaches for managing nitrate loading from on-site wastewater systems. The conceptual model of the system is based on geologic, hydrologic, and geochemical data collected for this study, as well as previous hydrogeologic and water quality studies and field testing of on-site wastewater systems in the area by other agencies. On-site wastewater systems are the only significant source of anthropogenic nitrogen to shallow ground water in the study area. Between 1960 and 2005 estimated nitrate loading from on-site wastewater systems increased from 3,900 to 91,000 pounds of nitrogen per year. When all remaining lots are developed (in 2019 at current building rates), nitrate loading is projected to reach nearly 150,000 pounds of nitrogen per year. Low recharge rates (2-3 inches per year) and ground-water flow velocities generally have limited the extent of nitrate occurrence to discrete plumes within 20-30 feet of the water table; however, hydraulic-gradient and age data indicate that, given sufficient time and additional loading, nitrate will migrate to depths where many domestic wells currently obtain water. In 2000, nitrate concentrations greater than 4 milligrams nitrogen per liter (mg N/L) were detected in 10 percent of domestic wells sampled by Oregon Department of Environmental Quality. Numerical simulation models were constructed at transect (2.4 square miles) and study-area (247 square miles) scales to test the conceptual model and evaluate processes controlling nitrate concentrations in ground water and potential ground-water discharge of nitrate to streams. Simulation of water-quality conditions for a projected future build-out (base) scenario in which all existing lots are developed using conventional on-site wastewater systems indicates that, at equilibrium, average nitrate concentrations near the water table will exceed 10 mg N/L over areas totaling 9,400 acres. Other scenarios were simulated where future nitrate loading was reduced using advanced treatment on-site systems and a development transfer program. Seven other scenarios were simulated with total nitrate loading reductions ranging from 15 to 94 percent; simulated reductions in the area where average nitrate concentrations near the water table exceed 10 mg N/L range from 22 to 99 percent at equilibrium. Simulations also show that the ground-water system responds slowly to changes in nitrate loading due to low recharge rates and ground-water flow velocity. Consequently, reductions in nitrate loading will not immediately reduce average nitrate concentrations and the average concentration in the aquifer will continue to increase for 25-50 years depending on the level and timing of loading reduction. The capacity of the ground-water system to receive on-site wastewater system effluent, which is related to the density of homes, presence of upgradient residential development, ground-water recharge rate, ground-water flow velocity, and thickness of the oxic part of the aquifer, varies within the study area. Optimization capability was added to the study-area simulation model and the combined simulation-optimization model was used to evaluate alternative approaches to management of nitrate loading from on-site wastewater systems to the shallow alluvial aquifer. The Nitrate Loading Management Model (NLMM) was formulated to find the minimum red
Burai, Ritwik; Ait-Bouziad, Nadine; Chiki, Anass; Lashuel, Hilal A
2015-04-22
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneuronal inclusions consisting of aggregated and post-translationally modified α-synuclein (α-syn). Despite advances in the chemical synthesis of α-syn and other proteins, the generation of site-specifically nitrated synthetic proteins has not been reported. Consequently, it has not been possible to determine the roles of nitration at specific residues in regulating the physiological and pathogenic properties of α-syn. Here we report, for the first time, the site-specific incorporation of 3-nitrotyrosine at different regions of α-syn using native chemical ligation combined with a novel desulfurization strategy. This strategy enabled us to investigate the role of nitration at single or multiple tyrosine residues in regulating α-syn structure, membrane binding, oligomerization, and fibrils formation. We demonstrate that different site-specifically nitrated α-syn species exhibit distinct structural and aggregation properties and exhibit reduced affinity to negatively charged vesicle membranes. We provide evidence that intermolecular interactions between the N- and C-terminal regions of α-syn play critical roles in mediating nitration-induced α-syn oligomerization. For example, when Y39 is not available for nitration (Y39F and Y39/125F), the extent of cross-linking is limited mostly to dimer formation, whereas mutants in which Y39 along with one or multiple C-terminal tyrosines (Y125F, Y133F, Y136F and Y133/136F) can still undergo nitration readily to form higher-order oligomers. Our semisynthetic strategy for generating site-specifically nitrated proteins opens up new possibilities for investigating the role of nitration in regulating protein structure and function in health and disease.
Sources and transport of algae and nutrients in a Californian river in a semi-arid climate
Ohte, N.; Dahlgren, R.A.; Silva, S.R.; Kendall, C.; Kratzer, C.R.; Doctor, D.H.
2007-01-01
1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll-a (chl-a) concentration and loads indicated that most algal biomass was generated by in-stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl-a load), even though high concentrations of chl-a were measured in some source waters. 3. Nitrate and soluble-reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy. ?? 2007 Blackwell Publishing Ltd.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... point source subject to this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or...): Subpart AU—Nickel Sulfate, Nickel Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... point source subject to this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or...): Subpart AU—Nickel Sulfate, Nickel Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... point source subject to this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or...): Subpart AU—Nickel Sulfate, Nickel Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant...
Code of Federal Regulations, 2010 CFR
2010-07-01
... point source subject to this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or...): Subpart AU—Nickel Sulfate, Nickel Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant...
Code of Federal Regulations, 2011 CFR
2011-07-01
... point source subject to this subpart and producing nickel sulfate, nickel chloride, nickel nitrate, or...): Subpart AU—Nickel Sulfate, Nickel Chloride, Nickel Nitrate, Nickel Fluoborate Pollutant or pollutant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...
Nitrate and periplasmic nitrate reductases
Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha
2014-01-01
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308
Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments
Thorgersen, Michael P.; Lancaster, W. Andrew; Vaccaro, Brian J.; Poole, Farris L.; Rocha, Andrea M.; Mehlhorn, Tonia; Pettenato, Angelica; Ray, Jayashree; Waters, R. Jordan; Melnyk, Ryan A.; Chakraborty, Romy; Deutschbauer, Adam M.; Arkin, Adam P.
2015-01-01
The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed. PMID:25979890
Nitrate reduction and its effects on trichloroethylene degradation by granular iron.
Lu, Qiong; Jeen, Sung-Wook; Gui, Lai; Gillham, Robert W
2017-04-01
Laboratory column experiments and reactive transport modeling were performed to evaluate the reduction of nitrate and its effects on trichloroethylene (TCE) degradation by granular iron. In addition to determining degradation kinetics of TCE in the presence of nitrate, the columns used in this study were equipped with electrodes which allowed for in situ measurements of corrosion potentials of the iron material. Together with Raman spectroscopic measurements the mechanisms of decline in iron reactivity were examined. The experimental results showed that the presence of nitrate resulted in an increase in corrosion potential and the formation of thermodynamically stable passive films on the iron surface which impaired iron reactivity. The extent of the decline in iron reactivity was proportional to the nitrate concentration. Consequently, significant decreases in TCE and nitrate degradation rates and migration of degradation profiles for both compounds occurred. Furthermore, the TCE degradation kinetics deviated from the pseudo-first-order model. The results of reactive transport modeling, which related the amount of a passivating iron oxide, hematite (α-Fe 2 O 3 ), to the reactivity of iron, were generally consistent with the patterns of migration of TCE and nitrate profiles observed in the column experiments. More encouragingly, the simulations successfully demonstrated the differences in performances of three columns without changing model parameters other than concentrations of nitrate in the influent. This study could be valuable in the design of iron permeable reactive barriers (PRBs) or in the development of effective maintenance procedures for PRBs treating TCE-contaminated groundwater with elevated nitrate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Borelli, Claudia; Korting, Hans Christian; Bödeker, Rolf-Hasso; Neumeister, Claudia
2010-02-01
Sertaconazole nitrate is a broad-spectrum antifungal agent indicated in the United States for the treatment of tinea pedis interdigitalis. The objective of this subgroup analysis was to evaluate the safety and efficacy of sertaconazole nitrate cream 2%, specifically in participants with tinea pedis interdigitalis (ie, fungal skin disease of the toe web) of dermatophyte origin. A total of 92 participants were included in this analysis. The primary end points were eradication of the pathogen (confirmed by fungal culture results) and reduction in total clinical score (TCS) of at least 2 points. Secondary end points included reducing signs and symptoms and reporting adverse events (AEs). After 4 weeks of treatment, 88.8% (79/89) of evaluable participants achieved success on the primary end points. Most participants also demonstrated substantial improvement in signs and symptoms after 4 weeks of treatment: 63.7% (58/91) were free of erythema, 33.0% (30/91) were free of desquamation, and 91.2% (83/91) were free of itch. The rate of reported AEs was low (8.7% [8/92]), and none were considered serious. These findings indicate that sertaconazole nitrate cream 2% is highly safe and effective in the treatment of tinea pedis interdigitalis.
Treece, M.W.; Jaynes, M.L.
1994-01-01
November of water into and out of tidally affected canals in eastern North Carolina was documented before and after the installation of water-control structures. Water levels in five of the canals downstream from the water-control structures were controlled primarily by water-level fluctuations in estuarine receiving waters. Water-control structures also altered upstream water levels in all canals. Water levels were lowered upstream from tide gates, but increased upstream from flashboard risers. Both types of water-control structures attenuated the release of runoff following rainfall events, but in slightly different ways. Tide gates appeared to reduce peak discharge rates associated with rainfall, and flashboard risers lengthened the duration of runoff release. Tide gates had no apparent effect on pH, dissolved oxygen, suspended-sediment, or total phosphorus concentrations downstream from the structures. Specific conductance measured from composite samples collected with automatic samples increased downstream of tide gates after installation. Median concentrations of nitrite plus nitrate nitrogen were near the minimum detection level throughout the study; however, the number of observations of concentrations exceeding 0.1 milligram per liter dropped significantly after tide gates were installed. Following tide-gate installation, instantaneous loadings of nitrite plus nitrate nitrogen were significantly reduced at one test site, but this reduction was not observed at the other test site. Loadings of other nutrient species and suspended sediment did not change at the tide-gate test sites after tide-gate installation. Specific conductance was lower in the Beaufort County canals than in the Hyde County canals. Although there was a slight increase in median values at the flashboard-riser sites, the mean and maximum values declined substantially downstream from the risers following installation. This decline of specific conductance in the canals occurred despite a large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.
Lee, Brady D; Ellis, Joshua T; Dodwell, Alex; Eisenhauer, Emalee E R; Saunders, Danielle L; Lee, M Hope
2018-05-15
Nitrate and radioiodine ( 129 I) contamination is widespread in groundwater underneath the Central Plateau of the Hanford Site. 129 I, a byproduct of nuclear fission, is of concern due to a 15.7 million year half-life, and toxicity. The Hanford 200 West Area contains plumes covering 4.3 km 2 with average 129 I concentrations of 3.5 pCi/L. Iodate accounts for 70.6% of the iodine present and organo-iodine and iodide make up 25.8% and 3.6%, respectively. Nitrate plumes encompassing the 129 I plumes have a surface area of 16 km 2 averaging 130 mg/L. A nitrate and iodate reducing bacterium closely related to Agrobacterium, strain DVZ35, was isolated from sediment incubated in a 129 I plume. Iodate removal efficiency was 36.3% in transition cultures, and 47.8% in anaerobic cultures. Nitrate (10 mM) was also reduced in the microcosm. When nitrate was spiked into the microcosms, iodate removal efficiency was 84.0% and 69.2% in transition and anaerobic cultures, respectively. Iodate reduction was lacking when nitrate was absent from the growth medium. These data indicate there is simultaneous reduction of nitrate and iodate by DVZ35, and iodate is reduced to iodide. Results provide the scientific basis for combined nitrogen and iodine cycling throughout the Hanford Site. Copyright © 2018. Published by Elsevier B.V.
Electrochemically-induced reduction of nitrate in aqueous solution
Rajic, Lj.; Berroa, D.; Gregor, S.; Elbakri, S.; MacNeil, M.; Alshawabkeh, A.N.
2018-01-01
In this study, we evaluated the removal of nitrate from synthetic groundwater by a cathode followed by an anode electrode sequence in the electrochemical flow-through reactor. We also tested the feasibility of the used electrode sequence to minimize the production of ammonia during the nitrate reduction. The performance of monometallic Fe, Cu, Ni and carbon foam cathodes was tested under different current intensities, flow rates/regimes and the presence of Pd and Ag catalyst coating. With the use of monometallic Fe and an increase in current intensity from 60 mA to 120 mA, the nitrate removal rate increased from 7.6% to 25.0%, but values above 120 mA caused a decrease in removal due to excessive gas formation at the electrodes. Among tested materials, monometallic Fe foam cathode showed the highest nitrates removal rate and increased significantly in the presence of Pd catalyst: from 25.0% to 39.8%. Further, the circulation under 3 mL min−1 elevated the nitrate removal by 33% and the final nitrate concentration fell below the maximum contaminant level of 10 mg L−1 nitrate–nitrogen (NO3-N). During the treatment, the yield of ammonia production after the cathode was 92±4% while after the anode (Ti/IrO2/Ta2O5), the amount of ammonia significantly declined to 50%. The results proved that flow-through, undivided electrochemical systems can be used to remove nitrate from groundwater with the possibility of simultaneously controlling the generation of ammonia. PMID:29657554
Emerging Technologies for Enhanced In Situ Biodenitrification of Nitrate Contaminated Ground Water
NASA Astrophysics Data System (ADS)
Faris, B.; Faris, B.
2001-05-01
One of the most pervasive ground water contaminants in the U.S. is nitrate. Traditional technologies for the remediation of nitrate-contaminated ground water are generally costly, lengthy, and often only partly effective. Enhanced in situ biodenitrification (EISBD) is a developing technology for remediating nitrate contaminated ground water and protecting public and domestic supply wells through in situ reduction. Natural denitrification processes have been well understood for some time. However, managing these processes to effectively remediated contaminated ground water in a timely fashion is innovative. EISBD is a remediation technology through which a carbon source (electron donor) is introduced to a nitrate-contaminated aquifer. Since many aquifers are aerobic, indigenous aerobic bacteria utilize the introduced carbon as a food source and oxygen serves as an electron acceptor. Oxygen in the aquifer becomes depleted, forming an anaerobic aquifer. When this occurs and an abundant carbon source is present, indigenous denitrifying bacteria proliferate and reduce nitrate to nitrogen gas through anaerobic respiration. EISBD technology deployments are currently underway for either remediation of sizable nitrate plumes in ground water systems or the reduction of nitrate contaminated ground water around public and/or domestic well fields dedicated to the production of drinking water. Regulatory enforcement of nitrate plumes has been limited. Pollution prevention programs are in place to limit further nitrate contamination, however, once a site becomes contaminated with nitrates above standards, the deployment of remediation technologies is lacking. With the development and further deployment of EISBD technologies, a cost-effective short-term tool is available for nitrate remediation. A multi-disciplinary team of the Interstate Technology Regulatory Cooperation published a Technology Overview guidance document on the emerging technology of EISBD. ITRC is a state-led, national coalition of personnel from the regulatory and technology programs from 40 states and the District of Columbia; federal agencies; and tribal, public, and industry stakeholders. ITRC is devoted to reducing barriers and speeding interstate deployment of better, more cost-effective, innovative environmental technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji-Hoon; Fredrickson, James K.; Plymale, Andrew E.
2015-04-08
Increasing concentrations of H 2 with depth were observed across a geologic unconformity and associated redox transition zone in the subsurface at the Hanford Site in south-central Washington, USA. An opposing gradient characterized by decreasing O 2 and nitrate concentrations was consistent with microbial-catalyzed biogeochemical processes. Sterile sand was incubated in situ within a multi-level sampler placed across the redox transition zone to evaluate the potential for Tc(VII) reduction and for enrichment of H 2-oxidizing denitrifiers capable of reducing Tc(VII). H 2-driven TcO 4- reduction was detected in sand incubated at all depths but was strongest in material from amore » depth of 17.1 m. Acidovorax spp. were isolated from H 2-nitrate enrichments from colonized sand from 15.1 m, with one representative, strain JHL-9, subsequently characterized. JHL-9 grew on acetate with either O 2 or nitrate as electron acceptor (data not shown) and on medium with bicarbonate, H 2 and nitrate. JHL-9 also reduced pertechnetate (TcO 4-) under denitrifying conditions with H 2 as the electron donor. H 2-oxidizing Acidovorax spp. in the subsurface at Hanford and other locations may contribute to the maintenance of subsurface redox gradients and offer the potential for Tc(VII) reduction.« less
The effect of beaver ponds on water quality in rural coastal plain streams
Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.
2017-01-01
We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.
Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil
2017-12-01
For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Kapil, Vikas; Khambata, Rayomand S; Robertson, Amy; Caulfield, Mark J; Ahluwalia, Amrita
2015-02-01
Single dose administration of dietary inorganic nitrate acutely reduces blood pressure (BP) in normotensive healthy volunteers, via bioconversion to the vasodilator nitric oxide. We assessed whether dietary nitrate might provide sustained BP lowering in patients with hypertension. We randomly assigned 68 patients with hypertension in a double-blind, placebo-controlled clinical trial to receive daily dietary supplementation for 4 weeks with either dietary nitrate (250 mL daily, as beetroot juice) or a placebo (250 mL daily, as nitrate-free beetroot juice) after a 2-week run-in period and followed by a 2-week washout. We performed stratified randomization of drug-naive (n=34) and treated (n=34) patients with hypertension aged 18 to 85 years. The primary end point was change in clinic, ambulatory, and home BP compared with placebo. Daily supplementation with dietary nitrate was associated with reduction in BP measured by 3 different methods. Mean (95% confidence interval) reduction in clinic BP was 7.7/2.4 mm Hg (3.6-11.8/0.0-4.9, P<0.001 and P=0.050). Twenty-four-hour ambulatory BP was reduced by 7.7/5.2 mm Hg (4.1-11.2/2.7-7.7, P<0.001 for both). Home BP was reduced by 8.1/3.8 mm Hg (3.8-12.4/0.7-6.9, P<0.001 and P<0.01) with no evidence of tachyphylaxis over the 4-week intervention period. Endothelial function improved by ≈20% (P<0.001), and arterial stiffness was reduced by 0.59 m/s (0.24-0.93; P<0.01) after dietary nitrate consumption with no change after placebo. The intervention was well tolerated. This is the first evidence of durable BP reduction with dietary nitrate supplementation in a relevant patient group. These findings suggest a role for dietary nitrate as an affordable, readily-available, adjunctive treatment in the management of patients with hypertension (funded by The British Heart Foundation). http://www.clinicaltrials.gov. Unique identifier: NCT01405898. © 2014 American Heart Association, Inc.
Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P
2016-08-01
Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Russow, Rolf; Tauchnitz, Nadine; Spott, Oliver; Mothes, Sibylle; Bernsdorf, Sabine; Meissner, Ralph
2013-01-01
Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method. The double-tracer method allows a separation between physical effects (dilution, dispersion and dislocation) and microbial and chemical nitrate transformation by comparing with the conservative Br(-) tracer. In the drained peat site, low NO3(-) consumption rates have been observed. In contrast, NO3(-) consumption at the rewetted peat site rises rapidly to about 100% within 4 days after tracer application. Concomitantly, the (15)N abundances of nitrite and ammonium in soil water increased and lead to the conclusion that, besides commonly known NO3(-) reduction to nitrite (i.e. denitrification), a dissimilatory nitrate reduction to ammonium has simultaneously taken place. The present study reveals that increasing NO3(-) inputs into rewetted peatlands via atmospheric deposition results in a rapid NO3(-) consumption, which could lead to an increase in N2O emissions into the atmosphere.
