Sample records for specific numerical examples

  1. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  2. Towards a wave-extraction method for numerical relativity. III. Analytical examples for the Beetle-Burko radiation scalar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burko, Lior M.; Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899; Baumgarte, Thomas W.

    2006-01-15

    Beetle and Burko recently introduced a background-independent scalar curvature invariant for general relativity that carries information about the gravitational radiation in generic spacetimes, in cases where such radiation is incontrovertibly defined. In this paper we adopt a formalism that only uses spatial data as they are used in numerical relativity and compute the Beetle-Burko radiation scalar for a number of analytical examples, specifically linearized Einstein-Rosen cylindrical waves, linearized quadrupole waves, the Kerr spacetime, Bowen-York initial data, and the Kasner spacetime. These examples illustrate how the Beetle-Burko radiation scalar can be used to examine the gravitational wave content of numerically generatedmore » spacetimes, and how it may provide a useful diagnostic for initial data sets.« less

  3. Two-way ANOVA Problems with Simple Numbers.

    ERIC Educational Resources Information Center

    Read, K. L. Q.; Shihab, L. H.

    1998-01-01

    Describes how to construct simple numerical examples in two-way ANOVAs, specifically randomized blocks, balanced two-way layouts, and Latin squares. Indicates that working through simple numerical problems is helpful to students meeting a technique for the first time and should be followed by computer-based analysis of larger, real datasets when…

  4. Elemental Speciation as an Essential Part of Formulating Exposure Assessments that Support Risk Estimates

    EPA Science Inventory

    The chemical form specific toxicity of arsenic has caused scientists to move toward species specific assessments with an emphasis on biological relevance of an exposure. For example, numerous studies on the occurrence of arsenic in rice have documented the exposure potential fro...

  5. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  6. The analysis of delays in simulator digital computing systems. Volume 1: Formulation of an analysis approach using a central example simulator model

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.; Whitbeck, R. F.; Schulman, T. M.

    1980-01-01

    The effects of spurious delays in real time digital computing systems are examined. Various sources of spurious delays are defined and analyzed using an extant simulator system as an example. A specific analysis procedure is set forth and four cases are viewed in terms of their time and frequency domain characteristics. Numerical solutions are obtained for three single rate one- and two-computer examples, and the analysis problem is formulated for a two-rate, two-computer example.

  7. Interdisciplinary and multilevel optimum design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  8. FORTRAN program for calculating total efficiency - specific speed characteristics of centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    A computer program for predicting design point specific speed - efficiency characteristics of centrifugal compressors is presented with instructions for its use. The method permits rapid selection of compressor geometry that yields maximum total efficiency for a particular application. A numerical example is included to demonstrate the selection procedure.

  9. High order parallel numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.

    1992-01-01

    The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.

  10. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  11. On the Modeling of Shells in Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.

    2000-01-01

    Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.

  12. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  13. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  14. An approach to achieve progress in spacecraft shielding

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.

    2004-01-01

    Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.

  15. Pricing Policies in Academic Libraries.

    ERIC Educational Resources Information Center

    King, Donald W.

    1979-01-01

    Economic considerations of user charges are presented along with economic principles and implications of charging for specific library materials and services. Alternative pricing policies and their implications are described, and, to illustrate the complexity and subtle effects of charging, a numerical example for interlibrary loans is also given.…

  16. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems

    DTIC Science & Technology

    2011-02-23

    INTRODUCTION 35 2.2 GENERAL MODEL SETUP 36 2.2.1 Co-Simulation Principles 36 2.2.2 Double pendulum : a simple example 38 2.2.3 Description of numerical... pendulum sample problem 45 2.3 DISCUSSION OF APPROACH WITH RESPECT TO PROPOSED SUBTASKS 49 2.4 RESULTS DISCUSSION AND FUTURE WORK 49 TASK 3...Kim and Praehofer 2000]. 2.2.2 Double pendulum : a simple example In order to be able to evaluate co-simulation principles, specifically an

  17. Northeast Artificial Intelligence Consortium (NAIC). Volume 15. Strategies for Coupling Symbolic and Numerical Computation in Knowledge Base Systems

    DTIC Science & Technology

    1990-12-01

    Implementation of Coupled System 18 15.4. CASE STUDIES & IMPLEMENTATION EXAMPLES 24 15.4.1. The Case Studies of Coupled System 24 15.4.2. Example: Coupled System...occurs during specific phases of the problem-solving process. By decomposing the coupling process into its component layers we effectively study the nature...by the qualitative model, appropriate mathematical model is invoked. 5) The results are verified. If successful, stop. Else go to (2) and use an

  18. Giving you the business - Competitive pricing of selected Predicasts' databases

    NASA Technical Reports Server (NTRS)

    Jack, Robert F.

    1987-01-01

    The pricing policies of different data-base services offering Predicast data bases are examined from a user perspective. The services carrying these data bases are listed; the problems introduced by varying exchange rates and seemingly idiosyncratic price structures are discussed; and numerous specific examples are given.

  19. Numerical implementation of a cold-ion, Boltzmann-electron model for nonplanar plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Holgate, J. T.; Coppins, M.

    2018-04-01

    Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.

  20. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  1. Comments of statistical issue in numerical modeling for underground nuclear test monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, W.L.; Anderson, K.K.

    1993-03-01

    The Symposium concluded with prepared summaries by four experts in the involved disciplines. These experts made no mention of statistics and/or the statistical content of issues. The first author contributed an extemporaneous statement at the Symposium because there are important issues associated with conducting and evaluating numerical modeling that are familiar to statisticians and often treated successfully by them. This note expands upon these extemporaneous remarks. Statistical ideas may be helpful in resolving some numerical modeling issues. Specifically, we comment first on the role of statistical design/analysis in the quantification process to answer the question ``what do we know aboutmore » the numerical modeling of underground nuclear tests?`` and second on the peculiar nature of uncertainty analysis for situations involving numerical modeling. The simulations described in the workshop, though associated with topic areas, were basically sets of examples. Each simulation was tuned towards agreeing with either empirical evidence or an expert`s opinion of what empirical evidence would be. While the discussions were reasonable, whether the embellishments were correct or a forced fitting of reality is unclear and illustrates that ``simulation is easy.`` We also suggest that these examples of simulation are typical and the questions concerning the legitimacy and the role of knowing the reality are fair, in general, with respect to simulation. The answers will help us understand why ``prediction is difficult.``« less

  2. System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.; Hanson, John M. (Technical Monitor)

    2002-01-01

    Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.

  3. Deep Revision: A Guide for Teachers, Students, and Other Writers.

    ERIC Educational Resources Information Center

    Willis, Meredith Sue

    Suggesting that all phases of writing, including revision, have a great deal in common across age groups and levels of accomplishment, this book presents 196 specific revision exercises, as well as numerous examples from students and from literature. The first part of the book looks at how the ability to revise develops, and at how people can use…

  4. Biomimicry in textiles: past, present and potential. An overview

    PubMed Central

    Eadie, Leslie; Ghosh, Tushar K.

    2011-01-01

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. PMID:21325320

  5. Biomimicry in textiles: past, present and potential. An overview.

    PubMed

    Eadie, Leslie; Ghosh, Tushar K

    2011-06-06

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. © 2011 The Royal Society

  6. New approaches for the design and the fabrication of pixelated filters

    NASA Astrophysics Data System (ADS)

    Lumeau, J.; Lemarquis, F.; Begou, T.; Mathieu, K.; Savin De Larclause, I.; Berthon, J.

    2017-09-01

    Multispectral or hyperspectral images allow acquiring new information that could not be acquired using colored images and, for example, identifying chemical species on an observed scene using specific highly selective thin film filters. Those images are commonly used in numerous fields, e.g. in agriculture or homeland security and are of prime interest for imaging systems for onboard scientific applications (e.g. for planetology).

  7. Extension of rezoned Eulerian-Lagrangian method to astrophysical plasma applications

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, Murray

    1993-01-01

    The rezoned Eulerian-Lagrangian procedure developed by Brackbill and Pracht (1973), which is limited to simple configurations of the magnetic fields, is modified in order to make it applicable to astrophysical plasma. For this purpose, two specific methods are introduced, which make it possible to determine the initial field topology for which no analytical expressions are available. Numerical examples illustrating these methods are presented.

  8. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  9. Robust functional regression model for marginal mean and subject-specific inferences.

    PubMed

    Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo

    2017-01-01

    We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.

  10. PFEM-based modeling of industrial granular flows

    NASA Astrophysics Data System (ADS)

    Cante, J.; Dávalos, C.; Hernández, J. A.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.-Å.

    2014-05-01

    The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response—varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.

  11. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamaeki, M.

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  12. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process

    NASA Astrophysics Data System (ADS)

    Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo

    2017-12-01

    A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.

  13. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  14. Process Guide for Deburring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, David L.

    This report is an updated and consolidated view of the current deburring processes at the Kansas City Plant (KCP). It includes specific examples of current burr problems and the methods used for their detection. Also included is a pictorial review of the large variety of available deburr tools, along with a complete numerical listing of existing tools and their descriptions. The process for deburring all the major part feature categories is discussed.

  15. Numerical Analysis of the Photo-Dissociation/Radical Oxidation of Formaldehyde by Ultraviolet Light in a Photolytic Reactor

    DTIC Science & Technology

    1993-12-01

    airstream. For example, the photolytic reactor may not provide any additional benefit in a pollution control device which treats specific emissions ...Atomic Hydrogen Reactions (H*): HHO ~hv -H*+HC0* ),nm 1.30E-Ss -1 [PlA] Atkinson H2O2+hv -.H*+HO2* Xnm 0, (4b - 0) [PSC] Atkinson H202+hv

  16. Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.

    PubMed

    Lange, K

    1982-03-01

    In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.

  17. Germline Stem Cells: Origin and Destiny

    PubMed Central

    Lehmann, Ruth

    2012-01-01

    Germline stem cells are key to genome transmission to future generations. Over recent years, there have been numerous insights into the regulatory mechanisms that govern both germ cell specification and the maintenance of the germline in adults. Complex regulatory interactions with both the niche and the environment modulate germline stem cell function. This perspective highlights some examples of this regulation to illustrate the diversity and complexity of the mechanisms involved. PMID:22704513

  18. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  19. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    NASA Astrophysics Data System (ADS)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  20. Fractal attractors and singular invariant measures in two-sector growth models with random factor shares

    NASA Astrophysics Data System (ADS)

    La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio

    2018-05-01

    We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.

  1. Vision in flying insects.

    PubMed

    Egelhaaf, Martin; Kern, Roland

    2002-12-01

    Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.

  2. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  3. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.

    PubMed

    Kappa, Jan; Schmitt, Klemens M; Rahm, Marco

    2017-08-21

    Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

  4. On contact problems of elasticity theory

    NASA Technical Reports Server (NTRS)

    Kalandiya, A. I.

    1986-01-01

    Certain contact problems are reviewed in the two-dimensional theory of elasticity when round bodies touch without friction along most of the boundary and, therefore, Herz' hypothesis on the smallness of the contact area cannot be used. Fundamental equations were derived coinciding externally with the equation in the theory of a finite-span wing with unkown parameter. These equations are solved using Multhopp's well-known technique, and numerical calculations are performed in specific examples.

  5. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  6. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  7. Feature-based data assimilation in geophysics

    NASA Astrophysics Data System (ADS)

    Morzfeld, Matthias; Adams, Jesse; Lunderman, Spencer; Orozco, Rafael

    2018-05-01

    Many applications in science require that computational models and data be combined. In a Bayesian framework, this is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary because these data are redundant. It is numerically difficult to assimilate data in chaotic systems. It is often impossible to assimilate data of a complex system into a low-dimensional model. As a specific example, consider a low-dimensional stochastic model for the dipole of the Earth's magnetic field, while other field components are ignored in the model. The above issues can be addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data. Our goal is to contribute to a fundamental understanding of such a feature-based approach that allows us to assimilate selected aspects of data into models. We also explain how the feature-based approach can be interpreted as a method for reducing an effective dimension and derive new noise models, based on perturbed observations, that lead to computationally efficient solutions. Numerical implementations of our ideas are illustrated in four examples.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintermeyer, Niklas; Winters, Andrew R., E-mail: awinters@math.uni-koeln.de; Gassner, Gregor J.

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving schememore » we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.« less

  9. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  10. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    PubMed

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  11. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  12. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Estimating survival rates with time series of standing age‐structure data

    USGS Publications Warehouse

    Udevitz, Mark S.; Gogan, Peter J.

    2012-01-01

    It has long been recognized that age‐structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age‐specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age‐specific survival rates can be estimated using techniques such as inverse methods that combine time series of age‐structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age‐structure data with other demographic data to provide explicit maximum likelihood estimators of age‐specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age‐structure data.

  14. Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Assi, I. A.; Sous, A. J.

    2018-05-01

    The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

  15. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  16. 3D Systems' Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education

    PubMed Central

    Andrews, Mike; Weislogel, Mark; Moeck, Peter; Stone-Sundberg, Jennifer; Birkes, Derek; Hoffert, Madeline Paige; Lindeman, Adam; Morrill, Jeff; Fercak, Ondrej; Friedman, Sasha; Gunderson, Jeff; Ha, Anh; McCollister, Jack; Chen, Yongkang; Geile, John; Wollman, Andrew; Attari, Babak; Botnen, Nathan; Vuppuluri, Vasant; Shim, Jennifer; Kaminsky, Werner; Adams, Dustin; Graft, John

    2014-01-01

    Abstract Since the inception of 3D printing, an evolutionary process has taken place in which specific user and customer needs have crossed paths with the capabilities of a growing number of machines to create value-added businesses. Even today, over 30 years later, the growth of 3D printing and its utilization for the good of society is often limited by the various users' understanding of the technology for their specific needs. This article presents an overview of current 3D printing technologies and shows numerous examples from a multitude of fields from manufacturing to education. PMID:28473997

  17. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Techniques for Computation of Frequency Limited H∞ Norm

    NASA Astrophysics Data System (ADS)

    Haider, Shafiq; Ghafoor, Abdul; Imran, Muhammad; Fahad Mumtaz, Malik

    2018-01-01

    Traditional H ∞ norm depicts peak system gain over infinite frequency range, but many applications like filter design, model order reduction and controller design etc. require computation of peak system gain over specific frequency interval rather than infinite range. In present work, new computationally efficient techniques for computation of H ∞ norm over frequency limited interval are proposed. Proposed techniques link norm computation with maximum singular value of the system in limited frequency interval. Numerical examples are incorporated to validate the proposed concept.

  19. Spectral risk measures: the risk quadrangle and optimal approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouri, Drew P.

    We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.

  20. Positioning your business in the marketplace.

    PubMed

    Lachman, V D

    1996-01-01

    Marketing the quality, cost-effective service delivered by advanced practice nurses (APNs) requires savvy in marketing principles. The basic principles of market segmentation: target (niche) marketing; and the four Ps of marketing mix--product, price, promotion, and place. The marketing process is presented along with examples. APNs' ability to successfully market their skills requires that they "position" themselves in the prospective buyer's mind. After a brief description of the customer's mind-set, the focus shifts specifically to promotion--marketing in action. Numerous no-cost/low-cost ideas are included.

  1. Balneology: Spa Science

    NASA Astrophysics Data System (ADS)

    Williams, Kathryn R.

    2008-02-01

    In his 1938 Sigma Xi address (subsequently published as J. Chem. Educ. 1939 , 16 , 440-448 ), Oskar Baudisch emphasizes the importance of balneology, the therapeutic use of baths and natural mineral waters. Although some favorable health effects can be attributed to the psychological influences of the spa resort, Baudisch argues that scientific investigations can reveal how the chemical and physical properties of the springs promote specific cures. He gives numerous examples of previous scientific findings, including his own applications of coordination theory and isotope ratio analysis.

  2. Spectral risk measures: the risk quadrangle and optimal approximation

    DOE PAGES

    Kouri, Drew P.

    2018-05-24

    We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.

  3. Table look-up estimation of signal and noise parameters from quantized observables

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1986-01-01

    A table look-up algorithm for estimating underlying signal and noise parameters from quantized observables is examined. A general mathematical model is developed, and a look-up table designed specifically for estimating parameters from four-bit quantized data is described. Estimator performance is evaluated both analytically and by means of numerical simulation, and an example is provided to illustrate the use of the look-up table for estimating signal-to-noise ratios commonly encountered in Voyager-type data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalugin, A. V., E-mail: Kalugin-AV@nrcki.ru; Tebin, V. V.

    The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.

  5. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  6. Computing the optimal path in stochastic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora

    2016-08-15

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less

  7. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  8. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  9. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  10. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  11. Nonlinear constitutive theory for turbine engine structural analysis

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    A number of viscoplastic constitutive theories and a conventional constitutive theory are evaluated and compared in their ability to predict nonlinear stress-strain behavior in gas turbine engine components at elevated temperatures. Specific application of these theories is directed towards the structural analysis of combustor liners undergoing transient, cyclic, thermomechanical load histories. The combustor liner material considered in this study is Hastelloy X. The material constants for each of the theories (as a function of temperature) are obtained from existing, published experimental data. The viscoplastic theories and a conventional theory are incorporated into a general purpose, nonlinear, finite element computer program. Several numerical examples of combustor liner structural analysis using these theories are given to demonstrate their capabilities. Based on the numerical stress-strain results, the theories are evaluated and compared.

  12. Numerical algebraic geometry for model selection and its application to the life sciences

    PubMed Central

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.

    2016-01-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697

  13. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  14. A numerical identifiability test for state-space models--application to optimal experimental design.

    PubMed

    Hidalgo, M E; Ayesa, E

    2001-01-01

    This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.

  15. Preparing Colorful Astronomical Images and Illustrations

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Frattare, L. M.

    2001-12-01

    We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.

  16. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  17. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less

  18. Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Banik, Subrata; Kowalski, Karol

    2016-10-28

    The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.

  19. The dynamics and control of large flexible space structures. Part B: Development of continuum model and computer simulation

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; James, P. K.

    1978-01-01

    The equations of motion of an arbitrary flexible body in orbit were derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit was modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexible vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion was decoupled from the pitch motion. However, for small values of the ratio and small amplitude pitch motion, the elastic motion was governed by a Hill's 3 term equation. Numerical simulation of the equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order nonlinear equations of motion for a long flexible beam in orbit were performed. The effect of varying the initial conditions and the number of modes was demonstrated.

  20. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  1. UDU/T/ covariance factorization for Kalman filtering

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1980-01-01

    There has been strong motivation to produce numerically stable formulations of the Kalman filter algorithms because it has long been known that the original discrete-time Kalman formulas are numerically unreliable. Numerical instability can be avoided by propagating certain factors of the estimate error covariance matrix rather than the covariance matrix itself. This paper documents filter algorithms that correspond to the covariance factorization P = UDU(T), where U is a unit upper triangular matrix and D is diagonal. Emphasis is on computational efficiency and numerical stability, since these properties are of key importance in real-time filter applications. The history of square-root and U-D covariance filters is reviewed. Simple examples are given to illustrate the numerical inadequacy of the Kalman covariance filter algorithms; these examples show how factorization techniques can give improved computational reliability.

  2. Teaching Mathematics with Technology: Numerical Relationships.

    ERIC Educational Resources Information Center

    Bright, George W.

    1989-01-01

    Developing numerical relationships with calculators is emphasized. Calculators furnish some needed support for students as they investigate the value of fractions as the numerators or denominators change. An example with Logo programing for computers is also included. (MNS)

  3. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  4. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  5. Programmable DNA switches and their applications.

    PubMed

    Harroun, Scott G; Prévost-Tremblay, Carl; Lauzon, Dominic; Desrosiers, Arnaud; Wang, Xiaomeng; Pedro, Liliana; Vallée-Bélisle, Alexis

    2018-03-08

    DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.