Réduction in situ des ions nitrate dans des eaux par les bactéries indigènes
NASA Astrophysics Data System (ADS)
Abdelouas, Abdesselam; Deng, Lijun; Nuttall, Eric; Lutze, Werner; Fritz, Bertrand; Crovisier, Jean-Louis
1999-02-01
We studied the possibility of cleaning groundwater contaminated with nitrate ions using indigenous bacteria. The groundwater occurs in a site located near a former vegetable farm near Albuquerque, New Mexico (USA) and contains up to 500 mg·L -1 of nitrate ion. Batch and column experiments using groundwater and local sediment showed that indigenous bacteria catalyzed the nitrate ions reduction. Sodium acetate was selected as the best carbon source for the in situ application. As expected, the best conditions for denitrification were encountered in situ. Nitrate ions and their byproducts were reduced to nitrogen gas within 5 days.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Yun
2017-02-17
Protein tyrosine nitration is considered an important non-enzymatic post-translational modification. In the tyrosine nitration process, 3-nitrotyrosine is formed and recognized as a biomarker of nitrosative/nitrative stress implicated in inflammatory responses and age-related disorders. In view of the complexity of biological samples and the ultra-low abundance of protein-incorporated nitrotyrosine, selective enrichment of nitrotyrosine-containing peptides prior to chromatographic separation is crucial. Herein, I report a simple yet highly specific and efficient enrichment method for nitrotyrosine-containing peptides. After blocking all primary amines in the sample by acetylation with acetic anhydride, I then further converted all nitrotyrosine residues into aminotyrosine residues by reduction with dithiothreitol and hemin. Therefore, I eliminated the side-product with 80Da adduct, since inevitable considerable amount of which was generated in the widely used reduction mediated by sodium dithionite. Both acetylation and reduction yields were close to 100%, and my one-pot sample derivatization applied no solid phase extraction steps or sample transference to avoid sample loss. To capture and release aminotyrosine-containing peptides, I synthesized an N-hydroxysuccinimide-ester-functionalized stationary phase which had very high affinity towards amino groups and possessed a base-cleavable ester linker to retrieve targeted peptides by hydrolysis. I validated this strategy by highly efficient enrichment of the targeted peptide from complex matrices of trypsin-digested bovine serum albumin (BSA) and human plasma spiked with derivatized nitrotyrosine-containing angiotensin II. My enrichment method successfully removed most untargeted peptides in those samples. By relative quantification with home-made identical and stable-isotope labelled internal standards, I investigated the recoveries of a nitrotyrosine-containing peptide from complex biological matrices during enrichment for the first time. Mean recoveries were 49.8% and 41.1% (n=6) for the enrichment of nitrotyrosine-containing angiotensin II from 1:100 (w/w) BSA digest and from 1:10 000 (w/w) human plasma digest, respectively. My enrichment method demonstrated great potential in future applications to clinical samples and biomarker discovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture.
Tezel, U; Pierson, J A; Pavlostathis, S G
2008-01-01
The effect of the quaternary ammonium compound, didecyl dimethyl ammonium chloride (DDAC), on nitrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (denitrification) were observed at DDAC concentrations up to 25 mg/L. At and above 50 mg DDAC/L, DNRA was inhibited and denitrification was incomplete resulting in accumulation of nitrous oxide. At DDAC concentrations above 10 mg/L, production of nitrous oxide, even transiently, resulted in complete, long-term inhibition of methanogenesis and accumulation of volatile fatty acids. Fermentation was inhibited at and above 75 mg DDAC/L. DDAC suppressed microbial growth and caused cell lysis at a concentration 50 mg/L or higher. Most of the added DDAC was adsorbed on the biomass. Over 96% of the added DDAC was recovered from all cultures at the end of the 100-days incubation period, indicating that DDAC did not degrade in the mixed methanogenic culture under the conditions of this study.
Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Inoue-Choi, Maki; Dawsey, Sanford M; Abnet, Christian C
2017-01-01
Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality. Design Population based cohort study. Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011. Participants 536 969 AARP members aged 50-71 at baseline. Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories. Main outcome measure Mortality from any cause during follow-up. Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake. Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by heme iron and nitrate/nitrite from processed meat. They also show reduced risks associated with substituting white meat, particularly unprocessed white meat. PMID:28487287
NASA Astrophysics Data System (ADS)
Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao
2016-08-01
We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.
Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao
2016-08-03
We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Nitrate... (as N) 0.08 0.04 Nitrate (as N) .12 .07 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Nitrate... (as N) 0.08 0.04 Nitrate (as N) .12 .07 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Nitrate... (as N) 0.08 0.04 Nitrate (as N) .12 .07 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Nitrate... (as N) 0.08 0.04 Nitrate (as N) .12 .07 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Nitrate... (as N) 0.08 0.04 Nitrate (as N) .12 .07 Note: Metric units: kilogram/1,000 kg of products; English...
Total salivary nitrates and nitrites in oral health and periodontal disease.
Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila
2014-01-30
It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.
KEY CONCEPTS IN BIODEGRADATION
This one hour segment of the course identifies the biological processes that degrade petroleum hydrocarbons and MTBE. It reviews the stoichiometry of hydrocarbon degradation by aerobic respiration, nitrate reduction, sulfate reduction, iron (III) reduction, and methanogenesis. ...
Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring
A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...
De, Supriyo; Perkins, Michael; Dutta, Sisir K
2006-07-31
Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity.
Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose.
Panagiotou, Gianni; Christakopoulos, Paul; Grotkjaer, Thomas; Olsson, Lisbeth
2006-09-01
Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.
Overview of reductants utilized in nuclear fuel reprocessing/recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Riddle, C.; Campbell, K.
2013-07-01
The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promisingmore » because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.« less
Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay
NASA Astrophysics Data System (ADS)
Amruthraj, Nagoth Joseph; Preetam Raj, John Poonga; Lebel, Antoine
2015-04-01
Capsaicin was used as a bio-reductant for the reduction of silver nitrate to form silver nanoparticles. The formation of the silver nanoparticles was initially confirmed by color change and Tyndall effect of light scattering. It was characterized with UV-visible spectroscopy, FTIR and TEM. Hemagglutination (H) test and H-inhibition assay were performed in the presence of AgNPs-capsaicin conjugates. The silver colloid solution after complete reduction turned into pale gray color. The characteristic surface plasmon resonance of silver nanoparticles (SNPs) was observed at 450 nm. Time taken for complete bio-reduction of silver nitrate and capping was found to be 16 hours. The amount of capsaicin required to reduce 20 ml of 1 mM silver nitrate solution was found to be 40 μg approximately. The FTIR results confirmed the capping of capsaicin on the silver metal. The particle size was within the range of 20-30 nm. The hemagglutination and H-inhibition test was negative for all the blood groups. The capsaicin-capped silver nanoparticles were compatible with blood cells in hemagglutination test implying biocompatibility as future therapeutic drug.
Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis
2016-01-01
Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic relationship. PMID:26872267
Brownlee, A G; Arst, H N
1983-01-01
In Aspergillus nidulans, chlorate strongly inhibited net nitrate uptake, a process separate and distinct from, but dependent upon, the nitrate reductase reaction. Uptake was inhibited by uncouplers, indicating that a proton gradient across the plasma membrane is required. Cyanide, azide, and N-ethylmaleimide were also potent inhibitors of uptake, but these compounds also inhibited nitrate reductase. The net uptake kinetics were problematic, presumably due to the presence of more than one uptake system and the dependence on nitrate reduction, but an apparent Km of 200 microM was estimated. In uptake assays, the crnA1 mutation reduced nitrate uptake severalfold in conidiospores and young mycelia but had no effect in older mycelia. Several growth tests also indicate that crnA1 reduces nitrate uptake. crnA expression was subject to control by the positive-acting regulatory gene areA, mediating nitrogen metabolite repression, but was not under the control of the positive-acting regulatory gene nirA, mediating nitrate induction. PMID:6350263
Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorgersen, Michael P.; Lancaster, W. Andrew; Vaccaro, Brian J.
2015-05-15
The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. Moreover, the concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Most metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notablemore » exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Furthermore, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for twoPseudomonasstrains isolated from ORR wells and by a model denitrifier,Pseudomonas stutzeriRCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.« less
NASA Astrophysics Data System (ADS)
Dunn, Ryan J. K.; Robertson, David; Teasdale, Peter R.; Waltham, Nathan J.; Welsh, David T.
2013-10-01
Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5-20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 μmol N m2 h-1, denitrification efficiencies were low (<1-15%) and denitrification was a minor process compared to DNRA, which accounted for ˜75% of total nitrate reduction. Overall, due to the low denitrification efficiencies and high rates of N-regeneration, Saltwater Creek sediments would tend to increase rather than reduce dissolved nutrient loads to the downstream Gold Coast Broadwater and Moreton Bay systems. This may be especially true during wet periods when increased inputs of particulate organic nitrogen (PON) and suspended solids could respectively enhance rates of N-regeneration and decrease light availability to MPB, reducing their capacity to ameliorate N-effluxes through photoassimilation.
Lithio, Andrew
2016-01-01
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190
Bødtker, Gunhild; Thorstenson, Tore; Lillebø, Bente-Lise P; Thorbjørnsen, Bente E; Ulvøen, Rikke Helen; Sunde, Egil; Torsvik, Terje
2008-12-01
Biogenic production of hydrogen sulphide (H(2)S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25-0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at < or =0.3 and < or =0.9 microg H(2)S/cm(2)/day at Veslefrikk and Gullfaks respectively, during the 7-8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR-DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR-SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment.
Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.
Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G
2014-02-01
There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.
Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15
2017-01-01
Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the FexOy/SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the FexOy/SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model. PMID:29230346
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Cronin, S. E.
1984-01-01
Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.
Akhtar, Naureen; Karabika, Eugenia; Kinghorn, James R.; Glass, Anthony D.M.; Unkles, Shiela E.
2015-01-01
The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters. PMID:25855763
Velmurugan, Shanti; Gan, Jasmine Ming; Rathod, Krishnaraj S; Khambata, Rayomand S; Ghosh, Suborno M; Hartley, Amy; Van Eijl, Sven; Sagi-Kiss, Virag; Chowdhury, Tahseen A; Curtis, Mike; Kuhnle, Gunter GC; Wade, William G; Ahluwalia, Amrita
2016-01-01
Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: −0.4, −0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752. PMID:26607938
Harden, Stephen L.; Spruill, Timothy B.
2008-01-01
An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics that reflect base flow and the general hydrologic dynamics of a stream are important in understanding nutrient transport from a watershed and may be useful indicators of watersheds that are likely to have higher yields of nutrients and water. Combining streamflow statistics with information on such factors as land use, soil drainage, extent of riparian vegetation, geochemical conditions, and subsurface tile drainage in the Coastal Plain can be useful in identifying watersheds that are most likely to export excessive nitrogen due to nonpoint-source loadings and watersheds that are effective in processing nitrogen.
NITRATE REDUCTION AND TRANSFORMATION IN ORGANIC COMPOST MEDIA: LABORATORY BATCH STUDIES
We studied the effectiveness of three organic solid reactive media (cotton burr compost, mulch compost, and Canadian sphagnum peat) that may be potentially used in permeable reactive barriers (PRBs) for groundwater nitrate removal. We aimed at answering the question about the na...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ammonium Nitrate Subcategory § 418.42 Effluent limitations guidelines representing the degree of effluent...— Ammonia (as N) 0.73 0.39 Nitrate (as N) .67 .37 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ammonium Nitrate Subcategory § 418.42 Effluent limitations guidelines representing the degree of effluent...— Ammonia (as N) 0.73 0.39 Nitrate (as N) .67 .37 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ammonium Nitrate Subcategory § 418.42 Effluent limitations guidelines representing the degree of effluent...— Ammonia (as N) 0.73 0.39 Nitrate (as N) .67 .37 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ammonium Nitrate Subcategory § 418.42 Effluent limitations guidelines representing the degree of effluent...— Ammonia (as N) 0.73 0.39 Nitrate (as N) .67 .37 Note: Metric units: kilogram/1,000 kg of products; English...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ammonium Nitrate Subcategory § 418.42 Effluent limitations guidelines representing the degree of effluent...— Ammonia (as N) 0.73 0.39 Nitrate (as N) .67 .37 Note: Metric units: kilogram/1,000 kg of products; English...
Mülsch, A.; Bara, A.; Mordvintcev, P.; Vanin, A.; Busse, R.
1995-01-01
1. In the present study we assessed the formation of nitric oxide (NO) from classical and thiol-containing organic nitrates in vascular tissues and organs of anaesthetized rabbits, and established a relationship between the relaxant response elicited by nitroglycerin (NTG) and NO formation in the rabbit isolated aorta. Furthermore, the effect of isolated cytochrome P450 on NO formation from organic nitrates was investigated. 2. Rabbits received diethyldithiocarbamate (DETC; 200 mg kg-1 initial bolus i.p. and 200 mg kg-1 during 20 min, i.v.) and either saline, or one of the following organic nitrates: nitroglycerin (NTG, 0.5 mg kg-1), isosorbide dinitrate (ISDN), N-(3-nitratopivaloyl)-L-cysteine ethylester (SPM 3672), S-carboxyethyl-N-(3-nitratopivaloyl)-L-cysteine ethylester (SPM 5185), at 10 mg kg-1 each. After 20 min the animals were killed, blood vessels and organs were removed, and subsequently analyzed for spin-trapped NO by cryogenic electron spin resonance (e.s.r.) spectroscopy. 3. In the saline-treated control group, NO remained below the detection limit in all vessels and organs. In contrast, all of the nitrates tested elicited measurable NO formation, which was higher in organs (liver, kidney, heart, lung, spleen) (up to 4.8 nmol g-1 20 min-1) than in blood vessels (vena cava, mesenteric bed, femoral artery, aorta) (up to 0.7 nmol g-1 20 min-1). Classical organic nitrates (NTG, ISDN) formed NO preferentially in the mesenteric bed and the vena cava, while the SPM compounds elicited comparable NO formation in veins and arteries. 4. Using a similar spin trapping technique, NO formation was assessed in vitro in phenylephrine-precontracted rabbit aortic rings. The maximal relaxation elicited by a first exposure (10 min) to NTG (0.3 to 10 microM) was positively correlated (r = 0.8) with the net increase (NTG minus basal) of NO spin-trapped during a second exposure to the same concentration of NTG in the presence of DETC. 5. Cytochrome P450 purified from rabbit liver enhanced NO formation in a NADPH-dependent fashion from NTG, but not from the other nitrates, as assessed by activation of purified soluble guanylyl cyclase. 6. We conclude that the vessel selective action of different organic nitrates in vivo reflects differences in vascular NO formation. Thus, efficient preload reduction by classical organic nitrates can be accounted for by higher NO formation in venous capacitance as compared to arterial conductance and resistance vessels. In contrast, NO is released from cysteine-containing nitrates (SPMs) to a similar extent in arteries and veins, presumably independently of an organic nitrate-specific biotransformation. Limited tissue bioavailability of NTG and ISDN might account for low NO formation in the aorta, while true differences in biotransformation seem to account for differences in NO formation in the other vascular tissues. PMID:8590999
NASA Astrophysics Data System (ADS)
Kludt, Christoph; Weber, Frank-Andreas; Bergmann, Axel; Knöller, Kay; Berthold, Georg; Schüth, Christoph
2016-09-01
Microbial denitrification contributes significantly to the mitigation of nitrate contamination in sedimentary aquifers by reducing nitrate coupled to the consumption of organic carbon (heterotrophic) and iron sulphides like pyrite (autotrophic). However, these phases are often only present in trace amounts and can become depleted, so that denitrification will eventually cease. In order to implement measures within the EC-Water Framework Directive, we investigated the denitrification potential and the denitrification processes in the sediments of the Hessian Ried. The reduction potential was quantified and characterized by solid-phase analyses of drill core samples. Depth-oriented investigations of hydrochemistry (i.e. stable isotopes, N2Excess) allowed determining nitrate input, reduction progress and average reduction kinetics upstream of selected wells. Despite low sulphide contents (max. 123 mg-S/kg), autotrophic denitrification was typically the dominant process. The results can be used to delineate risk areas, downstream of which denitrification can be expected to cease in the near future.
Yeganeh Ghotbi, Mohammad; Javanmard, Arash; Soleimani, Hassan
2018-02-21
A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe 2+ , Co 2+ and Ni 2+ ) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.
Controls on Nitrous Oxide Emissions from the Hyporheic Zones of Streams.
Quick, Annika M; Reeder, W Jeffery; Farrell, Tiffany B; Tonina, Daniele; Feris, Kevin P; Benner, Shawn G
2016-11-01
The magnitude and mechanisms of nitrous oxide (N 2 O) release from rivers and streams are actively debated. The complex interactions of hydrodynamic and biogeochemical controls on emissions of this important greenhouse gas preclude prediction of when and where N 2 O emissions will be significant. We present observations from column and large-scale flume experiments supporting an integrative model of N 2 O emissions from stream sediments. Our results show a distinct, replicable, pattern of nitrous oxide generation and consumption dictated by subsurface (hyporheic) residence times and biological nitrogen reduction rates. Within this model, N 2 O emission from stream sediments requires subsurface residence times (and microbially mediated reduction rates) be sufficiently long (and fast reacting) to produce N 2 O by nitrate reduction but also sufficiently short (or slow reacting) to limit N 2 O conversion to dinitrogen gas. Most subsurface exchange will not result in N 2 O emissions; only specific, intermediate, residence times (reaction rates) will both produce and release N 2 O to the stream. We also confirm previous observations that elevated nitrate and declining organic carbon reactivity increase N 2 O production, highlighting the importance of associated reaction rates in controlling N 2 O accumulation. Combined, these observations help constrain when N 2 O release will occur, providing a predictive link between stream geomorphology, hydrodynamics, and N 2 O emissions.
Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.
Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian
2017-09-01
Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas
2017-01-01
Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.
NASA Astrophysics Data System (ADS)
Nelson, Sheldon
2013-04-01
Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the vadose zone, the direct uptake of dissolved constituent from the upper portion of the saturated zone/capillary fringe, or a combination of these two processes.
Caron, William-Olivier; Lamhamedi, Mohammed S; Viens, Jeff; Messaddeq, Younès
2016-07-28
The reduction of nitrate leaching to ensure greater protection of groundwater quality has become a global issue. The development of new technologies for more accurate dosing of nitrates helps optimize fertilization programs. This paper presents the practical application of a newly developed electrochemical sensor designed for in situ quantification of nitrate. To our knowledge, this paper is the first to report the use of electrochemical impedance to determine nitrate concentrations in growing media under forest nursery conditions. Using impedance measurements, the sensor has been tested in laboratory and compared to colorimetric measurements of the nitrate. The developed sensor has been used in water-saturated growing medium and showed good correlation to certified methods, even in samples obtained over a multi-ion fertilisation season. A linear and significant relationship was observed between the resistance and the concentration of nitrates (R² = 0.972), for a range of concentrations of nitrates. We also observed stability of the sensor after exposure of one month to the real environmental conditions of the forest nursery.
Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits
Machha, Ajay
2012-01-01
Purpose In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. Results Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. Conclusion Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases. PMID:21626413
Nitrate and Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction
2014-01-01
NDMA N-nitrosodimethylamine NDPA N-nitroso-di-n-propylamine ng/L nanograms per liter NO2- nitrite NO3- nitrate NTU nephelometric turbidity units...Nitrosamines including N-nitrosodiethylamine (NDEA), N- nitrosodimethylamine ( NDMA ), and N-nitroso-di-n-propylamine (NDPA) were below their
A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Carley, Jack M; Watson, David B
Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uraniummore » was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.« less
NASA Astrophysics Data System (ADS)
Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice
2016-04-01
Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg NO3- l-1 yr-1) and no significant evolution in the Gueriniec piezometer transect, from 1999 to 2015. This contrasting evolution of groundwater nitrate concentration between the two transects was consistent with data on soil surface nitrogen surplus, with a balanced fertilisation in the Kerroland transect (N surplus close to 0 kg N ha-1 yr-1) and excessive fertilisation in the Gueriniec transect (N surplus > 100 kg N ha-1 yr-1). We conclude that, despite the lags due to pluri annual nitrate transfer through the unsaturated and satured zones in catchments of Western France, significant decrease in nitrate concentration in groundwater and streams should be visible within less than 10 years after implementation of an efficient program of measures. Spatial heterogeneity in the implementation of programs of measures (i.e. reduction of N surplus) is a likely cause of slow, sometimes undetectable, reduction in nitrate concentration. Bouraoui, F., and Grizzetti, B.: Long term change of nutrient concentrations of rivers discharging in European seas, The Science of the total environment, 409, 4899-4916, 10.1016/j.scitotenv.2011.08.015, 2011.