  6. Scheduling Projects with Multiskill Learning Effect

    PubMed Central

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost. PMID:24683355

  7. Particle-based and meshless methods with Aboria

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Bruna, Maria

    Aboria is a powerful and flexible C++ library for the implementation of particle-based numerical methods. The particles in such methods can represent actual particles (e.g. Molecular Dynamics) or abstract particles used to discretise a continuous function over a domain (e.g. Radial Basis Functions). Aboria provides a particle container, compatible with the Standard Template Library, spatial search data structures, and a Domain Specific Language to specify non-linear operators on the particle set. This paper gives an overview of Aboria's design, an example of use, and a performance benchmark.

  8. Scheduling projects with multiskill learning effect.

    PubMed

    Zha, Hong; Zhang, Lianying

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost.

  9. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    PubMed

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  10. Control design for future agile fighters

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1991-01-01

    The CRAFT control design methodology is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The approach combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, and a graphical approach for representing control design metrics that captures numerous design goals in one composite illustration. The methodology makes use of control design metrics from four design objective areas, namely, control power, robustness, agility, and flying qualities. An example of the CRAFT methodology as well as associated design issues are presented.

  11. Acoustoelasticity

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1976-01-01

    Internal sound fields are considered. Specifically, the interaction between the (acoustic) sound pressure field and the (elastic) flexible wall of an enclosure is discussed. Such problems frequently arise when the vibrating walls of a transportation vehicle induce a significant internal sound field. Cabin noise in various flight vehicles and the internal sound field in an automobile are representative examples. A mathematical model, simplified solutions, and numerical results and comparisons with representative experimental data are briefly considered. An overall conclusion is that reasonable grounds for optimism exist with respect to available theoretical models and their predictive capability.

  12. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  13. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  14. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  15. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  16. Numerical computation of Pop plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less

  17. Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2018-06-01

    The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.

  18. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  19. Specificity of pyrometamorphic minerals of the ellestadite group

    NASA Astrophysics Data System (ADS)

    Zateeva, S. N.; Sokol, E. V.; Sharygin, V. V.

    2007-12-01

    Numerous rare and new mineral species are synthesized during the process of pyrometamorphism (Gross, 1977; Chesnokov et al., 1987; Chesnokov and Shcherbakova, 1991; Chesnokov, 1999), including silicooxides, chloride-, fluoride, and sulfate-silicates, carbonate-sulfides, chloride-oxides, etc. Having made sense of numerous findings of compounds of this type, Chesnokov (1999) set forth the concept of the crystallochemical transition at extreme temperatures attaining 1200-1450°C in pyrogenic systems. First of all, intertype transitions (oxygen-bearing-oxygen-free) and interclass transitions (chloride-silicate, carbonate-sulfide, chlorideoxide) are realized. The specificity of pyrometamorphic mineral assemblages consists in the abundance of silicates with additional anions (F-, Cl-, (CO3)2-) (Sokol et al., 2005). Minerals of the ellestadite group Ca10(SiO4)3 - x (SO4)3 - x (PO4)2 x (OH,F,Cl)2 are a spectacular example of these features. In the general case, they are silicate-sulfate-phosphate-hydroxide-chlorides-fluorides. The detailed description of these minerals based on the study of the original collection of pyrometamorphic minerals is presented in this paper.

  20. Knowledge-Directed Theory Revision

    NASA Astrophysics Data System (ADS)

    Ali, Kamal; Leung, Kevin; Konik, Tolga; Choi, Dongkyu; Shapiro, Dan

    Using domain knowledge to speed up learning is widely accepted but theory revision of such knowledge continues to use general syntactic operators. Using such operators for theory revision of teleoreactive logic programs is especially expensive in which proof of a top-level goal involves playing a game. In such contexts, one should have the option to complement general theory revision with domain-specific knowledge. Using American football as an example, we use Icarus' multi-agent teleoreactive logic programming ability to encode a coach agent whose concepts correspond to faults recognized in execution of the play and whose skills correspond to making repairs in the goals of the player agents. Our results show effective learning using as few as twenty examples. We also show that structural changes made by such revision can produce performance gains that cannot be matched by doing only numeric optimization.

  1. pFUnit 3.0 Tutorial Advanced

    NASA Technical Reports Server (NTRS)

    Clune, Tom

    2014-01-01

    This tutorial will introduce Fortran developers to unit-testing and test-driven development (TDD) using pFUnit. As with other unit-testing frameworks, pFUnit, simplifies the process of writing, collecting, and executing tests while providing clear diagnostic messages for failing tests. pFUnit specifically targets the development of scientific-technical software written in Fortran and includes customized features such as: assertions for multi-dimensional arrays, distributed (MPI) and thread-based (OpenMP) parallellism, and flexible parameterized tests.These sessions will include numerous examples and hands-on exercises that gradually build in complexity. Attendees are expected to have working knowledge of F90, but familiarity with object-oriented syntax in F2003 and MPI will be of benefit for the more advanced examples. By the end of the tutorial the audience should feel comfortable in applying pFUnit within their own development environment.

  2. Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongling; Xiao, Aiguo; Li, Xueyang

    2013-02-01

    Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau IA-IA¯ and Lobatto IIIA-IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α∗ such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.

  3. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    NASA Astrophysics Data System (ADS)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yulong; Shu, Chi-wang; Noelle, Sebastian

    This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving-water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium.

  5. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  6. A systematic approach to numerical dispersion in Maxwell solvers

    NASA Astrophysics Data System (ADS)

    Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt

    2018-03-01

    The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.

  7. Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.

    PubMed

    Picotti, Stefano; Carcione, José M

    2017-07-01

    The acoustic behavior of porous media can be simulated more realistically using a stress-strain relation based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate wave propagation is a rough approximation, while the Cole-Cole model provides an optimal description of the physics. Here, a time-domain algorithm is proposed based on the Grünwald-Letnikov numerical approximation of the fractional derivative involved in the time-domain representation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier pseudospectral method. The numerical solution is successfully tested against an analytical solution. The methodology is applied to a model of saline aquifer, where carbon dioxide (CO 2 ) is injected. To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully assessed for the specific case. The simulated test considers a possible leakage in the overburden, above the caprock, where the sandstone is partially saturated with gas and brine. The numerical examples illustrate the implementation of the theory.

  8. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.

    PubMed

    Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye

    2003-10-01

    A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.

  9. Generalized query-based active learning to identify differentially methylated regions in DNA.

    PubMed

    Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J

    2013-01-01

    Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.

  10. Numerical systems on a minicomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Roy Leonard

    1973-02-01

    This thesis defines the concept of a numerical system for a minicomputer and provides a description of the software and computer system configuration necessary to implement such a system. A procedure for creating a numerical system from a FORTRAN program is developed and an example is presented.

  11. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  12. Descriptive statistics: the specification of statistical measures and their presentation in tables and graphs. Part 7 of a series on evaluation of scientific publications.

    PubMed

    Spriestersbach, Albert; Röhrig, Bernd; du Prel, Jean-Baptist; Gerhold-Ay, Aslihan; Blettner, Maria

    2009-09-01

    Descriptive statistics are an essential part of biometric analysis and a prerequisite for the understanding of further statistical evaluations, including the drawing of inferences. When data are well presented, it is usually obvious whether the author has collected and evaluated them correctly and in keeping with accepted practice in the field. Statistical variables in medicine may be of either the metric (continuous, quantitative) or categorical (nominal, ordinal) type. Easily understandable examples are given. Basic techniques for the statistical description of collected data are presented and illustrated with examples. The goal of a scientific study must always be clearly defined. The definition of the target value or clinical endpoint determines the level of measurement of the variables in question. Nearly all variables, whatever their level of measurement, can be usefully presented graphically and numerically. The level of measurement determines what types of diagrams and statistical values are appropriate. There are also different ways of presenting combinations of two independent variables graphically and numerically. The description of collected data is indispensable. If the data are of good quality, valid and important conclusions can already be drawn when they are properly described. Furthermore, data description provides a basis for inferential statistics.

  13. XML Based Markup Languages for Specific Domains

    NASA Astrophysics Data System (ADS)

    Varde, Aparna; Rundensteiner, Elke; Fahrenholz, Sally

    A challenging area in web based support systems is the study of human activities in connection with the web, especially with reference to certain domains. This includes capturing human reasoning in information retrieval, facilitating the exchange of domain-specific knowledge through a common platform and developing tools for the analysis of data on the web from a domain expert's angle. Among the techniques and standards related to such work, we have XML, the eXtensible Markup Language. This serves as a medium of communication for storing and publishing textual, numeric and other forms of data seamlessly. XML tag sets are such that they preserve semantics and simplify the understanding of stored information by users. Often domain-specific markup languages are designed using XML, with a user-centric perspective. Standardization bodies and research communities may extend these to include additional semantics of areas within and related to the domain. This chapter outlines the issues to be considered in developing domain-specific markup languages: the motivation for development, the semantic considerations, the syntactic constraints and other relevant aspects, especially taking into account human factors. Illustrating examples are provided from domains such as Medicine, Finance and Materials Science. Particular emphasis in these examples is on the Materials Markup Language MatML and the semantics of one of its areas, namely, the Heat Treating of Materials. The focus of this chapter, however, is not the design of one particular language but rather the generic issues concerning the development of domain-specific markup languages.

  14. A design approach for improving the performance of single-grid planar retarding potential analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. L.; Earle, G. D.

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these gridmore » errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.« less

  15. Observing System Forecast Experiments at the DAO

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2001-01-01

    Since the advent of meteorological satellites in the 1960's, numerous experiments have been conducted in order to evaluate the impact of these and other data on atmospheric analysis and prediction. Such studies have included both OSE'S and OSSE's. The OSE's were conducted to evaluate the impact of specific observations or classes of observations on analyses and forecasts. Such experiments have been performed for selected types of conventional data and for various satellite data sets as they became available. (See for example the 1989 ECMWF/EUMETSAT workshop proceedings on "The use of satellite data in operational numerical weather prediction" and the references contained therein.) The ODYSSEY were conducted to evaluate the potential for future observing systems to improve Numerical Weather Prediction NWP and to plan for the Global Weather Experiment and more recently for EVANS (Atlas et al., 1985a; Arnold and Day, 1986; Hoffman et al., 1990). In addition, OSSE's have been run to evaluate trade-offs in the design of observing systems and observing networks (Atlas and Emmitt, 1991; Rohaly and Krishnamurti, 1993), and to test new methodology for data assimilation (Atlas and Bloom, 1989).

  16. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  17. Improving the physiological realism of experimental models

    PubMed Central

    Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.

    2016-01-01

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507

  18. Asymptotics for metamaterials and photonic crystals

    PubMed Central

    Antonakakis, T.; Craster, R. V.; Guenneau, S.

    2013-01-01

    Metamaterial and photonic crystal structures are central to modern optics and are typically created from multiple elementary repeating cells. We demonstrate how one replaces such structures asymptotically by a continuum, and therefore by a set of equations, that captures the behaviour of potentially high-frequency waves propagating through a periodic medium. The high-frequency homogenization that we use recovers the classical homogenization coefficients in the low-frequency long-wavelength limit. The theory is specifically developed in electromagnetics for two-dimensional square lattices where every cell contains an arbitrary hole with Neumann boundary conditions at its surface and implemented numerically for cylinders and split-ring resonators. Illustrative numerical examples include lensing via all-angle negative refraction, as well as omni-directive antenna, endoscope and cloaking effects. We also highlight the importance of choosing the correct Brillouin zone and the potential of missing interesting physical effects depending upon the path chosen. PMID:23633908

  19. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  20. Stabilization of dynamics of oscillatory systems by nonautonomous perturbation.

    PubMed

    Lucas, Maxime; Newman, Julian; Stefanovska, Aneta

    2018-04-01

    Synchronization and stability under periodic oscillatory driving are well understood, but little is known about the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter space. Using analytical and numerical methods that provide information on time-variable dynamical properties, we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.

  1. Stabilization of dynamics of oscillatory systems by nonautonomous perturbation

    NASA Astrophysics Data System (ADS)

    Lucas, Maxime; Newman, Julian; Stefanovska, Aneta

    2018-04-01

    Synchronization and stability under periodic oscillatory driving are well understood, but little is known about the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter space. Using analytical and numerical methods that provide information on time-variable dynamical properties, we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.

  2. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    NASA Astrophysics Data System (ADS)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  3. A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.

    2018-01-01

    We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.

  4. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Blackwell; K. W. Wisian; M. C. Richards

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less

  5. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGES

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  6. OSCAR a Matlab based optical FFT code

    NASA Astrophysics Data System (ADS)

    Degallaix, Jérôme

    2010-05-01

    Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.

  7. Karst flash floods: an example from the Dinaric karst (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T.

    2006-03-01

    Flash floods constitute one of the deadliest and costliest natural disasters worldwide. This paper explains the karst flash flood phenomenon, which represents a special kind of flash flood. As the majority of flash floods karst flash floods are caused by intensive short-term precipitation in an area whose surface rarely exceeds a few square kilometres. The characteristics of all flash floods are their short duration, small areal extent, high flood peaks and rapid flows, and heavy loss of life and property. Karst flash floods have specific characteristics due to special conditions for water circulation, which exist in karst terrains. During karst flash floods a sudden rise of groundwater levels occurs, which causes the appearance of numerous, unexpected, abundant and temporary karst springs. This paper presents in detail an example of a karst flash flood in the Marina bay (Dinaric karst region of Croatia), which occurred in December 2004.

  8. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  9. Atmospheric guidance law for planar skip trajectories

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Mccreary, F. A.

    1985-01-01

    The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.

  10. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  11. On Global Optimal Sailplane Flight Strategy

    NASA Technical Reports Server (NTRS)

    Sander, G. J.; Litt, F. X.

    1979-01-01

    The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.

  12. Gated Silica Mesoporous Materials in Sensing Applications.

    PubMed

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols.

  13. Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing.

    PubMed

    Žuvela-Aloise, M

    2017-03-01

    The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.

  14. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  15. Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, M.

    2017-03-01

    The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.

  16. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  17. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  18. Effective Mechanical Properties of Fuzzy Fiber Composites

    DTIC Science & Technology

    2012-03-16

    fibers’’. Numerical examples of compositesmade of epoxy resin , carbonfibers and carbon nanotubes are presented and the impact of the carbon nanotubes...allows us to compute effective properties of composites with multiple types of ??fuzzy fibers??. Numerical examples of composites made of epoxy resin ...length (Fig. 1 in [42]). The CNTs have inter- nal radius 0.51 nm and external radius 0.85 nm. The ‘‘fuzzy fibers’’ are embedded in EPIKOTE 862 resin . The

  19. From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit.

    PubMed

    Hsu, Liyi; Dupré, Matthieu; Ndao, Abdoulaye; Kanté, Boubacar

    2017-04-15

    Metasurfaces are promising tools toward novel designs for flat optics applications. As such, their quality and tolerance to fabrication imperfections need to be evaluated with specific tools. However, most such tools rely on the geometrical optics approximation and are not straightforwardly applicable to metasurfaces. In this Letter, we introduce and evaluate for metasurfaces parameters such as intercept factor and slope error usually defined for solar concentrators in the realm of ray-optics. After proposing definitions valid in physical optics, we put forward an approach to calculate them. As examples, we design three different concentrators based on three specific unit cells and assess them numerically. The concept allows for comparison of the efficiency of the metasurfaces and their sensitivities to fabrication imperfections and will be critical for practical systems implementation.

  20. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery

    PubMed Central

    Kesharwani, Prashant; Iyer, Arun K.

    2015-01-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  1. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  2. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    NASA Astrophysics Data System (ADS)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  3. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    NASA Technical Reports Server (NTRS)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency of the planetary body blocking the line of sight is a condition upon which the power being drawn is set to zero. It remains at zero until the observation objective is again in view. Computing the total power drawn by the instrument over a period of days or weeks can now take such factors into consideration. What makes the architecture especially powerful is that the scripting module can look ahead and behind in simulation time, and this temporal versatility can be leveraged in displays such as x-y plots. For example, a plot of a satellite s altitude as a function of time can take changes to the orbit into account.

  4. The Size Congruity Effect: Is Bigger Always More?

    ERIC Educational Resources Information Center

    Santens, Seppe; Verguts, Tom

    2011-01-01

    When comparing digits of different physical sizes, numerical and physical size interact. For example, in a numerical comparison task, people are faster to compare two digits when their numerical size (the relevant dimension) and physical size (the irrelevant dimension) are congruent than when they are incongruent. Two main accounts have been put…

  5. Setting numerical population objectives for priority landbird species

    Treesearch

    Kenneth V. Rosenberg; Peter J. Blancher

    2005-01-01

    Following the example of the North American Waterfowl Management Plan, deriving numerical population estimates and conservation targets for priority landbird species is considered a desirable, if not necessary, element of the Partners in Flight planning process. Methodology for deriving such estimates remains in its infancy, however, and the use of numerical population...

  6. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  7. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  8. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  9. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  10. Quasi-generalized variables

    NASA Technical Reports Server (NTRS)

    Baumgarten, J.; Ostermeyer, G. P.

    1986-01-01

    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.

  11. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  12. Dynamics of social contagions with memory of nonredundant information

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Tang, Ming; Zhang, Hai-Feng; Lai, Ying-Cheng

    2015-07-01

    A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.

  13. The Temporal Morphology of Infrasound Propagation

    NASA Astrophysics Data System (ADS)

    Drob, Douglas P.; Garcés, Milton; Hedlin, Michael; Brachet, Nicolas

    2010-05-01

    Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (D rob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the atmosphere and infrasound propagation models. The statistical behaviors or occurrence frequency of various propagation configurations are discussed. Representative examples of some of these propagation configuration states are also shown.

  14. Independent origins of neurons and synapses: insights from ctenophores

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2016-01-01

    There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once. PMID:26598724

  15. On the numerical modeling of sliding beams: A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc

    2017-11-01

    The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.

  16. Monitoring to Protect the Character of Individual Wildernesses

    Treesearch

    David N. Cole

    2006-01-01

    A primary goal of wilderness stewardship is to protect individual wilderness areas from most anthropogenic change. Numerous agents of change threaten to degrade wilderness character. These agents of change are both internal (for example, grazing) and external (for example, polluting industries) to wilderness. They can be activities (for example, recreation use) or the...

  17. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  18. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    NASA Astrophysics Data System (ADS)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  19. A new localization set for generalized eigenvalues.

    PubMed

    Gao, Jing; Li, Chaoqian

    2017-01-01

    A new localization set for generalized eigenvalues is obtained. It is shown that the new set is tighter than that in (Numer. Linear Algebra Appl. 16:883-898, 2009). Numerical examples are given to verify the corresponding results.

  20. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  1. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  2. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  3. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  4. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  5. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  6. Journal of Aeronautics.

    DTIC Science & Technology

    1982-07-21

    aerodynamic tool for design of elastic aircraft. Several numerical examples are given and some dynamical problems of elastic aircraft are also discussed...Qiangang, Wu Changlin, Jian Zheng Northwestern Polytechnical University Abstract: A numerical metbod,6* ted for predicting the aerodynamic characte- ristics... Numerical value calculation method is one important means of the present research on elastic aircraft pneumatic characteristics. Be- cause this

  7. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    PubMed

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  9. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  10. The Interaction-Activity Connection

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1996-01-01

    A review is presented of the numerous studies that have been undertaken to investigate the likely interaction-activity connection among galaxies. Both observational evidence and theoretical supporting models are reviewed. Some specific examples of "interactive" galaxies from the author's own research are presented: (a) the collision-induced AGN (Active Galactic Nuclei) activity in the radio jet source 3C278; and (b) the collision-induced starburst activity in the spectacular "Cartwheel" ring galaxy. Some comments are offered concerning some of the more promising theoretical investigations that are now taking place. A few words of warning are also offered about the possible misinterpretation of putative collision-induced morphologies among some galaxy samples.

  11. Convergence of high order perturbative expansions in open system quantum dynamics.

    PubMed

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-14

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  12. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  13. Predictions of nucleation theory applied to Ehrenfest thermodynamic transitions

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.; Campbell, K. W.