NASA Astrophysics Data System (ADS)
Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.
2012-12-01
Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not capable of aerobic growth, but it could tolerate low oxygen conditions in the polysulfide/nitrate growth medium, suggesting that oxidases identified by genomics may play a role in detoxification rather than energy generation. Cryo-TEM imaging showed that strain OBA cells are rod-shaped and ~0.4 wide and 1.0 μm in length, and confirmed metagenomics-based predictions of a Gram-negative cell envelope, pili and polyphosphate body production. Our results show the value of integrating metagenomics, culturing, and microscopic imaging to discern the physiology of bacteria involved in biogeochemical transformations in the subsurface.
Enrichment of DNRA bacteria in a continuous culture
van den Berg, Eveline M; van Dongen, Udo; Abbas, Ben; van Loosdrecht, Mark CM
2015-01-01
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h−1). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways. PMID:25909972
Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction
NASA Astrophysics Data System (ADS)
Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C.; Pretzer, Lori A.; Heck, Kimberly N.; Wong, Michael S.
2013-12-01
Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04540d
Nitrate removal from drinking water with a focus on biological methods: a review.
Rezvani, Fariba; Sarrafzadeh, Mohammad-Hossein; Ebrahimi, Sirous; Oh, Hee-Mock
2017-05-31
This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.
Nitrogen isotope effects induced by anammox bacteria
Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.
2013-01-01
Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043
Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine.
Aktaş, Yeşim; Unlü, Nurşen; Orhan, Mehmet; Irkeç, Murat; Hincal, A Atilla
2003-02-01
The influence of hydroxypropyl beta-cyclodextrin (HPbetaCD) on the corneal permeation of pilocarpine nitrate was investigated by an in vitro permeability study using isolated rabbit cornea. Pupillary-response pattern to pilocarpine nitrate with and without HPbetaCD was examined in rabbit eye. Corneal permeation of pilocarpine nitrate was found to be four times higher after adding HPbetaCD into the formulation. The reduction of pupil diameter (miosis) by pilocarpine nitrate was significantly increased as a result of HPbetaCD addition into the simple aqueous solution of the active substance. The highest miotic response was obtained with the formulation prepared in a vehicle of Carbopol 940. It is suggested that ocular bioavailability of pilocarpine nitrate could be improved by the addition of HPbetaCD.
USDA-ARS?s Scientific Manuscript database
Controlled drainage in agricultural ditches contributes to a drainage management strategy with potential environmental and production benefits. Innovative drainage strategies including spatially orientated low-grade weirs show promise to significantly improve nutrient (e.g. nitrate-N) reductions by...
Open-Source Photometric System for Enzymatic Nitrate Quantification
Wittbrodt, B. T.; Squires, D. A.; Walbeck, J.; Campbell, E.; Campbell, W. H.; Pearce, J. M.
2015-01-01
Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique. PMID:26244342
Open-Source Photometric System for Enzymatic Nitrate Quantification.
Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M
2015-01-01
Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.
Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan
1999-01-01
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046
Chirinos, Julio A; Londono-Hoyos, Francisco; Zamani, Payman; Beraun, Melissa; Haines, Philip; Vasim, Izzah; Varakantam, Swapna; Phan, Timothy S; Cappola, Thomas P; Margulies, Kenneth B; Townsend, Raymond R; Segers, Patrick
2017-11-01
To assess the haemodynamic effects of organic vs. inorganic nitrate administration among patients with heart failure with preserved ejection fraction (HFpEF). We assessed carotid and aortic pressure-flow relations non-invasively before and after the administration of 0.4 mg of sublingual nitroglycerin (n = 26), and in a separate sub-study, in response to 12.9 mmoL of inorganic nitrate (n = 16). Nitroglycerin did not consistently reduce wave reflections arriving at the proximal aorta (change in real part of reflection coefficient, 1st harmonic: -0.09; P = 0.01; 2nd harmonic: -0.045, P = 0.16; 3rd harmonic: +0.087; P = 0.05), but produced profound vasodilatation in the carotid territory, with a significant reduction in systolic blood pressure (133.6 vs. 120.5 mmHg; P = 0.011) and a marked reduction in carotid bed vascular resistance (19 580 vs. 13 078 dynes · s/cm 5 ; P = 0.001) and carotid characteristic impedance (3440 vs. 1923 dynes · s/cm 5 ; P = 0.002). Inorganic nitrate, in contrast, consistently reduced wave reflections across the first three harmonics (change in real part of reflection coefficient, 1st harmonic: -0.12; P = 0.03; 2nd harmonic: -0.11, P = 0.01; 3rd harmonic: -0.087; P = 0.09) and did not reduce blood pressure, carotid bed vascular resistance, or carotid characteristic impedance (P = NS). Nitroglycerin produces marked vasodilatation in the carotid circulation, with a pronounced reduction in blood pressure and inconsistent effects on central wave reflections. Inorganic nitrate, in contrast, produces consistent reductions in wave reflections, and unlike nitroglycerin, it does so without significant hypotension or cerebrovascular dilatation. These haemodynamic differences may underlie the different effects on exercise capacity and side effect profile of inorganic vs. organic nitrate in HFpEF. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Microbial Response to Experimentally Controlled Redox Transitions at the Sediment Water Interface.
Frindte, Katharina; Allgaier, Martin; Grossart, Hans-Peter; Eckert, Werner
2015-01-01
The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface.
Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron.
Su, Yiming; Adeleye, Adeyemi S; Zhou, Xuefei; Dai, Chaomeng; Zhang, Weixian; Keller, Arturo A; Zhang, Yalei
2014-09-15
Nanoscale zerovalent iron (nZVI) is efficient for removing Pb(2+) and nitrate from water. However, the influence of nitrate, a common groundwater anion, on Pb(2+) removal by nZVI is not well understood. In this study, we showed that under excess Fe(0) conditions (molar ratio of Fe(0)/nitrate>4), Pb(2+) ions were immobilized more quickly (<5 min) than in nitrate-free systems (∼ 15 min) due to increasing pH. With nitrate in excess (molar ratio of Fe(0)/nitrate<4), nitrate stimulated the formation of crystal PbxFe3-xO4 (ferrite), which provided additional Pb(2+) removal. However, ∼ 7% of immobilized Pb(2+) ions were released into aqueous phase within 2h due to ferrite deformation. Oxidation-reduction potential (ORP) values below -600 mV correlated with excess Fe(0) conditions (complete Pb(2+) immobilization), while ORP values ≥-475 mV characterized excess nitrate conditions (ferrite process and Pb(2+) release occurrence). This study indicates that ORP monitoring is important for proper management of nZVI-based remediation in the subsurface to avoid lead remobilization in the presence of nitrate. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.
Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less
NASA Astrophysics Data System (ADS)
Levy, Yehuda; Shapira, Roi H.; Chefetz, Benny; Kurtzman, Daniel
2017-07-01
Contamination of groundwater resources by nitrate leaching under agricultural land is probably the most troublesome agriculture-related water contamination worldwide. Contaminated areas often show large spatial variability of nitrate concentration in wells. In this study, we tried to assess whether this spatial variability can be characterized on the basis of land use and standard agricultural practices. Deep soil sampling (10 m) was used to calibrate vertical flow and nitrogen-transport numerical models of the unsaturated zone under different agricultural land uses. Vegetable fields (potato and strawberry) and deciduous orchards (persimmon) in the Sharon area overlying the coastal aquifer of Israel were examined. Average nitrate-nitrogen fluxes below vegetable fields were 210-290 kg ha-1 yr-1 and under deciduous orchards were 110-140 kg ha-1 yr-1. The output water and nitrate-nitrogen fluxes of the unsaturated-zone models were used as input data for a three-dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 km2 of agricultural land. The area was subdivided into four agricultural land uses: vegetables, deciduous orchards, citrus orchards, and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in the area. The groundwater flow model was calibrated to well heads by changing the hydraulic conductivity. The nitrate-transport model, which was fed by the above-mentioned models of the unsaturated zone, succeeded in reconstructing the average nitrate concentration in the wells. However, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate concentrations in the aquifer. To reconstruct the spatial variability and enable predictions, nitrate fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot be explained by regular agricultural activity and are probably due to malfunctions in the well area. Prediction of the nitrate concentration 40 years in the future with three nitrogen-fertilization scenarios showed that (i) under the business as usual
fertilization scenario, the nitrate concentration (as NO3-) will increase on average by 19 mg L-1; (ii) under a scenario of 25 % reduction of nitrogen fertilization, the nitrate concentration in the aquifer will stabilize; (iii) with a 50 % reduction of nitrogen fertilization, the nitrate concentration will decrease on average by 18 mg L-1.
Biochemical characteristics among Mycobacterium bovis BCG substrains.
Hayashi, Daisuke; Takii, Takemasa; Mukai, Tetsu; Makino, Masahiko; Yasuda, Emi; Horita, Yasuhiro; Yamamoto, Ryuji; Fujiwara, Akiko; Kanai, Keita; Kondo, Maki; Kawarazaki, Aya; Yano, Ikuya; Yamamoto, Saburo; Onozaki, Kikuo
2010-05-01
In order to evaluate the biochemical characteristics of 14 substrains of Mycobacterium bovis bacillus Calmette Guérin (BCG) - Russia, Moreau, Japan, Sweden, Birkhaug, Danish, Glaxo, Mexico, Tice, Connaught, Montreal, Phipps, Australia and Pasteur - we performed eight different biochemical tests, including those for nitrate reduction, catalase, niacin accumulation, urease, Tween 80 hydrolysis, pyrazinamidase, p-amino salicylate degradation and resistance to thiophene 2-carboxylic acid hydrazide. Catalase activities of the substrains were all low. Data for nitrate reduction, niacin accumulation, Tween 80 hydrolysis, susceptibility to hydrogen peroxide and nitrate, and optimal pH for growth were all variable among these substrains. These findings suggest that the heterogeneities of biochemical characteristics are relevant to the differences in resistance of BCG substrains to environmental stress. The study also contributes to the re-evaluation of BCG substrains for use as vaccines.
Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).
Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana
2015-01-01
Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.
Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.
2017-01-01
ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. PMID:28455336
Assimilatory Nitrate Reduction in Hansenula polymorpha
NASA Astrophysics Data System (ADS)
Rossi, Beatrice; Berardi, Enrico
In the last decade, the yeast Hansenula polymorpha (syn.: Pichia angusta) has become an excellent experimental model for genetic and molecular investigations of nitrate assimilation, a subject traditionally investigated in plants, filamentous fungi and bacteria. Among other advantages, H. polymorpha offers classical and molecular genetic tools, as well as the availability of genomic sequence data.
Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo
2015-01-01
This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
Caron, William-Olivier; Lamhamedi, Mohammed S.; Viens, Jeff; Messaddeq, Younès
2016-01-01
The reduction of nitrate leaching to ensure greater protection of groundwater quality has become a global issue. The development of new technologies for more accurate dosing of nitrates helps optimize fertilization programs. This paper presents the practical application of a newly developed electrochemical sensor designed for in situ quantification of nitrate. To our knowledge, this paper is the first to report the use of electrochemical impedance to determine nitrate concentrations in growing media under forest nursery conditions. Using impedance measurements, the sensor has been tested in laboratory and compared to colorimetric measurements of the nitrate. The developed sensor has been used in water-saturated growing medium and showed good correlation to certified methods, even in samples obtained over a multi-ion fertilisation season. A linear and significant relationship was observed between the resistance and the concentration of nitrates (R2 = 0.972), for a range of concentrations of nitrates. We also observed stability of the sensor after exposure of one month to the real environmental conditions of the forest nursery. PMID:27483266
Etemadi, Arash; Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Inoue-Choi, Maki; Dawsey, Sanford M; Abnet, Christian C
2017-05-09
Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality. Design Population based cohort study. Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011. Participants 536 969 AARP members aged 50-71 at baseline. Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories. Main outcome measure Mortality from any cause during follow-up. Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake. Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by heme iron and nitrate/nitrite from processed meat. They also show reduced risks associated with substituting white meat, particularly unprocessed white meat. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Food sources of nitrates and nitrites: the physiologic context for potential health benefits.
Hord, Norman G; Tang, Yaoping; Bryan, Nathan S
2009-07-01
The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.
Soil nitrogen biogeochemical cycles in karst ecosystems, southwest China
NASA Astrophysics Data System (ADS)
Li, Dejun; Chen, Hao; Xiao, Kongcao; Wang, Kelin
2017-04-01
Soil nitrogen (N) status are crucial for ecosystem development and carbon sequestration. Although most terrestrial ecosystems are proposed to be limited by N, some tropical low-land forests have been found to be N saturated. Nevertheless, soil N status in the karst ecosystems of southwest China have not been well assessed so far. In the present study, N status in the karst ecosystems were evaluated based on several lines of evidence. Bulk N content increased rapidly along a post-agricultural succession sequence including cropland, grassland, shrubland, secondary forest and primary forest. Across the sequence, soil N accumulated with an average rate of 12.4 g N m-2 yr-1. Soil N stock recovered to the primary forest level in about 67 years following agricultural abandonment. Nitrate concentrations increased while ammonium concentrations decreased with years following agricultural abandonment. N release from bedrock weathering was likely a potential N source in addition to atmospheric N deposition and biological N fixation. Both gross N mineralization and nitrification (GN) rates decreased initially and then increased greatly following agricultural abandonment. The rate of dissimilatory nitrate reduction to ammonium (DNRA) was highest in the shrubland while lowest in the cropland and forest. Across the vegetation types, DNRA was lowest among the gross rates. Gross ammonium immobilization (GAI) tended to decrease while there was no clear variation pattern for gross nitrate immobilization during the post-agricultural succession. DNRA and nitrate assimilation combined only accounted for 22% to 57% of gross nitrification across the vegetation types. Due to the high nitrate production while low nitrate consumption, net nitrate production was found to vary following the pattern of gross nitrification and explained 69% of soil nitrate variance. Comparison of gross N transformations between a secondary karst forest and an adjacent non-karst forest showed that the gross rates of N mineralization, nitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation were significantly greater in the karst forest. Ammonium assimilation was comparable to gross N mineralization, so that ammonium could be efficiently conserved in the non-karst forest. Meanwhile, the produced nitrate was almost completely retained via DNRA and nitrate assimilation. This resulted in a negligible net nitrate production in the non-karst forest. In contrast, ammonium assimilation rate only accounted for half of gross N mineralization rate in the karst forest. DNRA and nitrate assimilation accounted for 21% and 51% of gross nitrification, respectively. Due to relatively low nitrate retention capacity, nitrate was accumulated in the karst forest. Our results indicate that 1) N would not be the limiting nutrient for secondary succession and ecological restoration in the karst region, 2) the decoupling of nitrate consumption with production results in the increase of soil nitrate level and hence nitrate leaching risk during post-agricultural succession in the karst region, and 3) the non-karst forest with red soil holds a very conservative N cycle, but the N cycle in the karst forest is leaky.
Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl
2012-01-15
Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in themore » potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.« less
Zhang, Chao; Guo, Jianbo; Lian, Jing; Lu, Caicai; Ngo, Huu Hao; Guo, Wenshan; Song, Yuanyuan; Guo, Yankai
2017-10-01
The mechanism for perchlorate reduction was investigated using thiosulfate-driven (T-driven) perchlorate reduction bacteria. The influences of various environmental conditions on perchlorate reduction, including pH, temperature and electron acceptors were examined. The maximum perchlorate removal rate was observed at pH 7.5 and 40 °C. Perchlorate reduction was delayed due to the coexistence of perchlorate-chlorate and perchlorate-nitrate. The mechanism of the T-driven perchlorate reduction electron transport chain (ETC) was also investigated by utilizing different inhibitors. The results were as follows: firstly, the NADH dehydrogenase was not involved in the ETC; secondly, the FAD dehydrogenase and quinone loop participated in the ETC; and thirdly, cytochrome oxidase was the main pathway in the ETC. Meanwhile, microbial consortium structure analysis indicated that Sulfurovum which can oxidize sulfur compounds coupled to the reduction of nitrate or perchlorate was the primary bacterium in the T-driven and sulfur-driven consortium. This study generates a better understanding of the mechanism of T-driven perchlorate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schnoebelen, Douglas J.
2008-01-01
An alluvial wetland proved useful in improving water quality. Samples from observation wells completed in the alluvial wetland near the municipal well field had nitrate concentrations that were four to six times lower when compared to river or upland sites; however, iron and manganese concentrations in samples from observation wells in the wetland areas were an order of magnitude higher when compared to the river or an upgradient well. Biological and chemical reduction processes were determined to mobilize inorganic constituents in accordance with physical chemistry principles. Generally, selected pesticides and two pesticide degradates of atrazine that were sampled for in alluvial wetland wells remained relatively unchanged, and indicated only a slight decrease in concentration compared to the Cedar River water samples. Pesticides were not detected above regulatory limits in any of the observation wells; however, one sample from the Cedar River had an atrazine detection at 4.5 micrograms per liter, which is above the maximum contaminant level of 3.0 micrograms per liter for drinking-water regulations for that compound. Results indicate that alluvial wetlands may provide substantial reductions of nitrate concentrations in ground water, and may be a useful strategy for the reduction of nitrate for municipal wells. Results for reducing pesticides were less dramatic than for nitrate, as pesticide concentrations were reduced slightly from the river to the wetland.
Nitrite oxidation in the Namibian oxygen minimum zone.
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M
2012-06-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.
Liu, Li Xue; Li, Qin Qin; Zhang, Yun Zeng; Hu, Yue; Jiao, Jian; Guo, Hui Juan; Zhang, Xing Xing; Zhang, Biliang; Chen, Wen Xin; Tian, Chang Fu
2017-12-01
Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix - ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix + ) but ineffective (Eff - ) nodules. These Fix + /Eff - nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Eisele, R; Ullrich, W R
1975-01-01
The uptake of nitrate or nitrite in the light, the release of nitrite and ammonia, and the corresponding alkalinisation of the medium were measured in synchronous Ankistrodesmus braunii (Naeg.) Brunnth. The increase in the OH(-) concentration in the medium reflects a stoichiometric ratio between OH(-) and NO3 (-) of 1.3-1.8 in air, reaching almost 2.0 in CO2-free air or nitrogen. At low CO2 concentrations a large proportion of the nitrogen taken up as nitrate is released as ammonia, much less as nitrite. The stoichiometry of alkalinisation and NO3 (-) or NO2 (-) uptake can be quantitatively explained by assuming: 1) a counter-transport, at a ratio of 1:1, of OH(-) against NO3 (-) at the plasmalemma and of OH(-) against NO2 (-) at the chloroplast envelope, and 2) a co-transport of 1:1 of OH(-) and NH4 (+) to the medium through both membranes. The first OH(-) required is formed by proton consumption in nitrite reduction, the second OH(-) by proton consumption in the formation of NH4 (+) ions. Transport of K(+), Na(+) and Ca(2+) is not or only scarcely involved. This proposed transport system could provide charge equilibrium between inside and outside the cells and could enable the cells to avoid nternal pH changes in nitrate and nitrite reduction.
Investigating a Sulphate-Nitrate Chemical Indirect Effect over Europe from 1980-2010
NASA Astrophysics Data System (ADS)
Pearce, H.; Mann, G. W.; Arnold, S.; O'Connor, F.; Conibear, L.; Turnock, S.; Rumbold, S.; Benduhn, F.
2017-12-01
Sulphur dioxide emission reductions have been successful in reducing surface sulphate concentrations over Europe between 1980 and 2010, with positive implications for air quality and human health. However the response of nitrate aerosol concentrations to declining NOx emissions has been non-linear. Previous studies have indicated that decreasing ammonium sulphate formation, as a result of SO2 emission reduction, may be partly responsible for this non-linearity by increasing the availability of ammonia and, hence, indirectly increasing ammonium nitrate aerosol formation. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed `hybrid' dissolution solver (HyDis), to investigate the size-resolved partitioning of ammonia and nitric acid to the particle phase over Europe in the period 1980 to 2010. Anthropogenic emissions of SO2, NOx and NH3 are included from the MACCity inventory and change by approximately -79%, -33% and +30% respectively over Europe in this time. We evaluate the UM-UKCA simulated 1980-2010 variability in nitrate, ammonium and sulphate aerosol mass concentrations and aerosol pH, with comparison to EMEP observations, and isolate the indirect influence of reduced SO2 emissions on nitrate formation. Preliminary sensitivity tests indicate that simulated nitrate aerosol concentrations over Europe were 8% higher in 2009 than they would have been if SO2 emissions had not been reduced. The implications of this change for air quality, aerosol acidity and regional climate will be presented.
Körner, H; Zumft, W G
1989-01-01
The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction. Images PMID:2764573
[Removal of nitrate from groundwater using permeable reactive barrier].
Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen
2013-03-01
To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.
Advanced Thermal Storage for Central Receivers with Supercritical Coolants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Bruce D.
2010-06-15
The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above, intermetallic compounds can precipitate between, and within, the grains of nickel alloys. The precipitation leads to an increase in tensile strength, and a decrease in ductility. Whether the proposed tube materials can provide the required low cycle fatigue life for the supercritical H2O and CO2 receivers is an open question. 4) A ranking of the plants, in descending order of technical and economic feasibility, is as follows: i) Supercritical nitrate salt and baseline nitrate salt: equal ratings ii) Low temperature supercritical H2O iii) Low temperature supercritical CO2 iv) High temperature supercritical CO2 v) High temperature supercritical H2O 5) The two-tank nitrate salt thermal storage systems are strongly preferred over the thermocline systems using supercritical heat transport fluids.« less
NASA Astrophysics Data System (ADS)
Bose, S.; Thrash, J. C.; Coates, J. D.
2008-12-01
Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was differentially regulated. With perchlorate as the sole terminal electron acceptor, cbbM was expressed under autotrophic growth with hydrogen as the electron donor but not during heterotrophic growth on acetate, indicating a putative carbon-fixation pathway. Similarly, Ferrutens uranioxidens strain 2002 was also capable of autotrophic growth during nitrate-dependent iron oxidation, although the carbon fixation pathway has yet to be identified. Anoxic XPRD analysis of the biogenic end products of nitrate-dependent Fe(II) oxidation by Diaphorobacter sp. strain TPSY and strain 2002 indicated the gradual appearance of green rust (GR II) with cacoxenite and lepidocrocite from the precursor vivianite over 81 days. SEM and TEM showed the presence of hexagonal plate like crystals surrounding the bacterial cells whose morphology closely resembled GR II, indicating a very low redox potential and a weakly acidic to weakly basic pH. Mixotrophic growth incubations of strain TPSY with 1, 5 and 10 mM Fe(II) showed markedly different end products. The identity of the mineral phases and the reason behind this difference is currently under investigation.
Ashor, Ammar W; Chowdhury, Shakir; Oggioni, Clio; Qadir, Othman; Brandt, Kirsten; Ishaq, Abbas; Mathers, John C; Saretzki, Gabriele; Siervo, Mario
2016-11-01
Aging and obesity are associated with raised oxidative stress and a reduction of nitric oxide (NO) bioavailability, with subsequent decline in insulin sensitivity and endothelial function. Inorganic nitrate is converted into NO via a 2-step reduction process and may be an effective nutritional intervention to modify vascular and metabolic functions. This study tested whether inorganic nitrate supplementation improved glucose disposal and attenuated the acute effects of hyperglycemia on oxidative stress, inflammation, and vascular function in young and old obese participants. Ten young (aged 18-44 y) and 10 old (aged 55-70 y) obese participants consumed 75 g glucose followed by either potassium nitrate (7 mg/kg body weight) or potassium chloride (placebo) in a randomized, double-blind crossover design. Resting blood pressure (BP), endothelial function, and blood biomarkers were measured for 3 h postintervention. Biomarkers included plasma nitrate/nitrite (NOx), glucose, insulin, cyclic GMP, interleukin 6, 3-nitrotyrosine, E- and P-selectins, intercellular adhesion molecule 3 (ICAM-3), and thrombomodulin, as well as superoxide in freshly isolated peripheral blood mononuclear cells (PBMCs). Inorganic nitrate supplementation did not affect plasma glucose (P = 0.18) or insulin (P = 0.26) responses. The increase in plasma NOx concentrations 3 h after the administration of inorganic nitrate was significantly higher in young than in old participants (234% increase compared with 149% increase, respectively, P < 0.001). Plasma 3-nitrotyrosine concentrations declined significantly after inorganic nitrate supplementation compared with placebo (3 h postdose, 46% decrease compared with 27% increase, respectively, P = 0.04), and a similar nonsignificant trend was observed for superoxide concentrations (3 h postdose, 16% decrease compared with 23% increase, respectively, P = 0.06). Plasma cyclic GMP, ICAM-3, and thrombomodulin concentrations differed between young and old participants (P < 0.01). Inorganic nitrate supplementation did not improve BP or endothelial function. Oral supplementation with inorganic nitrate did not improve glucose and insulin responses but reduced oxidative stress in old individuals during acute hyperglycemia. This trial was registered at www.controlled-trials.com as ISRCTN42776917. © 2016 American Society for Nutrition.
Sánchez Mainar, María; Leroy, Frédéric
2015-11-06
The cured colour of European raw fermented meats is usually achieved by nitrate-into-nitrite reduction by coagulase-negative staphylococci (CNS), subsequently generating nitric oxide to form the relatively stable nitrosomyoglobin pigment. The present study aimed at comparing this classical curing procedure, based on nitrate reductase activity, with a potential alternative colour formation mechanism, based on nitric oxide synthase (NOS) activity, under different acidification profiles. To this end, meat models with and without added nitrate were fermented with cultures of an acidifying strain (Lactobacillus sakei CTC 494) and either a nitrate-reducing Staphylococcus carnosus strain or a rare NOS-positive CNS strain (Staphylococcus haemolyticus G110), or by relying on the background microbiota. Satisfactory colour was obtained in the models prepared with added nitrate and S. carnosus. In the presence of nitrate but absence of added CNS, however, cured colour was only obtained when L. sakei CTC 494 was also omitted. This was ascribed to the pH dependency of the emerging CNS background microbiota, selecting for nitrate-reducing Staphylococcus equorum strains at mild acidification conditions but for Staphylococcus saprophyticus strains with poor colour formation capability when the pH decrease was more rapid. This reliance of colour formation on the composition of the background microbiota was further explored by a side experiment, demonstrating the heterogeneity in nitrate reduction of a set of 88 CNS strains from different species. Finally, in all batches prepared with S. haemolyticus G110, colour generation failed as the strain was systematically outcompeted by the background microbiota, even when imposing milder acidification profiles. Thus, when aiming at colour formation through CNS metabolism, technological processing can severely interfere with the composition and functionality of the meat-associated CNS communities, for both nitrate reductase and NOS activities. Several major bottlenecks, among which the rareness of phenotypic NOS activity in meat-compatible CNS, need to be considered, which is seriously questioning the relevance of this pathway in fermented meats. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao
2015-05-04
Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h-1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53%±1.69% and 58.65%±0.61%, respectively. The ammonia removal rate reached 44.12%±1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5-9 mg/L, pH 8-9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41%±3.17% (sterilized) and 44.88%±4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p<0.05). High C/N was beneficial for nitrate reduction (p<0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p>0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem.
Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1
Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki
2014-01-01
Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048
Nagababu, Enika; Rifkind, Joseph M.
2009-01-01
Recent studies have demonstrated that plasma nitrite (NO2-) reflects endothelial nitric oxide synthase activity and it has been proposed as a prognostic marker for cardiovascular disease. In addition, NO2- itself has been shown to have biological activities thought to be triggered by reduction back to NO in blood and tissues. The development of sensitive and reproducible methods for the quantitative determination of plasma NO2- is, therefore, of great importance. Ozone-based chemiluminescence assays have been shown to be highly sensitive for the determination of nanomolar quantities of NO and NO related species in biological fluids. We report here an improved direct chemiluminescence method for the determination of plasma NO2- without interference of other nitric oxide related species such as nitrate, S-nitrosothiols, N-nitrosamines, nitrated proteins and nitrated lipids. The method involves a reaction system consisting of glacial acetic acid and ascorbic acid in the purge vessel of the NO analyzer. Under these acidic conditions NO2- is stoichiometrically reduced to NO by ascorbic acid. Fasting human plasma NO2- values were found in the range of 56-210 nM (mean =110 ± 36 nM). This method has high sensitivity with an accuracy of 97% and high precision (C.V <10%) for determination of plasma nitrite. The present method is simple and highly specific for plasma NO2-. It is particularly suited to evaluate vasculature endothelial NO production that predicts the risks for cardiovascular disease. PMID:17382196
Bender, Tobias; von Zezschwitz, Paultheo
2009-07-01
The structure of a new secondary metabolite from Streptomyces sp. was determined as 4-acetyl-1,3-dihydroimidazo[4,5-c]pyridin-2-one by synthesis of the natural product itself and of the regioisomeric 7-acetylimidazo[4,5-b]pyridine derivative. The former compound was prepared, in 28% overall yield, in a sequence of nitration, reduction, condensation, and Stille reaction of 4-aminopyridine, while the regioisomer was obtained in 5% overall yield by amination, nitration, reduction, condensation, and oxidation of 4-ethylpyridine.
Ji, Yuefei; Zeng, Chao; Ferronato, Corinne; Chovelon, Jean-Marc; Yang, Xi
2012-07-01
The extensive utilization of β-blockers worldwide led to frequent detection in natural water. In this study the photolysis behavior of atenolol (ATL) and toxicity of its photodegradation products were investigated in the presence of nitrate ions. The results showed that ATL photodegradation followed pseudo-first-order kinetics upon simulated solar irradiation. The photodegradation was found to be dependent on nitrate concentration and increasing the nitrate from 0.5 mML(-1) to 10 mML(-1) led to the enhancement of rate constant from 0.00101 min(-1) to 0.00716 min(-1). Hydroxyl radical was determined to play a key role in the photolysis process by using isopropanol as molecular probe. Increasing the solution pH from 4.8 to 10.4, the photodegradation rate slightly decreased from 0.00246 min(-1) to 0.00195 min(-1), probably due to pH-dependent effect of nitrate-induced .OH formation. Bicarbonate decreased the photodegradation of ATL in the presence of nitrate ions mainly through pH effect, while humic substance inhibited the photodegradation via both attenuating light and competing radicals. Upon irradiation for 240 min, only 10% reduction of total organic carbon (TOC) can be achieved in spite of 72% transformation rate of ATL, implying a majority of ATL transformed into intermediate products rather than complete mineralization. The main photoproducts of ATL were identified by using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques and possible nitrate-induced photodegradation pathways were proposed. The toxicity of the phototransformation products was evaluated using aquatic species Daphnia magna, and the results revealed that photodegradation was an effective mechanism for ATL toxicity reduction in natural waters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mas-Pla, Josep; Menció, Anna
2018-04-11
Climate change will affect the dynamics of the hydrogeological systems and their water resources quality; in particular nitrate, which is herein taken as a paradigmatic pollutant to illustrate the effects of climate change on groundwater quality. Based on climatic predictions of temperature and precipitation for the horizon of 2021 and 2050, as well as on land use distribution, water balances are recalculated for the hydrological basins of distinct aquifer systems in a western Mediterranean region as Catalonia (NE Spain) in order to determine the reduction of available water resources. Besides the fact that climate change will represent a decrease of water availability, we qualitatively discuss the modifications that will result from the future climatic scenarios and their impact on nitrate pollution according to the geological setting of the selected aquifers. Climate effects in groundwater quality are described according to hydrological, environmental, socio-economic, and political concerns. Water reduction stands as a major issue that will control stream-aquifer interactions and subsurface recharge, leading to a general modification of nitrate in groundwater as dilution varies. A nitrate mass balance model provides a gross estimation of potential nitrate evolution in these aquifers, and it points out that the control of the fertilizer load will be crucial to achieve adequate nitrate content in groundwater. Reclaimed wastewater stands as local reliable resource, yet its amount will only satisfy a fraction of the loss of available resources due to climate change. Finally, an integrated management perspective is necessary to avoid unplanned actions from private initiatives that will jeopardize the achievement of sustainable water resources exploitation under distinct hydrological scenarios.
Li, Yingjie; Katzmann, Emanuel; Borg, Sarah
2012-01-01
The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization. PMID:22730130
Ngugi, David Kamanda; Brune, Andreas
2012-04-01
Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using (15)N isotope tracer analysis. Living termites emitted N(2) at rates ranging from 3.8 to 6.8 nmol h(-1) (g fresh wt.)(-1). However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of (15)N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N(2) O, ranging from 0.4 to 3.9 nmol h(-1) (g fresh wt.)(-1), providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Nitrate effects on chromate reduction in a methane-based biofilm.
Zhong, Liang; Lai, Chun-Yu; Shi, Ling-Dong; Wang, Kai-Di; Dai, Yu-Jie; Liu, Yao-Wei; Ma, Fang; Rittmann, Bruce E; Zheng, Ping; Zhao, He-Ping
2017-05-15
The effects of nitrate (NO 3 - ) on chromate (Cr(VI)) reduction in a membrane biofilm reactor (MBfR) were studied when CH 4 was the sole electron donor supplied with a non-limiting delivery capacity. A high surface loading of NO 3 - gave significant and irreversible inhibition of Cr(VI) reduction. At a surface loading of 500 mg Cr/m 2 -d, the Cr(VI)-removal percentage was 100% when NO 3 - was absent (Stage 1), but was dramatically lowered to < 25% with introduction of 280 mg N m -2 -d NO 3 - (Stage 2). After ∼50 days operation in Stage 2, the Cr(VI) reduction recovered to only ∼70% in Stage 3, when NO 3 - was removed from the influent; thus, NO 3 - had a significant long-term inhibition effect on Cr(VI) reduction. Weighted PCoA and UniFrac analyses proved that the introduction of NO 3 - had a strong impact on the microbial community in the biofilms, and the changes possibly were linked to the irreversible inhibition of Cr(VI) reduction. For example, Meiothermus, the main genus involved in Cr(VI) reduction at first, declined with introduction of NO 3 - . The denitrifier Chitinophagaceae was enriched after the addition of NO 3 - , while Pelomonas became important when nitrate was removed, suggesting its potential role as a Cr(VI) reducer. Moreover, introducing NO 3 - led to a decrease in the number of genes predicted (by PICRUSt) to be related to chromate reduction, but genes predicted to be related to denitrification, methane oxidation, and fermentation increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.; ...
2015-08-17
Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less
Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira
2013-01-01
Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.
Harris, S.H.; Smith, R.L.
2009-01-01
Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.
Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites
NASA Astrophysics Data System (ADS)
Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.
2017-01-01
Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.
Precipitation chemistry affected by differences in location of collection sites and storage methods
NASA Astrophysics Data System (ADS)
Mahendrappa, M. K.
An investigation was carried out to evaluate rigorously the possible differences in measured concentrations of hydrogen, nitrate and sulfate ions in 'bulk' precipitation samples that may be caused by variations in location of rain collectors, and duration and temperature of storage. Storage of precipitation samples, up to 1 month, both in the coldroom and in the field resulted in a significant reduction in the concentration of hydrogen ions. Only field storage caused a statistically significant reduction in the concentration of nitrate in the precipitation samples. Levels of sulfate ions were not found to be significantly affected by storage either in the field or in coldrooms. Samples collected from a rain gage located on a building roof were more acidic than those collected in open spaces in forests. Though all samples showed similar seasonal patterns in the concentrations of sulfate and nitrate, the individual values consistently differed from each other.
Context-dependent environmental quality standards of soil nitrate for terrestrial plant communities.
van Goethem, Thomas M W J; Schipper, Aafke M; Wamelink, G W Wieger; Huijbregts, Mark A J
2016-10-01
Environmental quality standards (EQS) specify the maximum permissible concentration or level of a specific environmental stressor. Here, a procedure is proposed to derive EQS that are specific to a representative species pool and conditional on confounding environmental factors. To illustrate the procedure, a dataset was used with plant species richness observations of grasslands and forests and accompanying soil nitrate-N and pH measurements collected from 981 sampling sites in the Netherlands. Species richness was related to soil nitrate-N and pH with quantile regression allowing for interaction effects. The resulting regression models were used to derive EQS for nitrate conditional on pH, quantified as the nitrate-N concentrations at a specific pH level corresponding with a species richness equal to 95% of the species pool, for both grasslands and forest communities. The EQS varied between 1.8 mg/kg nitrate-N at pH 9-65 mg/kg nitrate-N at pH 4. EQS for forests and grasslands were similar, but EQS based on Red List species richness were considerably lower (more stringent) than those based on overall species richness, particularly at high pH levels. The results indicate that both natural background pH conditions and Red List species are important factors to consider in the derivation of EQS for soil nitrate-N for terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L
2015-01-01
Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574
Method for calcining nuclear waste solutions containing zirconium and halides
Newby, Billie J.
1979-01-01
A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.
Moureaux, T; Leydecker, M T; Meyer, C
1989-02-15
Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).
Kerley, Conor P; Cahill, Kathleen; Bolger, Kenneth; McGowan, Aisling; Burke, Conor; Faul, John; Cormican, Liam
2015-01-30
The acute consumption of dietary nitrate has been shown to improve exercise capacity in athletes, healthy adults and subjects with peripheral vascular disease. Many COPD patients have reduced exercise capacity. We hypothesized that acute nitrate consumption might increase incremental shuttle walk test (ISWT) distance in COPD subjects. Eleven COPD subjects were randomly assigned to consume either a high nitrate or a matched, low nitrate beverage in a double-blind, randomized, placebo-controlled, crossover design. ISWT distance was measured both before and 3 h after the beverage and change was recorded. After a 7-day washout, ISWT distances were re-measured before and 3 h after the alternate beverage and changes were recorded. We observed an increase in ISWT distance after consuming the high nitrate juice (25 m) compared with a reduction after the low nitrate juice (14 m) (p < 0.01). This improvement in exercise capacity was associated with significant increases in serum nitrate (p < 0.000005) and nitrite (p < 0.01) levels and a significant lowering of resting blood pressure (<0.05). In patients with stable COPD, the acute consumption of dietary nitrate increased serum nitrate/nitrite levels and exercise capacity and was associated with a decrease in resting blood pressure. Nitrate consumption might alter exercise capacity in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Gee, Lorna C; Ahluwalia, Amrita
2016-02-01
Nitric oxide (NO), a potent vasodilator critical in maintaining vascular homeostasis, can reduce blood pressure in vivo. Loss of constitutive NO generation, for example as a result of endothelial dysfunction, occurs in many pathological conditions, including hypertension, and contributes to disease pathology. Attempts to therapeutically deliver NO via organic nitrates (e.g. glyceryl trinitrate, GTN) to reduce blood pressure in hypertensives have been largely unsuccessful. However, in recent years inorganic (or 'dietary') nitrate has been identified as a potential solution for NO delivery through its sequential chemical reduction via the enterosalivary circuit. With dietary nitrate found in abundance in vegetables this review discusses epidemiological, pre-clinical and clinical data supporting the idea that dietary nitrate could represent a cheap and effective dietary intervention capable of reducing blood pressure and thereby improving cardiovascular health.