    1984-01-01

    A modified nucleation theory is used to determine a critical nucleus size and a critical activation-energy barrier for second-order Ehrenfest thermodynamic transitions as functions of the degree of undercooling, the interfacial energy, the heat-capacity difference, the specific volume of the transformed phase, and the equilibrium transition temperature. The customary approximations of nucleation theory are avoided by expanding the Gibbs free energy in a Maclaurin series and applying analytical thermodynamic expressions to evaluate the expansion coefficients. Nonlinear correction terms for first-order-transition calculations are derived, and numerical results are presented graphically for water and polystyrene as examples of first-order and quasi-second-order transitions, respectively.

  14. Design of robust iterative learning control schemes for systems with polytopic uncertainties and sector-bounded nonlinearities

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2017-01-01

    This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.

  15. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects

    PubMed Central

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993

  16. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.

    PubMed

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.

  17. Variance-reduced simulation of lattice discrete-time Markov chains with applications in reaction networks

    NASA Astrophysics Data System (ADS)

    Maginnis, P. A.; West, M.; Dullerud, G. E.

    2016-10-01

    We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.

  18. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  19. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  20. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation.

    PubMed

    Bergeron, Dominic; Tremblay, A-M S

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ^{2} with respect to α, and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  1. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic; Tremblay, A.-M. S.

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ2 with respect to α , and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  2. Analysis of periodically excited non-linear systems by a parametric continuation technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, C.; Singh, R.

    1995-07-01

    The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.

  3. On numerically pluricanonical cyclic coverings

    NASA Astrophysics Data System (ADS)

    Kulikov, V. S.; Kharlamov, V. M.

    2014-10-01

    We investigate some properties of cyclic coverings f\\colon Y\\to X (where X is a complex surface of general type) branched along smooth curves B\\subset X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p_g=0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates.

  4. Factorization and reduction methods for optimal control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Powers, R. K.

    1985-01-01

    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.

  5. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  6. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  7. The Forced Soft Spring Equation

    ERIC Educational Resources Information Center

    Fay, T. H.

    2006-01-01

    Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…

  8. An iterative transformation procedure for numerical solution of flutter and similar characteristics-value problems

    NASA Technical Reports Server (NTRS)

    Gossard, Myron L

    1952-01-01

    An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.

  9. Numerical analysis for distributed-order differential equations

    NASA Astrophysics Data System (ADS)

    Diethelm, Kai; Ford, Neville J.

    2009-03-01

    In this paper we present and analyse a numerical method for the solution of a distributed-order differential equation of the general form where m is a positive real number and where the derivative is taken to be a fractional derivative of Caputo type of order r. We give a convergence theory for our method and conclude with some numerical examples.

  10. Nonclassicality thresholds for multiqubit states: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  11. BOOK REVIEW: Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3Numerical Recipes in C++: The Art of Scientific Computing (2nd edn) Numerical Recipes Example Book (C++) (2nd edn) Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version

    NASA Astrophysics Data System (ADS)

    Press, William H.; Teukolsky, Saul A.; Vettering, William T.; Flannery, Brian P.

    2003-05-01

    The two Numerical Recipes books are marvellous. The principal book, The Art of Scientific Computing, contains program listings for almost every conceivable requirement, and it also contains a well written discussion of the algorithms and the numerical methods involved. The Example Book provides a complete driving program, with helpful notes, for nearly all the routines in the principal book. The first edition of Numerical Recipes: The Art of Scientific Computing was published in 1986 in two versions, one with programs in Fortran, the other with programs in Pascal. There were subsequent versions with programs in BASIC and in C. The second, enlarged edition was published in 1992, again in two versions, one with programs in Fortran (NR(F)), the other with programs in C (NR(C)). In 1996 the authors produced Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing as a supplement, called Volume 2, with the original (Fortran) version referred to as Volume 1. Numerical Recipes in C++ (NR(C++)) is another version of the 1992 edition. The numerical recipes are also available on a CD ROM: if you want to use any of the recipes, I would strongly advise you to buy the CD ROM. The CD ROM contains the programs in all the languages. When the first edition was published I bought it, and have also bought copies of the other editions as they have appeared. Anyone involved in scientific computing ought to have a copy of at least one version of Numerical Recipes, and there also ought to be copies in every library. If you already have NR(F), should you buy the NR(C++) and, if not, which version should you buy? In the preface to Volume 2 of NR(F), the authors say 'C and C++ programmers have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons will be amply repaid in the future as C and C++ eventually develop standard parallel extensions'. In the preface and introduction to NR(C++), the authors point out some of the problems in the use of C++ in scientific computing. I have not found any mention of parallel computing in NR(C++). Fortran has quite a lot going for it. As someone who has used it in most of its versions from Fortran II, I have seen it develop and leave behind other languages promoted by various enthusiasts: who now uses Algol or Pascal? I think it unlikely that C++ will disappear: it was devised as a systems language, and can also be used for other purposes such as scientific computing. It is possible that Fortran will disappear, but Fortran has the strengths that it can develop, that there are extensive Fortran subroutine libraries, and that it has been developed for parallel computing. To argue with programmers as to which is the best language to use is sterile. If you wish to use C++, then buy NR(C++), but you should also look at volume 2 of NR(F). If you are a Fortran programmer, then make sure you have NR(F), volumes 1 and 2. But whichever language you use, make sure you have one version or the other, and the CD ROM. The Example Book provides listings of complete programs to run nearly all the routines in NR, frequently based on cases where an anlytical solution is available. It is helpful when developing a new program incorporating an unfamiliar routine to see that routine actually working, and this is what the programs in the Example Book achieve. I started teaching computational physics before Numerical Recipes was published. If I were starting again, I would make heavy use of both The Art of Scientific Computing and of the Example Book. Every computational physics teaching laboratory should have both volumes: the programs in the Example Book are included on the CD ROM, but the extra commentary in the book itself is of considerable value. P Borcherds

  12. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  13. Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel

    2016-01-01

    To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  15. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    PubMed

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  16. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer

    PubMed Central

    Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688

  17. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  18. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE PAGES

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    2017-06-22

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  19. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  20. How to perform a cost-effectiveness analysis with surrogate endpoint: renal denervation in patients with resistant hypertension (DENERHTN) trial as an example.

    PubMed

    Bulsei, Julie; Darlington, Meryl; Durand-Zaleski, Isabelle; Azizi, Michel

    2018-04-01

    Whilst much uncertainty exists as to the efficacy of renal denervation (RDN), the positive results of the DENERHTN study in France confirmed the interest of an economic evaluation in order to assess efficiency of RDN and inform local decision makers about the costs and benefits of this intervention. The uncertainty surrounding both the outcomes and the costs can be described using health economic methods such as the non-parametric bootstrap. Internationally, numerous health economic studies using a cost-effectiveness model to assess the impact of RDN in terms of cost and effectiveness compared to antihypertensive medical treatment have been conducted. The DENERHTN cost-effectiveness study was the first health economic evaluation specifically designed to assess the cost-effectiveness of RDN using individual data. Using the DENERHTN results as an example, we provide here a summary of the principle methods used to perform a cost-effectiveness analysis.

  1. Teaching strategies to facilitate breast cancer screening by African-American women.

    PubMed

    Gibson, Lynette M

    2008-12-01

    The objective of this paper is to report on the recent literature concerning coverage of breast cancer epidemiology, the barriers to breast cancer screening, and the strategies to facilitate screening by African-American women. Based on these findings, the author suggests culturally appropriate techniques to be used to promote breast cancer screening in African-American women. Barriers to breast cancer screening in African-American women include emotional reasons, spiritual/religious reasons, fatalism, logistic concerns, lack of knowledge, and lack of follow-up by health-care professionals. Numerous strategies that have been targeted toward African-American women are reported. These include storytelling, witnessing, and testimonies; providing social support and having social support networks; and conducting multifaceted programs that include culturally specific breast health information. Based on the literature reviewed, the author suggests some examples of creative and culturally appropriate techniques that have been implemented with African-American women and that have resulted in positive feedback. These examples include the use of testimonies, photographs, prose, narratives, poetry, and quotations.

  2. Pharmacogenetics Informed Decision Making in Adolescent Psychiatric Treatment: A Clinical Case Report

    PubMed Central

    Smith, Teri; Sharp, Susan; Manzardo, Ann M.; Butler, Merlin G.

    2015-01-01

    Advances made in genetic testing and tools applied to pharmacogenetics are increasingly being used to inform clinicians in fields such as oncology, hematology, diabetes (endocrinology), cardiology and expanding into psychiatry by examining the influences of genetics on drug efficacy and metabolism. We present a clinical case example of an adolescent male with anxiety, attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder who did not tolerate numerous medications and dosages over several years in attempts to manage his symptoms. Pharmacogenetics testing was performed and DNA results on this individual elucidated the potential pitfalls in medication use because of specific pharmacodynamic and pharmacokinetic differences specifically involving polymorphisms of genes in the cytochrome p450 enzyme system. Future studies and reports are needed to further illustrate and determine the type of individualized medicine approach required to treat individuals based on their specific gene patterns. Growing evidence supports this biological approach for standard of care in psychiatry. PMID:25710722

  3. Design of 3-D Printed Concentric Tube Robots.

    PubMed

    Morimoto, Tania K; Okamura, Allison M

    2016-12-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm -1 , which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

  4. Some Interesting Applications of Probabilistic Techiques in Structural Dynamic Analysis of Rocket Engines

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.

    2014-01-01

    Numerical and Analytical methods developed to determine damage accumulation in specific engine components when speed variation included. Dither Life Ratio shown to be well over factor of 2 for specific example. Steady-State assumption shown to be accurate for most turbopump cases, allowing rapid calculation of DLR. If hot-fire speed data unknown, Monte Carlo method developed that uses speed statistics for similar engines. Application of techniques allow analyst to reduce both uncertainty and excess conservatism. High values of DLR could allow previously unacceptable part to pass HCF criteria without redesign. Given benefit and ease of implementation, recommend that any finite life turbomachine component analysis adopt these techniques. Probability Values calculated, compared, and evaluated for several industry-proposed methods for combining random and harmonic loads. Two new excel macros written to calculate combined load for any specific probability level. Closed form Curve fits generated for widely used 3(sigma) and 2(sigma) probability levels. For design of lightweight aerospace components, obtaining accurate, reproducible, statistically meaningful answer critical.

  5. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  6. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  7. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  8. Determination of stresses in gas-turbine disks subjected to plastic flow and creep

    NASA Technical Reports Server (NTRS)

    Millenson, M B; Manson, S S

    1948-01-01

    A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.

  9. Fluid Stochastic Petri Nets: Theory, Applications, and Solution

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.

    1996-01-01

    In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.

  10. Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1982-01-01

    Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.

  11. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.

    PubMed

    Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo

    2016-05-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

  12. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules

    PubMed Central

    Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo

    2015-01-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866

  13. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  14. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  15. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  16. Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.

    2001-05-01

    The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.

  17. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.

  18. Negative specific heat with trapped ultracold quantum gases

    NASA Astrophysics Data System (ADS)

    Strzys, M. P.; Anglin, J. R.

    2014-01-01

    The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.

  19. Naturally Occurring Canine Invasive Urinary Bladder Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs.

    PubMed

    Fulkerson, Christopher M; Dhawan, Deepika; Ratliff, Timothy L; Hahn, Noah M; Knapp, Deborah W

    2017-01-01

    Genomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and immune cell response) critical to predict success or failure of emerging therapies in humans. There is growing evidence, however, that dogs with specific forms of naturally occurring cancer can serve as highly relevant animal models to complement traditional models. Invasive urinary bladder cancer (invasive urothelial carcinoma (InvUC)) in dogs, for example, closely mimics the cancer in humans in pathology, molecular features, biological behavior including sites and frequency of distant metastasis, and response to chemotherapy. Genomic analyses are defining further intriguing similarities between InvUC in dogs and that in humans. Multiple canine clinical trials have been completed, and others are in progress with the aim of translating important findings into humans to increase the success rate of human trials, as well as helping pet dogs. Examples of successful targeted therapy studies and the challenges to be met to fully utilize naturally occurring dog models of cancer will be reviewed.

  20. Naturally Occurring Canine Invasive Urinary Bladder Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs

    PubMed Central

    Fulkerson, Christopher M.; Ratliff, Timothy L.; Hahn, Noah M.

    2017-01-01

    Genomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and immune cell response) critical to predict success or failure of emerging therapies in humans. There is growing evidence, however, that dogs with specific forms of naturally occurring cancer can serve as highly relevant animal models to complement traditional models. Invasive urinary bladder cancer (invasive urothelial carcinoma (InvUC)) in dogs, for example, closely mimics the cancer in humans in pathology, molecular features, biological behavior including sites and frequency of distant metastasis, and response to chemotherapy. Genomic analyses are defining further intriguing similarities between InvUC in dogs and that in humans. Multiple canine clinical trials have been completed, and others are in progress with the aim of translating important findings into humans to increase the success rate of human trials, as well as helping pet dogs. Examples of successful targeted therapy studies and the challenges to be met to fully utilize naturally occurring dog models of cancer will be reviewed. PMID:28487862

  1. Diseases in marine invertebrates associated with mariculture and commercial fisheries

    NASA Astrophysics Data System (ADS)

    Sweet, Michael J.; Bateman, Kelly S.

    2015-10-01

    Diseases in marine invertebrates are increasing in both frequency and intensity around the globe. Diseases in individuals which offer some commercial value are often well documented and subsequently well studied in comparison to those wild groups offering little commercial gain. This is particularly the case with those associated with mariculture or the commercial fisheries. Specifically, these include many Holothuroidea, and numerous crustacea and mollusca species. Pathogens/parasites consisting of both prokaryotes and eukaryotes from all groups have been associated with diseases from such organisms, including bacteria, viruses, fungi and protozoa. Viral pathogens in particular, appear to be an increasingly important group and research into this group will likely highlight a larger number of diseases and pathogens being described in the near future. Interestingly, although there are countless examples of the spread of disease usually associated with transportation of specific infected hosts for development of aquaculture practices, this process appears to be continuing with no real sign of effective management and mitigation strategies being implicated. Notably, even in well developed countries such as the UK and the US, even though live animal trade may be well managed, the transport of frozen food appears to be less well so and as evidence suggests, even these to have the potential to transmit pathogens when used as a food source for example.

  2. Reprint of 'Diseases in marine invertebrates associated with mariculture and commercial fisheries'

    NASA Astrophysics Data System (ADS)

    Sweet, Michael J.; Bateman, Kelly S.

    2016-07-01

    Diseases in marine invertebrates are increasing in both frequency and intensity around the globe. Diseases in individuals which offer some commercial value are often well documented and subsequently well studied in comparison to those wild groups offering little commercial gain. This is particularly the case with those associated with mariculture or the commercial fisheries. Specifically, these include many Holothuroidea, and numerous crustacea and mollusca species. Pathogens/parasites consisting of both prokaryotes and eukaryotes from all groups have been associated with diseases from such organisms, including bacteria, viruses, fungi and protozoa. Viral pathogens in particular, appear to be an increasingly important group and research into this group will likely highlight a larger number of diseases and pathogens being described in the near future. Interestingly, although there are countless examples of the spread of disease usually associated with transportation of specific infected hosts for development of aquaculture practices, this process appears to be continuing with no real sign of effective management and mitigation strategies being implicated. Notably, even in well developed countries such as the UK and the US, even though live animal trade may be well managed, the transport of frozen food appears to be less well so and as evidence suggests, even these to have the potential to transmit pathogens when used as a food source for example.

  3. Fuel Consumption Reduction and Weight Estimate of an Intercooled-Recuperated Turboprop Engine

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Ingenito, Antonella; Gamma, Fausto

    2012-09-01

    The introduction of intercooling and regeneration in a gas turbine engine can lead to performance improvement and fuel consumption reduction. Moreover, as first consequence of the saved fuel, also the pollutant emission can be greatly reduced. Turboprop seems to be the most suitable gas turbine engine to be equipped with intercooler and heat recuperator thanks to the relatively small mass flow rate and the small propulsion power fraction due to the exhaust nozzle. However, the extra weight and drag due to the heat exchangers must be carefully considered. An intercooled-recuperated turboprop engine is studied by means of a thermodynamic numeric code that, computing the thermal cycle, simulates the engine behavior at different operating conditions. The main aero engine performances, as specific power and specific fuel consumption, are then evaluated from the cycle analysis. The saved fuel, the pollution reduction, and the engine weight are then estimated for an example case.

  4. Microbiota as a mediator of cancer progression and therapy.

    PubMed

    Pope, Jillian L; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Microbiota as a mediator of cancer progression and therapy

    PubMed Central

    Pope, Jillian L.; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. PMID:27554797

  6. Arithmetic Procedures are Induced from Examples.

    DTIC Science & Technology

    1985-08-13

    concrete numerals (eg. coins. Dienes blocks, poker chips. Montessori rods etc Analogy is included as a third hypothesis even though it is not particularly...collections of coins. Diennes blocks. Montessori rods and so forth. This is a mapping between two kinds of numerals. and not two procedures Later. this

  7. Creating Poetry.

    ERIC Educational Resources Information Center

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  8. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    NASA Astrophysics Data System (ADS)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  9. Verification of Gyrokinetic codes: theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia

    2016-10-01

    In fusion plasmas the strong magnetic field allows the fast gyro motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the consequent transport. We present a new and generic theoretical framework and specific numerical applications to test the validity and the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The indirect verification of numerical scheme is proposed via the Benchmark process. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC), and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations using the generic variational formulation. Then, we derive and include the models implemented in ORB5 and GENE inside this hierarchy. At the computational level, detailed verification of global electromagnetic test cases based on the CYCLONE are considered, including a parametric β-scan covering the transition between the ITG to KBM and the spectral properties at the nominal β value.

  10. Entanglement entropy of dispersive media from thermodynamic entropy in one higher dimension.

    PubMed

    Maghrebi, M F; Reid, M T H

    2015-04-17

    A dispersive medium becomes entangled with zero-point fluctuations in the vacuum. We consider an arbitrary array of material bodies weakly interacting with a quantum field and compute the quantum mutual information between them. It is shown that the mutual information in D dimensions can be mapped to classical thermodynamic entropy in D+1 dimensions. As a specific example, we compute the mutual information both analytically and numerically for a range of separation distances between two bodies in D=2 dimensions and find a logarithmic correction to the area law at short separations. A key advantage of our method is that it allows the strong subadditivity property to be easily verified.

  11. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.

    PubMed

    Lipparini, Filippo; Barone, Vincenzo

    2011-11-08

    We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.

  12. Transformation of the optical vortex dipole by an astigmatic lens

    NASA Astrophysics Data System (ADS)

    Yan, Hongwei; Lü, Baida

    2009-06-01

    The transformation of the optical vortex dipole (OVD) by an astigmatic lens is studied. The explicit propagation expression of the OVD nested in a Gaussian beam is derived and used to analytically determine the position of the OVD after the passage through the astigmatic lens. The transformation by an aberration-free lens is treated as a special case. It is shown that, depending on the propagation distance, waist width, off-axis distance and astigmatic coefficient, the motion, annihilation and revival of the OVD and the inversion of the topological charge may take place. Specifically, the creation of two OVDs may appear under certain conditions. The results are illustrated by numerical examples.

  13. Systems biology: the case for a systems science approach to diabetes.

    PubMed

    Petrasek, Danny

    2008-01-01

    The unprecedented accumulation of biological data in recent decades has underscored the need to organize and integrate the massive collection of information. In addition, there is rising agreement among biologists that a complete understanding of a single cell will not lead directly to a complete understanding of a system of cells. The success of a systems science approach in engineering and physics may be of great value in the evolution of biological science. This article reviews some examples that suggest the importance of a systems biology approach and, in addition, advance one specific systems science principle, the conservation of uncertainty, which may give insight into the emergent behavior of numerous biological and physiological phenomena.