Sayama, Mikio
2001-01-01
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments. PMID:11472923
Role of nitrite, urate and pepsin in the gastroprotective effects of saliva
Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João
2016-01-01
Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05) and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05). Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers. PMID:27156250
The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality
Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,
2016-01-01
The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of water in the oxbow may not have been sufficient to allow for removal of substantial amounts of nutrients. Approximately 54 percent less nitrate-N was measured leaving the Smeltzer west oxbow than was measured entering from a small 6-inch field tile. The efficiency of nitrate-N removal in the oxbow was not able to be definitively quantified as other hydrologic factors such as overland and groundwater flow into and through the oxbow were not addressed and may provide alternative routes for nutrient transport. Damage to the Smeltzer east oxbow outfall weir prevented analysis of its nutrient load reduction capability. The study provides important information to managers and land owners looking for strategies to reduce nutrient transport from fields. Additional research is needed to understand how increased discharge from larger field tiles and drainage district mains may influence the efficiency of nutrient reduction in relation to the size, type, and landscape setting of a wetland.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.
2013-12-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.
Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.
Garriga, Núria; Montori, A; Llorente, G A
2017-07-01
The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH 4 + , although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.
Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy
2013-01-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960
Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.
2015-01-01
Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is presented and discussed. PMID:26733968
NASA Astrophysics Data System (ADS)
Lin, J.; Demissie, Y.; Yan, E.; Bohlke, J. K.; Sturchio, N. C.
2014-12-01
Measurements of nitrate concentrations and δ15N and δ18O values in 450 surface-water samples from the Upper Illinois River Basin (UIRB) were combined with SWAT (Soil and Water Assessment Tool) modeling to study the influence of land use on nitrate sources, mixing, and transformation within the watershed. The samples were collected from the Illinois River and its tributaries, including effluent from Chicago's largest wastewater treatment plant (WTP), October 2004 through October 2008. The isotopic and concentration measurements indicated that WTP effluent and agricultural drainage waters were the two principal nitrate endmembers within the UIRB. Isotopic compositions indicated the source of nitrate during the annual spring flushing event was mostly derived from agriculture. An apparent denitrification trend was identified from spring through fall in tributaries draining agricultural subbasins and those having mixed urban-agricultural land use. Mass balance indicated that the fraction of nitrate from the WTP effluent was as low as 5 % or less during the spring flush (March-May) and much larger during late summer and fall. A SWAT model was constructed to evaluate effects of land use, fertilizer applications, and WTP point source discharge by coupling hydrologic processes with nutrient cycling and plant growth. The UIRB SWAT model was calibrated and validated with flow and nitrate measurements: the Nash-Sutcliffe efficiency (NSE) ranged from 0.60 to 0.83 and the determination coefficient (R2) ranged from 0.59 to 0.87. To explore the influence of fertilizer input on basin nitrate transport, the calibrated model was used to evaluate impacts of spring and fall fertilizer applications on stream nitrate loads. Simulations with a -50% change in the total fertilizer application rate (kg N/ha) resulted in as much as -42% change in basin nitrate export (kg N/month), while causing only -9% or less change in corn yield (kg N/ha). Decreased fertilizer application also led to reductions of annual basin N percolation rate below the root zone (kg N/ha) and nitrate loading to surface runoff (kg N/ha), causing changes as much as -32.2% and -15.6% respectively. Combined modeling and isotopic studies can be useful for understanding nutrient mixing and transformation processes and for optimizing nutrient export reduction strategies.
Patton, Charles J.; Kryskalla, Jennifer R.
2013-01-01
A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface-water and groundwater samples that were analyzed in parallel by CFA-CdR and CFA enzyme-reduction methods. Finally, (3) demonstration of a semiautomated batch procedure in which 2-milliliter analyzer cups or disposable spectrophotometer cuvettes serve as reaction vessels for enzymatic reduction of nitrate to nitrite prior to analytical determinations. After the reduction step, analyzer cups are loaded onto CFA, flow injection, or discrete analyzers for simple, rapid, automatic nitrite determinations. In the case of manual determinations, analysts dispense colorimetric reagents into cuvettes containing post-reduction samples, allow time for color to develop, insert cuvettes individually into a spectrophotometer, and record percent transmittance or absorbance in relation to a reagent blank. Data presented here demonstrate equivalent analytical performance of enzymatic reduction NOx methods in these various formats to that of benchmark CFA-CdR NOx methods.
Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang
2008-09-01
Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.
Bhushan, Bharat; Halasz, Annamaria; Spain, Jim; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal
2002-07-15
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading to ring cleavage and subsequent decomposition. A nitrate reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 degrees C under anaerobic conditions using NADPH as electron donor. LC/MS (ES-) chromatograms showed the formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine as key initial products of RDX, but neither the dinitroso neither (DNX) nor trinitroso (TNX) derivatives were observed. None of the above detected products persisted, and their disappearance was accompanied by the accumulation of nitrous oxide (N20), formaldehyde (HCHO), and ammonium ion (NH4+). Stoichiometric studies showed that three NADPH molecules were consumed, and one molecule of methylenedinitramine was produced per RDX molecule. The carbon and nitrogen mass balances were 96.14% and 82.10%, respectively. The stoichiometries and mass balance measurements supported a mechanism involving initial transformation of RDX to MNX via a two-electron reduction mechanism. Subsequent reduction of MNX followed by rapid ring cleavage gave methylenedinitramine which in turn decomposed in water to produce quantitatively N2O and HCHO. The results clearly indicate that an initial reduction of a nitro group by nitrate reductase is sufficient for the decomposition of RDX.
Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A
2017-07-01
Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. Copyright © 2017 American Society for Microbiology.
Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed
Jha, M.K.; Schilling, K.E.; Gassman, Philip W.; Wolter, C.F.
2010-01-01
The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.
Réduction des nitrates et de l'uranium par les bactéries indigènes
NASA Astrophysics Data System (ADS)
Abdelouas, Abdesselam; Lutze, Werner; Nuttall, Eric
1998-07-01
A bioremediation concept has been developed to clean up ground water contaminated with nitrate (1200 mg·L -1) and uranium (0.25 mg·L -1). We studied the Tuba City mill tailings site, Arizona, USA. Indigenous bacteria capable of catalyzing the reduction of NO 3- and U(VI) were identified in the ground water and in the host rock, the Navajo sandstone. After complete reduction of O 2 and NO 3- within one week, U(VI) was reduced and precipitated as uraninite. Final uranium concentrations < 15 μg·L -1 were reached after a few weeks at 24 °C. Iron sulfide also precipitated as a result of reduction of Fe(III) on the sand surface and sulfate in the ground water. U(VI) was not reduced by sulfide. It was found that enzymatic reduction of U(VI) is faster than abiotic reduction under the conditions given by the composition of the ground water.
Increasing importance of deposition of reduced nitrogen in the United States
Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.
2016-01-01
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336
Sarkar, Sampa; Sarkar, Dhiman
2012-08-01
The development of a macrophage-based, antitubercular high-throughput screening system could expedite discovery programs for identifying novel inhibitors. In this study, the kinetics of nitrate reduction (NR) by Mycobacterium tuberculosis during growth in Thp1 macrophages was found to be almost parallel to viable bacilli count. NR in the culture medium containing 50 mM of nitrate was found to be optimum on the fifth day after infection with M. tuberculosis. The signal-to-noise (S/N) ratio and Z-factor obtained from this macrophage-based assay were 5.4 and 0.965, respectively, which confirms the robustness of the assay protocol. The protocol was further validated by using standard antitubercular inhibitors such as rifampicin, isoniazid, streptomycin, ethambutol, and pyrazinamide, added at their IC(90) value, on the day of infection. These inhibitors were not able to kill the bacilli when added to the culture on the fifth day after infection. Interestingly, pentachlorophenol and rifampicin killed the bacilli immediately after addition on the fifth day of infection. Altogether, this assay protocol using M. tuberculosis-infected Thp-1 macrophages provides a novel, cost-efficient, robust, and easy-to-perform screening platform for the identification of both active and hypoxic stage-specific inhibitors against tuberculosis.
Opsahl, Stephen P.; Musgrove, MaryLynn; Slattery, Richard N.
2017-01-01
Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells —one rural and one urban—located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8–1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the urbanized area of the aquifer. Changes in specific conductance were observed at both sites during groundwater recharge, and a significant correlation between specific conductance and nitrate (correlation coefficient [R] = 0.455) was evident at the urban site where large (3-fold) changes in nitrate occurred. Nitrate concentrations and specific conductance measured during a depth profile indicated that the water column was generally homogeneous as expected for this karst environment, but changes were observed in the most productive zone of the aquifer that might indicate some heterogeneity within the complex network of flow paths. Resolving the timing and magnitude of changes and characterizing fine-scale vertical differences would not be possible using conventional sampling techniques. The patterns observed in situ provided new insight into the dynamic nature of nitrate in a karst groundwater system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Kenichi; Kawabata, Hisaya; Satsuma, Atsushi
1999-06-24
It is widely accepted that selective catalytic reduction (SCR) of NO by hydrocarbons is a potential method to remove NO{sub x} practically in excess O{sub 2}. Although many studies on SCR are related to zeolitic catalysts, metal oxides are also of importance as promising SCR catalysts due to their high durability. Among oxide catalysts, {gamma}-Al{sub 2}O{sub 3} is one of the most active single oxides for SCR. The mechanism of the selective catalytic reduction (SCR) of NO by C{sub 3}H{sub 6} on Al{sub 2}O{sub 3} was investigated using in situ IR spectroscopy. Attention was focused on the reactivity of themore » adsorbed acetate and nitrates on the Al{sub 2}O{sub 3} surface. IR spectra showed that the reaction starts with the nitrates formation from NO + O{sub 2} followed by its reaction with C{sub 3}H{sub 6} to form acetate, which becomes the predominant surface species in the steady-state condition. The acetate band, which was stable in He or NO, significantly decreased when the flowing gas was switched to NO + O{sub 2}. A complementary set of experiments monitoring gas composition showed that N{sub 2} and CO{sub x} were produced by the reaction of acetate with NO + O{sub 2}. The rate of acetate consumption in NO + O{sub 2} exhibited the same order of magnitude as the NO reduction rate, indicating that the acetate is active as a reductant and takes part in the N{sub 2} formation. Nitrates can oxidize both C{sub 3}H{sub 6} and acetate, and are mostly reduced to N{sub 2}. A proposed reaction scheme explains the role of O{sub 2} in facilitating SCR of NO.« less
NASA Astrophysics Data System (ADS)
Lipschultz, F.; Wofsy, S. C.; Ward, B. B.; Codispoti, L. A.; Friedrich, G.; Elkins, J. W.
1990-10-01
Rates of transformations of inorganic nitrogen were measured in the low oxygen, subsurface waters (50-450 m) of the Eastern Tropical South Pacific during February 1985, using 15N tracer techniques. Oxygen concentrations over the entire region were in a range (O 2 < 2.5 μM) that allowed both oxidation and reduction of nitrogen to occur. A wide range of rates was observed for the lowest oxygen levels, indicating that observed oxygen concentration was not a primary factor regulating nitrogen metabolism. High values for subsurface metabolic rates correspond with high levels for surface primary production, both apparently associated with mesoscale features observed in satellite imagery and with mesoscale features of the current field. Measured rates of nitrate reduction and estimated rates of denitrification were sufficient to respire nearly all of the surface primary production that might be transported into the oxygen deficient zone. These results imply that the supply of labile organic material, especially from the surface, was more important than oxygen concentration in modulating the rates of nitrogen transformations within the low oxygen water mass of the Eastern Tropical South Pacific. The pattern of nitrite oxidation and nitrite reduction activities in the oxygen minimum zone supports the hypothesis ( ANDERSONet al., 1982, Deep-Sea Research, 29, 1113-1140) that nitrite, produced from nitrate reduction, can be recycled by oxidation at the interface between low and high oxygen waters. Rates for denitrification, estimated from nitrate reduction rates, were in harmony with previous estimates based on electron transport system (ETS) measurements and analysis of the nitrate deficit and water residence times. Assimilation rates of NH 4+ were substantial, providing evidence for heterotrophic bacterial growth in low oxygen waters. Ambient concentrations of ammonium were maintained at low values primarily by assimilation; ammonium oxidation was an important mechanism at the surface boundary of the low oxygen zone.
Denitrification in a sand and gravel aquifer
Smith, R.L.; Duff, J.H.
1988-01-01
Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N20 produced (g of wet sediment)-' h-'. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate remoyal from groundwater.
In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica.
Sujanya, S; Devi, B Poornasri; Sai, Isha
2008-03-01
The present study aimed to elucidate the effect of nutritional alteration on biomass content and azadirachtin production in cell suspensions of the elite neem variety crida-8. Variations in total nitrogen availability in the medium in terms of different ratios of nitrate: ammonium showed that the ratio 4:1 revealed a profound effect, leading to a 1.5-fold increase in the total extracellular azadirachtin production (5.59 mg/l) over the standard MS medium. Reduction in sucrose (15 mg/l) in the medium exhibited a reduction in biomass and absence of azadirachtin, whereas total phosphate reduction raised intracellular azadirachtin production (6.98 mg/l). An altered medium with a nitrate: ammonium ratio of 4:1 coupled with complete elimination of phosphate enhanced biomass by 36% (59.36 g/l).
Nitrite oxidation in the Namibian oxygen minimum zone
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM
2012-01-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426
USDA-ARS?s Scientific Manuscript database
Nitrate losses from agricultural lands in the Midwest flow into the Mississippi River Basin (MRB) and contribute significantly to hypoxia in the Gulf of Mexico. Previous work has shown that cover crops can reduce loadings, but adoption rates are low, and the potential impact is currently unknown. Th...
Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai
2017-11-01
The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H
2005-09-01
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.
Bentley, Robert F; Walsh, Jeremy J; Drouin, Patrick J; Velickovic, Aleksandra; Kitner, Sarah J; Fenuta, Alyssa M; Tschakovsky, Michael E
2017-09-01
Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P < 0.001), and compensatory vasodilation was present following nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min -1 ⋅ 100 mmHg -1 ; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min -1 ⋅ 100 mmHg -1 ; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation. NEW & NOTEWORTHY Previously, we identified young, healthy persons who suffer compromised exercise tolerance when exercising muscle perfusion pressure is reduced as a result of a lack of compensatory vasodilation. The ability of nitrate supplementation to restore compensatory vasodilation in such noncompensators is unknown. We demonstrated that beetroot juice supplementation led to compensatory vasodilation and restored perfusion and exercise capacity. Elevated plasma nitrite is an effective intervention for correcting the absence of compensatory vasodilation in the noncompensator phenotype. Copyright © 2017 the American Physiological Society.
Sulfide‐ and nitrite‐dependent nitric oxide production in the intestinal tract
Vermeiren, Joan; Van de Wiele, Tom; Van Nieuwenhuyse, Glynn; Boeckx, Pascal; Verstraete, Willy; Boon, Nico
2012-01-01
Summary In the gut ecosystem, nitric oxide (NO) has been described to have damaging effects on the energy metabolism of colonocytes. Described mechanisms of NO production are microbial reduction of nitrate via nitrite to NO and conversion of l‐arginine by NO synthase. The aim of this study was to investigate whether dietary compounds can stimulate the production of NO by representative cultures of the human intestinal microbiota and whether this correlates to other processes in the intestinal tract. We have found that the addition of a reduced sulfur compound, i.e. cysteine, contributed to NO formation. This increase was ascribed to higher sulfide concentrations generated from cysteine that in turn promoted the chemical conversion of nitrite to NO. The NO release from nitrite was of the order of 4‰ at most. Overall, it was shown that two independent biological processes contribute to the chemical formation of NO in the intestinal tract: (i) the production of sulfide by fermentation of sulfur containing amino acids or reduction of sulfate by sulfate reducing bacteria, and (ii) the reduction of nitrate to nitrite. Our results indicate that dietary thiol compounds in combination with nitrate may contribute to colonocytes damaging processes by promoting NO formation. PMID:22129449
Lidder, Satnam; Webb, Andrew J
2013-03-01
The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid
2017-12-01
Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were the reasons for variation of magnetic properties.
Xu, Yipu; Pang, Baoxing; Hu, Liang; Feng, Xiaoyu; Hu, Lei; Wang, Jingsong; Zhang, Chunmei; Wang, Songlin
2018-02-26
Xerostomia, a major oral symptom of menopause, is a subjective feeling of dry mouth associated with oral pain and difficulties in deglutition and speech, which significantly reduces patient's quality of life. Dietary nitrate, which can be converted to nitric oxide, has multiple physiological functions in the body, including antioxidant activity and vasodilatation; however, its protective effect against xerostomia remains poorly understood. The present study aimed to evaluate the effects of dietary nitrate on estrogen deficiency-induced xerostomia. We established an ovariectomized (OVX) rat model, which included five groups: sham-operated, OVX, OVX + 0.4 mM nitrate, OVX + 2 mM nitrate, and OVX + 4 mM nitrate (n = 6). After ovariectomy, animals in the nitrate treatment groups received appropriate amounts of sodium nitrate dissolved in distilled water for 3 months. The results showed that nitrate treatment reduced body weight and water intake, and increased serum nitrate and nitrite levels. Furthermore, nitrate uptake increased saliva secretion as evidenced by saliva flow rates and aquaporin 5 expression, and alleviated histological lesions as evidenced by reduction of the fibrotic area and cell atrophy in the salivary glands. Although protective effects of nitrate against estrogen deficiency-induced xerostomia were observed at all doses, treatment with 2 mM nitrate was more effective than that with 0.4 mM and 4 mM nitrate. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 expression analyses showed that nitrate also protected cells from apoptosis, possibly through upregulation of Cu-Zn superoxide dismutase (Cu-Zn SOD) known to inhibit oxidative stress-related apoptosis. Our findings indicate that nitrate could improve functional activity of the salivary glands in OVX rats by suppressing apoptosis and upregulating Cu-Zn SOD expression, suggesting that dietary nitrate may potentially prevent hyposalivation in menopausal women. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E; Esser, B K
2010-04-14
This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sourcesmore » of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.« less
Han, Ruyang; Karaoz, Ulas; Lim, HsiaoChien; Brodie, Eoin L.