  14. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  15. The Biochemistry of Memory: The Twenty-Six Year Journey of a ‘New and Specific Hypothesis’

    PubMed Central

    Baudry, Michel; Bi, Xiaoning; Gall, Christine; Lynch, Gary

    2010-01-01

    This Special Issue of Neurobiology of Learning and Memory dedicated to Dr. Richard Thompson to celebrate his 80th birthday and his numerous contributions to the field of learning and memory gave us the opportunity to revisit the hypothesis we proposed more than 25 years ago regarding the biochemistry of learning and memory. This review summarizes our early 1980s hypothesis and then describes how it was tested and modified over the years following its introduction. We then discuss the current status of the hypothesis and provide some examples of how it has led to unexpected insights into the memory problems that accompany a broad range of neuropsychiatric disorders. PMID:21134478

  16. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    PubMed

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  17. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    NASA Astrophysics Data System (ADS)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  18. Robustness of Flexible Systems With Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    2000-01-01

    Robustness of flexible systems in the presence of model uncertainties at the component level is considered. Specifically, an approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the component level is presented. The synthesis of the components is based on a modifications of a controls-based algorithm for component mode synthesis. The formulation deals first with robustness of synthesized flexible systems. It is then extended to deal with global (non-synthesized ) dynamic models with component-level uncertainties by projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated docking problem is worked out to demonstrate the feasibility of the proposed approach.

  19. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  20. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  1. Finite element analysis of hysteresis effects in piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  2. Diagnosing Cognitive Errors: Statistical Pattern Classification and Recognition Approach

    DTIC Science & Technology

    1985-01-01

    often produces several different erroneous rules. For example, when adding two fractions with different denominators, many students add the numerators ...common denominator and add the numerators . As listed in Tatsuoka (1984a), there are eleven different erroneous rules which result from a misconception...the score of five. These patterns correspond to different values of 42 (Tatsuoka, 1985) The numerator of 42 is divided into two parts in Equation (5

  3. Boundary acquisition for setup of numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less

  4. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  5. Applications of patient-specific 3D printing in medicine.

    PubMed

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  6. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues

    PubMed Central

    Gasser, T. Christian; Bellomo, Facundo J.

    2016-01-01

    Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data. PMID:27009177

  7. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues.

    PubMed

    Comellas, Ester; Gasser, T Christian; Bellomo, Facundo J; Oller, Sergio

    2016-03-01

    Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data. © 2016 The Author(s).

  8. Classical and all-floating FETI methods for the simulation of arterial tissues

    PubMed Central

    Augustin, Christoph M.; Holzapfel, Gerhard A.; Steinbach, Olaf

    2015-01-01

    High-resolution and anatomically realistic computer models of biological soft tissues play a significant role in the understanding of the function of cardiovascular components in health and disease. However, the computational effort to handle fine grids to resolve the geometries as well as sophisticated tissue models is very challenging. One possibility to derive a strongly scalable parallel solution algorithm is to consider finite element tearing and interconnecting (FETI) methods. In this study we propose and investigate the application of FETI methods to simulate the elastic behavior of biological soft tissues. As one particular example we choose the artery which is – as most other biological tissues – characterized by anisotropic and nonlinear material properties. We compare two specific approaches of FETI methods, classical and all-floating, and investigate the numerical behavior of different preconditioning techniques. In comparison to classical FETI, the all-floating approach has not only advantages concerning the implementation but in many cases also concerning the convergence of the global iterative solution method. This behavior is illustrated with numerical examples. We present results of linear elastic simulations to show convergence rates, as expected from the theory, and results from the more sophisticated nonlinear case where we apply a well-known anisotropic model to the realistic geometry of an artery. Although the FETI methods have a great applicability on artery simulations we will also discuss some limitations concerning the dependence on material parameters. PMID:26751957

  9. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    NASA Astrophysics Data System (ADS)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  10. STAR: A Number Writing Strategy.

    ERIC Educational Resources Information Center

    Boom, Susan E.; Fine, Elaine

    1995-01-01

    The STAR (Stop, Think, Ask, Recite) strategy was developed to help a kindergarten student write numerals. The child was encouraged to recite a "saying" while he formed each numeral. For example, to make a "5," the child would say "the man went down the street, around the corner, and his hat blew off." (JDD)

  11. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  12. Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis.

    PubMed

    Sokolowski, H Moriah; Fias, Wim; Bosah Ononye, Chuka; Ansari, Daniel

    2017-10-01

    It is currently debated whether numbers are processed using a number-specific system or a general magnitude processing system, also used for non-numerical magnitudes such as physical size, duration, or luminance. Activation likelihood estimation (ALE) was used to conduct the first quantitative meta-analysis of 93 empirical neuroimaging papers examining neural activation during numerical and non-numerical magnitude processing. Foci were compiled to generate probabilistic maps of activation for non-numerical magnitudes (e.g. physical size), symbolic numerical magnitudes (e.g. Arabic digits), and nonsymbolic numerical magnitudes (e.g. dot arrays). Conjunction analyses revealed overlapping activation for symbolic, nonsymbolic and non-numerical magnitudes in frontal and parietal lobes. Contrast analyses revealed specific activation in the left superior parietal lobule for symbolic numerical magnitudes. In contrast, small regions in the bilateral precuneus were specifically activated for nonsymbolic numerical magnitudes. No regions in the parietal lobes were activated for non-numerical magnitudes that were not also activated for numerical magnitudes. Therefore, numbers are processed using both a generalized magnitude system and format specific number regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On critical behaviour in generalized Kadomtsev-Petviashvili equations

    NASA Astrophysics Data System (ADS)

    Dubrovin, B.; Grava, T.; Klein, C.

    2016-10-01

    An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves.

  14. Striving for a good standard of maths for potential student nurses.

    PubMed

    Roberts, Sheila; Campbell, Anne

    2017-01-12

    This article explores some of the issues surrounding numerical competence for potential pre-registration children's nursing students, with examples of success and failure, at the University of Hertfordshire. With poor numerical ability causing concern in the UK, and the effect of low competence on patient safety when calculating drug dosages in healthcare, this article considers some of the literature surrounding numerical ability, confidence and anxiety, along with considering whether a 'C' grade at GCSE is a suitable marker for assessing numerical competence before starting a pre-registration nursing programme.

  15. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  16. On the theory of drainage area for regular and non-regular points.

    PubMed

    Bonetti, S; Bragg, A D; Porporato, A

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  17. On the theory of drainage area for regular and non-regular points

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  18. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  19. Approximate and exact numerical integration of the gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Lewis, T. S.; Sirovich, L.

    1979-01-01

    A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.

  20. Numerical stability of the error diffusion concept

    NASA Astrophysics Data System (ADS)

    Weissbach, Severin; Wyrowski, Frank

    1992-10-01

    The error diffusion algorithm is an easy implementable mean to handle nonlinearities in signal processing, e.g. in picture binarization and coding of diffractive elements. The numerical stability of the algorithm depends on the choice of the diffusion weights. A criterion for the stability of the algorithm is presented and evaluated for some examples.

  1. Using basic statistics on the individual patient's own numeric data.

    PubMed

    Hart, John

    2012-12-01

    This theoretical report gives an example for how coefficient of variation (CV) and quartile analysis (QA) to assess outliers might be able to be used to analyze numeric data in practice for an individual patient. A patient was examined for 8 visits using infrared instrumentation for measurement of mastoid fossa temperature differential (MFTD) readings. The CV and QA were applied to the readings. The participant also completed the Short Form-12 health perception survey on each visit, and these findings were correlated with CV to determine if CV had outcomes support (clinical significance). An outlier MFTD reading was observed on the eighth visit according to QA that coincided with the largest CV value for the MFTDs. Correlations between the Short Form-12 and CV were low to negligible, positive, and statistically nonsignificant. This case provides an example of how basic statistical analyses could possibly be applied to numerical data in chiropractic practice for an individual patient. This might add objectivity to analyzing an individual patient's data in practice, particularly if clinical significance of a clinical numerical finding is unknown.

  2. A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case

    NASA Astrophysics Data System (ADS)

    Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.

    2017-12-01

    In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.

  3. Differentiating Assessment in Middle and High School Mathematics and Science

    ERIC Educational Resources Information Center

    Waterman, Sheryn Spencer

    2009-01-01

    This book by Sheryn Spencer Waterman follows the bestselling "Handbook on Differentiated Instruction for Middle and High Schools." With numerous examples and strategies, it is an all-inclusive manual on assessing student readiness, interests, learning and thinking styles. It includes examples of: (1) Pre-, Formative and Summative assessments; (2)…

  4. Differentiating Assessment in Middle and High School English and Social Studies

    ERIC Educational Resources Information Center

    Waterman, Sheryn Spencer

    2009-01-01

    This book by Sheryn Spencer Waterman follows the bestselling "Handbook on Differentiated Instruction for Middle and High Schools." With numerous examples and strategies, it is an all-inclusive manual on assessing student readiness, interests, learning and thinking styles. It includes examples of: (1) Pre-, Formative and Summative assessments; (2)…

  5. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    PubMed

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    PubMed

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .

  7. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  8. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  9. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  10. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.

  11. Validation of Groundwater Models: Meaningful or Meaningless?

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2003-12-01

    Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.

  12. Numerical Issues for Circulation Control Calculations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Rumsey, Christopher L.

    2006-01-01

    Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.

  13. The impact of phosphatases on proliferative and survival signaling in cancer.

    PubMed

    Narla, Goutham; Sangodkar, Jaya; Ryder, Christopher B

    2018-05-03

    The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.

  14. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  15. Local mesh adaptation technique for front tracking problems

    NASA Astrophysics Data System (ADS)

    Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.

    1998-09-01

    A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.

  16. Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven

    2010-07-01

    In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).

  17. Advances in computational design and analysis of airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  18. Finite-time fault tolerant attitude stabilization control for rigid spacecraft.

    PubMed

    Huo, Xing; Hu, Qinglei; Xiao, Bing

    2014-03-01

    A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.

  19. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    NASA Astrophysics Data System (ADS)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  20. Self-regulated transport in photonic crystals with phase-changing defects

    NASA Astrophysics Data System (ADS)

    Thomas, Roney; Ellis, Fred M.; Vitebskiy, Ilya; Kottos, Tsampikos

    2018-01-01

    Phase-changing materials (PCMs) are widely used for optical data recording, sensing, all-optical switching, and optical limiting. Our focus here is on the case when the change in transmission characteristics of the optical material is caused by the input light itself. Specifically, the light-induced heating triggers the phase transition in the PCM. In this paper, using a numerical example, we demonstrate that the incorporation of the PCM in a photonic structure can lead to a dramatic modification of the effects of light-induced phase transition, as compared to a stand-alone sample of the same PCM. Our focus is on short pulses. We discuss some possible applications of such phase-changing photonic structures for optical sensing and limiting.

  1. A Model-Free Machine Learning Method for Risk Classification and Survival Probability Prediction.

    PubMed

    Geng, Yuan; Lu, Wenbin; Zhang, Hao Helen

    2014-01-01

    Risk classification and survival probability prediction are two major goals in survival data analysis since they play an important role in patients' risk stratification, long-term diagnosis, and treatment selection. In this article, we propose a new model-free machine learning framework for risk classification and survival probability prediction based on weighted support vector machines. The new procedure does not require any specific parametric or semiparametric model assumption on data, and is therefore capable of capturing nonlinear covariate effects. We use numerous simulation examples to demonstrate finite sample performance of the proposed method under various settings. Applications to a glioma tumor data and a breast cancer gene expression survival data are shown to illustrate the new methodology in real data analysis.

  2. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  3. Application for Single Price Auction Model (SPA) in AC Network

    NASA Astrophysics Data System (ADS)

    Wachi, Tsunehisa; Fukutome, Suguru; Chen, Luonan; Makino, Yoshinori; Koshimizu, Gentarou

    This paper aims to develop a single price auction model with AC transmission network, based on the principle of maximizing social surplus of electricity market. Specifically, we first formulate the auction market as a nonlinear optimization problem, which has almost the same form as the conventional optimal power flow problem, and then propose an algorithm to derive both market clearing price and trade volume of each player even for the case of market-splitting. As indicated in the paper, the proposed approach can be used not only for the price evaluation of auction or bidding market but also for analysis of bidding strategy, congestion effect and other constraints or factors. Several numerical examples are used to demonstrate effectiveness of our method.

  4. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  5. Frozen into stripes: fate of the critical Ising model after a quench.

    PubMed

    Blanchard, T; Picco, M

    2013-09-01

    In this article we study numerically the final state of the two-dimensional ferromagnetic critical Ising model after a quench to zero temperature. Beginning from equilibrium at T_{c}, the system can be blocked in a variety of infinitely long lived stripe states in addition to the ground state. Similar results have already been obtained for an infinite temperature initial condition and an interesting connection to exact percolation crossing probabilities has emerged. Here we complete this picture by providing an example of stripe states precisely related to initial crossing probabilities for various boundary conditions. We thus show that this is not specific to percolation but rather that it depends on the properties of spanning clusters in the initial state.

  6. Markowitz portfolio optimization model employing fuzzy measure

    NASA Astrophysics Data System (ADS)

    Ramli, Suhailywati; Jaaman, Saiful Hafizah

    2017-04-01

    Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.

  7. Design of 3-D Printed Concentric Tube Robots

    PubMed Central

    Morimoto, Tania K.; Okamura, Allison M.

    2017-01-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient’s body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm−1, which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively. PMID:28713227

  8. Quantitative knowledge acquisition for expert systems

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    A common problem in the design of expert systems is the definition of rules from data obtained in system operation or simulation. While it is relatively easy to collect data and to log the comments of human operators engaged in experiments, generalizing such information to a set of rules has not previously been a direct task. A statistical method is presented for generating rule bases from numerical data, motivated by an example based on aircraft navigation with multiple sensors. The specific objective is to design an expert system that selects a satisfactory suite of measurements from a dissimilar, redundant set, given an arbitrary navigation geometry and possible sensor failures. The systematic development is described of a Navigation Sensor Management (NSM) Expert System from Kalman Filter convariance data. The method invokes two statistical techniques: Analysis of Variance (ANOVA) and the ID3 Algorithm. The ANOVA technique indicates whether variations of problem parameters give statistically different covariance results, and the ID3 algorithms identifies the relationships between the problem parameters using probabilistic knowledge extracted from a simulation example set. Both are detailed.

  9. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    PubMed Central

    Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.

    2015-01-01

    Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  10. Application of micro- and nanotechnologies for the fabrication of optical devices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter

    1998-03-01

    The development of micro-opto-electro-mechanical systems (MOEMS) and devices no longer focuses on feasibility studies and expensive demonstrators. On the contrary, fabrication of micro-optical components is already feeding dynamic markets with a large variety of products that are more or less on the verge of inexpensive mass production. A major application area for MOEMS is, without any doubt, tele- and datacommunications, while miniature optical sensors (e.g. spectrometers and interferometers) have a growing part in many kinds of biotechnological, chemical and pharmaceutical applications. In this presentation numerous examples for optical microstructures are given that range from the field of low cost fiberoptic components to polymer waveguide elements, from fiber switches to mass-producible microlenses made of thermoplastics or glass, and from microstructured photonic bandgap materials to optical sensor tips for investigating nanostructures. It is emphasized that for realizing MOEMS very different materials have to be processed while the necessary hybrid integration demands for specific automated assembly methods. In particular, the examples given show now microtechnologies can be adapted and combined with each other to take into account the special requirements of the product.

  11. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance.

    PubMed

    Actis, Ricardo L; Ventura, Liliana B; Smith, Kirk E; Commean, Paul K; Lott, Donovan J; Pilgram, Thomas K; Mueller, Michael J

    2006-08-01

    The primary objective of conservative care for the diabetic foot is to protect the foot from excessive pressures. Pressure reduction and redistribution may be achieved by designing and fabricating orthotic devices based on foot structure, tissue mechanics, and external loads on the diabetic foot. The purpose of this paper is to describe the process used for the development of patient-specific mathematical models of the second and third rays of the foot, their solution by the finite element method, and their sensitivity to model parameters and assumptions. We hypothesized that the least complex model to capture the pressure distribution in the region of the metatarsal heads would include the bony structure segmented as toe, metatarsal and support, with cartilage between the bones, plantar fascia and soft tissue. To check the hypothesis, several models were constructed with different levels of details. The process of numerical simulation is comprised of three constituent parts: model definition, numerical solution and prediction. In this paper the main considerations relating model selection and computation of approximate solutions by the finite element method are considered. The fit of forefoot plantar pressures estimated using the FEA models and those explicitly tested were good as evidenced by high Pearson correlations (r=0.70-0.98) and small bias and dispersion. We concluded that incorporating bone support, metatarsal and toes with linear material properties, tendon and fascia with linear material properties, soft tissue with nonlinear material properties, is sufficient for the determination of the pressure distribution in the metatarsal head region in the push-off position, both barefoot and with shoe and total contact insert. Patient-specific examples are presented.

  12. Verification of Gyrokinetic codes: Theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Görler, Tobias; Sonnendrücker, Eric; Told, Daniel; Villard, Laurent

    2017-05-01

    In fusion plasmas, the strong magnetic field allows the fast gyro-motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the subsequent transport. Naturally, these codes require thorough verification and validation. Here, we present a new and generic theoretical framework and specific numerical applications to test the faithfulness of the implemented models to theory and to verify the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which has rarely been done and therefore makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The verification of the numerical scheme is proposed via the benchmark effort. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC) and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations implemented in the ORB5 and GENE codes using the Lagrangian variational formulation. At the computational level, detailed verifications of global electromagnetic test cases developed from the CYCLONE Base Case are considered, including a parametric β-scan covering the transition from ITG to KBM and the spectral properties at the nominal β value.

  13. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  14. A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems

    NASA Astrophysics Data System (ADS)

    Liu, Hailiang; Wang, Zhongming

    2017-01-01

    We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states.

  15. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  16. Estimating stage-specific daily survival probabilities of nests when nest age is unknown

    USGS Publications Warehouse

    Stanley, T.R.

    2004-01-01

    Estimation of daily survival probabilities of nests is common in studies of avian populations. Since the introduction of Mayfield's (1961, 1975) estimator, numerous models have been developed to relax Mayfield's assumptions and account for biologically important sources of variation. Stanley (2000) presented a model for estimating stage-specific (e.g. incubation stage, nestling stage) daily survival probabilities of nests that conditions on “nest type” and requires that nests be aged when they are found. Because aging nests typically requires handling the eggs, there may be situations where nests can not or should not be aged and the Stanley (2000) model will be inapplicable. Here, I present a model for estimating stage-specific daily survival probabilities that conditions on nest stage for active nests, thereby obviating the need to age nests when they are found. Specifically, I derive the maximum likelihood function for the model, evaluate the model's performance using Monte Carlo simulations, and provide software for estimating parameters (along with an example). For sample sizes as low as 50 nests, bias was small and confidence interval coverage was close to the nominal rate, especially when a reduced-parameter model was used for estimation.

  17. Specific character of citations in historiography (using the example of Polish history).

    PubMed

    Kolasa, Władysław Marek

    2012-03-01

    The first part of the paper deals with the assessment of international databases in relation to the number of historical publications (representation and relevance in comparison with the model database). The second part is focused on providing answer to the question whether historiography is governed by similar bibliometric rules as exact sciences or whether it has its own specific character. Empirical database for this part of the research constituted the database prepared ad hoc: The Citation Index of the History of Polish Media (CIHPM). Among numerous typically historical features the main focus was put on: linguistic localism, specific character of publishing forms, differences in citing of various sources (contributions and syntheses) and specific character of the authorship (the Lorenz Curve and the Lotka's Law). Slightly more attention was devoted to the half-life indicator and its role in a diachronic study of a scientific field; also, a new indicator (HL14), depicting distribution of citations younger then half-life was introduced. Additionally, the comparison and correlation of selected parameters for the body of historical science (citations, HL14, the Hirsch Index, number of publications, volume and other) were also conducted.

  18. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ch.; Gao, X. W.; Sladek, J.

    This paper reports our recent research works on crack analysis in continuously non-homogeneous and linear elastic functionally graded materials. A meshless boundary element method is developed for this purpose. Numerical examples are presented and discussed to demonstrate the efficiency and the accuracy of the present numerical method, and to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

  20. Predictive analysis of thermal distribution and damage in thermotherapy on biological tissue

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2007-05-01

    The use of optical techniques is increasing the possibilities and success of medical praxis in certain cases, either in tissue characterization or treatment. Photodynamic therapy (PDT) or low intensity laser treatment (LILT) are two examples of the latter. Another very interesting implementation is thermotherapy, which consists of controlling temperature increase in a pathological biological tissue. With this method it is possible to provoke an improvement on specific diseases, but a previous analysis of treatment is needed in order for the patient not to suffer any collateral damage, an essential point due to security margins in medical procedures. In this work, a predictive analysis of thermal distribution in a biological tissue irradiated by an optical source is presented. Optical propagation is based on a RTT (Radiation Transport Theory) model solved via a numerical Monte Carlo method, in a multi-layered tissue. Data obtained are included in a bio-heat equation that models heat transference, taking into account conduction, convection, radiation, blood perfusion and vaporization depending on the specific problem. Spatial-temporal differential bio-heat equation is solved via a numerical finite difference approach. Experimental temperature distributions on animal tissue irradiated by laser radiation are shown. From thermal distribution in tissue, thermal damage is studied, based on an Arrhenius analysis, as a way of predicting harmful effects. The complete model can be used for concrete treatment proposals, as a way of predicting treatment effects and consequently decide which optical source parameters are appropriate for the specific disease, mainly wavelength and optical power, with reasonable security margins in the process.

  1. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  2. 75 FR 80173 - Further Definition of “Swap Dealer,” “Security-Based Swap Dealer,” “Major Swap Participant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    .... The Commission will post all comments on the Commission's Internet Web site ( http://www.sec.gov/rules..., which are the subject of separate rulemakings. For example, whether the definition of a major... Regarding Dealing Activities Commenters provided numerous examples of conduct they viewed as dealing...

  3. Petroleum accounting principles, procedures, and issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, H.R.; Klingstedt, J.P.; Jones, D.M.

    1985-01-01

    This book begins with the basics and leads one through the complexities of accounting and reporting for the industry. It presents the material one needs as an accountant in the petroleum industry. Examples deal with real problems and issues. It also includes numerous illustrations and examples, as well as sample forms, lease agreements, and industry and governmental regulations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  5. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  6. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  7. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2010-01-01

    Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759

  8. Developing Daily Quantitative Damage Estimates From Geospatial Layers To Support Post Event Recovery

    NASA Astrophysics Data System (ADS)

    Woods, B. K.; Wei, L. H.; Connor, T. C.

    2014-12-01

    With the growth of natural hazard data available in near real-time it is increasingly feasible to deliver damage estimates caused by natural disasters. These estimates can be used in disaster management setting or by commercial entities to optimize the deployment of resources and/or routing of goods and materials. This work outlines an end-to-end, modular process to generate estimates of damage caused by severe weather. The processing stream consists of five generic components: 1) Hazard modules that provide quantitate data layers for each peril. 2) Standardized methods to map the hazard data to an exposure layer based on atomic geospatial blocks. 3) Peril-specific damage functions that compute damage metrics at the atomic geospatial block level. 4) Standardized data aggregators, which map damage to user-specific geometries. 5) Data dissemination modules, which provide resulting damage estimates in a variety of output forms. This presentation provides a description of this generic tool set, and an illustrated example using HWRF-based hazard data for Hurricane Arthur (2014). In this example, the Python-based real-time processing ingests GRIB2 output from the HWRF numerical model, dynamically downscales it in conjunctions with a land cover database using a multiprocessing pool, and a just-in-time compiler (JIT). The resulting wind fields are contoured, and ingested into a PostGIS database using OGR. Finally, the damage estimates are calculated at the atomic block level and aggregated to user-defined regions using PostgreSQL queries to construct application specific tabular and graphics output.

  9. Influences of system uncertainties on the numerical transfer path analysis of engine systems

    NASA Astrophysics Data System (ADS)

    Acri, A.; Nijman, E.; Acri, A.; Offner, G.

    2017-10-01

    Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.

  10. Limited generalization with varied, as compared to specific, practice in short-term motor learning.

    PubMed

    Willey, Chéla R; Liu, Zili

    2018-01-01

    The schema theory of learning predicts that varied training in motor learning should give rise to better transfer than specific training. For example, throwing beanbags during practice to targets 5 and 9ft away should better generalize to targets 7 and 11ft away, as compared to only throwing to a target 7ft away. In this study, we tested this prediction in a throwing task, when the pretest, practice, and posttest were all completed within an hour. Participants in the varied group practiced throwing at 5 and 9ft targets, while participants in the specific group practiced throwing at 7ft only. All participants reliably reduced errors from pretest to posttest. The varied group never outperformed the specific group at the 7ft target (the trained target for the specific group). They did not reliably outperform the specific group at 11ft, either. The numerically better performance at 11ft by the varied group was due, as it turned out in a subsequent experiment, to the fact that 11ft was closer to 9ft (one of the two training targets for the varied group) than to 7ft (the training target for the specific group). We conclude that varied training played a very limited role in short-term motor learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Parental Numeric Language Input to Mandarin Chinese and English Speaking Preschool Children

    ERIC Educational Resources Information Center

    Chang, Alicia; Sandhofer, Catherine M.; Adelchanow, Lauren; Rottman, Benjamin

    2011-01-01

    The present study examined the number-specific parental language input to Mandarin- and English-speaking preschool-aged children. Mandarin and English transcripts from the CHILDES database were examined for amount of numeric speech, specific types of numeric speech and syntactic frames in which numeric speech appeared. The results showed that…

  12. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  13. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  14. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  15. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  16. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  17. Digital images are data: and should be treated as such.

    PubMed

    Cromey, Douglas W

    2013-01-01

    The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20-25% of the papers contained at least one figure that did not comply with the journal's instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science's reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered.

  18. Digital Images Are Data: And Should Be Treated as Such

    PubMed Central

    Cromey, Douglas W.

    2014-01-01

    The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20–25% of the papers contained at least one figure that did not comply with the journal’s instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science’s reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered. PMID:23026995

  19. Numerical modeling of a point-source image under relative motion of radiation receiver and atmosphere

    NASA Astrophysics Data System (ADS)

    Kucherov, A. N.; Makashev, N. K.; Ustinov, E. V.

    1994-02-01

    A procedure is proposed for numerical modeling of instantaneous and averaged (over various time intervals) distant-point-source images perturbed by a turbulent atmosphere that moves relative to the radiation receiver. Examples of image calculations under conditions of the significant effect of atmospheric turbulence in an approximation of geometrical optics are presented and analyzed.

  20. Structural reliability assessment capability in NESSUS

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.

    1992-01-01

    The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.

  1. Structural reliability assessment capability in NESSUS

    NASA Astrophysics Data System (ADS)

    Millwater, H.; Wu, Y.-T.

    1992-07-01

    The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.

  2. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less

  3. Testing numerical models for boulder transport due to high energy marine wave events: examples from the Saurashtra coast, Western India

    NASA Astrophysics Data System (ADS)

    Chavare, Kushal; Bhatt, Nilesh; Prizomwala, Siddharth

    2017-04-01

    The boulder deposits on the coasts are interpreted and evaluated as high energy marine wave events like tsunami. Several numerical models are now available to estimate wave height and/or run up of the tsunami wave. The coast of Saurashtra, facing the Arabian Sea on its west hosts such deposits in younger ( 1 and 6 ka) and older ( 35 ka) coastal records. The dimensions, characteristics and morphology of these boulders were studied with different numeric models and were applied with reference to submerged, sub-aerial and joint bounded boulder scenarios which were combined with the local control variables like roughness coefficient, slope of platforms, fractures, shoaling effect, etc. The application of these models indicated a significant role of local control variables in boulder dislodgment, transport and final emplacement on shore platform. Examples from three different sites from the coast of Saurashtra, western India are reported and discussed in detail.

  4. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  5. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  6. [Effects decomposition in mediation analysis: a numerical example].

    PubMed

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  7. Combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.

    1989-01-01

    An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.

  8. Making the Most of Audio. Technology in Language Learning Series.

    ERIC Educational Resources Information Center

    Barley, Anthony

    Prepared for practicing language teachers, this book's aim is to help them make the most of audio, a readily accessible resource. The book shows, with the help of numerous practical examples, how a range of language skills can be developed. Most examples are in French. Chapters cover the following information: (1) making the most of audio (e.g.,…

  9. On the Trajectories of the Predetermined ALT Model: What Are We Really Modeling?

    ERIC Educational Resources Information Center

    Jongerling, Joran; Hamaker, Ellen L.

    2011-01-01

    This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a…

  10. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    NASA Technical Reports Server (NTRS)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified loading schemes using p-version FE methods. These data are invaluable, but questions remain about their practical use, because the tabular databases of key results needed to support practical life analysis can occupy gigabytes of storage for only a few classes of geometries. The prospect of using such advanced numerical methods to calculate in real time only those K solutions actually needed to support a specific crack growth analysis is also tempting, but the stark reality is that the computational cost is still so high that the approach is not practical except for specific, critical application problems. Some thoughts are offered about alternative paradigms. Compounding approaches are some of the earliest building blocks of SIF development for more complex geometries. These approaches are especially attractive because of their very low computational cost and their conceptual robustness; they are, in some ways, an intriguing contrast and complement to the brute-force numerical methods. In recent years, researchers at NRC-Canada have published remarkable results showing how compounding approaches can be used to generate accurate solutions for very difficult problems. Examples are provided of some successes--and some limitations--using this approach. These closed-form, tabulated numerical, and compounding approaches have typically been used for simple remote loading with simple load paths to the crack. However, many significant cracks occur in complex stress gradient fields. This is a job for weight function (WF) methods, where the arbitrary stress distribution on the crack plane in the corresponding uncracked body (typically determined using FE methods) is used to determine K. Several significant recent advances in WF methods and solutions are highlighted here. Fueled by advanced 3D numerical methods, many new solutions have been generated for classic geometries such as surface and corner cracks with wide ranges of geometrical validity. A new WF formulation has also be developed for part-through cracks considering the arbitrary stress gradients in all directions in the crack plane (so-called bivariant solutions). Basic WF methods have recently been combined with analytical expressions for crack plane stresses to develop a large family of accurate SIF solutions for corner, surface, and through cracks at internal or external notches with very wide ranges of shapes, sizes, acuities, and offsets. Finally, WF solutions are much faster than FE or boundary element solutions, but can still be much slower than simple closed-form solutions, especially for bivariant solutions that can require 2D numerical integration. Novel pre-integration and dynamic tabular methods have been developed that substantially increase the speed of these advanced WF solutions. The practical utility of advanced SIF methods, including both WF and direct numerical methods, is greatly enhanced if the FM life analysis can be directly and efficiently linked with digital models of the actual structure or component (e.g., FE models for stress analysis). Two recent advances of this type will be described. One approach directly interfaces the FM life analysis with the FE model of the uncracked component (including stress results). Through a powerful graphical user interface, simplified FM life models can be constructed (and visualized) directly on the component model, with the computer collecting the geometry and stress gradient information needed for the life calculation. An even more powerful paradigm uses expert logic to automatically build an optimum simple fracture model at any and every desired location in the component model, perform the life calculation, and even generate fatigue crack growth life contour maps, all with minimal user intervention. This paradigm has also been extended to the automatic calculation of fracture risk, considering uncertainty or variability in key input parameters such as initial crack size or location. Another new integrated approach links the engineering life analysis, the component model, and a 3D numerical fracture analysis built with the same component model to generate a table of SIF values at a specific location that can then be employed efficiently to perform the life calculation. Some attention must be given to verification and validation (V&V) issues and challenges: how good are these SIF solutions, how good is good enough, and does anyone believe the life answer? It is important to think critically about the different sources of error or uncertainty and to perform V&V in a hierarchal, building-block manner. Some accuracy issues for SIF solutions, for example, may actually involve independent material behavior issues, such as constraint loss effects for crack fronts near component surfaces, and can be a source of confusion. Recommendations are proposed for improved V&V approaches. This presentation will briefly but critically survey the range of issues and advances mentioned above, with a particular view towards assembling an integrated approach that combines different methods to create practical tools for real-world design and analysis problems. Examples will be selectively drawn from the recent literature, from recent enhancements in the NASGRO and DARWIN computer codes, and from previously unpublished research

  11. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    PubMed

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results obtained in an acute respiratory distress syndrome patient show the potential of this approach for personalized computationally guided optimization of mechanical ventilation in future. Copyright © 2017 the American Physiological Society.

  12. Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Lv, Jing

    2017-07-01

    The modeling and numerical method for the dynamics of a planar-motion rigid body with frictional contact between plane surfaces were presented based on the theory of contact mechanics and the algorithm of linear complementarity problem (LCP). The Coulomb’s dry friction model is adopted as the friction law, and the normal contact forces are expressed as functions of the local deformations and their speeds in contact bodies. The dynamic equations of the rigid body are obtained by the Lagrange equation. The transition problem of stick-slip motions between contact surfaces is formulated and solved as LCP through establishing the complementary conditions of the friction law. Finally, a numerical example is presented as an example to show the application.

  13. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  14. Computing return times or return periods with rare event algorithms

    NASA Astrophysics Data System (ADS)

    Lestang, Thibault; Ragone, Francesco; Bréhier, Charles-Edouard; Herbert, Corentin; Bouchet, Freddy

    2018-04-01

    The average time between two occurrences of the same event, referred to as its return time (or return period), is a useful statistical concept for practical applications. For instance insurances or public agencies may be interested by the return time of a 10 m flood of the Seine river in Paris. However, due to their scarcity, reliably estimating return times for rare events is very difficult using either observational data or direct numerical simulations. For rare events, an estimator for return times can be built from the extrema of the observable on trajectory blocks. Here, we show that this estimator can be improved to remain accurate for return times of the order of the block size. More importantly, we show that this approach can be generalised to estimate return times from numerical algorithms specifically designed to sample rare events. So far those algorithms often compute probabilities, rather than return times. The approach we propose provides a computationally extremely efficient way to estimate numerically the return times of rare events for a dynamical system, gaining several orders of magnitude of computational costs. We illustrate the method on two kinds of observables, instantaneous and time-averaged, using two different rare event algorithms, for a simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.

  15. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.

    PubMed

    Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  16. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  17. Current use was established and Cochrane guidance on selection of social theories for systematic reviews of complex interventions was developed.

    PubMed

    Noyes, Jane; Hendry, Maggie; Booth, Andrew; Chandler, Jackie; Lewin, Simon; Glenton, Claire; Garside, Ruth

    2016-07-01

    To identify examples of how social theories are used in systematic reviews of complex interventions to inform production of Cochrane guidance. Secondary analysis of published/unpublished examples of theories of social phenomena for use in reviews of complex interventions identified through scoping searches, engagement with key authors and methodologists supplemented by snowballing and reference searching. Theories were classified (low-level, mid-range, grand). Over 100 theories were identified with evidence of proliferation over the last 5 years. New low-level theories (tools, taxonomies, etc) have been developed for classifying and reporting complex interventions. Numerous mid-range theories are used; one example demonstrated how control theory had changed the review's findings. Review-specific logic models are increasingly used, but these can be challenging to develop. New low-level and mid-range psychological theories of behavior change are evolving. No reviews using grand theory (e.g., feminist theory) were identified. We produced a searchable Wiki, Mendeley Inventory, and Cochrane guidance. Use of low-level theory is common and evolving; incorporation of mid-range theory is still the exception rather than the norm. Methodological work is needed to evaluate the contribution of theory. Choice of theory reflects personal preference; application of theory is a skilled endeavor. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Numerical Analysis Objects

    NASA Astrophysics Data System (ADS)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  19. Multiscale Mechano-Biological Finite Element Modelling of Oncoplastic Breast Surgery—Numerical Study towards Surgical Planning and Cosmetic Outcome Prediction

    PubMed Central

    Eiben, Bjoern; Hipwell, John H.; Williams, Norman R.; Keshtgar, Mo; Hawkes, David J.

    2016-01-01

    Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic breast surgery assessment. Moreover, from the breast cancer research perspective, there has been very little effort to model complex mechano-biological processes involved in wound healing. We address this by providing an integrated numerical framework that can simulate the therapeutic effects of BCT over the extended period of treatment and recovery. A validated, three-dimensional, multiscale finite element procedure that simulates breast tissue deformations and physiological wound healing is presented. In the proposed methodology, a partitioned, continuum-based mathematical model for tissue recovery and angiogenesis, and breast tissue deformation is considered. The effectiveness and accuracy of the proposed numerical scheme is illustrated through patient-specific representative examples. Wound repair and contraction numerical analyses of real MRI-derived breast geometries are investigated, and the final predictions of the breast shape are validated against post-operative follow-up optical surface scans from four patients. Mean (standard deviation) breast surface distance errors in millimetres of 3.1 (±3.1), 3.2 (±2.4), 2.8 (±2.7) and 4.1 (±3.3) were obtained, demonstrating the ability of the surgical simulation tool to predict, pre-operatively, the outcome of BCT to clinically useful accuracy. PMID:27466815

  20. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    NASA Technical Reports Server (NTRS)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  1. Neural computing for numeric-to-symbolic conversion in control systems

    NASA Technical Reports Server (NTRS)

    Passino, Kevin M.; Sartori, Michael A.; Antsaklis, Panos J.

    1989-01-01

    A type of neural network, the multilayer perceptron, is used to classify numeric data and assign appropriate symbols to various classes. This numeric-to-symbolic conversion results in a type of information extraction, which is similar to what is called data reduction in pattern recognition. The use of the neural network as a numeric-to-symbolic converter is introduced, its application in autonomous control is discussed, and several applications are studied. The perceptron is used as a numeric-to-symbolic converter for a discrete-event system controller supervising a continuous variable dynamic system. It is also shown how the perceptron can implement fault trees, which provide useful information (alarms) in a biological system and information for failure diagnosis and control purposes in an aircraft example.

  2. The Temporal Morphology of Infrasound Propagation

    DTIC Science & Technology

    2010-01-01

    that incorpo- ration of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and...Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical

  3. Strain localization in models and nature: bridging the gaps.

    NASA Astrophysics Data System (ADS)

    Burov, E.; Francois, T.; Leguille, J.

    2012-04-01

    Mechanisms of strain localization and their role in tectonic evolution are still largely debated. Indeed, the laboratory data on strain localization processes are not abundant, they do not cover the entire range of possible mechanisms and have to be extrapolated, sometimes with greatest uncertainties, to geological scales while the observations of localization processes at outcrop scale are scarce, not always representative, and usually are difficult to quantify. Numerical thermo-mechanical models allow us to investigate the relative importance of some of the localization processes whether they are hypothesized or observed at laboratory or outcrop scale. The numerical models can test different observationally or analytically derived laws in terms of their applicability to natural scales and tectonic processes. The models are limited, however, in their capacity of reproduction of physical mechanisms, and necessary simplify the softening laws leading to "numerical" localization. Numerical strain localization is also limited by grid resolution and the ability of specific numerical codes to handle large strains and the complexity of the associated physical phenomena. Hence, multiple iterations between observations and models are needed to elucidate the causes of strain localization in nature. We here investigate the relative impact of different weakening laws on localization of deformation using large-strain thermo-mechanical models. We test using several "generic" rifting and collision settings, the implications of structural softening, tectonic heritage, shear heating, friction angle and cohesion softening, ductile softening (mimicking grain-size reduction) as well as of a number of other mechanisms such as fluid-assisted phase changes. The results suggest that different mechanisms of strain localization may interfere in nature, yet it most cases it is not evident to establish quantifiable links between the laboratory data and the best-fitting parameters of the effective softening laws that allow to reproduce large scale tectonic evolution. For example, one of most effective and widely used mechanisms of "numerical" strain localization is friction angle softening. Yet, namely this law appears to be most difficult to justify from physical and observational grounds.

  4. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  5. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  6. What can a numerical landscape evolution model tell us about the evolution of a real landscape? Two examples of modeling a real landscape without recreating it

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.

    2013-12-01

    Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.

  7. Contact stresses in gear teeth: A new method of analysis

    NASA Technical Reports Server (NTRS)

    Somprakit, Paisan; Huston, Ronald L.; Oswald, Fred B.

    1991-01-01

    A new, innovative procedure called point load superposition for determining the contact stresses in mating gear teeth. It is believed that this procedure will greatly extend both the range of applicability and the accuracy of gear contact stress analysis. Point load superposition is based upon fundamental solutions from the theory of elasticity. It is an iterative numerical procedure which has distinct advantages over the classical Hertz method, the finite element method, and over existing applications with the boundary element method. Specifically, friction and sliding effects, which are either excluded from or difficult to study with the classical methods, are routinely handled with the new procedure. Presented here are the basic theory and the algorithms. Several examples are given. Results are consistent with those of the classical theories. Applications to spur gears are discussed.

  8. [Endodontics in motion: new concepts, materials and techniques 1. Hydraulic Calcium Silicate Cements].

    PubMed

    Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J

    2015-01-01

    Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.

  9. Parametric vibrations of a mechanical system and their stability for an arbitrary modulation coefficient

    NASA Astrophysics Data System (ADS)

    Akulenko, L. D.; Nesterov, S. V.

    2013-03-01

    The natural frequencies and modes of parametric vibrations of a mechanical system are studied, by way of example, for a pendulum of variable length with modulation coefficient varying from arbitrarily small to maximum admissible values. Analytic and numerical methods are used to construct and study the boundaries of the resonance domains for the first four vibration modes, and the main qualitative properties of higher modes are found. The complete degeneration of modes with even numbers, i.e., the coincidence of the frequencies of symmetric and nonsymmetric naturalmodes for admissible values of the modulation parameter, is proved. The global picture of boundaries of stability domains for the lower equilibriumis constructed, and a significant difference from the Ince-Strutt diagram is shown. Specific properties of the natural modes are established.

  10. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.

    PubMed

    Belter, Joseph T; Segil, Jacob L; Dollar, Aaron M; Weir, Richard F

    2013-01-01

    In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.

  11. Concluding remarks: nutritional strategies to support the adaptive response to prolonged exercise training.

    PubMed

    van Loon, Luc J C; Tipton, Kevin D

    2013-01-01

    Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  12. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  13. Tunnelling in asymmetric double-well potentials: varying initial states

    NASA Astrophysics Data System (ADS)

    Cordes, J. G.; Das, A. K.

    2001-02-01

    Tunnelling in a double-well potential has features which are not derivable through a mere extension of the concepts used in the context of a single potential barrier with no confining walls on either side. Furthermore, an asymmetric double-well potential, relevant in many contemporary areas of physics and chemistry, possesses certain distinctive aspects in contrast to the relatively simple case of a symmetric double-well potential. In this paper a self-contained numerical and analytical study of these features is reported, and a theoretical model is presented with special attention being given to a unified treatment of both the symmetric and asymmetric cases. The popularly used pair-state model is critically examined, and the important role of the initial state (which is rarely discussed in the literature) is highlighted with specific examples.

  14. New Developments in Magnetostatic Cleanliness Modeling

    NASA Astrophysics Data System (ADS)

    Mehlem, K.; Wiegand, A.; Weickert, S.

    2012-05-01

    The paper describes improvements and extensions of the multiple magnetic dipole modeling method (MDM) for cleanliness verification which had been introduced by the author1 in 1977 and then applied during 3 decades to numerous international projects. The solutions of specific modeling problems which had been left unsolved so far, are described in the present paper. Special attention is given to the ambiguities of MDM solutions caused by the limited data coverage available. Constraint handling by the constraint-free NLP solver, optimal MDM sizing and multiple-point far-field compensation techniques are presented. The recent extension of the MDM method to field gradient data is formulated and demonstrated by an example. Finally, a complex MDM application (Ulysses) is presented. Finally, a short description of the MDM software GAMAG, recently introduced by the author1, is given.

  15. Plasmon-driven acceleration in a photo-excited nanotube

    DOE PAGES

    Shin, Young -Min

    2017-02-21

    A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. Lastly, the maximally achievable acceleration gradients and energy gains within dephasingmore » lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.« less

  16. Tutorial examples for uncertainty quantification methods.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bord, Sarah

    2015-08-01

    This report details the work accomplished during my 2015 SULI summer internship at Sandia National Laboratories in Livermore, CA. During this internship, I worked on multiple tasks with the common goal of making uncertainty quantification (UQ) methods more accessible to the general scientific community. As part of my work, I created a comprehensive numerical integration example to incorporate into the user manual of a UQ software package. Further, I developed examples involving heat transfer through a window to incorporate into tutorial lectures that serve as an introduction to UQ methods.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

  18. Numerical simulation of unsteady viscous flows

    NASA Technical Reports Server (NTRS)

    Hankey, Wilbur L.

    1987-01-01

    Most unsteady viscous flows may be grouped into two categories, i.e., forced and self-sustained oscillations. Examples of forced oscillations occur in turbomachinery and in internal combustion engines while self-sustained oscillations prevail in vortex shedding, inlet buzz, and wing flutter. Numerical simulation of these phenomena was achieved due to the advancement of vector processor computers. Recent progress in the simulation of unsteady viscous flows is addressed.

  19. A sensitivity equation approach to shape optimization in fluid flows

    NASA Technical Reports Server (NTRS)

    Borggaard, Jeff; Burns, John

    1994-01-01

    A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.

  20. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    PubMed

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  1. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  2. Development and Use of Numerical and Factual Data Bases

    DTIC Science & Technology

    1983-10-01

    the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in

  3. The Effect of Context on Training: Is Learning Situated?

    DTIC Science & Technology

    1994-09-13

    not underlie the central processes of ordinary everyday cognition ? We think not." There are numerous examples where abstract instruction has been shown... instruction , concrete examples, and abstract rules and procedures. Claims made by proponents of Situated Learning Theory suggest that training must be... instruction . This argues against apprenticeship learning during early stages of acquisition for many skills. Further, too much fidelity in simulation may

  4. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    NASA Astrophysics Data System (ADS)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  5. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  6. TOUGH+ v1.5 Core Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George J.

    TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component flow and transport of mass and heat through porous and fractured media, and represents the third update of the code since its first release [Moridis et al., 2008]. TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstations, PC, Macintosh). TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage requirements. It has amore » completely modular structure, follows the tenets of Object-Oriented Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined operators and assignments, operator extension and overloading, use of generic procedures, and maximum use of the powerful intrinsic vector and matrix processing operations. TOUGH+ v1.5 is the core code for its family of applications, i.e., the part of the code that is common to all its applications. It provides a description of the underlying physics and thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as well as a detailed explanation of the general (common to all applications) input requirements, options, capabilities and output specifications. The core code cannot run by itself: it needs to be coupled with the code for the specific TOUGH+ application option that describes a particular type of problem. The additional input requirements specific to a particular TOUGH+ application options and related illustrative examples can be found in the corresponding User's Manual.« less

  7. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  8. Local SAR in Parallel Transmission Pulse Design

    PubMed Central

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar

    2011-01-01

    The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594

  9. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-06-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  10. Smooth muscle-protein translocation and tissue function.

    PubMed

    Eddinger, Thomas J

    2014-09-01

    Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.

  11. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  12. A semantic framework to protect the privacy of electronic health records with non-numerical attributes.

    PubMed

    Martínez, Sergio; Sánchez, David; Valls, Aida

    2013-04-01

    Structured patient data like Electronic Health Records (EHRs) are a valuable source for clinical research. However, the sensitive nature of such information requires some anonymisation procedure to be applied before releasing the data to third parties. Several studies have shown that the removal of identifying attributes, like the Social Security Number, is not enough to obtain an anonymous data file, since unique combinations of other attributes as for example, rare diagnoses and personalised treatments, may lead to patient's identity disclosure. To tackle this problem, Statistical Disclosure Control (SDC) methods have been proposed to mask sensitive attributes while preserving, up to a certain degree, the utility of anonymised data. Most of these methods focus on continuous-scale numerical data. Considering that part of the clinical data found in EHRs is expressed with non-numerical attributes as for example, diagnoses, symptoms, procedures, etc., their application to EHRs produces far from optimal results. In this paper, we propose a general framework to enable the accurate application of SDC methods to non-numerical clinical data, with a focus on the preservation of semantics. To do so, we exploit structured medical knowledge bases like SNOMED CT to propose semantically-grounded operators to compare, aggregate and sort non-numerical terms. Our framework has been applied to several well-known SDC methods and evaluated using a real clinical dataset with non-numerical attributes. Results show that the exploitation of medical semantics produces anonymised datasets that better preserve the utility of EHRs. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Modeling coastal aquifers in a Mediterranean area: the example of Taranto gulf (southern Italy)

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2015-04-01

    Water resources stored in coastal aquifers are of strategic relevance for several regions throughout the world and in particular in the Mediterranean basin. They are extremely important in areas characterized by heavy urbanization, active industrial or touristic systems, where the need for fresh water is very acute and, sometimes, they are the only water resources available. This in turn can lead to the phenomenon of seawater intrusion because of aquifer overexploitation to satisfy the demand of an increasing population in coastal plains. Furthermore, karstic aquifers are well known for their specific vulnerability to natural and human-induced contamination, due to their particular characteristics such as thin soils, point recharge in dolines and swallow holes and increased hydraulic conductivity. Within this framework, the Taranto gulf is an example of paramount importance. In fact the presence of a wide industrial area close to the city of Taranto and the numerous maritime and military activities in the harbor area favored the increase of population density in the XX century. Moreover, they constitute factors of great concern for the protection of groundwater quality and quantity, in particular for the presence of the highly-vulnerable basins of Mar Piccolo and Mar Grande. In this area, groundwater resources are stored in a karst multilayered aquifer, which is very complex from the hydrostratigraphic point of view. Furthermore, the presence of highly water-demanding activities makes the seawater intrusion phenomenon very serious, especially along the coastline. In order to characterize the groundwater dynamic in the study area, we discuss the hydraulic relationships between the different hydrostratigraphic units and between the sea and the aquifer system by developing a numerical groundwater model to test and refine the preliminary conceptual model and estimate the most uncertain hydraulic parameters. To achieve these objectives, we used different data-sets to characterize the study area from the hydrostratigraphic point of view and to identify the source terms and the groundwater outflows (i.e., submarine and subaerial freshwater springs). For the numerical simulations, the computer code YAGMod, which was originally developed to perform 3D groundwater flow simulation with a simplified treatment of unsaturated/saturated conditions and the effects of strong aquifer exploitation, has been upgraded to the case of a variable density flow. This research activity is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area.

  14. Semitransparent Volcanic Materials on Radar Images of Venus

    NASA Astrophysics Data System (ADS)

    Bondarenko, N. V.; Kreslavsky, M. A.

    2011-03-01

    Possible observational effects due to semitransparent lava flows on Venus were analyzed and illustrated. Numerous examples show that interpretation of Magellan radar images requires consideration of subsurface scattering.

  15. Stable multi-domain spectral penalty methods for fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  16. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  17. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  18. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  19. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

    2018-04-01

    In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

  20. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  1. Child-Specific Exposure Scenarios Examples (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Child-Specific Exposure Scenarios Examples. This report is intended to be a companion document to the Exposure Factors Handbook (U.S. EPA 2011). The example scenarios were compiled from questions and inquiries r...

  2. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  3. Evidence of Eta Aquariid outbursts recorded in the classic Maya hieroglyphic script using orbital integrations

    NASA Astrophysics Data System (ADS)

    Kinsman, J. H.; Asher, D. J.

    2017-09-01

    No firm evidence has existed that the ancient Maya civilization recorded specific occurrences of meteor showers or outbursts in the corpus of Maya hieroglyphic inscriptions. In fact, there has been no evidence of any pre-Hispanic civilization in the Western Hemisphere recording any observations of any meteor showers on any specific dates. The authors numerically integrated meteoroid-sized particles released by Comet Halley as early as 1404 BC to identify years within the Maya Classic Period, AD 250-909, when Eta Aquariid outbursts might have occurred. Outbursts determined by computer model were then compared to specific events in the Maya record to see if any correlation existed between the date of the event and the date of the outburst. The model was validated by successfully explaining several outbursts around the same epoch in the Chinese record. Some outbursts observed by the Maya were due to recent revolutions of Comet Halley, within a few centuries, and some to resonant behavior in older Halley trails, of the order of a thousand years. Examples were found of several different Jovian mean motion resonances as well as the 1:3 Saturnian resonance that have controlled the dynamical evolution of meteoroids in apparently observed outbursts.

  4. The potential of magneto-electric nanocarriers for drug delivery

    PubMed Central

    Kaushik, Ajeet; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan

    2015-01-01

    Introduction The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery. Areas covered This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted. Expert opinion Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance. PMID:24986772

  5. The potential of magneto-electric nanocarriers for drug delivery.

    PubMed

    Kaushik, Ajeet; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan

    2014-10-01

    The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery. This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted. Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical-magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance.

  6. Hierarchical Probabilistic Inference of Cosmic Shear

    NASA Astrophysics Data System (ADS)

    Schneider, Michael D.; Hogg, David W.; Marshall, Philip J.; Dawson, William A.; Meyers, Joshua; Bard, Deborah J.; Lang, Dustin

    2015-07-01

    Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics.

  7. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces.

    PubMed

    Lu, Fengjuan; Hou, Yanyan; Zhang, Heming; Chu, Yiwen; Xia, Haiyang; Tian, Yongqiang

    2017-08-01

    The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.

  8. Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms.

    PubMed

    Carrault, G; Cordier, M-O; Quiniou, R; Wang, F

    2003-07-01

    This paper proposes a novel approach to cardiac arrhythmia recognition from electrocardiograms (ECGs). ECGs record the electrical activity of the heart and are used to diagnose many heart disorders. The numerical ECG is first temporally abstracted into series of time-stamped events. Temporal abstraction makes use of artificial neural networks to extract interesting waves and their features from the input signals. A temporal reasoner called a chronicle recogniser processes such series in order to discover temporal patterns called chronicles which can be related to cardiac arrhythmias. Generally, it is difficult to elicit an accurate set of chronicles from a doctor. Thus, we propose to learn automatically from symbolic ECG examples the chronicles discriminating the arrhythmias belonging to some specific subset. Since temporal relationships are of major importance, inductive logic programming (ILP) is the tool of choice as it enables first-order relational learning. The approach has been evaluated on real ECGs taken from the MIT-BIH database. The performance of the different modules as well as the efficiency of the whole system is presented. The results are rather good and demonstrate that integrating numerical techniques for low level perception and symbolic techniques for high level classification is very valuable.

  9. Humidity: A review and primer on atmospheric moisture and human health.

    PubMed

    Davis, Robert E; McGregor, Glenn R; Enfield, Kyle B

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importance of humidity variable selection, we correlate numerous hourly humidity variables to daily respiratory syncytial virus isolates in Singapore from 1992 to 1994. Most water-vapor mass based variables (specific humidity, absolute humidity, mixing ratio, dewpoint temperature, vapor pressure) exhibit comparable correlations. Variables that include a thermal component (relative humidity, dewpoint depression, saturation vapor pressure) exhibit strong diurnality and seasonality. Humidity variable selection must be dictated by the underlying research question. Despite being the most commonly used humidity variable, relative humidity should be used sparingly and avoided in cases when the proximity to saturation is not medically relevant. Care must be taken in averaging certain humidity variables daily or seasonally to avoid statistical biasing associated with variables that are inherently diurnal through their relationship to temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Comparison between real and modeled maregraphic data obtained using a simple dislocation model of the 27.02.2010 Chilian seismic source

    NASA Astrophysics Data System (ADS)

    Roger, J.; Simao, N.; Ruegg, J.-C.; Briole, P.; Allgeyer, S.

    2010-05-01

    On the 27th February 2010, a magnitude Mw=8.8 earthquake shook a wide part of Chile. It was the result of a release of energy due to a rupture on the subduction fault plane of the Pacific oceanic plate beneath the South-American plate. It generated a widespread tsunami that struck the whole Pacific Ocean Coasts. In addition to the numerous casualties and destructions fathered by the earthquake itself, the tsunami reached several meters high in some near-field locations inundating important urban areas (for example in Talcahano). In some far-field places as in the Marquesas Islands (FR), it reached several meters high too. This tsunami has been recorded by numerous coastal tide gages and DART buoys and, more particularly, some sea level records are available in the rupture area (Valparaiso, Talcahano, Arica, Ancud, Corral, Coquimbo). The aim of this study is to use a simple dislocation model determined from a moment tensor solution, aftershocks locations and GPS measurements, to calculate the initial offshore bottom deformation. This deformation is introduced in a tsunami propagation code to produce synthetic mareogramms on specific points that are compared to the real recorded maregraphic data.

  11. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  12. New method for initial density reconstruction

    NASA Astrophysics Data System (ADS)

    Shi, Yanlong; Cautun, Marius; Li, Baojiu

    2018-01-01

    A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms that were very recently put forward in the literature, with the reconstructed density field over ˜80 % (50%) correlated with the initial condition at k ≲0.6 h /Mpc (1.0 h /Mpc ). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.

  13. Effect of Melt Convection and Solid Transport on Macrosegregation and Grain Structure in Equiaxed Al-Cu Alloys

    NASA Technical Reports Server (NTRS)

    Rerko, Rodney S.; deGroh, Henry C., III; Beckermann, Christoph; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Macrosegregation in metal casting can be caused by thermal and solutal melt convection, and the transport of unattached solid crystals. These free grains can be a result of, for example, nucleation in the bulk liquid or dendrite fragmentation. In an effort to develop a comprehensive numerical model for the casting of alloys, an experimental study has been conducted to generate benchmark data with which such a solidification model could be tested. The specific goal of the experiments was to examine equiaxed solidification in situations where sinking of grains is (and is not) expected. The objectives were: 1) experimentally study the effects of solid transport and thermosolutal convection on macrosegregation and grain size distribution patterns; and 2) provide a complete set of controlled thermal boundary conditions, temperature data, segregation data, and grain size data, to validate numerical codes. The alloys used were Al-1 wt. pct. Cu, and Al-10 wt. pct. Cu with various amounts of the grain refiner TiB2 added. Cylindrical samples were either cooled from the top, or the bottom. Several trends in the data stand out. In attempting to model these experiments, concentrating on experiments that show clear trends or differences is recommended.

  14. A Framework for Debugging Geoscience Projects in a High Performance Computing Environment

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Matott, L.

    2012-12-01

    High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.

  15. Optimization of decoupling performance of underwater acoustic coating with cavities via equivalent fluid model

    NASA Astrophysics Data System (ADS)

    Huang, Lingzhi; Xiao, Yong; Wen, Jihong; Zhang, Hao; Wen, Xisen

    2018-07-01

    Acoustic coatings with periodically arranged internal cavities have been successfully applied in submarines for the purpose of decoupling water from vibration of underwater structures, and thus reducing underwater sound radiation. Previous publications on decoupling acoustic coatings with cavities are mainly focused on the case of coatings with specific shaped cavities, including cylindrical and conical cavities. To explore better decoupling performance, an optimal design of acoustic coating with complex shaped cavities is attempted in this paper. An equivalent fluid model is proposed to characterize coatings with general axisymmetrical cavities. By employing the equivalent fluid model, an analytical vibroacoustic model is further developed for the prediction of sound radiation from an infinite plate covered with an equivalent fluid layer (as a replacement of original coating) and immersed in water. Numerical examples are provided to verify the equivalent fluid model. Based on a combining use of the analytical vibroacoustic model and a differential evolution algorithm, optimal designs for acoustic coatings with cavities are conducted. Numerical results demonstrate that the decoupling performance of acoustic coating can be significantly improved by employing special axisymmetrical cavities as compared to traditional cylindrical cavities.

  16. On decoupling of volatility smile and term structure in inverse option pricing

    NASA Astrophysics Data System (ADS)

    Egger, Herbert; Hein, Torsten; Hofmann, Bernd

    2006-08-01

    Correct pricing of options and other financial derivatives is of great importance to financial markets and one of the key subjects of mathematical finance. Usually, parameters specifying the underlying stochastic model are not directly observable, but have to be determined indirectly from observable quantities. The identification of local volatility surfaces from market data of European vanilla options is one very important example of this type. As with many other parameter identification problems, the reconstruction of local volatility surfaces is ill-posed, and reasonable results can only be achieved via regularization methods. Moreover, due to the sparsity of data, the local volatility is not uniquely determined, but depends strongly on the kind of regularization norm used and a good a priori guess for the parameter. By assuming a multiplicative structure for the local volatility, which is motivated by the specific data situation, the inverse problem can be decomposed into two separate sub-problems. This removes part of the non-uniqueness and allows us to establish convergence and convergence rates under weak assumptions. Additionally, a numerical solution of the two sub-problems is much cheaper than that of the overall identification problem. The theoretical results are illustrated by numerical tests.