2013-01-01
Pelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with aquifer sediment. Strain HCF1 ferments lactate to propionate and acetate (the methylmalonyl-coenzyme A [CoA] pathway was identified in the genome), and its genome encodes two [NiFe]- and four [FeFe]-hydrogenases for H2 cycling. The reduction of Cr(VI) and Fe(III) may be catalyzed by a flavoprotein with 42 to 51% sequence identity to both ChrR and FerB. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides, including dissimilatory reduction of nitrate to ammonium (two copies of NrfH and NrfA were identified along with NarGHI) and a nitric oxide reductase (NorCB). In this strain, either H2 or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of hydrogenases and nitrate and nitrite reductases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments. PMID:23064329
Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua
2013-04-01
In this study, an approach is put forward to study the relationship between changing land use and groundwater nitrate contamination in the Sanjiang Plain. This approach emphasizes the importance of groundwater residence time when relating the nitrates to the changing land use. The principles underlying the approach involve the assessment of groundwater residence time by CFCs and the Vogel age model and the reconstruction of the land use at the groundwater recharge time by interpolation. Nitrate trend analysis shows that nitrates have begun to leach into the aquifers since agricultural activities boomed after the 1950s. Hydrochemical analysis implies that the possible process relating to the nitrate reduction in the groundwater is the oxidation of Fe(ii)-silicates. However, the chemical kinetics of the oxidation of Fe(ii)-silicates is slow, so this denitrification process contributes little to the nitrate variations. Stepwise regression shows that the nitrate concentrations of samples had no direct relationship with the land use at the groundwater sampling time, but had a relatively strong relationship with the land use at the groundwater recharge time. Dry land is recognized as the dominant factor contributing to the elevated concentration of nitrates. The nitrogen isotope for nitrate (δ(15)N-NO3) gives a more direct result of the identification of nitrate sources: the use of manure in agricultural activities. Principle component (PC) regression shows that the process of the dry land exploitation is the major process that controls the nitrate contamination in the Sanjiang Plain.
NASA Astrophysics Data System (ADS)
Ettwig, K. F.
2014-12-01
Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including methylated lipids so far not found in any other organism. Case studies using specific primers together with lipid profiles and 13C-labelling in peatlands and other freshwater environments illustrate that the newly developed approaches and biomarkers enable the demonstration of M. oxyfera's role as a methane sink.
Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring
NASA Astrophysics Data System (ADS)
Olson, L. K.; McGuire, J. T.; Cozzarelli, I.; Smith, E. W.; Kneeshaw, T.
2010-12-01
Biodegradation rates are often controlled by dynamic interactions that occur at mixing interfaces between water masses of differing redox state. This study seeks to understand the controls on rates of BTEX (benzene, toluene, ethylbenzene and m,p,o-xylenes) degradation at a mixing interface by using in-situ experiments to simulate contaminated aquifer water containing nitrate discharging to a methanogenic wetland. BTEX biodegradation was evaluated during “dry” conditions (2009) and “wet” conditions (2010) in a shallow wetland near Bemidji, MN using innovative in-situ microcosms (ISMs) to measure rates of change over 8 weeks (2009) and 9 weeks (2010). ISM samplers contained an inner chamber filled with wetland sediments that were allowed to incubate for 2 weeks. This chamber was then closed to the surrounding environment and amended with test solution composed of contaminated groundwater augmented with tracer (bromide), nitrate and BTEX spike. Analysis of ISM sediments suggests that nitrate reduction and biodegradation rates are a function of both mineralogical and microbiological controls. Loss of nitrate, interpreted as nitrate reduction, was observed in both the dry and wet years with reduction slightly faster in the dry year (2.21mg/L/day versus 1.59 mg/L/day). Nitrate reduction was likely coupled to oxidation of various electron donors present in the system, including not only BTEX but also naturally occurring labile organic matter (ex. acetate) and inorganic electron donors (ex. Fe2+). BTEX degradation rates were considerably higher during the “wet” year than the “dry” year, with the fastest rates occurring immediately following test solution additions. For example, in the first 2 days of the “wet” ISM experiments degradation rates were 57.97ug/L/day for Benzene, 73.24ug/L/day for Toluene, 12.37ug/L/day for Ethyl Benzene and 85.61ug/L/day for Xylene compared to an ISM from the dry year which had slower degradation rates of 2.83ug/L/day for Benzene, 0.171ug/L/day for Toluene, 0.181ug/L/day for Ethyl Benzene and 0.169ug/L/day for Xylene. This difference in degradation rates may be explained by greater competition for electron donors during the dry year, when, for example, concentrations of naturally occurring organic acids were higher. During the wet year, the highest acetate value was 14.04 mg/L, while during the dry year the highest value was 0.13mg/L. These results suggest that an understanding of the hydro-biogeochemisty of the system as a whole is critical to predicting biodegradation rates of BTEX in the environment.
Bakker, J R; Bondonno, N P; Gaspari, T A; Kemp-Harper, B K; McCashney, A J; Hodgson, J M; Croft, K D; Ward, N C
2016-10-01
Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE -/- mouse fed a high fat diet (HFD). ApoE -/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE -/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE -/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE -/- mice fed a HFD. Copyright © 2016 Elsevier Inc. All rights reserved.
Dong, Yiran; Sanford, Robert A.; Locke, Randall A.; Cann, Isaac K.; Mackie, Roderick I.; Fouke, Bruce W.
2014-01-01
The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40°C (range 20–60°C) and a salinity of 25 parts per thousand (range 25–75 ppt). This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25–200 ppt), and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir for CO2 injection. PMID:25324834
[Can nitrates lead to indirect toxicity?].
Hamon, M
2007-09-01
For many years, nitrates have been used, at low dosages, as an additive in salted food. New laws have been promulgated to limit their concentration in water due to increased levels found in soils, rivers and even the aquifer. Although nitrate ions themselves have not toxic properties, bacterial reduction into nitrite ions (occurring even in aqueous medium) can lead to nitrous anhydride, which in turn generates nitrosonium ions. Nitrosium ions react with secondary amine to give nitrosamines, many of which are cancer-inducing agents at very low doses. Opinions on this toxicity are clear-cut and difficult to reconcile. In fact, increased levels are due, in a large part, to the use of nitrates as fertiliéers but also to bacterial transformation of human and animal nitrogenous wastes such as urea.
Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs
Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James
2005-01-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519
Workgroup report: Drinking-water nitrate and health - Recent findings and research needs
Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.
2005-01-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.
Workgroup report: Drinking-water nitrate and health--recent findings and research needs.
Ward, Mary H; deKok, Theo M; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T; VanDerslice, James
2005-11-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.
A randomized trial of rectal indomethacin and sublingual nitrates to prevent post-ERCP pancreatitis.
Sotoudehmanesh, Rasoul; Eloubeidi, Mohamad Ali; Asgari, Ali Ali; Farsinejad, Maryam; Khatibian, Morteza
2014-06-01
Acute pancreatitis is the most common adverse event of endoscopic retrograde cholangiopancreatography (ERCP). Recent data suggest that indomethacin can reduce the risk of post-ERCP pancreatitis (PEP) in high-risk individuals. However, whether the combination of indomethacin and sublingual nitrates is superior to indomethacin alone is unknown. Therefore, we aimed to evaluate the efficacy of rectally administered indomethacin plus sublingual nitrate compared with indomethacin alone to prevent PEP. During a 17-month period, all eligible patients who underwent ERCP were enrolled in this study. We excluded patients who had undergone a prior endoscopic sphincterotomy. In a double-blind controlled randomized trial, patients received a suppository containing 100 mg of indomethacin, plus 5 mg of sublingual nitrate (group A), or a suppository containing 100 mg of indomethacin, plus sublingual placebo (group B), before ERCP. Serum amylase levels and clinically pertinent evaluations were measured in all patients after ERCP. Of the 300 enrolled patients, 150 received indomethacin plus nitrate. Thirty-three patients developed pancreatitis: 10 (6.7%) in group A and 23 (15.3%) in group B (P=0.016, risk ratio=0.39, 95% confidence intervals (CI): 0.18-0.86). More than 80% of the patients were at high risk of developing pancreatitis after ERCP. Absolute risk reduction, relative risk reduction, and number needed to treat for the prevention of PEP were 8.6% (95% CI: 4.7-14.5), 56.2% (95% CI: 50.6-60.8), and 12 (95% CI: 7-22), respectively. Combination of rectal indomethacin and sublingual nitrate given before ERCP was significantly more likely to reduce the incidence of PEP than indomethacin suppository alone. Multicenter trials to confirm these promising findings are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
2013-10-25
We have investigated nitrate formation and decomposition processes, and measured NOx storage performance on Pt-K2O/Al2O3 catalysts as a function of potassium loading. After NO2 adsorption at room temperature, ionic and bidentate nitrates were observed by fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter species increased with increasing potassium loading up to 10 wt%, and then stayed almost constant with additional K, demonstrating a clear dependence of loading on the morphology of the K species. Although both K2O(10)/Al2O3 and K2O(20)/Al2O3 samples have similar nitrate species after NO2 adsorption, the latter has more thermally stable nitrate speciesmore » as evidenced by FTIR and NO2 temperature programmed desorption (TPD) results. With regard to NOx storage performance, the temperature of maximum NOx uptake (Tmax) is 573 K up to a potassium loading of 10 wt%. As the potassium loading increases from 10 wt% to 20 wt%, Tmax shifted from 573 K to 723 K. Moreover, the amount of NO uptake (38 cm3 NOx/g catal) at Tmax increased more than three times, indicating that efficiency of K in storing NOx is enhanced significantly at higher temperature, in good agreement with the NO2 TPD and FTIR results. Thus, a combination of characterization and NOx storage performance results demonstrates an unexpected effect of potassium loading on nitrate formation and decomposition processes; results important for developing Pt-K2O/Al2O3 for potential applications as high temperature NOx storage-reduction catalysts.« less
Denitrification in a Sand and Gravel Aquifer
Smith, Richard L.; Duff, John H.
1988-01-01
Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N2O produced (g of wet sediment)−1 h−1. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate removal from groundwater. PMID:16347621
Zhang, Meilin; Li, Yingfen; Long, Xinxian; Chong, Yunxiao; Yu, Guangwei; He, Zihao
2018-05-18
Owing to the high efficiency of converting nitrate to nitrogen gas with ferrous iron as the electron donor, the process of nitrate-dependent ferrous oxidation (NDFeO) has been considered suitable to treat wastewater that contains nitrate but lacks organic matter. Meanwhile, arsenic immobilization often has been found during the NDFeO reaction. Thus, it was strongly expected that nitrate and arsenic could be removed simultaneously in co-contaminated wastewater through the NDFeO process. However, in the current work, arsenic was not removed during the NDFeO process when the pH was high (above 8), though the nitrate reduction rate was over 90%. Meanwhile, the biosolid particles from the NDFeO process demonstrated strong adsorption ability for arsenic when the pH was below 6. Yet, the adsorption became weak when the pH was above 7. Fourier transform infrared (FTIR) spectroscopy analysis revealed that the main activated component for arsenic adsorption was iron oxide in these particles, which was easily crippled under high pH conditions. These results implied that co-removal of nitrate and arsenic in wastewater treatment using NDFeO was difficult to carry out under high pH conditions. Thus, a two-step approach in which nitrate was removed first by NDFeO followed by arsenic adsorption with NDFeO biosolids was more feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria
Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.
2013-01-01
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480
Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.
Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan
2017-07-01
Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.
Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA
NASA Astrophysics Data System (ADS)
Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.
2017-12-01
Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus suggests thiosulfate oxidation may be coupled to nitrate reduction despite the extremely low level of nitrate in Mono Lake. Our results illustrate the centrality of living organisms in both shaping and responding to geochemical cycles, as well as future directions for exploring coupled biogeochemical cycles in Mono Lake.
Transformation and fate of nitrate near the sediment-water interface of Copano Bay
NASA Astrophysics Data System (ADS)
Hou, Lijun; Liu, Min; Carini, Stephen A.; Gardner, Wayne S.
2012-03-01
This study investigated potential transformation processes and fates of nitrate at the sediment-water interface of Copano Bay during a period of drought by conducting continuous-flow and slurry experiments combined with a 15NO3- addition technique. Rates of 15NO3--based denitrification, anaerobic ammonium oxidation (ANAMMOX) and potential dissimilatory nitrate reduction to ammonium (DNRA) were in the range of 27.7-40.1, 0.26-1.6 and 1.4-3.8 μmol 15N m-2 h-1, respectively. Compared with the total 15NO3-fluxes into sediments, dissimilatory processes contributed 29-49% to loss of the spiked 15NO3-. Based on the mass balance of 15NO3-, microbial assimilation was estimated to consume about 50-70% of the added 15NO3-, indicating that most of nitrate was incorporated by microorganisms in this N-limiting system. In addition, significant correlations of nitrate transformation rates with sediment characteristics reflect that the depth related behaviors of nitrate transformations in core sediments were coupled strongly to organic matter, iron (Fe) and sulfur (S) cycles.
Lidder, Satnam; Webb, Andrew J.
2013-01-01
The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the ‘nitrate‐nitrite‐nitric oxide (NO) pathway’. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre‐clinical studies with nitrate or nitrite also show the potential to protect against ischaemia‐reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate‐rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate ‘Veg‐Table’ with ‘Nitrate Units’ [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. PMID:22882425
NASA Astrophysics Data System (ADS)
Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.
2012-02-01
Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing methanogenesis in a highly reducing environment. This study highlights the promise in combining CAS analysis with more traditional techniques to differentiate among diagenetic reactions as preserved in the geologic record and shows potential for unraveling subsurface biospheric processes in ancient samples with a high degree of specificity.
Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone.
Rabotyagov, Sergey; Campbell, Todd; Jha, Manoj; Gassman, Philip W; Arnold, Jeffrey; Kurkalova, Lyubov; Secchi, Silvia; Feng, Hongli; Kling, Catherine L
2010-09-01
In 2008, the hypoxic zone in the Gulf of Mexico, measuring 20 720 km2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This study combines the tools of evolutionary computation with a water quality model and cost data to develop a trade-off frontier for the Upper Mississippi River Basin specifying the least cost of achieving nutrient reductions and the location of the agricultural conservation practices needed. The frontier allows policymakers and stakeholders to explicitly see the trade-offs between cost and nutrient reductions. For example, the cost of reducing annual nitrate-N loadings by 30% is estimated to be US$1.4 billion/year, with a concomitant 36% reduction in P and the cost of reducing annual P loadings by 30% is estimated to be US$370 million/year, with a concomitant 9% reduction in nitrate-N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shusuke, E-mail: shusuke-okada@aist.go.jp; Takagi, Kenta; Ozaki, Kimihiro
Submicron-sized Sm{sub 2}Fe{sub 17} powder samples were fabricated by a non-pulverizing process through reduction-diffusion of precursors prepared by a wet-chemical technique. Three precursors having different morphologies, which were micron-sized porous Sm-Fe oxide-impregnated iron nitrate, acicular goethite impregnated-samarium nitrate, and a conventional Sm-Fe coprecipitate, were prepared and subjected to hydrogen reduction and reduction-diffusion treatment to clarify whether these precursors could be convert to Sm{sub 2}Fe{sub 17} without impurity phases and which precursor is the most attractive for producing submicron-sized Sm{sub 2}Fe{sub 17} powder. As a result, all three precursors were successfully converted to Sm{sub 2}Fe{sub 17} powders without impurity phases, andmore » the synthesis route using iron-oxide particle-impregnated samarium oxide was revealed to have the greatest potential among the three routes.« less
Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus
Heylen, Kim; Keltjens, Jan
2012-01-01
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581T and B. bataviensis LMG 21833T. In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium. PMID:23087684
Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.
Eick, Manuela; Stöhr, Christine
2012-10-01
A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.
Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution
NASA Astrophysics Data System (ADS)
Martínez-Bastida, Juan J.; Arauzo, Mercedes; Valladolid, Maria
2010-05-01
The intrinsic vulnerability of groundwater in the Comunidad de Madrid (central Spain) was evaluated using the DRASTIC and GOD indexes. Groundwater vulnerability to nitrate pollution was also assessed using the composite DRASTIC (CD) and nitrate vulnerability (NV) indexes. The utility of these methods was tested by analyzing the spatial distribution of nitrate concentrations in the different aquifers located in the study area: the Tertiary Detrital Aquifer, the Moor Limestone Aquifer, the Cretaceous Limestone Aquifer and the Quaternary Aquifer. Vulnerability maps based on these four indexes showed very similar results, identifying the Quaternary Aquifer and the lower sub-unit of the Moor Limestone Aquifer as deposits subjected to a high risk of nitrate pollution due to intensive agriculture. As far as the spatial distribution of groundwater nitrate concentrations is concerned, the NV index showed the greatest statistical significance ( p < 0.01). This new type of multiplicative model offers greater accuracy in estimations of specific vulnerability with respect to the real impact of each type of land use. The results of this study provide a basis on which to guide the designation of nitrate vulnerable zones in the Comunidad de Madrid, in line with European Union Directive 91/676/EEC.
Effect of Co-Contaminants Uranium and Nitrate on Iodine Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Lee, Brady D.; Lawter, Amanda R.
The objective of this study is to evaluate the significance of co-contaminants on the migration and transformation of iodine species in the Hanford subsurface environment. These impacts are relevant because remedies that target individual contaminants like iodine, may not only impact the fate and transport of other contaminants in the subsurface, but also inhibit the effectiveness of a targeted remedy. For example, iodine (as iodate) co-precipitates with calcite, and has been identified as a potential remedy because it immobilizes iodine. Since uranium also co-precipitates with calcite in field sediments, the presence of uranium may also inhibit iodine co-precipitation. Another potentiallymore » significant impact from co-existing contaminants is iodine and nitrate. The presence of nitrate has been shown to promote biogeochemical reduction of iodate to iodide, thereby increasing iodine species subsurface mobility (as iodide exhibits less sorption). Hence, this study reports on both laboratory batch and column experiments that investigated a) the change in iodate uptake mass and rate of uptake into precipitating calcite due to the presence of differing amounts of uranium, b) the amount of change of the iodate bio-reduction rate due to the presence of differing nitrate concentrations, and c) whether nitrite can reduce iodate in the presence of microbes and/or minerals acting as catalysts.« less
Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed
Schilling, K.E.; Helmers, M.
2008-01-01
The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quick, Annika; Farrell, Tiffany B.; Reeder, William Jeffrey; Feris, Kevin P.; Tonina, Daniele; Benner, Shawn G.
2015-04-01
The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measurements of dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Using residence times along a flow path, clear trends in oxygen conditions and nitrogen species were observed. Three dune sizes were modeled, resulting in a range of residence times, carbon reactivity levels and respiration rates. We found that the magnitude and location of nitrous oxide production in the hyporheic zone is related to nitrate loading, dune morphology, and residence time. Specifically, increasing exogenous nitrate levels in surface water to approximately 3 mg/L resulted in an increase in dissolved N2O concentrations greater than 500% (up to 10 µg/L N-N2O) in distinct zones of specific residence times. We also found, however, that dissolved N2O concentrations decreased to background levels further along the flow path due to either reduction of nitrous oxide to dinitrogen gas or degassing. The decrease in measurable N2O along a flow path strongly suggests an important relationship between dune morphology, residence time, and nitrous oxide emissions from within stream sediments. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone of natural systems.
Frungillo, Lucas; Skelly, Michael J.; Loake, Gary J.; Spoel, Steven H.; Salgado, Ione
2014-01-01
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, i.e. covalent attachment of NO to cysteines to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine-tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity. PMID:25384398
NASA Astrophysics Data System (ADS)
Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.
2015-08-01
The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.
Refined NrfA phylogeny improves PCR-based nrfA gene detection
USDA-ARS?s Scientific Manuscript database
Dissimilatory nitrate reduction to ammonium (DNRA) promotes N-retention in the terrestrial nitrogen- (N-) cycle. Respiratory nitrite reduction to ammonium is catalyzed by the nitrite reductase NrfA. Prior phylogenetic analyses showed that NrfA divided into18 distinct clades amongst available sequenc...
Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila
2011-01-01
Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938
NASA Astrophysics Data System (ADS)
Boone, R. D.; Rogers, S. L.
2004-12-01
We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.