  17. Digging Back In Time: Integrating Historical Data Into an Operational Ocean Observing System

    NASA Astrophysics Data System (ADS)

    McCammon, M.

    2016-02-01

    Modern technologies allow reporting and display of data near real-time from in situ instrumentation live on the internet. This has given users fast access to critical information for scientific applications, marine safety, planning, and numerous other activities. Equally as valuable is having access to historical data sets. However, it is challenging to identify sources and access of historical data of interest as it exists in many different locations, depending on the funding source and provider. Also, time-varying formats can make it difficult to data-mine and display historical data. There is also the issue of data quality, and having a systematic means of assessing credibility of historical data sets. The Alaska Ocean Observing System (AOOS) data management system demonstrates the successful ingestion of historical data, both old and new (as recent as yesterday) and has integrated numerous historical data streams into user friendly data portals, available for data upload and display on the AOOS Website. An example is the inclusion of non-real-time (e.g. day old) AIS (Automatic Identification System) ship tracking data, important for scientists working in marine mammal migration regions. Other examples include historical sea ice data, and various data streams from previous research projects (e.g. moored time series, HF Radar surface currents, weather, shipboard CTD). Most program or project websites only offer access to data specific to their agency or project alone, but do not have the capacity to provide access to the plethora of other data that might be available for the region and be useful for integration, comparison and synthesis. AOOS offers end users access to a one stop-shop for data in the area they want to research, helping them identify other sources of information and access. Demonstrations of data portals using historical data illustrate these benefits.

  18. Capturing Intuition Through Interactive Inverse Methods: Examples Drawn From Mechanical Non-Linearities in Structural Geology

    NASA Astrophysics Data System (ADS)

    Moresi, L.; May, D.; Peachey, T.; Enticott, C.; Abramson, D.; Robinson, T.

    2004-12-01

    Can you teach intuition ? Obviously we think that this is possible (though it's still just a hunch). People undoubtedly develop intuition for non-linear systems through painstaking repetition of complex tasks until they have sufficient feedback to begin to "see" the emergent behaviour. The better the exploration of the system can be exposed, the quicker the potential for developing an intuitive understanding. We have spent some time considering how to incorporate the intuitive knowledge of field geologists into mechanical modeling of geological processes. Our solution has been to allow expert geologist to steer (via a GUI) a genetic algorithm inversion of a mechanical forward model towards "structures" or patterns which are plausible in nature. The expert knowledge is then captured by analysis of the individual model parameters which are constrained by the steering (and by analysis of those which are unconstrained). The same system can also be used in reverse to expose the influence of individual parameters to the non-expert who is trying to learn just what does make a good match between model and observation. The ``distance'' between models preferred by experts, and those by an individual can be shown graphically to provide feedback. The examples we choose are from numerical models of extensional basins. We will first try to give each person some background information on the scientific problem from the poster and then we will let them loose on the numerical modeling tools with specific tasks to achieve. This will be an experiment in progress - we will later analyse how people use the GUI and whether there is really any significant difference between so-called experts and self-styled novices.

  19. Simulations for the Development of Thermoelectric Measurements

    NASA Astrophysics Data System (ADS)

    Zabrocki, Knud; Ziolkowski, Pawel; Dasgupta, Titas; de Boor, Johannes; Müller, Eckhard

    2013-07-01

    In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.

    We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.

  1. Generalized Thomas-Reiche-Kuhn sum rule

    NASA Astrophysics Data System (ADS)

    Zhou, Bing-Lu; Zhu, Jiong-Ming; Yan, Zong-Chao

    2006-01-01

    The generalized Thomas-Reiche-Kuhn sum rule is established for any Coulombic system with arbitrary masses and charges of its constituent particles. Numerical examples are given for the hydrogen molecular ions.

  2. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  3. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  4. A link prediction method for heterogeneous networks based on BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  5. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.

    2007-01-01

    In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.

  6. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  7. Approximation and Numerical Analysis of Nonlinear Equations of Evolution.

    DTIC Science & Technology

    1980-01-31

    dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example

  8. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  9. On the Solution of Elliptic Partial Differential Equations on Regions with Corners

    DTIC Science & Technology

    2015-07-09

    In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on

  10. Solving PDEs with Intrepid

    DOE PAGES

    Bochev, P.; Edwards, H. C.; Kirby, R. C.; ...

    2012-01-01

    Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

  11. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  12. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  13. A Framework for Empirical Discovery.

    DTIC Science & Technology

    1986-09-24

    history of science reveal distinct classes of defined terms. Some systems have focused on one subset of these classes, while other programs have...the operators in detail, presenting examples of each from the history of science . 2.1 Defining Numeric Terms The most obvious operator for defining...laws; they can also simplify the process of discovering such laws. Let us consider some examples from the history of science in which the definition of

  14. Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.

    NASA Astrophysics Data System (ADS)

    Xia, Jake Jiqing

    The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  15. Geometrical ambiguity of pair statistics. II. Heterogeneous media

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Stillinger, Frank H.; Torquato, Salvatore

    2010-07-01

    In the first part of this series of two papers [Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 011105 (2010)10.1103/PhysRevE.81.011105], we considered the geometrical ambiguity of pair statistics associated with point configurations. Here we focus on the analogous problem for heterogeneous media (materials). Heterogeneous media are ubiquitous in a host of contexts, including composites and granular media, biological tissues, ecological patterns, and astrophysical structures. The complex structures of heterogeneous media are usually characterized via statistical descriptors, such as the n -point correlation function Sn . An intricate inverse problem of practical importance is to what extent a medium can be reconstructed from the two-point correlation function S2 of a target medium. Recently, general claims of the uniqueness of reconstructions using S2 have been made based on numerical studies, which implies that S2 suffices to uniquely determine the structure of a medium within certain numerical accuracy. In this paper, we provide a systematic approach to characterize the geometrical ambiguity of S2 for both continuous two-phase heterogeneous media and their digitized representations in a mathematically precise way. In particular, we derive the exact conditions for the case where two distinct media possess identical S2 , i.e., they form a degenerate pair. The degeneracy conditions are given in terms of integral and algebraic equations for continuous media and their digitized representations, respectively. By examining these equations and constructing their rigorous solutions for specific examples, we conclusively show that in general S2 is indeed not sufficient information to uniquely determine the structure of the medium, which is consistent with the results of our recent study on heterogeneous-media reconstruction [Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. U.S.A. 106, 17634 (2009)10.1073/pnas.0905919106]. The analytical examples include complex patterns composed of building blocks bearing the letter “T” and the word “WATER” as well as degenerate stacking variants of the densest sphere packing in three dimensions (Barlow films). Several numerical examples of degeneracy (e.g., reconstructions of polycrystal microstructures, laser-speckle patterns and sphere packings) are also given, which are virtually exact solutions of the degeneracy equations. The uniqueness issue of multiphase media reconstructions and additional structural information required to characterize heterogeneous media are discussed, including two-point quantities that contain topological connectedness information about the phases.

  16. Nutrient Application and Algal Blooms: Farmer Decisions Regarding the Use of Best Management Practices in Lake Erie's Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Heeren, A.; Toman, E.; Wilson, R. S.; Martin, J.

    2016-12-01

    Lake Erie is the most productive of the Great Lakes. However, harmful algal blooms (HABs) caused by nutrient run-off threaten the lake. Experts have proposed numerous best management practices (BMPs) designed to reduce nutrient and sediment run-off. However, for these practices to be effective at reducing HABs, a significant portion of farmers and landowners within Lake Erie's watersheds have to first adopt and implement these practices. In order to better understand how farmers and landowners make decisions about whether or not to adopt and implement BMPs we conducted a series of focus groups and a mail survey of Lake Erie's largest watershed. We found that many farmers were supportive of adopting BMPs. For example, 60% of farmers in the watershed have already adopted using grid soil sampling while another 30% are willing to adopt the practice in the future. However, other practices were less popular, for example, only 18% of farmers had already adopted cover crops. Farmers also expressed several reservations about adopting some BMPs. For example, farmers were concerned about the costs of some BMPs, such as cover crops and drainage management systems, and how such practices might interfere with the planting of subsequent crops. Our research has several implications for reducing nutrient production by promoting BMPs. First, we identified potential concerns and limitations farmers faced in implementing specific BMPs. For example, conservationists can design future programs and communication efforts to target these specific concerns. Second, through examining the socio-psychological and cognitive characteristics that influence farmer decision-making, we identified that willingness to adopt nutrient BMPs is association with how strongly a farmer identifies with conservation and how effective they believed the BMP was at reducing run-off. Messages and information about BMPs may be more effective if they are framed in a way that aligns with identities and beliefs about BMP efficacy. Lastly, our research provides a framework of how the "wicked problem" of nutrient run-off can be addressed through the promotion of BMPs.

  17. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM

    NASA Astrophysics Data System (ADS)

    Mucha, Waldemar; Kuś, Wacław

    2018-01-01

    The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.

  18. Morphing continuum theory for turbulence: Theory, computation, and visualization.

    PubMed

    Chen, James

    2017-10-01

    A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.

  19. Quantitative imaging technique using the layer-stripping algorithm

    NASA Astrophysics Data System (ADS)

    Beilina, L.

    2017-07-01

    We present the layer-stripping algorithm for the solution of the hyperbolic coefficient inverse problem (CIP). Our numerical examples show quantitative reconstruction of small tumor-like inclusions in two-dimensions.

  20. Laser amplification of incoherent radiation

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1978-01-01

    The amplification of noise in a laser amplifier is treated theoretically. The model for the active medium and its description using density-matrix techniques, are taken from the theory of laser operation. The spectral behavior of the radiation in the nonlinear regime is studied and the formalism is written from the onset in the frequency domain. The statistics of the light are gradually modified by the nonlinear amplification process, and expressions are derived for the rate of change of fluctuations in intensity as a measure of statistical changes. In addition, the range of validity of Litvak's Gaussian-statistics approximation is discussed. In the homogeneous-broadening case, the evolution of initially broadband Gaussian radiation toward quasimonochromatic oscillations with laserlike statistics is explored in several numerical examples. The connections of this study with the time-domain work on self-pulsing in a ring-laser configuration, are established. Finally, spectral-narrowing and -rebroadening effects in Doppler-broadened media are discussed both analytically and with numerical examples. These examples show the distinct contribution of pulsations in the population ('Raman-type terms'), and saturation phenomena.

  1. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  2. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  3. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  4. Purely numerical approach for analyzing flow to a well intercepting a vertical fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.; Palen, W.A.

    1979-03-01

    A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.

  5. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary

    NASA Astrophysics Data System (ADS)

    Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.

    2017-06-01

    A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.

  6. Effective numerical method of spectral analysis of quantum graphs

    NASA Astrophysics Data System (ADS)

    Barrera-Figueroa, Víctor; Rabinovich, Vladimir S.

    2017-05-01

    We present in the paper an effective numerical method for the determination of the spectra of periodic metric graphs equipped by Schrödinger operators with real-valued periodic electric potentials as Hamiltonians and with Kirchhoff and Neumann conditions at the vertices. Our method is based on the spectral parameter power series method, which leads to a series representation of the dispersion equation, which is suitable for both analytical and numerical calculations. Several important examples demonstrate the effectiveness of our method for some periodic graphs of interest that possess potentials usually found in quantum mechanics.

  7. Computing Evans functions numerically via boundary-value problems

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin

    2018-03-01

    The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.

  8. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities.

    PubMed

    Zhang, Peng; Liu, Ru-Xun; Wong, S C

    2005-05-01

    This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.

  9. Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.

    2015-11-01

    A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less

  10. The Power of 2: How an Apparently Irregular Numeration System Facilitates Mental Arithmetic

    ERIC Educational Resources Information Center

    Bender, Andrea; Beller, Sieghard

    2017-01-01

    Mangarevan traditionally contained two numeration systems: a general one, which was highly regular, decimal, and extraordinarily extensive; and a specific one, which was restricted to specific objects, based on diverging counting units, and interspersed with binary steps. While most of these characteristics are shared by numeration systems in…

  11. Reliability, construct validity, and responsiveness of the neck disability index, patient-specific functional scale, and numeric pain rating scale in patients with cervical radiculopathy.

    PubMed

    Young, Ian A; Cleland, Joshua A; Michener, Lori A; Brown, Chris

    2010-10-01

    To examine the psychometric properties of the Neck Disability Index, Patient-Specific Functional Scale, and the Numeric Pain Rating Scale in a cohort of patients with cervical radiculopathy. A single-group repeated-measures design. Patients (n = 165) presenting to physical therapy with cervical radiculopathy completed the Neck Disability Index, Patient-Specific Functional Scale, and Numeric Pain Rating Scale at the baseline examination and at a follow-up. At the time of follow-up, all patients also completed the Global Rating of Change, which was used to dichotomize patients as improved or stable. Baseline and follow-up scores were used to determine the test-retest reliability, construct validity, and minimal levels of detectable and clinically important change for the Neck Disability Index, Patient-Specific Functional Scale, and Numeric Pain Rating Scale. Both the Neck Disability Index and Numeric Pain Rating Scale exhibited fair test-retest reliability, whereas the Patient-Specific Functional Scale exhibited poor reliability in patients with cervical radiculopathy. All three outcome measures showed adequate responsiveness in this patient population. The minimal detectable change was 13.4 for the Neck Disability Index, 3.3 for the Patient-Specific Functional Scale, and 4.1 for the Numeric Pain Rating Scale. The threshold for the minimal clinically important difference was 8.5 for the Neck Disability Index and 2.2 for both the Patient-Specific Functional Scale and Numeric Pain Rating Scale. In light of the varied distribution of symptoms in patients with cervical radiculopathy, future studies should investigate the psychometric properties of other neck-related disability measures in this patient population.

  12. Fuzzy multi objective transportation problem – evolutionary algorithm approach

    NASA Astrophysics Data System (ADS)

    Karthy, T.; Ganesan, K.

    2018-04-01

    This paper deals with fuzzy multi objective transportation problem. An fuzzy optimal compromise solution is obtained by using Fuzzy Genetic Algorithm. A numerical example is provided to illustrate the methodology.

  13. On Teaching About Terrorism: A Conceptual Approach.

    ERIC Educational Resources Information Center

    Kleg, Milton

    1986-01-01

    Recommends the use of conceptual mapping, case studies, and springboards to discussion and inquiry as viable approaches to the study of terrorism in secondary classrooms. Provides numerous examples of conceptual maps. (JDH)

  14. SAR Interferometry: On the Coherence Estimation in non Stationary Scenes

    NASA Astrophysics Data System (ADS)

    Ballatore, P.

    2005-05-01

    The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.

  15. Residual Distribution Schemes for Conservation Laws Via Adaptive Quadrature

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Abgrall, Remi; Biegel, Bryan (Technical Monitor)

    2000-01-01

    This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.

  16. Numerical and behavioral effects within a pulse-driven system: consequences for shared prey.

    PubMed

    Schmidt, Kenneth A; Ostfeld, Richard S

    2008-03-01

    Some of the clearest examples of the ramifying effects of resource pulses exist in deciduous forests dominated by mast-producing trees, such as oaks, beech, and hornbeam. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming small rodents numerically respond to seed production and tertiary pulses emerge as generalist predators numerically respond to rodents. Raptors may also respond behaviorally (i.e., diet shifts) to subsequent crashes in small rodents following the crash phase in seed production. In oak-dominated forest in the Hudson Valley, New York, these various pulse and crash phases act synergistically, although not simultaneously, to influence thrush population dynamics through predation on nests, juveniles, and adults. As a consequence, factors limiting population growth rate and their age-specific action vary as a function of past acorn production. We highlight these interactions based on our eight-year study of thrush demography, acorn production, and small mammal abundance coupled with information on regional adult thrush population trends from the Breeding Bird Survey. We use these data sets to demonstrate the sequence of primary to tertiary pulses and how they influence breeding thrush populations. To extend our discussion beyond masting phenomena in the eastern United States, we briefly review the literature of alternative avian prey within pulsed systems to show (1) numerical and behavioral responses by generalist predators are ubiquitous in pulsed systems, and this contributes to (2) variability in reproduction and survivorship of avian prey linked to the underlying dynamics of the pulse. We conclude by exploring the broad consequences of cascading resource pulses for alternative prey based upon the indirect interaction of apparent competition among shared prey and the nature of temporal variability on populations.

  17. Numeric invariants from multidimensional persistence

    DOE PAGES

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    Topological data analysis is the study of data using techniques from algebraic topology. Often, one begins with a finite set of points representing data and a “filter” function which assigns a real number to each datum. Using both the data and the filter function, one can construct a filtered complex for further analysis. For example, applying the homology functor to the filtered complex produces an algebraic object known as a “one-dimensional persistence module”, which can often be interpreted as a finite set of intervals representing various geometric features in the data. If one runs the above process incorporating multiple filtermore » functions simultaneously, one instead obtains a multidimensional persistence module. Unfortunately, these are much more difficult to interpret. In this article, we analyze the space of multidimensional persistence modules from the perspective of algebraic geometry. First we build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence instead of one-dimensional persistence. Fruthermore, we argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Finally, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data. This paper extends the results of Adcock et al. (Homol Homotopy Appl 18(1), 381–402, 2016) by constructing numeric invariants from the computation of a multidimensional persistence module as given by Carlsson et al. (J Comput Geom 1(1), 72–100, 2010).« less

  18. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    PubMed

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  19. From star-disc encounters to numerical solutions for a subset of the restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Breslau, Andreas; Vincke, Kirsten; Pfalzner, Susanne

    2017-03-01

    Various astrophysical processes exist, where the fly-by of a massive object affects matter that is initially supported against gravity by rotation. Examples are perturbations of galaxies, protoplanetary discs, or planetary systems. We approximate such events as a subset of the restricted three-body problem by considering only perturbations of non-interacting low-mass objects that are initially on circular Keplerian orbits. In this paper, we present a new parametrisation of the initial conditions of this problem. Under certain conditions, the initial positions of the low-mass objects can be specified as being largely independent of the initial position of the perturber. In addition, exploiting the known scalings of the problem reduces the parameter space of initial conditions for one specific perturbation to two dimensions. To this two-dimensional initial condition space, we have related the final properties of the perturbed trajectories of the low-mass objects from our numerical simulations. In this way, maps showing the effect of the perturbation on the low-mass objects were created, which provide a new view on the perturbation process. Comparing the maps for different mass-ratios reveals that the perturbations by low- and high-mass perturbers are dominated by different physical processes. The equal-mass case is a complicated mixture of the other two cases. Since the final properties of trajectories with similar initial conditions are also usually similar, the results of the limited number of integrated trajectories can be generalised to the full presented parameter space by interpolation. Since our results are also unique within the accuracy strived for, they constitute general numerical solutions for this subset of the restricted three-body problem. As such, they can be used to predict the evolution of real physical problems by simple transformations, such as scaling, without further simulations. Possible applications are the perturbation of protoplanetary discs or planetary systems by the fly-by of another star. Here, the maps enable us, for example, to quantify the portion of unbound material for any periastron distance without the need for further simulations.

  20. Europa Lander Material Selection Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Alexander S.; Heller, Mellisa

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less

  1. Free underexpanded jets in a quiescent medium: A review

    NASA Astrophysics Data System (ADS)

    Franquet, Erwin; Perrier, Vincent; Gibout, Stéphane; Bruel, Pascal

    2015-08-01

    When dealing with high-pressure releases, be it needed by some operating conditions or due to an emergency protocol or even to the occurrence of an accident, one has to consider the relevant risks associated to this leakage. Indeed, in addition to the mechanical and blast effects, the dispersion of the released fluid is of primary importance if it is hazardous, as an example for toxic gases or flammable ones (where explosions or fires may be expected). In fact, despite the numerous studies dealing with underexpanded jets, many aspects of their structure are not clearly described, particularly when one seeks for quantitative predictions. By performing an exhaustive overview of the main experimental papers dealing with underexpanded jets, the present paper aims at clarifying the characteristics which are well known, from those where there is clearly a lack of confidence. Indeed, and curiously enough, such a work has never been done and no review is available on such a topic. Two particular regions have drawn most of the attention so far: the nearfield zone, where the shocks/rarefaction pattern that governs the structure of the jet is encountered, and the farfield zone, where the flow is fully developed and often approximated by an equivalent flow. Finally, some clues are given on the numerical methods that may be used if one wants to study such jets numerically, together with an emphasis on the specific thermodynamical difficulties associated to this kind of extreme conditions.

  2. Augmented reality on poster presentations, in the field and in the classroom

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Kolawole, Folarin

    2017-04-01

    Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.

  3. Enter the reverend: introduction to and application of Bayes' theorem in clinical ophthalmology.

    PubMed

    Thomas, Ravi; Mengersen, Kerrie; Parikh, Rajul S; Walland, Mark J; Muliyil, Jayprakash

    2011-12-01

    Ophthalmic practice utilizes numerous diagnostic tests, some of which are used to screen for disease. Interpretation of test results and many clinical management issues are actually problems in inverse probability that can be solved using Bayes' theorem. Use two-by-two tables to understand Bayes' theorem and apply it to clinical examples. Specific examples of the utility of Bayes' theorem in diagnosis and management. Two-by-two tables are used to introduce concepts and understand the theorem. The application in interpretation of diagnostic tests is explained. Clinical examples demonstrate its potential use in making management decisions. Positive predictive value and conditional probability. The theorem demonstrates the futility of testing when prior probability of disease is low. Application to untreated ocular hypertension demonstrates that the estimate of glaucomatous optic neuropathy is similar to that obtained from the Ocular Hypertension Treatment Study. Similar calculations are used to predict the risk of acute angle closure in a primary angle closure suspect, the risk of pupillary block in a diabetic undergoing cataract surgery, and the probability that an observed decrease in intraocular pressure is due to the medication that has been started. The examples demonstrate how data required for management can at times be easily obtained from available information. Knowledge of Bayes' theorem helps in interpreting test results and supports the clinical teaching that testing for conditions with a low prevalence has a poor predictive value. In some clinical situations Bayes' theorem can be used to calculate vital data required for patient management. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  4. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  5. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

    PubMed Central

    Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

    2014-01-01

    In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

  6. Validation of computational code UST3D by the example of experimental aerodynamic data

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2017-02-01

    Numerical simulation of the aerodynamic characteristics of the hypersonic vehicles X-33 and X-34 as well as spherically blunted cone is performed using the unstructured meshes. It is demonstrated that the numerical predictions obtained with the computational code UST3D are in acceptable agreement with the experimental data for approximate parameters of the geometry of the hypersonic vehicles and in excellent agreement with data for blunted cone.

  7. xLIPA: Promotion of Electrons from the K-shell to 2 GeV using 10 PW Laser Pulses

    DTIC Science & Technology

    2015-08-19

    field [34]. Since then numerous analytical and numerical approaches have been employed with special emphasis on laser photoionization . Besides interest in... photoionization as a fundamental physical process there are many applications for photoelectrons. Knowledge of the electron properties, e.g., energy...Schwinger field. Photoionization of inner-shell electrons in high-Z atoms is another example where relativistic effects are important. Two analytical

  8. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  9. Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.

    2015-11-01

    A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed

  10. Application of singular value decomposition to structural dynamics systems with constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Pinson, L. D.

    1985-01-01

    Singular value decomposition is used to construct a coordinate transformation for a linear dynamic system subject to linear, homogeneous constraint equations. The method is compared with two commonly used methods, namely classical Gaussian elimination and Walton-Steeves approach. Although the classical method requires fewer numerical operations, the singular value decomposition method is more accurate and convenient in eliminating the dependent coordinates. Numerical examples are presented to demonstrate the application of the method.

  11. Three Dimensional Grid Generation for Complex Configurations - Recent Progress

    DTIC Science & Technology

    1988-03-01

    Navier/Stokes finite difference calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends...such as advanced fighters or logistic transports, where a multiblock mesh, for example, is necessary. There exist numerous reports and books on the...MESHES I 3.10 ADAPTIVE GRID SCHEMES 10 3.11 REFERENCES 12 4. CONTRIBUTIONS 13 4.1 SOLICITATION AND OVERVIEW 13 4.2 LESSONS LEARNED IN THE MESH

  12. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    PubMed

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Use of Animation in Teaching Cell Biology

    PubMed Central

    2004-01-01

    To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation. PMID:15526065

  15. Application of the multi-scale finite element method to wave propagation problems in damaged structures

    NASA Astrophysics Data System (ADS)

    Casadei, F.; Ruzzene, M.

    2011-04-01

    This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.

  16. [Physicians conscience and Zeitgeist].

    PubMed

    Helmchen, H

    2015-03-01

    According to Luhmann conscience is understood as a value-neutral function for forming identity. Its background is biological in nature but receives its values from the normative context of family and society. In an evolutionary perspective group congruent behavior could offer a survival advantage that will be stabilized by an emotional bonding to a group. This bonding makes the individual dependent on the sociocultural context, including its normative content and its change.This influence becomes clear in different individual as well as time-dependent judgments of a specific moral problem in multicultural societies and with changes of the zeitgeist. Such influences are illustrated by numerous examples and lead to the question whether at all and by which criteria changes of conscience will be recognized by the person concerned. This article aims at a sensitization for questions of formation and vulnerability of the conscience.

  17. Statistical theory and methodology for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1974-01-01

    A model is developed for the evaluation of acreages (proportions) of different crop-types over a geographical area using a classification approach and methods for estimating the crop acreages are given. In estimating the acreages of a specific croptype such as wheat, it is suggested to treat the problem as a two-crop problem: wheat vs. nonwheat, since this simplifies the estimation problem considerably. The error analysis and the sample size problem is investigated for the two-crop approach. Certain numerical results for sample sizes are given for a JSC-ERTS-1 data example on wheat identification performance in Hill County, Montana and Burke County, North Dakota. Lastly, for a large area crop acreages inventory a sampling scheme is suggested for acquiring sample data and the problem of crop acreage estimation and the error analysis is discussed.

  18. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  19. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1998-01-01

    A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.

  20. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  1. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  2. Erratum: A Comparison of Closures for Stochastic Advection-Diffusion Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kenneth D.; Tartakovsky, Alexandre M.

    2015-01-01

    This note corrects an error in the authors' article [SIAM/ASA J. Uncertain. Quantif., 1 (2013), pp. 319 347] in which the cited work [Neuman, Water Resour. Res., 29(3) (1993), pp. 633 645] was incorrectly represented and attributed. Concentration covariance equations presented in our article as new were in fact previously derived in the latter work. In the original abstract, the phrase " . . .we propose a closed-form approximation to two-point covariance as a measure of uncertainty. . ." should be replaced by the phrase " . . .we study a closed-form approximation to two-point covariance, previously derived in [Neumanmore » 1993], as a measure of uncertainty." The primary results in our article--the analytical and numerical comparison of existing closure methods for specific example problems are not changed by this correction.« less

  3. Maize centromeres: structure, function, epigenetics.

    PubMed

    Birchler, James A; Han, Fangpu

    2009-01-01

    The ability of centromeres to organize the kinetochore has an epigenetic component in that DNA sequence alone does not necessarily serve as the determinant of activity. The centromeres of maize have been well characterized with regard to the sequence repeats present at all primary constrictions. The supernumerary B chromosome centromere contains an additional specific repeat that is represented in the active core and that allows it to be studied against the background of the other centromeres. The foundational proteins of the kinetochore have been characterized, and an RNA component has been defined. Numerous examples of inactive centromeres have been characterized for both A and B chromosomal centromeres indicating the ease with which plant centromeres become inactive. Under some circumstances, inactive centromeres can exhibit reactivation at their formerly inactive sites. This observation suggests that a DNA-based topological component also operates for centromere identity.

  4. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  5. Chaos motion in robot manipulators

    NASA Technical Reports Server (NTRS)

    Lokshin, A.; Zak, M.

    1987-01-01

    It is shown that a simple two-link planar manipulator exhibits a phenomenon of global instability in a subspace of its configuration space. A numerical example, as well as results of a graphic simulation, is given.

  6. Instruments for Water Quality Monitoring

    ERIC Educational Resources Information Center

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  7. FAST TRACK COMMUNICATION Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples

    NASA Astrophysics Data System (ADS)

    Holm, D. D.; Ivanov, R. I.

    2010-12-01

    The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n, k), of equations with n components and 1 <= |k| <= n velocities. All of the members of the CH(n, k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2, k) family with one or two velocities, including the CH(2, -1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3, 1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n, k) when n >= 3. Fondly recalling our late friend Jerry Marsden.

  8. Optimal Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  9. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  10. Re-Computation of Numerical Results Contained in NACA Report No. 496

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III

    2015-01-01

    An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.

  11. The Numerical Solution of Acoustic Propagation through Dispersive Moving Media

    DTIC Science & Technology

    2010-06-01

    environments. The benthic nepheloid layer ( BNL ) is an example of a moving turbid water layer in the ocean. The BNL is characterized by changing vertical...this change. There are however situations where this assumption doesn’t hold. For example when a benthic nepheloid layer ( BNL ) is present. A BNL is...shoaling and breaking of internal waves on the continental shelf. The BNL is dynamic, characterized by changing vertical thickness, concentration and

  12. Noddings's caring ethics theory applied in a paediatric setting.

    PubMed

    Lundqvist, Anita; Nilstun, Tore

    2009-04-01

    Since the 1990s, numerous studies on the relationship between parents and their children have been reported on in the literature and implemented as a philosophy of care in most paediatric units. The purpose of this article is to understand the process of nurses' care for children in a paediatric setting by using Noddings's caring ethics theory. Noddings's theory is in part described from a theoretical perspective outlining the basic idea of the theory followed by a critique of her work. Important conceptions in her theory are natural caring (reception, relation, engrossment, motivational displacement, reciprocity) and ethical caring (physical self, ethical self, and ethical ideal). As a nurse one holds a duty of care to patients and, in exercising this duty, the nurse must be able to develop a relationship with the patient including giving the patient total authenticity in a 'feeling with' the patient. Noddings's theory is analysed and described in three examples from the paediatrics. In the first example, the nurse cared for the patient in natural caring while in the second situation, the nurse strived for the ethical caring of the patient. In the third example, the nurse rejected the impulse to care and deliberately turned her back to ethics and abandoned her ethical caring. According to the Noddings's theory, caring for the patient enables the nurse to obtain ethical insights from the specific type of nursing care which forms an important contribution to an overall increase of an ethical consciousness in the nurse.

  13. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  14. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  15. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings

    NASA Astrophysics Data System (ADS)

    Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2013-11-01

    A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.

  16. Reconstructing population exposures to environmental chemicals from biomarkers: challenges and opportunities.

    PubMed

    Georgopoulos, Panos G; Sasso, Alan F; Isukapalli, Sastry S; Lioy, Paul J; Vallero, Daniel A; Okino, Miles; Reiter, Larry

    2009-02-01

    A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.

  17. Measuring treatment effects on dual-task performance: a framework for research and clinical practice

    PubMed Central

    Plummer, Prudence; Eskes, Gail

    2015-01-01

    The relevance of dual-task walking to everyday ambulation is widely acknowledged, and numerous studies have demonstrated that dual-task interference can significantly impact recovery of functional walking in people with neurological disorders. The magnitude and direction of dual-task interference is influenced by the interaction between the two tasks, including how individuals spontaneously prioritize their attention. Therefore, to accurately interpret and characterize dual-task interference and identify changes over time, it is imperative to evaluate single and dual-task performance in both tasks, as well as the tasks relative to each other. Yet, reciprocal dual-task effects (DTE) are frequently ignored. The purpose of this perspective paper is to present a framework for measuring treatment effects on dual-task interference, specifically taking into account the interactions between the two tasks and how this can provide information on whether overall dual-task capacity has improved or a different attentional strategy has been adopted. In discussing the clinical implications of using this framework, we provide specific examples of using this method and provide some explicit recommendations for research and clinical practice. PMID:25972801

  18. Mineralocorticoids in the heart and vasculature: new insights for old hormones.

    PubMed

    Lother, Achim; Moser, Martin; Bode, Christoph; Feldman, Ross D; Hein, Lutz

    2015-01-01

    The mineralocorticoid aldosterone is a key regulator of water and electrolyte homeostasis. Numerous recent developments have advanced the field of mineralocorticoid pharmacology—namely, clinical trials have shown the beneficial effects of aldosterone antagonists in chronic heart failure and post-myocardial infarction treatment. Experimental studies using cell type-specific gene targeting of the mineralocorticoid receptor (MR) gene in mice have revealed the importance of extrarenal aldosterone signaling in cardiac myocytes, endothelial cells, vascular smooth cells, and macrophages. In addition, several molecular pathways involving signal transduction via the classical MR as well as the G protein-coupled receptor GPER mediate the diverse spectrum of effects of aldosterone on cells. This knowledge has initiated the development of new pharmacological ligands to specifically interfere with targets on different levels of aldosterone signaling. For example, aldosterone synthase inhibitors such as LCI699 and the novel nonsteroidal MR antagonist BAY 94-8862 have been tested in clinical trials. Interference with the interaction between MR and its coregulators seems to be a promising strategy toward the development of selective MR modulators.

  19. SOCMA study urges flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, E.

    In implementing the 1990 Pollution Prevention Act, regulators and legislators should hold off on cookie-cutter, numerical goal-based requirements to allow for site and process specific programs, says a study sponsored by the Synthetic Organic Chemicals Manufacturers Association (SOCMA; Washington). Companies should have that flexibility to target their resources toward those activities that reduce pollution cost effectively, says SOCMA environmental quality committee chairman Art Gillen, who is also BASF director of environmental regulatory affairs. The study - conducted by Woodward-Clyde Consultants (Denver) - examines four batch and custom chemical manufacturing films. As in the Clean Air Act, the batch processing ofmore » SOCMA-member plants should be considered in new regulations, Gillen says. For example, the study found that most wastes are from shutdowns and cleanouts, and there are frequent charges in waste streams and raw materials. Those characteristics do not lend themselves to annual reduction goals. Also, specific goals could have a wide range of costs: measures to reduce stack air emissions run from $18/lb to $1,106/lb. SOCMA says it will present the study to Congress and the Environmental Protection Agency.« less

  20. Reference system for scanning probe tip fingerprinting

    NASA Astrophysics Data System (ADS)

    Turansky, Robert; Bamidele, Joseph; Sugawara, Yasuhiro; Kantorovitch, Lev; Stich, Ivan

    2012-02-01

    Knowledge of the chemical structure of the tip asperity in Non-Contact Atomic Force Microscopy (NC-AFM) is crucial as controlled manipulation of atoms and/or molecules on surfaces can only be performed if this information is available. However, a simple and robust protocol for ensuring a specific tip termination has not yet been developed. We propose a procedure for chemical tip finger printing and an example of a reference system, the oxygen-terminated Cu(110) surface, that enables one to ensure a specific tip termination with Si, Cu, or O atoms. To follow this up and unambiguously determine tip types, we performed a theoretical DFT study of the line scans with the tip models in question and found that the tip characterization made based on experimental results (Cu/O-terminated tip imaging Cu/O atoms) is in fact incorrect and the opposite is true (Cu/O-terminated tip imaging O/Cu atoms). This protocol allows the tip asperity's chemical structure to be verified and established both before as well as at any stage of the manipulation experiment when numerous tip changes may take place.

  1. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-09

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.

  2. Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre

    2010-06-01

    The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization of a common rail, the cogging of a bar and a wire drawing problem.

  3. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  4. Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy

    NASA Astrophysics Data System (ADS)

    Kwon, Cheolhyeon

    Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the computational cost. The proposed algorithm is validated through a linearized longitudinal motion of a UAV example. Finally, we propose an attack attenuation strategy via the controller design for CPSs that are robust to various types of cyber attacks. While the previous studies have investigated a secure control by assuming a specific attack strategy, in this research we propose a hybrid robust control scheme that contains multiple sub-controllers, each matched to a specific type of cyber attacks. Then the system can be adapted to various cyber attacks (including those that are not assumed for sub-controller design) by switching its sub-controllers to achieve the best performance. Then, a method for designing a secure switching logic to counter all possible cyber attacks is proposed and it verifies mathematically the system's performance and stability as well. The performance of the proposed control scheme is demonstrated by an example with the hybrid H2 - H-infinity controller applied to a UAV example.

  5. A Visit with Mildred Milliea of Big Cove, New Brunswick

    ERIC Educational Resources Information Center

    Gray, Viviane

    1976-01-01

    Mildred Milliea has researched and developed the only Micmac language program in the Maritimes. The Micmac alphabet with equivalent sounds, the numerical system, and examples of new Micmac words are given. (NQ)

  6. Simulation of investment returns of toll projects.

    DOT National Transportation Integrated Search

    2013-08-01

    This research develops a methodological framework to illustrate key stages in applying the simulation of investment returns of toll projects, acting as an example process of helping agencies conduct numerical risk analysis by taking certain uncertain...

  7. Spreadsheets in Science Teaching.

    ERIC Educational Resources Information Center

    Elliot, Chris

    1988-01-01

    Described is the use of a spreadsheet to model dynamic phenomena using numerical iterative methods. Uses the discharge of a capacitor, simple and damped harmonic motion, and the flow of heat along a bar as examples. (Author/CW)

  8. Rethinking the Think Tanks: How Industry-Funded "Experts" Twist the Environmental Debate.

    ERIC Educational Resources Information Center

    Moore, Curtis

    2002-01-01

    Speculates about the role of industry-funded experts in distorting the environmental debate. Uses the records of Koch Industries and numerous other companies as examples to support the argument. (DDR)

  9. Semiannual Report: Oct 1, 2014 - Mar 31, 2015

    EPA Pesticide Factsheets

    Semiannual Report #EPA-350-R-15-001, May, 2015. This report contains numerous examples where the agency could have put funds to better use, done more to improve efficiencies, or improved business practices and accountability.

  10. Numerical Procedures for Analyzing Dynamical Processes.

    DTIC Science & Technology

    1992-02-29

    different in nature and can be of the third coordinate of the numerically calcu- called crnamic in that information about the dy- lated solution. Such...recover the matrix A by changing coordinates back to the original basis. "The points x, are points on the attractor which are not For example, if we...the attractor contained witun a small distance (of rotate the coordinate axes by 45’, The dynamics Xrer. In this notation. x, and y, are consecutive

  11. A collocation-shooting method for solving fractional boundary value problems

    NASA Astrophysics Data System (ADS)

    Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.

    2010-12-01

    In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.

  12. Using the Multilayer Free-Surface Flow Model to Solve Wave Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokof’ev, V. A., E-mail: ProkofyevVA@vniig.ru

    2017-01-15

    A method is presented for changing over from a single-layer shallow-water model to a multilayer model with hydrostatic pressure profile and, then, to a multilayer model with nonhydrostatic pressure profile. The method does not require complex procedures for solving the discrete Poisson’s equation and features high computation efficiency. The results of validating the algorithm against experimental data critical for the numerical dissipation of the numerical scheme are presented. Examples are considered.

  13. On the solution of the Helmholtz equation on regions with corners.

    PubMed

    Serkh, Kirill; Rokhlin, Vladimir

    2016-08-16

    In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples.

  14. On the solution of the Helmholtz equation on regions with corners

    PubMed Central

    Serkh, Kirill; Rokhlin, Vladimir

    2016-01-01

    In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples. PMID:27482110

  15. Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki

    2014-10-01

    A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.

  16. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  17. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  18. Weierstrass method for quaternionic polynomial root-finding

    NASA Astrophysics Data System (ADS)

    Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana

    2018-01-01

    Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.

  19. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  20. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Jiang, Yi-Min; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

Top