Migocka, Magdalena; Warzybok, Anna; Papierniak, Anna; Kłobus, Grażyna
2013-01-01
Studies in the last few years have shed light on the process of nitrate accumulation within plant cells, achieving molecular identification and partial characterization of the genes and proteins involved in this process. However, contrary to the plasma membrane-localized nitrate transport activities, the kinetics of active nitrate influx into the vacuole and its adaptation to external nitrate availability remain poorly understood. In this work, we have investigated the activity and regulation of the tonoplast-localized H+/NO3 − antiport in cucumber roots in response to N starvation and NO3 − induction. The time course of nitrate availability strongly influenced H+/NO3 − antiport activity at the tonoplast of root cells. However, under N starvation active nitrate accumulation within the vacuole still occurred. Hence, either a constitutive H+-coupled transport system specific for nitrate operates at the tonoplast, or nitrate uses another transport protein of broader specificity to different anions to enter the vacuole via a proton-dependent process. H+/NO3 − antiport in cucumber was significantly stimulated in NO3 −-induced plants that were supplied with nitrate for 24 hours following 6-day-long N starvation. The cytosolic fraction isolated from the roots of NO3 −-induced plants significantly stimulated H+/NO3 − antiport in tonoplast membranes isolated from cucumbers growing on nitrate. The stimulatory effect of the cytosolic fraction was completely abolished by EGTA and the protein kinase inhibitor staurosporine and slightly enhanced by the phosphatase inhibitors okadaic acid and cantharidin. Hence, we conclude that stimulation of H+/NO3 − antiport at the tonoplast of cucumber roots in response to nitrate provision may occur through the phosphorylation of a membrane antiporter involving Ca-dependent, staurosporine-sensitive protein kinase. PMID:24040130
Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao
2015-01-01
Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h−1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341
Patton, Charles J.; Kryskalla, Jennifer R.
2011-01-01
In addition to operational details and performance benchmarks for these new DA-AtNaR2 nitrate + nitrite assays, this report also provides results of interference studies for common inorganic and organic matrix constituents at 1, 10, and 100 times their median concentrations in surface-water and groundwater samples submitted annually to the NWQL for nitrate + nitrite analyses. Paired t-test and Wilcoxon signed-rank statistical analyses of results determined by CFA-CdR methods and DA-AtNaR2 methods indicate that nitrate concentration differences between population means or sign ranks were either statistically equivalent to zero at the 95 percent confidence level (p ≥ 0.05) or analytically equivalent to zero-that is, when p < 0.05, concentration differences between population means or medians were less than MDLs.
Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Göbel, Cornelia; Feussner, Ivo; Stöhr, Christine
2010-01-01
Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.
Ozone response to emission reductions in the southeastern United States
NASA Astrophysics Data System (ADS)
Blanchard, Charles L.; Hidy, George M.
2018-06-01
Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p < 0.0001) linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ˜ 45-50 ppbv and monthly O3 maxima decreased at rates averaging ˜ 1-1.5 ppbv yr-1. Mean annual total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.
Haas, Marcelo B; Guse, Björn; Fohrer, Nicola
2017-07-01
Water quality is strongly affected by nitrate inputs in agricultural catchments. Best Management Practices (BMPs) are alternative practices aiming to mitigate the impacts derived from agricultural activities and to improve water quality. Management activities are influenced by different governmental policies like the Water Framework Directive (WFD) and the Renewable Energy Sources Act (EEG). Their distinct goals can be contrasting and hamper an integrated sustainable development. Both need to be addressed in the actual conjuncture in rural areas. Ecohydrological models like the SWAT model are important tools for land cover and land use changes investigation and the assessment of BMPs implementation effects on water quality. Thus, in this study, buffer strip, fertilization reduction and alternative crops were considered as BMPs and were implemented in the SWAT model for the Treene catchment. Their efficiency in terms of nitrate loads reduction related to implementation costs at the catchment scale was investigated. The practices correspond to the catchment conditions and are based on small and mid areal changes. Furthermore, the BMPs were evaluated from the perspective of ecologic and economic policies. The results evidenced different responses of the BMPs. The critical periods in winter were addressed by most of the BMPs. However, some practices like pasture land increase need to be implemented in greater area for better results in comparison to current activities. Furthermore, there is a greater nitrate reduction potential by combining BMPs containing fertilization reduction, buffer strips and soil coverage in winter. The discussion about efficiency showed the complexity of costs stipulation and the relation with arable land and yield losses. Furthermore, as the government policies can be divergent an integrated approach considering all the involved actors is important and seeks a sustainable development. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Szajdak, L.; Gaca, W.
2009-04-01
The shelterbelts perform more than twenty different functions favorable to the environment, human economy, health and culture. The most important for agricultural landscape is increase of water retention, purification of ground waters and prevent of pollution spread in the landscape, restriction of wind and water erosion effects, isolation of polluting elements in the landscape, preservation of biological diversity in agricultural areas and mitigation of effects of unfavorable climatic phenomena. Denitrification is defined as the reduction of nitrate or nitrite coupled to electron transport phosphorylation resulting in gaseous N either as molecular N2 or as an oxide of N. High content of moisture, low oxygen, neutral and basic pH favour the denitrification. Nitrate reductase is an important enzyme involved in the process of denitrification. The reduction of nitrate to nitrite is catalyzed by nitrate reductase. Nitrite reductase is catalyzed reduction nitrite to nitrous oxide. The conversion of N2O to N2 is catalyzed by nitrous oxide reductase. This process leads to the lost of nitrogen in soil mainly in the form of N2 and N2O. Nitrous oxide is a greenhouse gas which cause significant depletion of the Earth's stratospheric ozone layer. The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowland). Our investigations were focused on the soils under Robinia pseudacacia shelterbelt and in adjoining cultivated field. The afforestation was created 200 years ago and it is consist of mainly Robinia pseudacacia with admixture of Quercus petraea and Quercus robur. This shelterbelt and adjoining cultivated field are located on grey-brown podzolic soil. The aim of this study is to present information on the changes of nitrate reductase activity in soil with admixture urea (organic form of nitrogen) in two different concentrations 0,25% N and 0,5% N. Our results have shown that this process runs according to the equation rate of first-order kinetic reaction model. Activity of nitrate reductase increases with an addition of urea under Robinia pseudacacia shelterbelt and in adjoining cultivated fields. However the activity of nitrate reductase decreases during a long term of experiment. First-order rate constant was calculated for the changes of activity of nitrate reductase. Admixture of urea influenced on reaction rate constant. It was observed similar contents at addition 0,25% N and 0,5% N. In adjoining cultivated field to Robinia pseudacacia shelterbelt first order rate constant was higher at addition 0,25% N than 0,5% N. This work was supported by a grant No. N N305 121934 founded by Polish Ministry of Education.
Bucur, Roxana C; Reid, Lauren S; Hamilton, Celeste J; Cummings, Steven R; Jamal, Sophie A
2013-09-08
Organic nitrates uncouple bone turnover, improve bone mineral density, and improve trabecular and cortical components of bone. These changes in turnover, strength and geometry may translate into an important reduction in fractures. However, before proceeding with a large fracture trial, there is a need to identify the nitrate formulation that has both the greatest efficacy (with regards to bone turnover markers) and gives the fewest headaches. Ascertaining which nitrate formulation this may be is the purpose of the current study. This will be an open-label randomized, controlled trial conducted at Women's College Hospital comparing five formulations of nitrates for their effects on bone turnover markers and headache. We will recruit postmenopausal women age 50 years or older with no contraindications to nitroglycerin. Our trial will consist of a run-in phase and a treatment phase. We will enroll 420 women in the run-in phase, each to receive all of the 5 potential treatments in random order for 2 days, each with a 2-day washout period between treatments. Those who tolerate all formulations will enter the 12-week treatment phase and be randomly assigned to one of five groups: 0.3 mg sublingual nitroglycerin tablet, 0.6 mg of the sublingual tablet, a 20 mg tablet of isosorbide mononitrate, a 160 mg nitroglycerin transdermal patch (used for 8 h), and 15 mg of nitroglycerin ointment as used in a previous trial by our group. We will continue enrolment until we have randomized 210 women or 35 women per group. Concentrations of bone formation (bone-specific alkaline phosphatase and procollagen type I N-terminal propeptide) and bone resorption (C-telopeptides of collagen crosslinks and N-terminal crosslinks of collagen) agents will be measured in samples taken at study entry (the start of the run in phase) and 12 weeks. Subjects will record the frequency and severity of headaches daily during the run-in phase and then monthly after that. We will use the 'multiple comparisons with the best' approach for data analyses, as this strategy allows practical considerations of ease of use and tolerability to guide selection of the preparation for future studies. Data from this protocol will be used to develop a randomized, controlled trial of nitrates to prevent osteoporotic fractures. ClinicalTrials.gov Identifier: NCT01387672. Controlled-Trials.com: ISRCTN08860742.
Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel
2014-11-15
Economic instruments can be used to control groundwater nitrate pollution due to the intensive use of fertilizers in agriculture. In order to test their efficiency on the reduction of nitrate leaching, we propose an approach based on the combined use of production and pollution functions to derive the impacts on the expected farmer response of these instruments. Some of the most important factors influencing nitrate leaching and crop yield are the type of soil and the climatic conditions. Crop yield and nitrate leaching responses to different soil and climatic conditions were classified by means of a cluster analysis, and crops located in different areas but with similar response were grouped for the analysis. We use a spatial economic optimization model to evaluate the potential of taxes on nitrogen fertilizers, water prices, and taxes on nitrate emissions to reduce nitrate pollution, as well as their economic impact in terms of social welfare and farmers' net benefits. The method was applied to the Mancha Oriental System (MOS) in Spain, a large area with different soil types and climatic conditions. We divided the study area into zones of homogeneous crop production and nitrate leaching properties. Results show spatially different responses of crop growth and nitrate leaching, proving how the cost-effectiveness of pollution control instruments is contingent upon the spatial heterogeneities of the problem. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationship Between Urinary Nitrate Excretion and Blood Pressure in the InChianti Cohort.
Smallwood, Miranda J; Ble, Alessandro; Melzer, David; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark
2017-07-01
Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting <1 mmol nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison <1 mmol excretion group. Modest differences in total nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Gerber, Christoph; Purtschert, Roland; Hunkeler, Daniel; Hug, Rainer; Sültenfuss, Jürgen
2018-06-01
Groundwater quality in many regions with intense agriculture has deteriorated due to the leaching of nitrate and other agricultural pollutants. Modified agricultural practices can reduce the input of nitrate to groundwater bodies, but it is crucial to determine the time span over which these measures become effective at reducing nitrate levels in pumping wells. Such estimates can be obtained from hydrogeological modeling or lumped-parameter models (LPM) in combination with environmental tracer data. Two challenges in such tracer-based estimates are (i) accounting for the different modes of transport in the unsaturated zone (USZ), and (ii) assessing uncertainties. Here we extend a recently published Bayesian inference scheme for simple LPMs to include an explicit USZ model and apply it to the Dünnerngäu aquifer, Switzerland. Compared to a previous estimate of travel times in the aquifer based on a 2D hydrogeological model, our approach provides a more accurate assessment of the dynamics of nitrate concentrations in the aquifer. We find that including tracer measurements (3H/3He, 85Kr, 39Ar, 4He) reduces uncertainty in nitrate predictions if nitrate time series at wells are not available or short, but does not necessarily lead to better predictions if long nitrate time series are available. Additionally, the combination of tracer data with nitrate time series allows for a separation of the travel times in the unsaturated and saturated zone.
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.
Vasodilator Therapy: Nitrates and Nicorandil.
Tarkin, Jason M; Kaski, Juan Carlos
2016-08-01
Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.
NASA Astrophysics Data System (ADS)
Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.
2014-11-01
Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.
Kerley, C P; Dolan, E; Cormican, L
2017-11-01
Dietary nitrate has been shown to increase nitrate/nitrite levels in multiple populations, with potential blood pressure lowering effects. However, there are few reports among hypertensives. We aimed to assess the effect of daily nitrate in subjects with controlled hypertension vs. uncontrolled hypertension. On day 0, hypertensives wore an ambulatory BP monitor (ABPM) for 24 h and fasting blood was taken. Subjects then consumed concentrated beetroot juice (12.9 mmol nitrate) for 14 consecutive days. On day 14 subjects consumed their last nitrate dose after fasting blood was drawn and again had an ABPM for 24 h. According to baseline ABPM, 11 subjects had controlled BP while 8 had uncontrolled BP. There were similar, significant increases in serum nitrate/nitrite in both groups. We observed little change in BP variables among controlled hypertensives. However, there were reductions in BP variables in uncontrolled hypertensives where decreases in nighttime DBP (-6 ± 4.8 mmHg), arterial stiffness (-0.08 ± 0.03 ambulatory arterial stiffness index) and LDL (-0.36 ± 0.42 mmol/L) reached significance (p = 003, 0.05 and 0.046, respectively). Our results support the existing data suggesting an anti-hypertensive effect of nitrate-containing beetroot juice, but only among those with uncontrolled hypertension.
Nitrate in groundwater of the United States, 1991-2003
Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.
2010-01-01
An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.
CRESSWELL, C F; HAGEMAN, R H; HEWITT, E J; HUCKLESBY, D P
1965-01-01
1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90-100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation-reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH- or NADPH-nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent K(m) for nitrite (1 mum) is substantially less than that for hydroxylamine, for which variable values between 0.05 and 0.9mm (mean 0.51 mm) have been observed. 8. The apparent K(m) values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7.5 mum respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms.
Cresswell, C. F.; Hageman, R. H.; Hewitt, E. J.; Hucklesby, D. P.
1965-01-01
1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms. PMID:14342247
Code of Federal Regulations, 2011 CFR
2011-07-01
... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...
Krom, M D; Ben David, A; Ingall, E D; Benning, L G; Clerici, S; Bottrell, S; Davies, C; Potts, N J; Mortimer, R J G; van Rijn, J
2014-06-01
Simultaneous removal of nitrogen and phosphorus by microbial biofilters has been used in a variety of water treatment systems including treatment systems in aquaculture. In this study, phosphorus, nitrate and sulfate cycling in the anaerobic loop of a zero-discharge, recirculating mariculture system was investigated using detailed geochemical measurements in the sludge layer of the digestion basin. High concentrations of nitrate and sulfate, circulating in the overlying water (∼15 mM), were removed by microbial respiration in the sludge resulting in a sulfide accumulation of up to 3 mM. Modelling of the observed S and O isotopic ratios in the surface sludge suggested that, with time, major respiration processes shifted from heterotrophic nitrate and sulfate reduction to autotrophic nitrate reduction. The much higher inorganic P content of the sludge relative to the fish feces is attributed to conversion of organic P to authigenic apatite. This conclusion is supported by: (a) X-ray diffraction analyses, which pointed to an accumulation of a calcium phosphate mineral phase that was different from P phases found in the feces, (b) the calculation that the pore waters of the sludge were highly oversaturated with respect to hydroxyapatite (saturation index = 4.87) and (c) there was a decrease in phosphate (and in the Ca/Na molar ratio) in the pore waters simultaneous with an increase in ammonia showing there had to be an additional P removal process at the same time as the heterotrophic breakdown of organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Helmers, M.; Zhou, X.; Qi, Z.; Christianson, R.; Pederson, C.
2011-12-01
Subsurface drainage systems are widely used throughout the upper Midwest corn-belt. While the use of these drainage systems has greatly increased crop production, they have also increased nitrate-nitrogen export to downstream waterbodies. As a result, there is a need to evaluate and implement management practices that have potential to reduce nitrate-nitrogen loss. A twenty year study in Iowa has shown that major factors in nitrate-nitrogen loss are land use and hydrology. Studies from north-central Iowa have also indicated that nitrogen application rate and to a lesser degree timing of nitrogen application important factors for nitrate-nitrogen loss. A four-year (2007-2010) drainage management study in southeast Iowa indicates that shallow and controlled drainage systems have potential to decrease subsurface drainage and thereby reduce nitrate-N loss from drain water but the level of implementation of controlled drainage may be limited by topography. Cropping practices through cover crops or perennial biomass crops have also been documented to have potential to reduce downstream nitrate-nitrogen export but the level of implementation may be limited by management and economic considerations. To achieve reduction goals for protection of local and regional water quality will require a combination of these practices at the landscape scale.
Production and consumption of nitric oxide by three methanotrophic bacteria.
Ren, T; Roy, R; Knowles, R
2000-09-01
We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N(2)O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 x 10(-17) mol of NO cell(-1) day(-1), mostly after a culture became O(2) limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O(2), and required CH(4). Denitrification (methanol-supported N(2)O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd(1) and Cu nitrite reductases, NO reductase, and N(2)O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O(2) and nitrate availability occur.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2014-12-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.
Anaerobic Nitrate-Dependent Metal Bio-Oxidation
NASA Astrophysics Data System (ADS)
Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.
2007-12-01
Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain TPSY, was also capable of nitrate- dependent U(IV) oxidation (8 μM over 24 hours, pseudo first order rate constant of 0.12 ± 0.02 hr-1) in washed cell suspensions. Further biochemical investigation of nitrate-dependent U(IV) oxidation in strain TPSY revealed the expression of several putative high molecular weight proteins specific to this metabolism. Together with the previously described metabolic ability of Geobacter metallireducens (Finneran et al. 2002) and Thiobacillus denitrificans (Beller 2005), these data indicate that anaerobic, metal oxidation may be a ubiquitous microbial metabolism.
NASA Astrophysics Data System (ADS)
Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.
2008-12-01
Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S/m), increased in the iron reducing column (0.2 S/m to 0.8 S/m) and increased markedly in the nitrate reducing column (0.3 S/m to 1.2 S/m). This runs counter to our expectations. We expected to see an increase in σ b as [Fe(II)] increased and a decrease in σ b as nitrate was removed from the columns. All three columns showed little or no IP response at the outset and developed negative chargeabilities over the course of the experiment (as great as -20 mV/V). These values are anomalous and difficult to interpret. SP signals show the most variable response. Initially all three columns had SP values at or very near 0 mV. SP for the nitrate reducing column remained constant around 0mV. The iron reducing column displayed an increasingly negative SP response for the first two months that became constant at about -200mV for the remainder of the experiment. The alternating redox column displayed an oscillating signal recording large positive values (~475 mV) when nitrate concentrations were low and returning to a baseline value (~160mV) when nitrate was introduced to the column. The results of these column experiments indicate that there is a link between microbial activity and geophysical signals and that further research is needed to better quantify these signals.
NASA Astrophysics Data System (ADS)
Korgel, Brian Allan
1997-11-01
Phosphatidylcholine vesicles provide reaction compartments for synthesis of size-quantized CdS nanocrystals of dimension predicted to within ±2 A based on initial encapsulated CdClsb2 concentration and vesicle diameter. Vesicle formation by detergent dialysis of phosphatidylcholine/hexylglucoside mixed micelles yields highly monodisperse lipid capsules within which monodisperse CdS nanoparticles are precipitated with sulfide. Size-quantized CdS nanocrystals, with diameters ranging from 20 to 60 A, have been produced with typical standard deviations about the mean diameter of ±8% as measured by transmission electron microscopy. By including ZnClsb2 or HgClsb2 in the dialyzate prior to vesicle formation, quantum-sized Znsb{y}Cdsb{1-y}S or Hgsb{y}Cdsb{1-y}S nanocrystal alloys with controlled stoichiometry are generated. Spectrophotometric and spectrofluorimetric measurements are consistent with highly crystalline, monodisperse particles with few core or surface defects. The alloyed nanocrystal spectra shift consistently with composition indicating a high degree of compositional control. Measured exciton energies for CdS show excellent agreement with data in the literature. The empirical pseudopotential model presented by Ramakrishna and Friesner for a cubic CdS lattice, correcting for experimentally measured lattice contractions, best fits the data. Size-quantized CdS nanocrystals serve as photocatalysts for nitrate reduction at neutral pH under conditions that mimic illumination by sunlight with overall product quantum yields of up to 4% for {˜}20 A, amine-terminated particles. Due to the effects of quantum confinement on electron and hole redox potentials, photocatalyzed nitrate reduction rates depend strongly on the particle size, and the fastest reduction rates are observed with the smallest nanocrystals. Using a Tafel plot and the empirical pseudopotential model to estimate electron redox potentials, the apparent electron transfer coefficient and the apparent standard rate constant is estimated at 0.23 and 4.0× 10sp{-12} cm/sec, respectively, for amine-terminated particles. Nitrate adsorption is important in this system and the effect on photoreduction rates is described well by a Langmuir-Hinschelwood expression. Nitrate reduction rates are reduced two-fold or more on negatively charged, carboxy-terminated nanocrystals that electrostatically repel nitrate. Reaction rates are additionally influenced by competetive chloride adsorption and surface charge modification due to solution pH.
Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary
del Barrio, Pilar; Ganju, Neil K.; Aretxabaleta, Alfredo L.; Hayn, Melanie; García, Andrés; Howarth, Robert W.
2014-01-01
Estuarine eutrophication has led to numerous ecological changes, including loss of seagrass beds. One potential cause of these losses is a reduction in light availability due to increased attenuation by phytoplankton. Future sea level rise will also tend to reduce light penetration and modify seagrass habitat. In the present study, we integrate a spectral irradiance model into a biogeochemical model coupled to the Regional Ocean Model System (ROMS). It is linked to a bio-optical seagrass model to assess potential seagrass habitat in a eutrophic estuary under future nitrate loading and sea-level rise scenarios. The model was applied to West Falmouth Harbor, a shallow estuary located on Cape Cod (Massachusetts) where nitrate from groundwater has led to eutrophication and seagrass loss in landward portions of the estuary. Measurements of chlorophyll, turbidity, light attenuation, and seagrass coverage were used to assess the model accuracy. Mean chlorophyll based on uncalibrated in-situ fluorometry varied from 28 μg L−1 at the landward-most site to 6.5 μg L−1 at the seaward site, while light attenuation ranged from 0.86 to 0.45 m-1. The model reproduced the spatial variability in chlorophyll and light attenuation with RMS errors of 3.72 μg L−1 and 0.07 m-1 respectively. Scenarios of future nitrate reduction and sea-level rise suggest an improvement in light climate in the landward basin with a 75% reduction in nitrate loading. This coupled model may be useful to assess habitat availability changes due to eutrophication and sediment resuspension and fully considers spatial variability on the tidal timescale.
Bievskiĭ, A N
1994-01-01
It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.
Characterization of Atmospheric Organic Nitrates in Particles
NASA Astrophysics Data System (ADS)
Bruns, E. A.; Alexander, M. L.; Perraud, V.; Yu, Y.; Ezell, M.; Johnson, S. N.; Zellenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.
2008-12-01
Aerosols in the atmosphere significantly affect climate, human health and visibility. Knowledge of aerosol composition is necessary to understand and then predict the specific impacts of aerosols in the atmosphere. It is known that organic nitrates are present in particles, but there is limited knowledge of the individual compounds and quantity. This is in part due to the lack of a wide variety of proven analytical techniques for particulate organic nitrates. In this study, several known organic nitrates, as well as those present in complex mixtures formed from oxidation of "Ñ-pinene, were studied using a variety of techniques. These include Fourier Transform infrared spectroscopy (FTIR) of samples collected by impaction on ZnSe discs. Samples were also collected on quartz fiber filters and the extracts analyzed by electrospray mass spectrometry (ESI- MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), HPLC-UV, LC-MS and GC-MS. In addition, real-time analysis was provided by SPLAT-II and aerosol mass spectrometry (AMS). FTIR analysis of particles collected on ZnSe discs provides information on the ratio of organic nitrate to total organic content, while the analysis of filter extracts allows identification of specific organic nitrates. These are compared to the particle mass spectrometry data and the implications for detecting and measuring particulate organic nitrate in air is discussed.
2011-12-01
of interest as a thermal energy storage material, due to its large specific and volumetric heats of fusion and its low melting temperature. Here, we...compound to water and octadecane, two other potential thermal energy storage materials. Furthermore, we examine the lithium nitrate-water phase diagram and...lithium nitrate trihydrate-lithium nitrate eutectic point (Hfus = 264 ± 2 J·g-1, Tm = 28.3 °C). 15. SUBJECT TERMS salt hydrate, thermal energy
CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE
Reinhart, G.M.; Collopy, T.J.
1962-11-13
A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)
Denitrification Temperature Dependence in Remote, Cold, and N-Poor Lake Sediments
NASA Astrophysics Data System (ADS)
Palacin-Lizarbe, Carlos; Camarero, Lluís.; Catalan, Jordi
2018-02-01
The reservoir size and pathway rates of the nitrogen (N) cycle have been deeply modified by the human enhancement of N fixation, atmospheric emissions, and climate warming. Denitrification (DEN) transforms nitrate into nitrogenous gas and thus removes reactive nitrogen (Nr) back to the atmospheric reservoir. There is still a rather limited knowledge of the denitrification rates and their temperature dependence across ecosystems; particularly, for the abundant cold and N-poor freshwater systems (e.g., Arctic and mountain lakes). We experimentally investigated the denitrification rates of mountain lake sediments by manipulating nitrate concentration and temperature on field collected cores. DEN rates were nitrate limited in field conditions and showed a large potential for an immediate DEN increase with both warming and higher Nr load. The estimated activation energy (Ea) for denitrification at nitrate saturation was 46 ± 7 kJ mol-1 (Q10 1.7 ± 0.4). The apparent Ea increased with nitrate (μM) limitation as Ea = 46 + 419 [NO3-]-1. Accordingly, we suggest that climate warming may have a synergistic effect with N emission reduction to readjusting the N cycle. Changes of nitrate availability might be more relevant than direct temperature effects on denitrification.
Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)
2014-01-01
Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311
Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James W.; Rodgers, John H.; Alley, Bethany
2013-08-08
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
Role of chemotaxis in the ecology of denitrifiers
NASA Technical Reports Server (NTRS)
Kennedy, M. J.; Lawless, J. G.
1985-01-01
It has been recognized that the process of denitrification represents a major sequence in the nitrogen cycle. It involves the anaerobic reduction of nitrate or nitrite to nitrous oxide or elemental nitrogen. This process is responsible for significant losses of nitrogen from agricultural soils. Up to now, little attention has been paid to the ecology of the organisms responsible for denitrification. It is pointed out that chemotaxis would probably offer a strong competitive mechanism for denitrifiers, since chemotaxis would allow denitrifiers to actively reach nitrate by directed motility, rather than by random movement or diffusion of nitrate. The present investigation was initiated to examine the chemotactic responses of several denitrifiers to nitrate and nitrite. Attention is given to bacterial strains, culture media and cell preparation, chemotaxis assays, and competition experiments. It was found that several denitrifiers, including P. aeruginosa, P. fluorescens, and P. Stutzeri, were strongly attracted to NO3(-) and NO2(-).
Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites.
Murphy, Anna E; Nizzoli, Daniele; Bartoli, Marco; Smyth, Ashley R; Castaldelli, Giuseppe; Anderson, Iris C
2018-02-01
As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~6 times more oxygen and excreted ~5 times more NH 4 + than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil
2014-01-01
Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827
Soot oxidation and NO{sub x} reduction over BaAl{sub 2}O{sub 4} catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, He; Li, Yingjie; Shangguan, Wenfeng
2009-11-15
This study addresses soot oxidation and NO{sub x} reduction over a BaAl{sub 2}O{sub 4} catalyst. By XRD analysis, the catalyst was shown to be of spinel structure. Temperature Programmed Oxidation (TPO) and Constant Temperature Oxidation (CTO) at 673 K show that the presence of O{sub 2} decreases the ignition temperature of soot, and it enhances the conversion of NO{sub x} to N{sub 2} and N{sub 2}O. The kinetic features of soot oxidation in the TPO test are similar to that in the TG-DTA analysis. Analysis by Diffuse Reflectance Fourier Infrared Transform Spectroscopy (DRIFTS) indicates that the nitrates formed from NO{submore » x} adsorption and the C(O) intermediates from soot oxidation are the key precursors of the redox process between soot and NO{sub x} over surfaces of the BaAl{sub 2}O{sub 4} catalyst. Moreover, DRIFTS tests suggest that nitrates act as the principal oxidants for C(O) oxidation, through which nitrates are reduced to N{sub 2} and N{sub 2}O. The O{sub 2} in the gas mixture presents a positive effect on the conversion of NO{sub x} to N{sub 2} and N{sub 2}O by promoting the oxidation of nitrites into nitrates species. (author)« less
NASA Astrophysics Data System (ADS)
Wendland, F.
2010-12-01
The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs have to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrate losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the good qualitative status of groundwater. The achievement of good qualitative status of groundwater bodies entails a particular challenge as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. We used an interdisciplinary model network to predict the nitrogen intakes into groundwater at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the reactive nitrate transport in the soil-groundwater system. In a first step the model is used to analyze the present situation using N surpluses from agriculture for the year 2003. In many region of the Weser basin, particularly in the northwestern part which is characterized by high livestock densities, predicted nitrate concentrations in percolation water exceed the EU groundwater quality standard of 50 mg/L by far. In a second step the temporal and spatial impacts of the common agricultural policy (CAP) of the EU, already implemented agri-environmental measures of the Federal States and the expected developments of agriculture were assessed with regard to both, groundwater quality in 2015 and the regional agricultural income. On average for the whole Weser basin, the reduction of nitrogen surpluses for agricultural areas leads to a decrease of nitrate concentrations in the leachate by about 10 mg NO3/L. In the agricultural intensive used regions much higher reductions in the order of 40 mg NO3/L may be expected. Using the environmental target value for groundwater, i.e. a concentration of 50 mg NO3/L in the leachate as a target for groundwater protection, the model results were used directly to identify those regions where additional agro-environmental reduction measures are required. There, a backward calculation allows the quantification of maximal permissible nitrogen surplus levels, which was used as a reference for the derivation of additional nitrogen reduction measures. It could be shown that a further reduction by ca. 20.000 t N/a (19%) is necessary to reach a nitrate concentration in groundwater of 50 mg/l. The related costs sum up to ca. 75 Mio €/a. The research work was carried out in the framework of the AGRUM Weser project which was funded on behalf of the German Federal Ministry of Food, Agriculture and Consumer protection (BMELV) and the River Basin Commission Weser (FGG).
Chitosan-Based Nanocomposite Beads for Drinking Water Production
NASA Astrophysics Data System (ADS)
Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD
2017-05-01
Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.
40 CFR 439.1 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... bacteria) and subsequently to nitrates (via Nitrobacter bacteria). Criteria for determining the... bacteria; and analyses of the nitrogen balance demonstrating a reduction in the concentration of ammonia or...
40 CFR 439.1 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bacteria) and subsequently to nitrates (via Nitrobacter bacteria). Criteria for determining the... bacteria; and analyses of the nitrogen balance demonstrating a reduction in the concentration of ammonia or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Dissolving Sulfite Subcategory § 430.44 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced... discharged in kgal per ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp...
Fluvial Transport and Processing of Sediment and Nutrients in Large Agricultural River Basins.
1982-02-01
glacial plains composed of ground moraine crossed by the Defiance, Fort Wayne, and Wabash end moraines (Figure 2). North of Tiffin and in several...clean out. Nitrate and Nitrite Nitrogen (automated cadmium reduction) Storet No. C0631 Prior to analysis by cadmium reduction from Method 353.2 from
The relation of ground-water quality to housing density, Cape Cod, Massachusetts
Persky, J.H.
1986-01-01
Correlation of median nitrate concentration in groundwater with housing density for 18 sample areas on Cape Cod yields a Pearson correlation coefficient of 0.802, which is significant at the 95 % confidence level. In five of nine sample areas where housing density is greater than one unit/acre, nitrate concentrations exceed 5 mg of nitrate/L (the Barnstable County planning goal for nitrate) in 25% of wells. Nitrate concentrations exceed 5 mg of nitrogen/L in 25% of wells in only one of nine sample areas where housing density is less than one unit/acre. Median concentrations of sodium and iron, and median levels of pH and specific conductance, are not significantly correlated with housing density. A computer generated map of nitrate shows a positive relation between nitrate concentration and housing density on Cape Cod. However, the presence of septage- or sewage-disposal sites and fertilizer use are also important factors that affect the nitrate concentration. A map of specific conductance also shows a positive relation to housing density, but little or no relation between housing density and sodium, ammonia, pH, or iron is apparent on the maps. Chemical analyses of samples collected from 3,468 private- and public-supply wells between January 1980 and June 1984 were used to examine the extent to which housing density determines water quality on Cape Cod, an area largely unsewered and underlain by a sole source aquifer. (Author 's abstract)
Shang, Yanan; Wang, Ziyang; Xu, Xing; Gao, Baoyu; Ren, Zhongfei
2018-08-01
Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong
2016-01-01
The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301
Wang, R; Crawford, N M
1996-01-01
Two mutations have been found in a gene (NRT2) of Arabidopsis thaliana that specifically impair constitutive, high-affinity nitrate uptake. These mutants were selected for resistance to 0.1 mM chlorate in the absence of nitrate. Progency from one of the backcrossed mutants showed no constitutive uptake of nitrate below 0.5 mM at pH 7.0 in liquid culture (that is, within 30 min of initial exposure to nitrate). All other uptake activities measured (high-affinity phosphate and sulfate uptake, inducible high-affinity nitrate uptake, and constitutive low-affinity nitrate uptake) were present or nearly normal in the backcrossed mutant. Electrophysiological analysis of individual root cells showed that the nrt2 mutant showed little response to 0.25 mM of nitrate, whereas NRT2 wild-type cells showed an initial depolarization followed by recovery. At 10 mM of nitrate both the mutant and wild-type cells displayed similar, strong electrical responses. These results indicate that NRT2 is a critical and perhaps necessary gene for constitutive, high-affinity nitrate uptake in Arabidopsis, but not for inducible, high-affinity nor constitutive, low-affinity nitrate uptake. Thus, these systems are genetically distinct. PMID:8799195
Jovanovski, Elena; Bosco, Laura; Khan, Kashif; Au-Yeung, Fei; Ho, Hoang; Zurbau, Andreea; Jenkins, Alexandra L.
2015-01-01
Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP. PMID:26251834
Fertilizer Induced Nitrate Pollution in RCW: Calibration of the DNDC Model
NASA Astrophysics Data System (ADS)
El Hailouch, E.; Hornberger, G.; Crane, J. W.
2012-12-01
Fertilizer is widely used among urban and suburban households due to the socially driven attention of homeowners to lawn appearance. With high nitrogen content, fertilizer considerably impacts the environment through the emission of the highly potent greenhouse gas nitrous oxide and the leaching of nitrate. Nitrate leaching is significantly important because fertilizer sourced nitrate that is partially leached into soil causes groundwater pollution. In an effort to model the effect of fertilizer application on the environment, the geochemical DeNitrification-DeComposition model (DNDC) was previously developed to quantitatively measure the effects of fertilizer use. The purpose of this study is to use this model more effectively on a large scale through a measurement based calibration. For this reason, leaching was measured and studied on 12 sites in the Richland Creek Watershed (RCW). Information about the fertilization and irrigation regimes of these sites was collected, along with lysimeter readings that gave nitrate fluxes in the soil. A study of the amount and variation in nitrate leaching with respect to the varying geographical locations, time of the year, and fertilization and irrigation regimes has lead to a better understanding of the driving forces behind nitrate leaching. Quantifying the influence of each of these parameters allows for a more accurate calibration of the model thus permitting use that extends beyond the RCW. Measurement of nitrate leaching on a statewide or nationwide level in turn will help guide efforts in the reduction of groundwater pollution caused by fertilizer.
Effects of a Short-Term High-Nitrate Diet on Exercise Performance
Porcelli, Simone; Pugliese, Lorenzo; Rejc, Enrico; Pavei, Gaspare; Bonato, Matteo; Montorsi, Michela; La Torre, Antonio; Rasica, Letizia; Marzorati, Mauro
2016-01-01
It has been reported that nitrate supplementation can improve exercise performance. Most of the studies have used either beetroot juice or sodium nitrate as a supplement; there is lack of data on the potential ergogenic benefits of an increased dietary nitrate intake from a diet based on fruits and vegetables. Our aim was to assess whether a high-nitrate diet increases nitric oxide bioavailability and to evaluate the effects of this nutritional intervention on exercise performance. Seven healthy male subjects participated in a randomized cross-over study. They were tested before and after 6 days of a high (HND) or control (CD) nitrate diet (~8.2 mmol∙day−1 or ~2.9 mmol∙day−1, respectively). Plasma nitrate and nitrite concentrations were significantly higher in HND (127 ± 64 µM and 350 ± 120 nM, respectively) compared to CD (23 ± 10 µM and 240 ± 100 nM, respectively). In HND (vs. CD) were observed: (a) a significant reduction of oxygen consumption during moderate-intensity constant work-rate cycling exercise (1.178 ± 0.141 vs. 1.269 ± 0.136 L·min−1); (b) a significantly higher total muscle work during fatiguing, intermittent sub-maximal isometric knee extension (357.3 ± 176.1 vs. 253.6 ± 149.0 Nm·s·kg−1); (c) an improved performance in Repeated Sprint Ability test. These findings suggest that a high-nitrate diet could be a feasible and effective strategy to improve exercise performance. PMID:27589795
Zhao, Liping; Meng, Qingxiang; Li, Yan; Wu, Hao; Huo, Yunlong; Zhang, Xinzhuang; Zhou, Zhenming
2018-03-20
This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P < 0.01; P < 0.01; P = 0.01). The 1NR and 2NR regimens numerically reduced the methanogen population by 4.47% and 25.82% respectively. However, there was no significant difference observed between treatments. The alpha and beta diversity of the methanogen community was not significantly changed by nitrate either. However, the relative abundance of the methanogen genera was greatly changed. Methanosphaera (P L = 0.0033) and Methanimicrococcus (P L = 0.0113) abundance increased linearly commensurate with increasing nitration levels, while Methanoplanus abundance was significantly decreased (P L = 0.0013). The population of Methanoculleus, the least frequently identified genus in this study, exhibited quadratic growth from 0% to 2% when nitrate was added (P Q = 0.0140). Correlation analysis found that methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.
Mercury speciation and mobilization in a wastewater-contaminated groundwater plume
Lamborg, Carl H.; Kent, Doug B.; Swarr, Gretchen J.; Munson, Kathleen M.; Kading, Tristan; O'Connor, Alison E.; Fairchild, Gillian M.; LeBlanc, Denis R.; Wiatrowski, Heather A.
2013-01-01
We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg(II) to Hg0 within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone.
Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy
2010-01-01
To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.
Reduction and determination of dixanthogens.
Prasad, M S
1971-06-01
A convenient method for the reduction and determination of dixaathogen has been developed. It is based on the quantitative reaction of dixanthogen with zinc amalgam to form xanthate; the latter can be determined by iodine titration, potentiometric titration with silver nitrate or by spectrophotometry at 310 mmu. Dixanthogen can be determined in mixtures containing xanthate, by titration of aliquots with and without reduction. Higher dixanthogens can also be determined, and flotation liquors analysed.
Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA
Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.
2001-01-01
Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A strong vertical redox gradient was observed, with nitrate-limited denitrification potential in deeper sediment and both nitrification and denitrification potential in shallower sediment. Since nitrogen cycling is strongly affected by redox conditions, nitrogen cycling in the hyporheic zone of this large-river system likely is affected by dynamics of ground water/surface water interactions that control fluxes of nitrogen and other redox species to hyporheic zone sediment.
THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES
COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES