Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS
Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...
75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
...] Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental... compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene carbonate and dimethyl carbonate) to the list of those excluded...
Composites for removing metals and volatile organic compounds and method thereof
Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Reynolds, John G [San Ramon, CA
2006-12-12
Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.
FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS
Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatesan, M.I.; Kaplan, I.R.
1988-11-01
The biogeochemical processes and the dynamics involved in the cycling and transport of organic carbon can be elucidated only by determining distributions of specific organic compounds associated with the particles. At UCLA, the quantitative data of the various organic compounds in the sediment cores and trap particulates from various depths of water column are gathered in order to construct a dynamic model of the biogeochemical cycling and processes occurring in the water and sedimentary columns. The sources of organic carbon in southern California Bight derive from both terrestrial and marine regimes. The varied organic carbon sources can be reasonably delineatedmore » within limits by the organic geochemical approach of determining various characteristic biomarkers, as well as a variety of pollution indicators. The distributions of organic biomarker compounds are characteristic of marine algae, terrestrial vascular plants, bacteria, etc. Presence of specific biomarkers also indicate the occurrence of specific species (e.g., dinosterol specific of dinoflagellates). There are some pollution indicators which one can look for in the marine environment to trace their origin to terrestrial inputs, i.e., polycyclic aromatic hydrocarbons from petroleum and combustion, coprostanol from sewage, etc. We study the distribution of many of these compounds and from a correlation of their relative abundance, an attempt is made to delineate marine vs terrestrial influx to the organic carbon in the study area. 18 refs., 1 fig., 4 tabs.« less
This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...
NASA Technical Reports Server (NTRS)
Yazzie, Cyriah A.; Locke, Darren R.; Johnson, Natasha M.
2014-01-01
Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Research task- Are physicochemical properties of soil and house dust predictive of the bioaccessibility of sorbed organic compoundsGoalIdentify dust and soil characteristics that influence the bioaccessibility of organic compounds and provide chemical specific data on the fractio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.
1996-12-31
In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed bymore » a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.« less
USDA-ARS?s Scientific Manuscript database
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...
Cheepsattayakorn, Attapon; Cheepsattayakorn, Ruangrong
2013-01-01
Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future. PMID:24151617
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Changes in the stable isotopic composition of organic contaminants (isotopic fractionation) are a useful indicator of biotransformation, and have been reported in literature for several volatile organic compounds. The technique offers an interesting alternative to time-consuming ...
IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS
Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:
o Contributions to EPA Regional Monit...
NASA Astrophysics Data System (ADS)
Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea
2016-04-01
Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.
Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica
2015-07-01
We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.
Searching for Life on Mars: Selection of Molecular Targets for ESA's Aurora ExoMars Mission
NASA Astrophysics Data System (ADS)
Parnell, John; Cullen, David; Sims, Mark R.; Bowden, Stephen; Cockell, Charles S.; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge
2007-08-01
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.
Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission.
Parnell, John; Cullen, David; Sims, Mark R; Bowden, Stephen; Cockell, Charles S; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge
2007-08-01
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.
The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.
The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...
Detection of organic compounds with whole-cell bioluminescent bioassays.
Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary
2014-01-01
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
COLLECTION OF A SINGLE ALVEOLAR EXHALED BREATH FOR VOLATILE ORGANIC COMPOUNDS ANALYSIS
Measurement of specific organic compounds in exhaled breath has been used as an indicator of recent exposure to pollutants or as an indicator of the health of an individual. Typical application involves the collection of multiple breaths onto a sorbent cartridge or into an evacua...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... SIP revision includes amendments to Maryland's regulation for Volatile Organic Compounds from Specific... amendments will reduce emissions of volatile organic compound (VOC) emissions from large appliance coating... second comment period. Any parties interested in commenting on this action should do so at this time...
Vegetation composition and biomass were surveyed for three specific sites in Atlanta, GA; near Rhinelander, WI; and near Hayden, CO. At each research site, emissions of biogenic volatile organic compounds (BVOCs) from the dominant vegetation species were sampled by enclosing bran...
Ging, P.B.; Judd, L.J.; Wynn, K.H.
1997-01-01
The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.
Gas-liquid chromatography in lunar organic analysis.
NASA Technical Reports Server (NTRS)
Gehrke, C. W.
1972-01-01
Gas-liquid chromatography (GLC) is a powerful and sensitive method for the separation and detection of organic compounds at nanogram levels. The primary requirement for successful analyses is that the compounds of interest must be volatile under the chromatographic conditions employed. Nonvolatile organic compounds must be converted to volatile derivatives prior to analysis. The derivatives of choice must be both amenable to chromatographic separation and be relatively stable. The condition of volatility necessitates the development of efficient derivatization reactions for important groups of compounds as amino acids, carbohydrates, nucleosides, etc. Trimethylsilylation and trifluoroacetylation represent specific areas of recent prominence. Some relevant practical aspects of GLC are discussed.
Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.
Huang, Xiao-Lan; Zhang, Jia-Zhong
2011-11-01
Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoneit, B.R.T.; Radzi bin Abas, M.; Cass, G.R.
Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Various molecular markers have been proposed for this process but additional specific tracers are needed. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by pyrolysis. Although the composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. Homologous compounds and biomarkers present in smoke are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers (e.g., lignin, cutin, suberin), wax, gum andmore » resin. The component complexity is illustrated with examples from controlled bums of temperate and tropical biomass fuels. Conifer smoke contains characteristic tracers from diterpenoids as well as phenolics and other oxygenated species. These are recognizable in urban airsheds. The major organic components of smoke from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. Several compounds are potential key indicators for combustion of such biomass. The precursor to product approach of organic geochemistry can be applied successfully to provide molecular tracers for studying smoke plume chemistry and dispersion.« less
Screening assessment methods have been developed for semi- and non-volatile persistent organic pollutants (POPs) for human blood and solid environmental media. The specific methodology is developed for measuring the presence of "native" compounds, specifically, a var...
Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays
Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven
2015-01-01
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996
Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds.
Cunha, Rodrigo L O R; Gouvêa, Iuri E; Feitosa, Geovana P V; Alves, Márcio F M; Brömme, Dieter; Comasseto, João V; Tersariol, Ivarne L S; Juliano, Luiz
2009-11-01
The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time- and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities. In all cases, the activity of the tellurane-inhibited cathepsins was recovered by treatment of the inactivated enzymes with reducing agents. The maximum stoichiometry of the reaction between cysteine residues and telluranes were also determined. The presented data indicate that it is possible to design organic compounds with a tellurium(IV) moiety as a novel warhead that covalently modifies the catalytic cysteine, and which also form strong interactions with subsites of cathepsins B, L, S and K, resulting in more specific inhibition.
Soil organic matter stability as indicated by compound-specific radiocarbon analyses
NASA Astrophysics Data System (ADS)
van der Voort, Tessa Sophia; Zell, Claudia; Hagedorn, Frank; McIntyre, Cameron; Eglinton, Timothy Ian
2017-04-01
Carbon storage in soils is increasingly recognized as a key ecosystem function, and molecular-level analyses could be a valuable potential indicator of this storage potential. In this framework, radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics on both decadal as well as centennial and millennial timescales. In this study, we look at the radiocarbon signature of specific compounds (fatty acids and n-alkanes) in two forested ecosystems (temperate and pre-alpine) with the aim of attaining a better understanding of soil organic carbon stability on a molecular level. Radiocarbon dating of the fatty acids and n-alkanes has been coupled to abundance data of these compounds and additionally lignin phenols. We hypothesize that potentially, these long-chain apolar compounds could be a representative indicator of the mineral-bound soil organic carbon pool. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Therefore, a wide suite of ancillary climatic and textural data is available for these sites. Initial results show a wide range of ages in the specific compounds which constitute a much larger range than the ages indicated by the density fractions done on the same samples. Overall, this study explores the use of molecular-level indicators to study soil organic matter dynamics, which could help assess the overall potential vulnerability of soil carbon in various ecosystems.
Compound prioritization methods increase rates of chemical probe discovery in model organisms
Wallace, Iain M; Urbanus, Malene L; Luciani, Genna M; Burns, Andrew R; Han, Mitchell KL; Wang, Hao; Arora, Kriti; Heisler, Lawrence E; Proctor, Michael; St. Onge, Robert P; Roemer, Terry; Roy, Peter J; Cummins, Carolyn L; Bader, Gary D; Nislow, Corey; Giaever, Guri
2011-01-01
SUMMARY Pre-selection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in S. cerevisiae and identified ~7,500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. This data was used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7,500 growth-inhibitory molecules has been made commercially available and the computational model and filter used are provided. PMID:22035796
Specific detection of membrane-toxic substances with a conductivity assay.
Eich, J; Dürholt, H; Steger-Hartmann, T; Wagner, E
2000-03-01
A conductivity assay that represents a new biotest able to detect the effects of membrane-toxic compounds, e.g., detergents, organic solvents, and radical formers, on various organisms was previously described and developed. The conductivity assay measures ion leakage from cells, tissues, or whole plant and animal organisms whose membrane systems have been damaged by membrane-toxic compounds. In this study the specificity of the conductivity assay for membrane-toxic compounds was tested by comparing the electrolyte efflux from Elodea canadensis leaves during incubation with a well-known detergent (benzalkonium chloride) using different plant physiological and biochemical techniques (photochemical efficiency, plasmolysis capacity, NBT reduction, and electron microscopy of membranes of E. canadensis leaves). The comparison of the different methods proved that the electrolyte loss during benzalkonium chloride incubation determined in the conductivity assay is due to membrane impairment. The observed electrolyte loss correlated with a reduction of photochemical efficiency and a decrease in both plasmolysis and NBT reduction capacity. Furthermore, a disintegration of the plasmalemma could be seen in the electron micrographs. These results indicate that the measured electrolyte loss in the conductivity assay is a specific effect of membrane-toxic compounds. Copyright 2000 Academic Press.
New global fire emission estimates and evaluation of volatile organic compounds
C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja
2010-01-01
A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...
Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks.
Liu, Yi; Ye, Kaiqi; Wang, Yue; Zhang, Qichun; Bu, Xianhui; Feng, Pingyun
2017-01-31
Despite tremendous progress in metal-organic frameworks, only limited success has been achieved with metal-chalcogenide organic frameworks. Metal-chalcogenide organic frameworks are desirable because they offer a promising route towards tunable semiconducting porous frameworks. Here, four novel semiconducting chalcogenide-organic hybrid compounds have been synthesized through a solvothermal method. Multitopic organic molecules, i.e., 1,2-di-(4-pyridyl)ethylene (L 1 ), 1,3,5-tris(4-pyridyl-trans-ethenyl)benzene (L 2 ) and tetrakis(4-pyridyloxymethylene)methane (L 3 ), have been used as linkers to assemble Zn(SAr) 2 or Zn 2 (SAr) 4 units to generate different patterns of spatial organizations. Single-crystal structural analyses indicate that compounds NTU-2, NTU-3 and NTU-4 possess two-dimensional layer structures, while compound NTU-1 adopts a one-dimensional coordination framework (NTU-n, where n is the number related to a specific structure). The diffuse-reflectance spectra demonstrate that these four compounds possess indirect bandgaps and their tunable bandgaps are correlated with their compositions and crystal structures.
Diverse Soil Carbon Dynamics Expressed at the Molecular Level
NASA Astrophysics Data System (ADS)
van der Voort, T. S.; Zell, C. I.; Hagedorn, F.; Feng, X.; McIntyre, C. P.; Haghipour, N.; Graf Pannatier, E.; Eglinton, T. I.
2017-12-01
The stability and potential vulnerability of soil organic matter (SOM) to global change remain incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and subalpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.
On the enrichment of hydrophobic organic compounds in fog droplets
NASA Astrophysics Data System (ADS)
Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.
The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.
Pron, Adam; Gawrys, Pawel; Zagorska, Malgorzata; Djurado, David; Demadrille, Renaud
2010-07-01
This critical review discusses specific chemical and physicochemical requirements which must be met for organic compounds to be considered as promising materials for applications in organic electronics. Although emphasis is put on molecules and macromolecules suitable for fabrication of field effect transistors (FETs), a large fraction of the discussed compounds can also be applied in other organic or hybrid (organic-inorganic) electronic devices such as photodiodes, light emitting diodes, photovoltaic cells, etc. It should be of interest to chemists, physicists, material scientists and electrical engineers working in the domain of organic electronics (423 references).
Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX
NASA Astrophysics Data System (ADS)
Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.
2017-12-01
Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in models to estimate the chemical composition of BBOA emissions.
A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...
NASA Astrophysics Data System (ADS)
Herrmann, Nicole; Boom, Arnoud; Carr, Andrew S.; Chase, Brian M.; Granger, Robyn; Hahn, Annette; Zabel, Matthias; Schefuß, Enno
2016-10-01
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific δ13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific δ13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific δ13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific δ13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
NASA Astrophysics Data System (ADS)
Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc
2016-04-01
Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.
Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.
Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B
1985-01-01
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371
Love Story: Oxygen in Organic Chemistry
ERIC Educational Resources Information Center
Roberts, John D.
1974-01-01
Significant discoveries and developments regarding oxygen and organic compounds are recounted to show that research in this specific area is worthwhile and relevant and to point out that research in other areas of organic chemistry deserves continued encouragement as well. (DT)
Bio-organic materials in the atmosphere and snow: measurement and characterization.
Ariya, P A; Kos, G; Mortazavi, R; Hudson, E D; Kanthasamy, V; Eltouny, N; Sun, J; Wilde, C
2014-01-01
Bio-organic chemicals are ubiquitous in the Earth's atmosphere and at air-snow interfaces, as well as in aerosols and in clouds. It has been known for centuries that airborne biological matter plays various roles in the transmission of disease in humans and in ecosystems. The implication of chemical compounds of biological origins in cloud condensation and in ice nucleation processes has also been studied during the last few decades, and implications have been suggested in the reduction of visibility, in the influence on oxidative potential of the atmosphere and transformation of compounds in the atmosphere, in the formation of haze, change of snow-ice albedo, in agricultural processes, and bio-hazards and bio-terrorism. In this review we critically examine existing observation data on bio-organic compounds in the atmosphere and in snow. We also review both conventional and cutting-edge analytical techniques and methods for measurement and characterisation of bio-organic compounds and specifically for microbial communities, in the atmosphere and snow. We also explore the link between biological compounds and nucleation processes. Due to increased interest in decreasing emissions of carbon-containing compounds, we also briefly review (in an Appendix) methods and techniques that are currently deployed for bio-organic remediation.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.
Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A
2015-07-21
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J
2018-06-19
Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.
Effect of plant diversity on the diversity of soil organic compounds.
El Moujahid, Lamiae; Le Roux, Xavier; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.
Effect of plant diversity on the diversity of soil organic compounds
El Moujahid, Lamiae; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms. PMID:28166250
Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C
2015-02-25
Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.
Microbial and long-range terrestrial contributions of organic matter to Antarctica
NASA Astrophysics Data System (ADS)
Antony, R.; Grannas, A. M.; Priest, A. S.; Sleighter, R. L.; Meloth, T.; Hatcher, P.
2012-12-01
Composition and cycling of dissolved organic matter in glacial systems is important because of its great significance to global carbon dynamics, snow photochemistry, and air-snow exchange processes. But, due to the trace nature of specific organic components in Polar ice sheets, detecting and studying these species in molecular level detail has been an analytical challenge. Electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) enabled the elucidation of molecular level details of natural organic matter in snow samples collected along a coast to inland transect from the Princesses Elizabeth Land, East Antarctica. Thousands of distinct molecular species comprising of different compound classes were identified providing clues to the nature and sources of organic carbon in Antarctic snow. The major biochemical classes of compounds detected were lignins, tannins, carbohydrates, proteins, amino sugars, lipids, unsaturated hydrocarbons and condensed aromatics. Specifically, lignin molecules comprising up to 50% and compounds derived from algal and microbial biomass comprising up to 45% of the total assigned formulas dominated the organic carbon pool. The identification of a variety of lignin compounds demonstrates substantial input of vascular plant-derived materials to the identified molecular species, presumably from long range atmospheric transport and deposition. The detection of proteins, lipids and amino sugars suggests that a large proportion of the identified supraglacial organic matter likely originates from in situ microbial activity. This corroborates well with the presence of significant numbers of bacteria, picoplankton and microalgae in these samples. These results suggest that organic matter in the supraglacial environments have both a microbial and terrestrial provenance.
L-Asparaginase Production by the Rumen Anaerobe Vibrio succinogenes
Kafkewitz, David; Goodman, David
1974-01-01
The rumen anaerobe Vibrio succinogenes possesses a constitutive L-asparaginase. The amount of enzyme produced is affected by the compound supplied to the organism to generate the fumaric acid it requires as a terminal electron acceptor. When nitrate is provided as the terminal electron acceptor, the amount of enzyme produced is affected by the compound provided to satisfy the nutritional requirement of the organism for succinic acid. Specific activities of up to 8.4 IU/mg of protein in cell-free extracts have been obtained. This specific activity is higher than has been previously reported for any organism. The enzyme has an apparent Km of 1.7 × 10-5 M and low activity towards L-glutamine when assayed at pH 8.5. PMID:4855647
An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.
1983-01-01
A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.
Solvent Selection for Recrystallization: An Undergraduate Organic Experiment.
ERIC Educational Resources Information Center
Baumann, Jacob B.
1979-01-01
This experiment develops the students' ability to carry out a simple recrystallization effectively, and demonstrates how a solvent may be selected or rejected for the recrystallization of a specific organic compound. (Author/BB)
Moorman, Michelle C.
2012-01-01
Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.
Determination of polar organic solutes in oil-shale retort water
Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.
1982-01-01
A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2015-01-01
Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.
Biodegradation of coal-related model compounds. [C. versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.A.; Stewart, D.L.; McCulloch, M.
1988-01-01
The details of the specific reactions of lignin biodegradation, and the biochemistry involved, have been primarily based on the use of low molecular weight compounds representing specific substructures rather than the complex, polymeric lignin material. The authors have studied the reactions of model compounds having coal-related functionalities (ester linkages, ether linkages, PAH) with the intact organisms, cell-free filtrate, and cell-free enzyme of C. versicolor to better understand the process of biosolubilization. Many of the degradation products have been identified by gas chromatography/mass spectrometry (GC/MS). Results are discussed.
NASA Astrophysics Data System (ADS)
Chu, R. K.; Tfaily, M. M.; Tolic, N.; Kyle, J. E.; Robinson, E. R.; Hess, N. J.; Paša-Tolić, L.
2015-12-01
Soil organic matter (SOM) is a complex mixture of above and belowground plant litter and microbial residues, and is a key reservoir for carbon (C) and nutrient biogeochemical cycling in different ecosystems. A limited understanding of the molecular composition of SOM prohibits the ability to routinely decipher chemical processes within soil and predict how terrestrial C fluxes will response to changing climatic conditions. Here, we present that the choice of solvent can be used to selectively extract different compositional fractions from SOM to either target a specific class of compounds or gain a better understanding of the entire composition of the soil sample using 12T Fourier transform ion cyclotron resonance mass spectrometry. Specifically, we found that hexane and chloroform were selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O:C > 0.5; methanol has higher selectivity towards lignin and lipid compounds characterized with relatively low O:C < 0.5. Hexane, chloroform, methanol, acetonitrile and water increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Since each solvent extracts a selective group of compounds, using a suite of solvents with varying polarity for analysis results in more comprehensive representation of the diversity of organic molecules present in soil and a better representation of the whole spectrum of available substrates for microorganisms. Moreover, we have developed a sequential extraction protocol that permits sampling diverse classes of organic compounds while minimizing ionization competition during ESI while increasing sample throughput and decreasing sample volume. This allowed us to hypothesize about possible chemical reactions relating classes of organic molecules that reflect abiotic and biotic processes impacting SOM composition.
Photodegradation of selected organics on Mars
NASA Astrophysics Data System (ADS)
ten Kate, I. L.; Boosman, A.; Fornaro, T.; King, H. E.; Kopacz, K. A.; Wolthers, M.
2017-09-01
At least as much as 2.4 million kg of unaltered organic material is estimated to be delivered to the Martian surface each year. However, intense UV irradiation and the highly oxidizing and acidic nature of Martian soil cause degradation of organic compounds. Here we present first results obtained with the recently developed PALLAS facility at Utrecht University. This facility is specifically designed to simulate planetary and asteroid surface conditions to study the photocatalytic properties of relevant planetary minerals. Our results tentatively show degradation of several compounds and preservation of others.
Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard
2018-02-08
The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.
NASA Astrophysics Data System (ADS)
Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel
2015-04-01
The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide mixtures and c) transformation of pesticides in lysimeters during the year 2014. 1 Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 12, 2005-2031 (2010). 2 Hofstetter, T. B. & Berg, M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends in Analytical Chemistry 30, 618-627 (2011). 3 Elsner, M. et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403, 2471-2491, doi:10.1007/s00216-011-5683-y (2012).
Gellenbeck, Dorinda J.; Anning, David W.
2002-01-01
Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence
NASA Technical Reports Server (NTRS)
Bhartia, R.; McDonald, G. D.; Salas, E.; Conrad, P.
2004-01-01
The in situ detection of organic material on an extraterrestrial surface requires both effective means of searching a relatively large surface area or volume for possible organic carbon, and a more specific means of identifying and quantifying compounds in indicated samples. Fluorescence spectroscopy fits the first requirement well, as it can be carried out rapidly, with minimal or no physical contact with the sample, and with sensitivity unmatched by any other organic analytical technique. Aromatic organic compounds with know fluorescence signatures have been identified in several extraterrestrial samples, including carbonaceous chondrites, interplanetary dust particles, and Martian meteorites. The compound distributions vary among these sources, however, with clear differences in relative abundances by number of aromatic rings and by degree of alkylation. This relative abundance information, therefore, can be used to infer the source of organic material detected on a planetary surface.
Current approaches for assessing the cumulative exposures and effects from broad classes of environmental stressors incorporate the measurement of specific groups of endogenous compounds in human biological fluids. Recent focus has been on interpreting patterns of differentially...
Compound-specific carbon isotope analysis of a contaminant plume in Kingsford, Michigan, USA
Michel, R.L.; Silva, S.R.; Bemis, B.; Godsy, E.M.; Warren, E.
2001-01-01
Compound-specific isotope analysis was used to study a contaminated site near Kingsford, Michigan, USA. Organic compounds at three of the sites studied had similar ??13C values indicating that the contaminant source is the same for all sites. At a fourth site, chemical and ??13C values had evolved due to microbial degradation of organics, with the ??13C being much heavier than the starting materials. A microcosm experiment was run to observe isotopic changes with time in the methane evolved and in compounds remaining in the water during degradation. The ??13C values of the methane became heavier during the initial period of the run when volatile fatty acids were being consumed. There was an abrupt decrease in the ??13C values when fatty acids had been consumed and phenols began to be utilized. The ??13C value of the propionate remaining in solution also increased, similar to the results found in the field.
Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki
2014-01-01
Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873
Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew
2005-05-03
A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.
Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants.
Krug, Anne K; Balmer, Nina V; Matt, Florian; Schönenberger, Felix; Merhof, Dorit; Leist, Marcel
2013-12-01
Organ-specific in vitro toxicity assays are often highly sensitive, but they lack specificity. We evaluated here examples of assay features that can affect test specificity, and some general procedures are suggested on how positive hits in complex biological assays may be defined. Differentiating human LUHMES cells were used as potential model for developmental neurotoxicity testing. Forty candidate toxicants were screened, and several hits were obtained and confirmed. Although the cells had a definitive neuronal phenotype, the use of a general cell death endpoint in these cultures did not allow specific identification of neurotoxicants. As alternative approach, neurite growth was measured as an organ-specific functional endpoint. We found that neurite extension of developing LUHMES was specifically inhibited by diverse compounds such as colchicine, vincristine, narciclasine, rotenone, cycloheximide, or diquat. These compounds reduced neurite growth at concentrations that did not compromise cell viability, and neurite growth was affected more potently than the integrity of developed neurites of mature neurons. A ratio of the EC50 values of neurite growth inhibition and cell death of >4 provided a robust classifier for compounds associated with a developmental neurotoxic hazard. Screening of unspecific toxicants in the test system always yielded ratios <4. The assay identified also compounds that accelerated neurite growth, such as the rho kinase pathway modifiers blebbistatin or thiazovivin. The negative effects of colchicine or rotenone were completely inhibited by a rho kinase inhibitor. In summary, we suggest that assays using functional endpoints (neurite growth) can specifically identify and characterize (developmental) neurotoxicants.
Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick
2015-11-03
Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.
Servien, Rémi; Mamy, Laure; Li, Ziang; Rossard, Virginie; Latrille, Eric; Bessac, Fabienne; Patureau, Dominique; Benoit, Pierre
2014-09-01
Following legislation, the assessment of the environmental risks of 30000-100000 chemical substances is required for their registration dossiers. However, their behavior in the environment and their transfer to environmental components such as water or atmosphere are studied for only a very small proportion of the chemical in laboratory tests or monitoring studies because it is time-consuming and/or cost prohibitive. Therefore, the objective of this work was to develop a new methodology, TyPol, to classify organic compounds, and their degradation products, according to both their behavior in the environment and their molecular properties. The strategy relies on partial least squares analysis and hierarchical clustering. The calculation of molecular descriptors is based on an in silico approach, and the environmental endpoints (i.e. environmental parameters) are extracted from several available databases and literature. The classification of 215 organic compounds inputted in TyPol for this proof-of-concept study showed that the combination of some specific molecular descriptors could be related to a particular behavior in the environment. TyPol also provided an analysis of similarities (or dissimilarities) between organic compounds and their degradation products. Among the 24 degradation products that were inputted, 58% were found in the same cluster as their parents. The robustness of the method was tested and shown to be good. TyPol could help to predict the environmental behavior of a "new" compound (parent compound or degradation product) from its affiliation to one cluster, but also to select representative substances from a large data set in order to answer some specific questions regarding their behavior in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Major, Michael A.
2000-01-01
In an effort to modernize and minimize hazards posed by the toxic components of missile propellant, the USACHPPM has been tasked to provide a comparison of the toxicity of compounds currently in use as missile propellants and the suite of compounds proposed to replace them. This report deals with the portion of this work concerning the toxicity of the organometallic compounds used in these formulations. Toxicity assessments of the organic compounds used in these formulations are published elsewhere. In general, toxicity data were available for all the metal compounds of concern or for closely related compounds that can serve as surrogates for the assessment of toxicity. We have high confidence in the reliability of these comparisons. This report is organized by element to provide the reader with an in-depth assessment with a minimum of redundancy. The narrative will first describe general concepts about the toxicity of each metal and then provide a summary of the toxicological information available for the specific compound.
Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y
2014-11-14
Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.
Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael
2017-05-16
Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... compound (VOC) emissions from industrial cleaning solvents facilities, automobile and light-duty truck... Organic Compounds,'' section 13.0, ``Automobile and Light-Duty Truck Coating Operations,'' section 16.0... requirements based on EPA CTGs. Amendments to section 13.0 establish (1) applicability for specific automobile...
Biodesulfurization of refractory organic sulfur compounds in fossil fuels.
Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios
2007-01-01
The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.
Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo
2012-06-01
The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.
Screening for Anti-Cancer Compounds in Marine Organisms in Oman
Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram
2016-01-01
Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907
NASA Astrophysics Data System (ADS)
Noriega-Ortega, B. E.; Wienhausen, G.; Dittmar, T.; Simon, M.; Niggemann, J.
2016-02-01
Dissolved organic matter (DOM) in the ocean, the marine geometabolome, is an extremely complex mixture composed of a wide variety of compounds. The molecular chemodiversity affects the function and turnover rate of DOM in the ocean. We hypothesize that the active microbial community essentially contributes to the complexity of the DOM pool through uptake and excretion of compounds. We tested this hypothesis in culture experiments with fully-sequenced strains of the Roseobacter clade. Bacteria of the Roseobacter clade are among the most abundant microbial players in the ocean. We studied the exometabolome of two representatives of the Roseobacter clade, Phaeobacter inhibens DSM 17395 and Dinoroseobacter shibae. The organisms were grown separately in cultures on defined single model substrates (acetate, succinate, glutamate, glucose). We used a non-targeted analytical approach via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the exometabolome at the molecular level, complemented by compound-specific analyses of free and combined amino acids and carbohydrates. The exometabolome composition varied between the tested strains, which released a different suite of compounds depending on the growth phase as well as on growth conditions (substrate). Both organisms exhibited a core exometabolome with compounds released when growing on either substrate and at all growth phases, and a variable exometabolome specific for different substrates and growth phases. However, only a small fraction of the exometabolites detected by FT-ICR-MS could be directly linked to the genome or transcriptome. We interpret these findings as evidence for the excretion of molecularly highly-diverse metabolic waste, whose composition is dependent on the metabolic state and genetic repertoire of the organisms. The molecular diversity of compounds excreted by a single strain is extraordinary and is likely the reason for the molecular diversity of natural DOM in the ocean.
Sphalerite is a geochemical catalyst for carbon−hydrogen bond activation
Shipp, Jessie A.; Gould, Ian R.; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.
2014-01-01
Reactions among minerals and organic compounds in hydrothermal systems are critical components of the Earth’s deep carbon cycle, provide energy for the deep biosphere, and may have implications for the origins of life. However, there is limited information as to how specific minerals influence the reactivity of organic compounds. Here we demonstrate mineral catalysis of the most fundamental component of an organic reaction: the breaking and making of a covalent bond. In the absence of mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and generates many products. In the presence of sphalerite (ZnS), however, the reaction rate increases dramatically and one major product is formed: the corresponding stereoisomer. Isotope studies show that the sphalerite acts as a highly specific heterogeneous catalyst for activation of a single carbon−hydrogen bond in the dimethylcyclohexanes. PMID:25071186
Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation.
Shipp, Jessie A; Gould, Ian R; Shock, Everett L; Williams, Lynda B; Hartnett, Hilairy E
2014-08-12
Reactions among minerals and organic compounds in hydrothermal systems are critical components of the Earth's deep carbon cycle, provide energy for the deep biosphere, and may have implications for the origins of life. However, there is limited information as to how specific minerals influence the reactivity of organic compounds. Here we demonstrate mineral catalysis of the most fundamental component of an organic reaction: the breaking and making of a covalent bond. In the absence of mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and generates many products. In the presence of sphalerite (ZnS), however, the reaction rate increases dramatically and one major product is formed: the corresponding stereoisomer. Isotope studies show that the sphalerite acts as a highly specific heterogeneous catalyst for activation of a single carbon-hydrogen bond in the dimethylcyclohexanes.
Volatile organic compound (VOC) emissions during malting and beer manufacture
NASA Astrophysics Data System (ADS)
Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.
Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.
Identification of Campylobacter infection in chickens from volatile faecal emissions.
Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S
2008-06-01
Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.
Santos, Sonia; de Moraes, Maria de Lourdes Leite; da Silva Souza Filho, Antonio Pedro; Rezende, Maria Olímpia Oliveira
2005-01-01
This article describes the assessment of possible allelopathic potential of organic extracts obtained from leaves of Canavalia ensiformis under laboratory conditions. Furthermore, a systematic evaluation of these extracts was carried out using specific protocols developed in capillary electrophoresis (CE) to determine some groups of secondary metabolites. After the identification and quantification of compounds, the effects of compounds on germination of some common weeds was investigated, which are becoming a real problem in pastures in the state of Pará, Brazil.
A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.
Park, Min Sik; Park, Insun; Kang, Yoon-Sok; Im, Dongmin; Doo, Seok-Gwang
2016-09-29
Chemical databases store information such as molecular formulas, chemical structures, and the physical and chemical properties of compounds. Although the massive databases of organic compounds exist, the search of target materials is constrained by a lack of physical and chemical properties necessary for specific applications. With increasing interest in the development of energy storage systems such as high-voltage rechargeable batteries, it is critical to find new electrolytes efficiently. Here we build a search map to screen organic additives and solvents with novel core and functional groups, and thus establish a database of electrolytes to identify the most promising electrolyte for high-voltage rechargeable batteries. This search map is generated from MAssive Molecular Map BUilder (MAMMBU) by combining a high-throughput quantum chemical simulation with an artificial neural network algorithm. MAMMBU is designed for predicting the oxidation and reduction potentials of organic compounds existing in the massive organic compound database, PubChem. We develop a search map composed of ∼1 000 000 redox potentials and elucidate the quantitative relationship between the redox potentials and functional groups. Finally, we screen a quinoxaline compound for an anode additive and apply it to electrolytes and improve the capacity retention from 64.3% to 80.8% near 200 cycles for a lithium ion battery in experiments.
Instrument for Analysis of Organic Compounds on Other Planets
NASA Technical Reports Server (NTRS)
Daulton, Riley M.; Hintze, Paul E.
2016-01-01
The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.
Organics in APOLLO Lunar Samples
NASA Technical Reports Server (NTRS)
Allen, C. C.; Allton, J. H.
2007-01-01
One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabak, H.H.; Desai, S.; Govind, R.
1990-01-01
Electrolytic respirometry is attaining prominence in biodegradation studies and is becoming one of the more suitable experimental methods for measuring the biodegradability and the kinetics of biodegradation of toxic organic compounds by the sewage, sludge, and soil microbiota and for determining substrate inhibitory effects to microorganisms in wastewater treatment systems. The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate, ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support the development of an EPA technical guidance document on the discharge of the above organics tomore » POTWs. The paper discusses the experimental design and procedural steps for the respirometric biodegradation and toxicity testing approach for individual organics or specific industrial wastes at different concentration levels in a mineral salts medium. A developed multi-level protocol is presented for determination of the biodegradability, microbial acclimation to toxic substrates and first order kinetic parameters of biodegradation for estimation of the Monod kinetic parameter of toxic organic compounds, in order to correlate the extent and rate of biodegradation with a predictive model based on chemical properties and molecular structure of these compounds. Respirometric biodegradation/inhibition and biokinetic data are provided for representative RCRA alkyl benzene and ketone organics.« less
Volatiles in Inter-Specific Bacterial Interactions
Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina
2015-01-01
The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959
Permeability of low molecular weight organics through nanofiltration membranes.
Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter
2007-09-01
The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Cardinell, A.P.; Barnes, C.R.; Eddins, W.H.; Coble, R.W.
1989-01-01
A water-quality study was conducted during 1980-86 at four landfills in Mecklenburg County, North Carolina. Each landfill has a three-layered hydrogeologic system typical of the Piedmont, consisting of (1) the regolith; (2) a transition zone; and (3) unweathered, fractured crystalline bedrock. As much as 7.6 inches per year of rainfall enters the ground-water system and has the potential to generate leachate within landfill cells. Ground water and leachate discharge to tributaries within the landfill sites or to streams adjacent to them. Water-quality samples were collected from 53 monitoring wells and 20 surface-water sites. Samples were analyzed for selected physical and biological characteristics, major inorganic ions, nutrients, trace elements, and organic compounds. Selected indicators of water quality, including specific conductance; hardness; and concentrations of chloride, manganese, dissolved solids, total organic carbon, and specific organic compounds were analyzed to determine the effects of each landfill on ground- and surface-water quality. Increases in concentrations of inorganic constituents above background levels were detected in ground water downgradient of the landfills. The increases were generally greatest in samples from wells in close proximity to the older landfill cells. In general, the increases in concentrations in downgradient wells were greater for calcium, magnesium, and chloride than for other major ions. Manganese exhibited the largest relative increase in concentration between upgradient and downgradient wells of any constituent, and manganese concentration data were effective in defining areas with extensive anaerobic biological activity. Differences between upgradient and downgradient concentrations of total organic carbon and specific organic compounds generally were not as apparent. The most frequently identified organic contaminants were the herbicides 2,4-D and 2,4,5-T. Chlorofluoromethanes were identified in three of four ground-water samples analyzed for volatile organic compounds. Landfills affected the water quality of several smaller streams but did not noticeably affect larger ones. Apparent effects on water quality were greatest at the oldest landfill, located on Statesville Road, where waste is in cells that are partly below the water table.
LINES OF EVIDENCE FOR NA FOR ORGANIC COMPOUNDS AND THE USE OF COMPOUND SPECIFIC ISOTOPE ANALYSIS
The strongest line of evidence is a reduction in concentration over time. However, this only provides evidence of natural attenuation of the source area. It is difficult to determine the rate of natural attenuation through biodegradation with distance along a flow path in the a...
Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, Jill S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.
2008-01-01
Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.
Volatile organic compounds and particulates as components of diesel engine exhaust gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, H.; Bandeira de Melo, G.; Ousmanov, F.
1999-07-01
Volatile organic compounds (VOC) and soot particles have been determined in a Diesel`s exhaust gas. A new sampling method allowed the measurement of emissions of organic compounds (C{sub 1} to C{sub 20}) in a gas chromatogram at a detection limit of ca. 0.2 mg/m{sup 3}. Particles were collected with a filter bed of ceramic particles and characterized by temperature programmed desorption (TPD) and oxidation (TPO). Engine runs were always performed at a fixed and constant air to fuel equivalence ratio ({lambda}) and with a constant volumetric efficiency, because these parameters strongly influenced the emissions in terms of both composition andmore » order of magnitude. The effective combustion temperature again strongly governed the nature of the emissions. Model fuels, composed of individual paraffins and aromatics and additions of sulfur compounds and an organic nitrate (for cetane number enhancement) were used. The results contribute to the understanding of the origin of specific emissions from Diesel engines. These newly developed methods are recommended for further application.« less
Ionic liquids as an electrolyte for the electro synthesis of organic compounds.
Kathiresan, Murugavel; Velayutham, David
2015-12-25
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.
Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing
2017-01-01
Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements. PMID:28176881
van Noort, Paul C M
2009-06-01
Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.
Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco
2018-01-01
Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfheim, I.; Ramdahl, T.
The aims of the Scandinavian research programs dealing with pollution from wood heating are: To characterize the emissions from the most commonly used stoves burning typical Scandinavian wood. In this work the emphasis has been on the characterization of organic compounds in the emissions and especially on the identification of compounds which may have mutagenic effects; To identify compounds which are specific for wood combustion emission and thus can be used as marker compounds in ambient air studies; To assess the contribution of specific pollutants, i.e., polycyclic aromatic compounds and mutagens, from wood heating to ambient air; To study themore » influence of wood heating on indoor air quality; and To support the development of stoves with less polluting emissions. This paper presents a brief overview of the work done and the results obtained so far within the Norwegian project and in a joint Nordic project.« less
Radiation Resistances of Dielectric Liquids
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.; Somoano, Robert B.
1987-01-01
Report presents data on effects of ionizing radiation on dielectric liquids for high-energy-density, pulsed-power capacitors. Based on Jet Propulsion Laboratory test results, search of NASA and Department of Energy computer files, survey of open literature, and contacts with manufacturers and suppliers. Covers 22 organic liquids, although detailed data found for only one compound, polydimethyl siloxane. Generic data on effects of radiation on compounds with similar chemical structures provided where data on specific compounds lacking.
Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .
2007-01-01
Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak
Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L
2015-10-27
Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.
Drollette, Brian D.; Hoelzer, Kathrin; Warner, Nathaniel R.; Darrah, Thomas H.; Karatum, Osman; O’Connor, Megan P.; Nelson, Robert K.; Fernandez, Loretta A.; Reddy, Christopher M.; Vengosh, Avner; Jackson, Robert B.; Elsner, Martin; Plata, Desiree L.
2015-01-01
Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018
Filtration of water-sediment samples for the determination of organic compounds
Sandstrom, Mark W.
1995-01-01
This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.
NASA Astrophysics Data System (ADS)
Zheng, Sichao; Huang, Cuihong; Zhao, Xuyan; Zhang, Yong; Liu, Shuwen; Zhu, Qiuhua
2018-01-01
Organic fluorophores have a wide range of biological uses and are usually needed to be prepared as water-soluble compounds or nanoparticles for applications in aqueous biosystems owing to their hydrophobic properties, which often is a complex, time-consuming and high-cost process. Here, the nanoparticle preparation of hydrophobic fluorophores and their application in cell imaging have been investigated. It was found: a) fetal bovine serum (FBS) shows an excellent dispersion effect on hydrophobic small-molecule organic compounds; b) a hydrophobic C6-unsubstituted tetrahydropyrimidine (Me-THP-Naph) can be prepared as nanosuspensions utilizing cell culture medium with 10% FBS and directly be used as a specific real-time imaging probe for the endoplasmic reticulum (ER), a dynamic organelle playing a crucial role in many cellular processes. Compared with existing ER-targeted organic fluorescent probes, Me-THP-Naph, a product of an efficient five-component reaction that we developed, has unconventional aggregation-induced emission characteristics and shows advantages of low cost, long-term staining, good photostability, high signal-to-noise ratio and excellent biocompatibility, which make it a potential specific probe for real-time ER imaging. More importantly, this work affords a simple strategy for direct application of hydrophobic organic compounds in aqueous biological systems.
Poole, Colin F; Qian, Jing; Kiridena, Waruna; Dekay, Colleen; Koziol, Wladyslaw W
2006-11-17
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.
NASA Technical Reports Server (NTRS)
Fuller, M.; Huang, Y.
2003-01-01
The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.
Gutiérrez, Inés; Díaz, Eva; Vega, Aurelio; Ordóñez, Salvador
2013-01-25
The role of the structure of three isoreticular metal-organic frameworks (IRMOFs) on their adsorption behavior has been studied in this work, selecting different kinds of volatile organic compounds (VOCs) as adsorbates (alkanes, alkenes, cycloalkanes, aromatics and chlorinated). For this purpose, three samples (IRMOF-1, IRMOF-8 and IRMOF-10) with cubic structure and without functionalities on the organic linkers were synthesized. Adsorption capacities at infinite dilution were derived from the adsorption isotherms, whereas thermodynamic properties have been determined from chromatographic retention volume. The capacity and the strength of adsorption were strongly influenced by the adsorbate size. This effect is especially relevant for n-alkanes adsorption, indicating the key role of the cavity size on this phenomenon, and hence the importance of the IRMOF structural properties. A different behavior has been observed for the polar compounds, where an enhancement on the specificity of the adsorption with the π-electron rich regions was observed. This fact suggests the specific interaction of these molecules with the organic linkers of the IRMOFs. Copyright © 2012 Elsevier B.V. All rights reserved.
Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics
NASA Technical Reports Server (NTRS)
Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III
2012-01-01
Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.
de Weert, J P A; Keijzer, T J S; van Gaans, P F M
2014-12-01
In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...
Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers.
Fàbrega, Francesc; Marquès, Montse; Ginebreda, Antoni; Kuzmanovic, Maja; Barceló, Damià; Schuhmacher, Marta; Domingo, José L; Nadal, Martí
2013-12-15
The hazard of chemical compounds can be prioritized according to their PBT (persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps (SOM). The objective of the present study was to develop an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the exposure of chemical mixtures contained in river waters. Four Spanish river basins were considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as the product of the HI by the concentration of each pollutant, and the results of all substances were aggregated. Finally, Pareto distribution was applied to the ranked lists of compounds in each site to prioritize those chemicals with the most significant incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as well as specific illicit drugs and UV filters, were among the most hazardous compounds. Xylazine was identified as one of the chemicals with the highest contribution to the total IRICAP value in the different river basins, together with other pharmaceutical products such as loratadine and azaperol. These organic compounds should be proposed as target chemicals in the implementation of monitoring programs by regulatory organizations. Copyright © 2013 Elsevier B.V. All rights reserved.
Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds.
Flematti, Gavin R; Waters, Mark T; Scaffidi, Adrian; Merritt, David J; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M
2013-01-01
Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigolactone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific α/β hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.
Castillo-Garit, Juan Alberto; Abad, Concepción; Rodríguez-Borges, J Enrique; Marrero-Ponce, Yovani; Torrens, Francisco
2012-01-01
The neglected tropical diseases (NTDs) affect more than one billion people (one-sixth of the world's population) and occur primarily in undeveloped countries in sub-Saharan Africa, Asia, and Latin America. Available drugs for these diseases are decades old and present an important number of limitations, especially high toxicity and, more recently, the emergence of drug resistance. In the last decade several Quantitative Structure-Activity Relationship (QSAR) studies have been developed in order to identify new organic compounds with activity against the parasites responsible for these diseases, which are reviewed in this paper. The topics summarized in this work are: 1) QSAR studies to identify new organic compounds actives against Chaga's disease; 2) Development of QSAR studies to discover new antileishmanial drusg; 3) Computational studies to identify new drug-like compounds against human African trypanosomiasis. Each topic include the general characteristics, epidemiology and chemotherapy of the disease as well as the main QSAR approaches to discovery/identification of new actives compounds for the corresponding neglected disease. The last section is devoted to a new approach know as multi-target QSAR models developed for antiparasitic drugs specifically those actives against trypanosomatid parasites. At present, as a result of these QSAR studies several promising compounds, active against these parasites, are been indentify. However, more efforts will be required in the future to develop more selective (specific) useful drugs.
Duration of emission of volatile organic compounds from mechanically damaged plant leaves.
Smith, Lincoln; Beck, John J
2015-09-01
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants. Published by Elsevier GmbH.
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.
2017-12-01
The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)
Presence and distribution of chlorinated organic compounds in streambed sediments, new jersey
Stackelberg, P.E.
1997-01-01
Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land- use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas hut one (where the detection rate for these compounds was about 20 to 40 percent). Chlordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized COncentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.
Richter, Ingrid; Fidler, Andrew E.
2014-01-01
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319
Organic-geochemical investigations on soil layers affected by theTohoku-oki tsunami (March 2011)
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Schwarzbauer, Jan; Jaffe, Bruce; Szczucinski, Witold
2014-05-01
Geochemical investigations on tsunami deposits, in particular palaeotsunamites, have mainly focused on inorganic indicators that have been used to distinguish between terrestrial and marine matter in sedimentary archives. Observable tsunami deposits may also be characterised by organic-geochemical parameters reflecting the mixture and unexpected transport of marine and terrestrial matter. The application of organic substances with indicative properties has so far not been used, although the approach of using specific indicators to determine prehistoric, historic and recent processes and impacts (so-called biomarker and anthropogenic marker approach) already exists. In particular, for recent tsunami deposit the analysis of anthropogenic or even xenobiotic compounds as indicators for assessing the impact of tsunamis has been neglected so far. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis, and subsequent flooding of coastal lowlands, pose to society. The mainly sandy deposits of this mega-tsunami reach more than 4.5 km inland as there were run-up heights of ca. 10 m (wave height). The destruction of infrastructure by wave action and flooding is accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean. To characterize this event in the sedimentary deposits, we analyzed several soil archives from the Bay of Sendai area. Soil layers representing the tsunami deposits have been contrasted with unaffected pre-tsunami samples by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds for monitoring this recent tsunami. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides, source specific PAHs, halogenated aromatics from industrial sources) have been detected and quantified. Concentration profiles of distinct terrestrial pollutants revealed shifts either to increasing but for selected compounds also to decreasing contamination levels. Generally, this preliminary study points to the usefulness of organic indicator compounds for characterising the two-dimensional expansion of recent but in particular historic tsunami events as well as its time scales.
Nagle, Doug D.; Guimaraes, Wladmir B.
2012-01-01
An assessment of the quantity and quality of stormwater runoff associated with industrial activities at Fort Gordon was conducted from January through December 2011. The assessment was provided to satisfy the requirements from a general permit that authorizes the discharge of stormwater under the National Pollutant Discharge Elimination System from a site associated with industrial activities. The stormwater quantity refers to the runoff discharge at the point and time of the runoff sampling. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. The initial scope of this study was to sample stormwater runoff from five stations at four industrial sites (two landfills and two heating and cooling sites). As a consequence of inadequate hydrologic conditions during 2011, no samples were collected at the two landfills; however, three samples were collected from the heating and cooling sites. The assessment included the collection of physical properties, such as water temperature, specific conductance, dissolved oxygen, and pH; the detection of suspended materials (total suspended solids, total fixed solids, total volatile solids), nutrients and organic compounds, and major and trace inorganic compounds (metals); and the detection of volatile and semivolatile organic compounds. Nutrients and organic compounds, major and trace inorganic compounds, and volatile and semivolatile organic compounds were detected above the laboratory reporting levels in all samples collected from the three stations. The detection of volatile and semivolatile organic compounds included anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene, cis,1, 2-dichloroethene, dimethyl phthalate, fluoranthene, naphthalene, pyrene, acenaphthylene (station SWR11-3), and di-n-butyl phthalate (station SWR11-4).
Turney, G.L.; Goerlitz, D.F.
1989-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)
Duration of emission of volatile organic compounds from mechanically damaged plant leaves
USDA-ARS?s Scientific Manuscript database
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice...
Monitored Natural Attenuation (MNA) is unique among remedial technologies in relying entirely on natural processes to achieve site-specific objectives. Site characterization is essential to provide site-specific data and interpretations for the decision-making process (i.e., to ...
The scent of disease: volatile organic compounds of the human body related to disease and disorder.
Shirasu, Mika; Touhara, Kazushige
2011-09-01
Hundreds of volatile organic compounds (VOCs) are emitted from the human body, and the components of VOCs usually reflect the metabolic condition of an individual. Therefore, contracting an infectious or metabolic disease often results in a change in body odour. Recent progresses in analytical techniques allow rapid analyses of VOCs derived from breath, blood, skin and urine. Disease-specific VOCs can be used as diagnostic olfactory biomarkers of infectious diseases, metabolic diseases, genetic disorders and other kinds of diseases. Elucidation of pathophysiological mechanisms underlying production of disease-specific VOCs may provide novel insights into therapeutic approaches for treatments for various diseases. This review summarizes the current knowledge on chemical and clinical aspects of body-derived VOCs, and provides a brief outlook at the future of olfactory diagnosis.
"Drug" Discovery with the Help of Organic Chemistry.
Itoh, Yukihiro; Suzuki, Takayoshi
2017-01-01
The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.
NASA Astrophysics Data System (ADS)
Bye, E.; Schreiner, K. M.; Abdulla, H. A.; Minor, E. C.; Guntenspergen, G. R.
2017-12-01
Coastal wetlands play a critical role in the global carbon cycle. These ecosystems sequester and store carbon, known as "blue carbon," at a rate two or three orders of magnitude larger than other terrestrial ecosystems, such as temperate, tropical, and boreal forests. Anthropogenic changes to the climate are threatening blue carbon stores in coastal wetland ecosystems. To understand and predict how these important carbon stores will be affected by anthropogenic climate changes, it is necessary to understand the formation and preservation of soil organic matter (SOM) in these ecosystems. This study will present organic geochemical data from two sediment cores collected from the Smithsonian Environmental Research Center site on a salt marsh in Maryland along the Chesapeake Bay. One core is from a location that recently transitioned from a C4 to C3 plant regime, currently dominated by the sedge Shoenplectis americanus. The second core is from a C4 plant (Spartina patens) dominated location in the marsh. The organic geochemistry of these 100 cm deep sediment cores was studied through multiple bulk analyses including stable isotopes, elemental ratios, Fourier-transform infrared spectroscopy (FTIR), solid-state magic-angle-spinning Nuclear Magnetic Resonance (NMR), and compound specific lignin-phenol analysis. By using comprehensive chemical characterization techniques, this study aims to discern between vegetation- and microbially-derived inputs to SOM in blue carbon ecosystems. The results show a general increase in the aromatic content with a concomitant decrease of carbohydrates with depth in both cores. However, substantial differences between the two cores, indicates differing inputs and/or stabilization mechanisms within SOM formed from different vegetation regimes. Further compound specific work will help to elucidate the specific source of compounds within each compound class, in surface and deep SOM, and additionally can help provide evidence for different models of SOM formation and stabilization. Taken together, these results will shed new light on our understanding of how vegetation and microbially-derived compounds are integrated into SOM in blue carbon stores, including differences and commonalities among different vegetation regimes.
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.
2012-01-01
Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.
Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05
Lathrop, Tim; Moran, Dan
2011-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).
NASA Astrophysics Data System (ADS)
Charteris, Alice; Michaelides, Katerina; Evershed, Richard
2015-04-01
Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but unlike previous works analyses for amino acids (representing organic products) rather than ammonium (NH4+) and nitrate (NO3-). Amino acids are commonly referred to as 'the building blocks of life' as they form the proteins which regulate life's essential biochemical reactions. Proteinaceous matter generally comprises 20-40% of total soil N and is ubiquitous in living organisms, so is a likely 'organic product' of microbial activity/assimilation. Hence, we consider it likely that amino acids represent the major organic nitrogenous products and a reasonable 'proxy' for/measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein. Brookes, P. C. et al. Soil Biol Biochem. 1985, 17, 837-842. Jenkinson, D. S. et al. Soil Biol Biochem. 2004, 36, 5-7. Nannipieri, P. et al. Plant Soil. 1999, 208, 43-56. Pilbeam, C. J. et al. J Agr Sci. 1997, 128, 415-424. Sebilo, M. et al. PNAS. 2013, 110, 18185-18189.
Air quality assessment and the use of specific markers to apportion pollutants to source
NASA Astrophysics Data System (ADS)
Douce, David Stewart
The contributions of specific polluting sources to both indoor and outdoor atmospheric pollution are difficult to determine, as solid and gaseous products from different combustion sources are often similar. Sometimes, however, a marker compound can be identified that is unique to a pollution source (or at least not present in most other local combustion sources) and which will allow assessment of the contribution of that source to total atmospheric pollution.The aim of this study was to identify suitable marker compounds and methods for the apportionment (assessment of percentage contribution) of specific sources to atmospheric pollution. The sources selected were diesel exhaust emissions in outdoor, and environmental tobacco smoke (ETS) in indoor environments. Studies with controlled (laboratory) atmospheres would be followed by field studies using these methods and markers to produce apportionments for these sources to air pollution in selected environments. Initial analysis of such polluting sources was therefore the qualitative analysis of volatile compounds and particulate associated material, both organic and inorganic. Volatile organic compounds were adsorbed onto various resins, while particulate material was sampled onto various filter paper types. Organics were determined by GC-AED and GC-MS, and elements by ICP-MS.1-Nitropyrene was identified as a suitable marker for diesel particulate emissions (<5um). A large volume air sample from Sheffield city centre using 1-nitropyrene as a marker suggested that 63% of atmospheric particulate material (<5um) might be of diesel origin. However the concentration of 1-nitropyrene is low in atmospheric samples, and in the volumes used in routine sampling the amount of 1-nitropyrene was below the limit of detection on the instrument used. In an alternative approach the aliphatic alkane tetracosane (C24) was used as a diesel marker for urban air, with a 1-nitropyrene:tetracosane ratio derived from the average results from laboratory experiments with a diesel engine running at various speeds and loads. This approach yielded apportionment values ranging from 5-85% for the diesel contribution to particulate material (<5mum) in the urban air of Sheffield. No volatile marker compound was found for diesel apportionment.The contribution of ETS to atmospheric pollution has previously been estimated from the measurement of respirable suspended particulates (RSP), which was superseded by total UV absorbance and total fluorescence of a methanol extract. More recent work has suggested the use of solanesol or scopoletin as marker compounds. This thesis shows that the non specific methods overestimated the particulate contribution of ETS in some atmospheres, and that solanesol is a better marker compound than scopoletin. Preliminary studies from a small number of smokers homes and offices, with solanesol as a marker compound for particulate ETS, indicated that ETS contributions to total particulate material (<5mum) ranged from 6 to 49% in homes and 11 to 28% in offices.Pyrrole was used as a marker for ETS contribution to volatile organic pollution, and studies with controlled atmospheres with a smoking machine allowed calculation of the ratios of pyrrole to other volatile organic compounds (VOC's) in ETS. Samples from the field study were used to produce apportionment percentage levels of benzene, toluene, o-xylene and p+m-xylene associated with ETS.In addition the use of tree bark as a atmospheric sink for airborne particulates was investigated. Six nitrated polycyclic aromatic hydrocarbons associated with diesel emissions were quantified in bark extracts and levels of these were found to be highest during winter months.
Column experiments on organic micropollutants - applications and limitations
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus
2016-04-01
As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the transport behaviour of a specific organic compound that are transferable to any given hydrogeochemical environment. Unfortunately, results of most column experiments therefore remain restricted to their specific setup. Column experiments can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale they were obtained from. This means that direct application to field scale studies is infeasible as too many parameters are exclusive for the laboratory column setup. The remaining future challenge is to develop standard column experiments on organic micropollutants that overcome this issue. Here, we present a review of column experiments on organic micropollutants. We present different setups and discuss weaknesses, problems and advantages and provide ideas how to obtain more comparable results on the transport of organic micropollutants in the future.
40 CFR 63.9824 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... means an add-on air pollution control device that is designed specifically to destroy organic compounds... U.S. Geologic Survey: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and.... Refractory shape means any refractory piece forming a stable mass with specific dimensions. Research and...
40 CFR 63.9824 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... means an add-on air pollution control device that is designed specifically to destroy organic compounds... U.S. Geologic Survey: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and.... Refractory shape means any refractory piece forming a stable mass with specific dimensions. Research and...
40 CFR 63.9824 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... means an add-on air pollution control device that is designed specifically to destroy organic compounds... U.S. Geologic Survey: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and.... Refractory shape means any refractory piece forming a stable mass with specific dimensions. Research and...
40 CFR 63.9824 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... means an add-on air pollution control device that is designed specifically to destroy organic compounds... U.S. Geologic Survey: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and.... Refractory shape means any refractory piece forming a stable mass with specific dimensions. Research and...
40 CFR 63.9824 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... means an add-on air pollution control device that is designed specifically to destroy organic compounds... U.S. Geologic Survey: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and.... Refractory shape means any refractory piece forming a stable mass with specific dimensions. Research and...
Subcritical water extraction of organic matter from sedimentary rocks.
Luong, Duy; Sephton, Mark A; Watson, Jonathan S
2015-06-16
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A New Biomarker Proxy for Palaeo-pCO2 Reconstruction in Ancient Sediments
NASA Astrophysics Data System (ADS)
Pancost, R. D.; Magness, S.; Maxwell, J. R.
2001-12-01
The carbon isotopic composition of marine organic matter has commonly been used in chemostratigraphy or as a proxy for ancient pCO2 levels. Both of these goals require that the source of organic matter be well defined, and in the case of palaeo-pCO2 investigations, the organic matter must be derived ultimately from aquatic photoautotrophs. However, additional sources, including terrestrial biomass, heterotrophs, or bacteria, can also contribute to total organic carbon (TOC). In the past decade, numerous workers have attempted to refine organic carbon isotope records using the isotopic composition of individual compounds (biomarkers) rather than the TOC. The appeal of this approach is that by examining specific biomarkers, a signal diagnostic for photoautotrophic organisms can be obtained. For compound-specific isotope analyses to be most effective, the compounds analysed must have a relatively specific source. Among the most commonly used biomarkers in palaeo-pCO2 investigations are alkenones, long-chain ketones derived exclusively from certain species of haptophyte algae. However, alkenones are absent in rocks older than the Jurassic and either absent or present in low abundances in rocks older than the Miocene. Thus, in older rocks, other biomarkers, including steranes (derived from eukaryotic sterols), phytane (presumably derived from chlorophyll), and n-alkanes (derived from algal macromolecules), are used. Unfortunately, these compounds can have alternative sources and become less reliable as isotopic proxies for photoautotrophs with increasing thermal maturity and complexity of the hydrocarbon distribution. Here we propose the use of a maleimides (1H-pyrrole-2,5-diones) as a new biomarker class for evaluating past changes in photoautotroph carbon isotopic compositions. Maleimides have three key advantages over other biomarkers in ancient rocks. First, they are degradation products of chlorophyll and have no known alternative origins in marine sediments. Second, because of their unique structure, they can be readily isolated from other organic components facilitating the determination of accurate carbon isotope ratios. Finally, the pyrrole structure is relatively stable insuring that maleimides survive even in thermally mature rocks. We have applied the analysis of maleimides to investigations of sediments from the Kupferschiefer (Permian), Vena del Gesso (Messinian) and Livello Bonarelli (Cenomanian-Turonian boundary) formations. In all three cases, the carbon isotopic compositions of selected maleimides exhibit shifts predicted by either carbonate or other biomarker carbon isotope profiles.
When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes. Recent advances in analytical chemistry make it possible to p...
Recent progress in the design and clinical development of electronic-nose technologies
Dan Wilson
2016-01-01
Electronic-nose (e-nose) devices are instruments designed to detect and discriminate between precise complex gaseous mixtures of volatile organic compounds derived from specific organic sources, such as clinical test samples from patients, based on electronic aroma signature patterns (distinct digital sensor responses) resulting from the combined outputs of a...
Mann, L.J.
1990-01-01
Groundwater samples from 38 wells at the Idaho National Engineering Laboratory were analyzed for 36 purgeable organic compounds in 1988-89. Thirty-six of the wells obtain water from the Snake River Plain aquifer and were equipped with dedicated or portable pumps. Water samples from one well that obtains water from the aquifer and one that obtains water from a perched groundwater zone were collected using a thief sampler. Analyses of water from 22 wells indicated the aquifer locally contained detectable concentrations of at least 1 of 19 purgeable organic compounds, mainly carbon tetrachloride, 1,1,1-trichloroethane, and trichloroethylene. Except for five wells, the maximum concentration of a specific compound in groundwater was 6.4 microgram/L or less; concentrations of most compounds were less than 0.2 microgram/L. Water from four wells at and near the Test Area North contained from 44 to 29, 000 micrograms/L of trichloroethylene. Water from a well that obtains water from a discontinuous perched groundwater zone at the Radioactive Waste Management Complex contained 1,400 micrograms/L of carbon tetrachloride, 940 micrograms/L of chloroform, 250 micrograms/L of 1,1,1- trichloroethane, and 1,100 micrograms/L trichloroethylene. Selected purgeable organic compounds, such as total xylene and methylene chloride, were detected in some groundwater samples and some blank samples consisting of boiled deionized water. Their presence in the blank samples suggest the compounds could have been inadvertently introduced into the groundwater sampled during or subsequent to collection. (USGS)
Identification of biochemical features of defective Coffea arabica L. beans.
Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P
2017-05-01
Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.
2018-02-01
Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.
NASA Astrophysics Data System (ADS)
Yosipof, Abraham; Guedes, Rita C.; García-Sosa, Alfonso T.
2018-05-01
Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neuronal network (ANN), k nearest neighbors (kNN), and logistic regression models. In this work, we show that together they form a predictive model that not only improves the predictive force but also decreases bias. This resulted in a corrected classification rate of over 0.81, as well as higher sensitivity and specificity rates for the models. In addition, separation and good models were also achieved for disease categories such as antineoplastic compounds and nervous system diseases, among others. Such models can be used to guide decision on the feature landscape of compounds and their likeness to either drugs or other characteristics, such as specific or multiple disease-category(ies) or organ(s) of action of a molecule.
Yosipof, Abraham; Guedes, Rita C; García-Sosa, Alfonso T
2018-01-01
Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features or in case of visualization methods uncover underlying patterns in the feature space. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neural network (ANN), k nearest neighbors (kNN), and logistic regression models. In this work, we show that together they form a predictive model that not only improves the predictive force but also decreases bias. This resulted in a corrected classification rate of over 0.81, as well as higher sensitivity and specificity rates for the models. In addition, separation and good models were also achieved for disease categories such as antineoplastic compounds and nervous system diseases, among others. Such models can be used to guide decision on the feature landscape of compounds and their likeness to either drugs or other characteristics, such as specific or multiple disease-category(ies) or organ(s) of action of a molecule.
Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?
Probert, Chris S J; Reade, Sophie; Ahmed, Iftikhar
2014-09-01
The investigation of a novel, cheaper method of diagnosing inflammatory bowel disease (IBD) is an area of active research. Recently, investigations into the metabolomic profile of IBD patients and animal models of colitis compared to healthy controls has begun to receive considerable attention and correlations between the fecal volatile organic compound (VOC) metabolome and IBD is merging. Patients and clinicians have often reported a change in odor of feces during relapse of IBD. Therefore, this article will focus specifically on the fecal VOC metabolome and its potential role in identifying a novel diagnostic method for IBD.
Volatile organic compound sensor system
Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2009-02-10
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Volatile organic compound sensor system
Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.
2011-03-01
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
This Control Techniques Guideline (CTG) provides the necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work practices to reduce waste and evaporation through pollution prevention methods; these represent available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This draft Control Techniques Guidelines (CTG) provides necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC`s) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work pratices to reduce waste and evaporation through pollution prevention methods; these represent reasonably available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.
Characterization of Natural Organic Matter by FeCl3 Coagulation
NASA Astrophysics Data System (ADS)
Cahyonugroho, O. H.; Hidayah, E. N.
2018-01-01
Natural organic matter (NOM) is heterogenous mixture of organic compounds that enter the water from various decomposition and metabolic reactions, including animal, plant, domestic and industrial wastes. NOM refers to group of carbon-based compounds that are found in surface water and ground water. The aim of the study is to assess organic matter characteristics in Jagir River as drinking water source and to characterize the organic components that could be removed during coagulation. Coagulation is the common water treatment process can be used to remove NOM with FeCl3 coagulant in various dosage. NOM surrogates, including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) were chosen to assess the organic removal. Results of jar test experiments showed that NOM can be removed about 40% of NOM surrogates with 200 mg/L FeCl3. About 60% removal of total organic fraction, which is mainly humic substances, as detected by size exclusion chromatography (SEC).
Sirivedhin, Tanita; Dallbauman, Liese
2004-01-01
Produced water (water co-produced with oil and gas) constitutes the single largest waste stream for oil and gas industry. Reclaiming this water for beneficial use is thought to be one of the most practical solutions that can solve both environmental and water shortage problems. The feasibility of this practice depends on the ability to remove its chemical content to the levels that meets the appropriate standards. Organic compounds are probably the most difficult fraction to handle. In this paper, the discrete organic compounds and non-volatile, macromolecular organic compounds (i.e., natural organic matter––NOM) of three produced water samples from the Osage-Skiatook Environmental Research site were characterized. Two of the three produced waters had very little contribution from NOM, while one of the samples had about 23% NOM contribution to its organic matrix pool. Fluorescent spectrophotometric scans provided little differentiation among the organic quality of the produced water, while pyrolysis-GC/MS showed that the NOM characteristics of the three produced waters were distinct. Specifically, the overall halogenated content and aromaticity of the NOM were found to be possible qualifiers that distinguish produced water from the coalbed methane well from produced water from the oil well. And the specific chemical fragments that are linked to polysaccharide sources were found to be potential identifiers that distinguish produced water from the newer oil well from produced water from the older oil well. These identifiers were, however, only suggested for this preliminary study. More samples must be included to build a substantial database on produced water NOM to confirm and identify more markers.
NASA Astrophysics Data System (ADS)
Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.
2016-04-01
Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.
Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control.
Montesinos, Emilio; Bardají, Eduard
2008-07-01
There is a need of antimicrobial compounds in agriculture for plant-disease control, with low toxicity and reduced negative environmental impact. Antimicrobial peptides are produced by living organisms and offer strong possibilities in agriculture because new compounds can be developed based on natural structures with improved properties of activity, specificity, biodegradability, and toxicity. Design of new molecules has been achieved using combinatorial-chemistry procedures coupled to high-throughput screening systems and data processing with design-of-experiments (DOE) methodology to obtain QSAR equation models and optimized compounds. Upon selection of best candidates with low cytotoxicity and moderate stability to protease digestion, anti-infective activity has been evaluated in plant-pathogen model systems. Suitable compounds have been submitted to acute toxicity testing in higher organisms and exhibited a low toxicity profile in a mouse model. Large-scale production can be achieved by solution organic or chemoenzymatic procedures in the case of very small peptides, but, in many cases, production can be performed by biotechnological methods using genetically modified microorganisms (fermentation) or transgenic crops (plant biofactories).
Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity
NASA Astrophysics Data System (ADS)
Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter
2012-01-01
The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).
[Detection of organic compounds on Mars].
Kobayashi, K
1997-03-01
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.
Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Saad, N.; Hoffnagle, J.
2012-04-01
A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.
Thermochemolysis and the Search for Organic Material on Mars Onboard the MOMA Experiment
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Glavin, Daniel; Freissinet, Carolinette; Pinnick, Veronica; Goetz, Walter; Stambouli, Moncef; Belmahdi, Imene; Coll, Patrice; Stalport, Fabien; Grand, Noël; Brinckerhoff, William; Goesmann, Fred; Raulin, François; Mahaffy, Paul
2016-04-01
Following the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment onboard the future ExoMars 2018 mission will continue to investigate the organic composition of the martian subsurface. MOMA will have the advantage of extracting the sample from as deep as 2 meters below the martian surface where the deleterious effects of radiation and oxidation on organic matter are minimized. To analyse the wide range of organic compounds (volatile and non-volatile compounds) potentially present in the martian soil, MOMA includes two operational modes: UV laser desorption / ionization ion trap mass spectrometry (LDI-ITMS) and pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyse refractory organic compounds and chirality, samples which undergo GC-ITMS analysis may be derivatized beforhands, consisting in the reaction of the sample components with specific chemical reagents (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). To prove the feasibility of the derivatization within the MOMA conditions we have adapated our laboratory procedure for the space conditions (temperature, time, pressure and size). Goal is optimize our detection limits and increase the range of the organic compounds that MOMA will be able to detect. Results of this study, show that Thermochemolysis is one of the most promising technique onboard MOMA to detect organic material. References : [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet, C. et al. (2013) J Chrom. A, 1306, 731-740. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.
Invernizzi, Claudia; Daveri, Alessia; Vagnini, Manuela; Malagodi, Marco
2017-05-01
The analysis of historical musical instruments is becoming more relevant and the interest is increasingly moving toward the non-invasive reflection FTIR spectroscopy, especially for the analysis of varnishes. In this work, a specific infrared reflectance spectral library of organic compounds was created with the aim of identifying musical instrument materials in a totally non-invasive way. The analyses were carried out on pure organic compounds, as bulk samples and laboratory wooden models, to evaluate the diagnostic reflection mid-infrared (MIR) bands of proteins, polysaccharides, lipids, and resins by comparing reflection spectra before and after the KK correction. This methodological approach was applied to real case studies represented by four Stradivari violins and a Neapolitan mandolin.
Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening
NASA Astrophysics Data System (ADS)
Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David
2018-02-01
Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.
Paleo-reconstruction: Using multiple biomarker parameters
NASA Astrophysics Data System (ADS)
Chen, Zhengzheng
Advanced technologies have played essential roles in the development of molecular organic geochemistry. In this thesis, we have developed several new techniques and explored their applications, alone and with previous techniques, to paleo-reconstruction. First, we developed a protocol to separate biomarker fractions for accurate measurement of compound-specific isotope analysis. This protocol involves combination of zeolite adduction and HPLC separation. Second, an integrated study of traditional biomarker parameters, diamondoids and compound-specific biomarker isotopes, differentiated oil groups from Saudi Arabia. Specifically, Cretaceous reservoired oils were divided into three groups and the Jurassic reservoired oils were divided into two groups. Third, biomarker acids provide an alternative way to characterize biodegradation. Oils from San Joaquin Valley, U.S.A. and oils from Mediterranean display drastically different acid profiles. These differences in biomarker acids probably reflect different processes of biodegradation. Fourth, by analyzing biomarker distributions in the organic-rich rocks recording the onset of Late Ordovician extinction, we propose that changes in salinity associated with eustatic sea-level fall, contributed at least locally to the extinction of graptolite species.
Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool
NASA Astrophysics Data System (ADS)
Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.
2016-12-01
Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.
Kim, Saewung; Guenther, Alex; Apel, Eric
2013-07-01
The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.
Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris
2016-02-05
It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality control and bioactivity evaluation through the chemical fingerprinting of bud preparations.
Distribution and Origin of Amino Acids in Lunar Regolith Samples
NASA Technical Reports Server (NTRS)
Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.
2015-01-01
The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh
2010-08-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA
2009-02-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Santschi, P. H.; Xu, C.; Zhang, S.; ...
2017-03-09
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santschi, P. H.; Xu, C.; Zhang, S.
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less
Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C.F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero
2018-01-01
Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.
NASA Astrophysics Data System (ADS)
Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C. F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero
2018-03-01
Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.
Impact of materials used in lab and field experiments on the recovery of organic micropollutants
NASA Astrophysics Data System (ADS)
Hebig, Klaus; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott
2015-04-01
Organic micropollutants are frequently detected in the aquatic environment. There-fore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and ob-served mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.
Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs
2015-11-15
Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS). Copyright © 2015 Elsevier Ltd. All rights reserved.
Time-dependent VOC-profile of decomposed human and animal remains in laboratory environment.
Rosier, E; Loix, S; Develter, W; Van de Voorde, W; Tytgat, J; Cuypers, E
2016-09-01
A validated method using a thermal desorber combined with a gas chromatograph coupled to a mass spectrometer was used to identify the volatile organic compounds released in decomposed human and animal remains after 9 and 12 months in glass jars in a laboratory environment. This is a follow-up study on a previous report where the first 6 months of decomposition of 6 human and 26 animal remains was investigated. In the first report, out of 452 identified compounds, a combination of 8 compounds was proposed as human and pig specific. The goal of the current study was to investigate if these 8 compounds were still released after 9 and 12 months. The next results were noticed: 287 compounds were identified; only 9 new compounds were detected and 173 were no longer seen. Sulfur-containing compounds were less prevalent as compared to the first month of decomposition. The appearance of nitrogen-containing compounds and alcohols was increasingly evident during the first 6 months, and the same trend was seen in the following 6 months. Esters became less important after 6 months. From the proposed human and pig specific compounds, diethyl disulfide was only detected during the first months of decomposition. Interestingly, the 4 proposed human and pig specific esters, as well as pyridine, 3-methylthio-1-propanol and methyl(methylthio)ethyl disulfide were still present after 9 and 12 months of decomposition. This means that these 7 human and pig specific markers can be used in the development of training aids for cadaver dogs during the whole decomposition process. Diethyl disulfide can be used in training aids for the first month of decomposition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinsson, Johan; Monteil, Guillaume; Sporre, Moa K.; Kaldal Hansen, Anne Maria; Kristensson, Adam; Eriksson Stenström, Kristina; Swietlicki, Erik; Glasius, Marianne
2017-09-01
Molecular tracers in secondary organic aerosols (SOAs) can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs) and 2 nitrooxy organosulfates (NOSs) were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs). Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m-3, respectively). The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean
was dominating the air mass exposure (56 %) but contributed to low mass concentration of observed chemical compounds. A principal component (PC) analysis identified four components, where the one with highest explanatory power (49 %) displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.
Buss, Wolfram; Mašek, Ondřej
2014-05-01
Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.
van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.
2016-01-01
Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254
NASA Astrophysics Data System (ADS)
Williams, E. K.; Rosenheim, B. E.
2011-12-01
Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary organic material to account for changes in thermograph shape. The decompositions will be compositionally verified by 13C NMR analysis of pyrolysis residues from interrupted reactions. This will allow for constraint of decomposition temperatures of individual compounds as well as chemical reactions between volatilized moieties in mixtures of these compounds. We will apply this framework with 13C NMR analysis of interrupted pyrolysis residues and radiocarbon data from PTP/CS analysis of sedimentary organic material from a freshwater marsh wetland in Barataria Bay, Louisiana. We expect to characterize the bulk chemical composition during pyrolysis and as well as diagenetic changes with depth. Most importantly, we expect to constrain the potential and the limitations of this modeling framework for application to other depositional environments.
NASA Astrophysics Data System (ADS)
Nödler, Karsten; Licha, Tobias; Sauter, Martin
2010-05-01
Supplementing existing water resources with alternative sources of water is a challenge in semi-arid areas, as deterioration of water quality must be avoided. Soil aquifer treatment (SAT) can greatly improve the quality of the injected water by attenuation of organic pollutants via sorption and degradation processes. However, only little is known about the specific transport processes of organic micropollutants under artificial recharge conditions. Organic micropollutants such as pharmaceuticals and their metabolites exhibit a wide range of chemical properties and may undergo very different environmental processes resulting in specific reactions within specified environments. In the presented study fate and transport processes of 25 organic micropollutants (iodinated contrast media, antihypertensive agents, antibiotics, anticonvulsants, lipid regulators, anti-inflammatories, antihistamines and analgesics) were investigated under SAT conditions in a controlled field experiment. Secondary treated effluent (STE) containing the compounds of interest was introduced into the aquifer by an infiltration pond and shallow wells in the vicinity were used for water quality monitoring. By means of strategic sampling procedure and a specialized multi-residue analytical method based on high-performance liquid chromatography / tandem mass spectrometry (LC/MS-MS) 3 main transport processes were identified: 1. Transport of non-polar compounds according to their respective octanol-water distribution coefficient (Kow) 2. Cation exchange 3. Colloidal transport Identification of transport processes 2 & 3 was not expected to act as a transport controlling process. Results of the positively charged beta-blockers sotalol, atenolol and metoprolol gave clear evidence for cation exchange processes of the compounds with the aquifer material. Correlation of turbidity and concentrations of macrolide antibiotics (clarithromycin, erythromycin and roxithromycin) demonstrated the colloidal transport of the respective compounds. Concentrations of almost all micropollutants decreased with increasing soil passage. However, since compounds transported by processes 2 & 3 can be re-mobilized by changing water chemistry, the importance of a diligent characterisation of aquifer material and raw water is apparent for risk assessment. The experiments were conducted within the context of the project GABARDINE, funded by the European Commission.
Solid phase extraction and metabolic profiling of exudates from living copepods
Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas
2016-01-01
Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422
NASA Astrophysics Data System (ADS)
Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.
2013-02-01
Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.
2012-08-01
Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Busca, R.; Saccon, M.; Moukhtar, S.; Rudolph, J.
2009-05-01
Atmospheric particulate organic matter (POM) adversely affects health and climate. One of the still poorly understood sources of secondary organic matter (SOM) is the formation of secondary POM from the photo- oxidation of atmospheric volatile organic compounds (VOC). Nitrophenols, which are toxic semi-volatile compounds, are formed in the atmosphere by OH-radical initiated photo-oxidation of aromatic hydrocarbons, such as toluene. A method was developed to determine concentrations and stable carbon isotope ratios of particulate methyl nitrophenols in the atmosphere. This method has been used to quantify methyl nitrophenols, specifically 2-methyl-4-nitrophenol and 4-methyl-2-nitrophenol, found in atmospheric PM samples in trace quantities. Using this method, we conducted measurements of methyl nitrophenols in atmospheric PM in rural and suburban areas in Southern Ontario. The results of these measurements showed that the concentration of methyl nitrophenols in atmospheric PM is much lower than expected from the extrapolation of laboratory experiments and measured atmospheric toluene concentrations. In order to better understand the reasons for these findings, an analytical method for the analysis of nitrophenols in the gas phase is currently being developed. Similarly, the measurement technique is modified to allow analysis of other phenolic products of the oxidation of aromatic hydrocarbons in PM as well as in the gas phase. In this poster, sampling techniques for collection and GC-MS analysis of nitrophenols in gas phase and PM will be presented along with preliminary results from summer 2008 and spring 2009 studies.
Wenying, Wei; Jinyu, Han; Wen, Xu
2004-01-01
The specific position of a group in the molecule has been considered, and a group vector space method for estimating enthalpy of vaporization at the normal boiling point of organic compounds has been developed. Expression for enthalpy of vaporization Delta(vap)H(T(b)) has been established and numerical values of relative group parameters obtained. The average percent deviation of estimation of Delta(vap)H(T(b)) is 1.16, which show that the present method demonstrates significant improvement in applicability to predict the enthalpy of vaporization at the normal boiling point, compared the conventional group methods.
Organic Electrolytes for Sodium Batteries
1992-09-01
discussion ................................... 30 3.1 Stability of the organic compounds ...................... 30 3.2 Reactivity with aluminum chloride...Reactions between organic salt/ aluminum chloride. 3.2.1 The MEICI:AICI 3 system. 3.3.1.1 Least-Squares-Fitted Parameters fo, specific conductivitie’s of l...temperature. 3.5.2.3.1 Sodium behavior towards MEICIAICI3 melts. 3.5.2.3.1.1 Standard potential of copper couples in AICt3 :BuPyCI melts versus aluminum
Isotopic exchange of carbon-bound hydrogen over geologic timescales
NASA Astrophysics Data System (ADS)
Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.
2004-04-01
The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.
NASA Astrophysics Data System (ADS)
Mendez-Millan, Mercedes
2010-05-01
Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and describe molecule behaviours (i.e.)carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers.
Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.
Glasius, Marianne; Goldstein, Allen H
2016-03-15
Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.
Perl, Craig D; Rossoni, Sergio; Niven, Jeremy E
2017-03-01
Static allometries determine how organ size scales in relation to body mass. The extent to which these allometric relationships are free to evolve, and how they differ among closely related species, has been debated extensively and remains unclear; changes in intercept appear common, but changes in slope are far rarer. Here, we compare the scaling relationships that govern the structure of compound eyes of four closely related ant species from the genus Formica . Comparison among these species revealed changes in intercept but not slope in the allometric scaling relationships governing eye area, facet number, and mean facet diameter. Moreover, the scaling between facet diameter and number was conserved across all four species. In contrast, facet diameters from distinct regions of the compound eye differed in both intercept and slope within a single species and when comparing homologous regions among species. Thus, even when species are conservative in the scaling of whole organs, they can differ substantially in regional scaling within organs. This, at least partly, explains how species can produce organs that adhere to genus wide scaling relationships while still being able to invest differentially in particular regions of organs to produce specific features that match their ecology.
The Path of Carbon in Photosynthesis
DOE R&D Accomplishments Database
Bassham, J. A.; Calvin, Melvin
1960-10-01
Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
[Groundwater organic pollution source identification technology system research and application].
Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan
2013-02-01
Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.
Moldes-Anaya, Angel; Sæther, Thomas; Uhlig, Silvio; Nebb, Hilde I.; Larsen, Terje; Eilertsen, Hans C.; Paulsen, Steinar M.
2017-01-01
The peroxisome proliferator-activated receptors (PPARs) function as ligand-activated transcription factors that convert signals in the form of lipids to physiological responses through the activation of metabolic target genes. Due to their key roles in lipid and carbohydrate metabolism, the PPARs are important drug targets. However, for several of the PPAR drugs currently in use, adverse side effects have been reported. In an effort to identify compounds from marine organisms that may serve as molecular scaffolds for the development of novel and safer PPAR-targeting drugs, we performed a bioassay-guided screening of organic extracts made from organisms supplied by the Norwegian Biobank of Arctic Marine Organisms (Marbank). Among several interesting hits, we identified two poorly described isomeric oxo-fatty acids from the microalgae Chaetoceros karianus for which we provide the first evidence that they might display dual specificity towards human PPARα and PPARγ. Principal component analysis showed that C. karianus stood out from other Chaetoceros species, both with respect to the metabolic profile and the PPAR activity. The isolation of these compounds holds the potential of uncovering a PPAR pharmacophore with tunable activity and specificity. PMID:28587091
Organics in water contamination analyzer, phase 1
NASA Technical Reports Server (NTRS)
1986-01-01
The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.
Utilizing Ion-Mobility Data to Estimate Molecular Masses
NASA Technical Reports Server (NTRS)
Duong, Tuan; Kanik, Isik
2008-01-01
A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.
DOE R&D Accomplishments Database
Cram, D. J.
1982-09-15
The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.
Bayen, Stéphane; Segovia, Elvagris; Loh, Lay Leng; Burger, David F; Eikaas, Hans S; Kelly, Barry C
2014-06-01
Tools specifically validated for tropical environments are needed to accurately describe the behavior of chemical contaminants in tropical ecosystems. In the present study, sampling rates (Rs) were determined for the commercial pharmaceutical-type Polar Organic Chemical Integrative Sampler (POCIS) with a 45.8cm(2) exposure surface for 35 Pharmaceutically Active Compounds (PhACs) and Endocrine Disrupting Compounds (EDCs), of which eight compounds (albuterol, atorvastatin, diltiazem, dilantin, enalapril, norfluoxetine, risperidone and warfarin) were reported for the first time. These sampling rates were measured in an outdoor laboratory calibration setup to best capture diurnal tropical temperature variations (29±3°C). The effect of stirring and salinity was investigated. For all compounds, the sampling rates were higher under stirred conditions as compared to quiescent conditions. Calibration results in the presence of 30g sodium chloride support that the effects of salinity on POCIS sampling rates are compound-specific. Comparisons between Time-Weight Average (TWA) water concentrations using POCIS and spot sample levels in the field (2 lake and 1 mangrove estuary sites) are presented. Results showed that POCIS TWA concentrations were in agreement with spot sample concentrations for these aquatic systems. Results indicate that POCIS can be used to effectively measure the TWA concentration for a range of PhACs and EDCs in tropical waters. However, based on the results from mass balance and field deployments, POCIS did not appear suitable for compounds with a low mass balance recovery during calibration (e.g. triclosan and linuron in this study). Copyright © 2014 Elsevier B.V. All rights reserved.
Brown, Larry R.
1998-01-01
Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 16 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of total DDT (sum of o,p'- and p,p'-forms of DDD, DDE, and DDT) were statistically different among groups of sites for tissue and sediment (Kruskal-Wallis, P < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of total DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (P < 0.05), which are indicators of the proportion of irrigation-return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total-organic- carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (P < 0.05). Regressions of the concentration of total DDT in tissue as a function of total DDT in bed sediment were significant and explained as much as 76 percent of the variance in the data. The concentration of total DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment.
Following Carbon Isotopes from Methane to Molecules
NASA Astrophysics Data System (ADS)
Freeman, K. H.
2017-12-01
Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.
[Plant hormones, plant growth regulators].
Végvári, György; Vidéki, Edina
2014-06-29
Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.
Leloup, Maud; Pallier, Virginie; Nicolau, Rudy; Feuillade-Cathalifaud, Geneviève
2015-01-01
Algae and cyanobacteria are important contributors to the natural organic matter (NOM) of eutrophic water resources. The objective of this work is to increase knowledge on the modifications of algal organic matter (AOM) properties in the long term to anticipate blooms footprint in such aquatic environments. The production of AOM from an alga (Euglena gracilis) and a cyanobacteria (Microcystis aeruginosa) was followed up and characterized during the stationary phase and after one year and four months of cultivation, in batch experiments. Specific UV absorbance (SUVA) index, organic matter fractionation according to hydrophobicity and apparent molecular weight were combined to assess the evolution of AOM. A comparison between humic substances (HS) mainly derived from allochthonous origins and AOM characteristics was performed to hypothesize impacts of AOM transformation processes on the water quality of eutrophic water resources. Each AOM fraction underwent a specific evolution pattern, depending on its composition. Impacts of humification-like processes were predominant over release of biopolymers due to cells decay and led to an increase in the hydrophobic compounds part and molecular weights over time. However, the hydrophilic fraction remained the major fraction whatever the growth stage. Organic compounds generated by maturation of these precursors corresponded to large and aliphatic structures. PMID:26251898
NASA Technical Reports Server (NTRS)
Franco, Carolina; Hintze, Paul E.
2017-01-01
ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.
NASA Technical Reports Server (NTRS)
Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.
1987-01-01
Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
Sediments indicate the continued use of banned antifouling compounds.
Egardt, Jenny; Nilsson, Per; Dahllöf, Ingela
2017-12-15
Antifouling paints are widely used to avoid organisms settling on boat hulls. The active ingredients in the paints have differed over the years where lead, TBT, irgarol and diuron have been deemed too harmful to non-target organisms and subsequently been banned within the EU. Most of these compounds however are persistent in the environment and can cause problems long after they are deposited. We have examined if present-day and banned substances used in antifouling paints can be found in sediments in a national park on the Swedish west coast. Sampled locations include waterways, natural harbours and small marinas for leisure crafts to investigate if number of visiting boats affect the concentration of antifouling compounds in sediments. Few significant differences were found when comparing the different locations types, suggesting that overall boat presence is more important than specific mooring sites, however, several banned antifouling compounds were found in the surface sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
How to examine soil sorption of ionizable organic compounds and avoid varying pH?
NASA Astrophysics Data System (ADS)
Borisover, Mikhail
2017-04-01
Multiple natural and anthropogenic organic compounds including new and emerging pollutants undergo ionization in aqueous solutions, and their sorption by soils and sediments is contributed by presence of both molecular and ionized species. Better understanding of environmental fate of organic chemicals requires taking into account interactions of molecular and ionized species with environmental sorbents. A "standard" (and undoubtedly important) procedure for differentiating contributions of molecular and ionized species into the overall soil sorption of an organic compound involves varying pH of solution in batch sorption experiments. However, varying pH is (1) often not possible, without destroying a sorbent, e.g., due to the buffer capacity of soils containing carbonates, (2) difficult for further interpretation, since it changes not only the ionization status of a solute in a solution but also the sorbent structure, e.g., a conformation of organic matter, and/or ionization of surface functional groups, (3) making difficult (or even impossible) to explicitly evaluate the role of dissolved species-bulk water interactions, directly affecting the affinity of a sorbate to distribute between water and a sorbent. Indeed, both molecular and ionized species undergo interactions with the solvent bulk and, at least in the case of the ionized ones, there was no a simple way to quantify organic ion-water interactions and their role in organic ion distribution between soil and water phases. This paper presents a "counter-intuitive" approach to examine sorption interactions of an ionizable compound, without experimenting with varied pH. The approach is based on an idea of replacing an initial state in sorption transfer of an ionizable compound from the solvent bulk to a solvated (hydrated) sorbed state: a traditional coefficient describing distribution of a partially ionized compound between a hydrated sorbent and a co-equilibrated aqueous phase is converted to the coefficient describing the transfer of the sorbing compound from its initial molecular (non-ionized) state (in a solution or in the gas phase) to the final hydrated sorbed state equilibrated with the actual aqueous solution of this ionizable compound. In this way, any contributions from the bulk solvent-organic ion interactions into the sorption transfer may be excluded; in addition, further any solute-solvent interactions may be taken out of the consideration. Therefore, compound's sorption characteristics "cleared" of solute-solvent interactions may be obtained, and a better understanding of relations between interactions in a sorbed phase and a molecular structure of organic sorbates can be reached. The approach is illustrated by examining sorption of variously ionized organic compounds, i.e., those belonging to the pharmaceuticals and personal care products (triclosan, gemfibrozil, galaxolide), and aliphatic organic acids on natural and organic amendment-enriched soils. Specifically, it is demonstrated how the greater H-donating ability of trifluoroacetic acid, as compared with acetic acid, strengthens the acid interactions in the soil phase. In another series of examples, it is shown how hydrophobic and non-ionizing galaxolide interacts weakly with soils, as compared with partially ionized triclosan and almost fully ionized gemfibrozil, i.e., leading to the conclusions not reachable based only on the direct comparison of experimentally measured distribution coefficients.
Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka
2013-11-01
A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S
2005-06-01
An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.
Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M
2010-01-15
To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.
Hazardous Air Pollutant Free Replacement for Specification A-A-1936A Contact Adhesive
2014-02-01
volatile organic compound (VOC). Six alternative low-HAP or HAP-free commercial adhesives were evaluated using high-pressure decorative plastic laminate... compounds (VOCs) (5). The HAPs are petroleum distillate, n-hexane, and toluene. Also, this product contains cyclohexane (VOC), and acetone (HAP and...vinyl, drywall , wood, and plywood (19). This product contains toluene HAP/VOC at 1–5 wt.% (20). 4 3. Experimental Method 3.1 Edge Lift Test
NASA Astrophysics Data System (ADS)
Sharts, Clay M.; Gorelik, Vladimir S.; Agoltsov, A. M.; Zlobina, Ludmila I.; Sharts, Olga N.
1999-02-01
The Raman spectra of fluoro-organic compounds show specific emission bands for carbon-fluorine bonds in the range 500- 800 wave numbers (cm-1)). With very limited exceptions, biological materials do not contain carbon- fluorine bonds. Fluoro-organic compounds introduced into biological samples can be detected by a Raman emission signal. Normal mode C-F bond bands are observed: (1) at 710- 785 cm -1 for trifluoromethyl groups; (2) at 530-610 cm -1 for aromatic organofluorine bonds; (3) a range centered at 690 cm -1 for difluoromethylene groups. Specific examples of normal mode C-F bond emissions for organofluorine compounds containing trifluoromethyl groups are: 1-bromoperfluorooctane, 726 cm -1; perfluorodecanoic acid, 730 cm -1; triperfluoropropylamine, 750 cm -1; 1,3,5-tris- (trifluoromethyl)-benzene, 730 cm -1; Fluoxetine (Prozac) commercial powdered pill at 782 cm -1. Compounds containing aromatic C-F bonds are: hexafluorobenzene, 569 cm MIN1; pentafluoropyridine, 589 cm -1. Difluoromethylene groups: perfluorodecalin, 692 cm-1; perfluorocyclohexane, 691 cm -1. Raman spectra were observed with a standard single monochromator. The 510.8 nm light source was a copper-vapor laser operated at 3-10 watts with 10-12 nanosecond pulses at 10 kHz repetition rate. Detection was made with a time-gated photomultiplier tube. Resonance Raman spectra were also observed at 255.4 nm, using a frequency doubling crystal. Observed spectra were free of fluorescence with very sharp strong C-F lines.
Ellis, Timothy G; Eliosov, Boris
2004-01-01
To use the results of kinetic tests to predict effluent concentrations of specific contaminants in activated sludge systems, the fraction of the biomass that has an ability to degrade the test compound (i.e., competent biomass) must be estimated. A calibration procedure was developed to assess the competent biomass concentration because the chemical oxygen demand (COD) fraction tended to underestimate the degrading fraction for three of the four test compounds. Acetone, for instance, had a measured influent COD fraction of 0.08%, and the actual competent fraction was estimated to be 2.3%, based on the model calibration. Once the competent biomass fraction in the mixed liquor was determined, the extant kinetic parameters were subsequently used to predict activated sludge system performance. Predicted effluent concentrations were within 2, 5, and 16% of the average measured concentrations for acetone, linear alkylbenzene sulfonate, and furfural, respectively. Day-to-day predictions for these compounds were less accurate, possibly because of the non-steady-state nature of the activated sludge systems studied. The difference between the fraction of the influent COD contributed by the target compounds and the competent biomass fraction in the mixed liquor was found to be more significant when the target compound contributed less than 1% of the influent organic matter. The chemical structure of the target compound and chemical composition of the influent likely had an effect on the resulting competent biomass concentration. The total maximum growth rate, microX, was observed to be independent of the influent concentration of acetone and furfural, thus suggesting that the competent biomass concentration for these compounds was not affected by the changes in their influent concentrations. Consequently, a majority of competent biomass growth resulted from the degradation of other substrates, resulting in a competent biomass concentration significantly higher than predicted based on the influent COD fraction contributed by the test compound.
van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O
2012-11-01
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.
Preservation of organic matter on Mars by sulfur
NASA Astrophysics Data System (ADS)
Eigenbrode, J. L.; Steele, A.; Summons, R. E.; McAdam, A.; Sutter, B.; Franz, H. B.; Freissinet, C.; Millan, M.; Glavin, D. P.; Szopa, C.; Conrad, P. G.; Mahaffy, P. R.
2016-12-01
Deltaic-lacustrine mudstones at Pahrump Hills, Gale Crater, Mars yielded a variety of sulfur-containing volatiles upon heating to 500-860°C, as detected by the Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover. The detection of organosulfur compounds comprising thiophenes, dimethylsulfide and thiols by gas chromatography-mass spectrometry and evolved gas analyses, together with aromatic and other hydrocarbon molecules with distributions specific to the sample (i.e., not from the SAM background) indicate that some or all of these organic fragments released at high temperatures are indigenous to the mudstones. The organosulfur compounds are most likely derived from sulfur organics in the sediments. However, there is a possibility that sulfurization of some organic fragments occurred in the oven. On Earth, sulfurization of organic matter is a key process that aids preservation over geological time-scales. This is because it reduces reactive functional groups and adds cross links between small unstable molecules thereby converting them into recalcitrant macromolecules. Sulfurization of organic materials prior to deposition and during early diagenesis may have been a key mechanism responsible for organic matter preservation in the Murray formation mudstones. Sulfur-bearing organics have also been observed in carbonaceous meteorites and there is indication of their presence in the Tissint martian meteorite. A quantitative assessment of organosulfur compounds relative to their non-organic counterparts will be presented for the Murray formation mudstones analyzed by SAM and meteorites analyzed in the laboratory under similar analytical conditions.
EVALUATION OF SOLID SORBENTS FOR WATER SAMPLING
The report describes a systematic evaluation of the applicability of macroreticular resins for general and compound-specific sampling of organics. The first portion is an extensive review of current pertinent literature concerned with the use of macroreticular resins for sampling...
VOLATILE ORGANIC COMPOUNDS (VOC) RECOVERY SEMINAR
The purpose of the seminar was to bring researchers, technology developers, and industry representatives together to discuss recovery technologies and techniques for VOCs. The seminar focused on the specific VOC recovery needs of industry and on case studies that summarize effec...
40 CFR 60.697 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifications shall be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates..., including flow and volatile organic compound content under varying liquid level conditions (dynamic and... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...
Huerta, B; Rodríguez-Mozaz, S; Barceló, D
2012-11-01
The presence of pharmaceuticals in the aquatic environment is an ever-increasing issue of concern as they are specifically designed to target specific metabolic and molecular pathways in organisms, and they may have the potential for unintended effects on nontarget species. Information on the presence of pharmaceuticals in biota is still scarce, but the scientific literature on the subject has established the possibility of bioaccumulation in exposed aquatic organisms through other environmental compartments. However, few studies have correlated both bioaccumulation of pharmaceutical compounds and the consequent effects. Analytical methodology to detect pharmaceuticals at trace quantities in biota has advanced significantly in the last few years. Nonetheless, there are still unresolved analytical challenges associated with the complexity of biological matrices, which require exhaustive extraction and purification steps, and highly sensitive and selective detection techniques. This review presents the trends in the analysis of pharmaceuticals in aquatic organisms in the last decade, recent data about the occurrence of these compounds in natural biota, and the environmental implications that chronic exposure could have on aquatic wildlife.
Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.
Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A
2016-01-01
The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India. Copyright © 2016 Elsevier Ltd. All rights reserved.
Language of plants: Where is the word?
Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K
2016-04-01
Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.
Fulvic acid like organic compounds control nucleation of marine calcite under suboxic conditions
NASA Astrophysics Data System (ADS)
Neuweiler, Fritz; D'Orazio, Valeria; Immenhauser, Adrian; Geipel, Gerhard; Heise, Karl-Heinz; Cocozza, Claudio; Miano, Teodoro M.
2003-08-01
Intracrystalline organic compounds, enclosed within in situ precipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2) the degree of condensation, (3) the redox conditions involved, and (4) the catalytic role of natural organic matter for the precipitation of automicrite. Fluorescence spectrometry of the intracrystalline organic fraction extracted from these carbonates identifies a marine fulvic acid like organic compound with a low degree of polycondensation. This finding points to a temporal correlation of the initial stage of geopolymer formation with the precipitation of automicrite. Furthermore, the rare earth element (REE) distribution patterns in the mineral show a consistent positive Ce anomaly, suggesting an episode of reductive dissolution of iron-manganese oxyhydroxides during automicrite formation. In general, a relative enrichment of middle-weight REEs is observed, resulting in a convex distribution pattern typical for, e.g., phosphate concretions or humic acid material. By merging the results of spectrometry and REE geochemistry we thus conclude that the marine calcite precipitation was catalyzed by marine fulvic acid like compounds during the early stages of humification under suboxic conditions. This indicates that humification, driven by the presence of a benthic biomass, is more important for calcite authigenesis than any site-specific microbial metabolism. The Neoproterozoic rise of carbonate mounds supports this hypothesis; there is molecular evidence for early metazoan divergence then, but not for a major evolutionary episode of microorganisms.
Zielinski, M; Krzemieniewski, M
2007-01-01
This article shows the results of research on microwave radiation as a factor affecting organic compounds removal in a reactor with a biofilm. In the experiment a bioreactor was situated inside a microwave tube and there exposed to radiation. Municipal wastes were supplied to the bioreactor from a retention tank, to which they returned having passed through the reactor's packing. The whole system operated in a time cycle comprising a 24-hour detention of the wastewaters supply. The research was based on the specific properties of microwave heating, i.e. their ability to heat only the substances of appropriate dielectric properties. As the reactor was properly constructed and the microwave generator work was synchronised with that of the volumetric pump, microwave energy was directed mostly to the biofilm. It was observed that as a result of microwave radiation the process of organic compounds removal, defined as Chemical Oxygen Demand COD, increased its rate nearly by half. Simultaneously the process efficiency increased by 7.7% at the maximum. While analysing the changes the organic compounds underwent it was revealed that the load in-built in the biomass decreased by over half as a result of microwave radiation input at 2.5 W s(-1), which was optimal under the experimental conditions. Similarly the amount of pollutant remaining in the treated effluent decreased nearly by half, whereas the role of oxidation in removing organic pollutant increased in excess of 25% when compared to the control system.
[The mechanism of the transport of organophosphorus compounds across the histo-hematic barriers].
Miroshkina, V N; Kosmachev, A B; Salova, L S
1999-01-01
It was demonstrated in experiments on mice [correction of rats] that the transport of organophosphorus compounds (OPC) through membranes of the histohematic barriers (HHB) of the organism occurs by means of diffusion. The rate of this process depends on the interaction of OPC with the specific sites of binding with the tissues, among which the enzyme carboxylesterase plays an important part. It is suggested that both the rate and direction of OPC diffusion are determined by the relationship between the values of affinity of the ligands for the sites of their specific binding found on both sides of the HHB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola
2015-05-19
Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soilsmore » with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.« less
McCoy, Michael J; Hoppe Parr, Kimberly A; Anderson, Kim E; Cornish, Jim; Haapala, Matti; Greivell, John
2017-01-01
Recently described scientific literature has identified the airborne presence of 2,3-butanedione (diacetyl) and 2,3-pentanedione at concentrations approaching or potentially exceeding the current American Conference of Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs) at commercial coffee roasting and production facilities. Newly established National Institutes of Occupational Safety and Health (NIOSH) Recommended Exposure Limits for diacetyl and 2,3-pentanedione are even more conservative. Chronic exposure to these alpha-diketones at elevated airborne concentrations has been associated with lung damage, specifically bronchiolitis obliterans, most notably in industrial food processing facilities. Workers at a large commercial coffee roaster were monitored for both eight-hour and task-based, short-term, 15-min sample durations for airborne concentrations of these alpha-diketones during specific work processes, including the coffee bean roasting, blending and grinding processes, during two separate 8-h work periods. Additionally, the authors performed real-time Fourier transform infrared spectroscopy (FTIR) analysis of the workers' breathing zone as well as the area workplace air for the presence of organic compounds to determine the sources, as well as quantitate and identify various organic compounds proximal to the roasting and grinding processes. Real-time FTIR measurements provided both the identification and quantitation of diacetyl and 2,3-pentanedione, as well as other organic compounds generated during coffee bean roasting and grinding operations. Airborne concentrations of diacetyl in the workers' breathing zone, as eight-hour time-weighted averages were less than the ACGIH TLVs for diacetyl, while concentrations of 2,3-pentanedione were below the limit of detection in all samples. Short-term breathing zone samples revealed airborne concentrations for diacetyl that exceeded the ACGIH short-term exposure limit of 0.02 parts per million (ppm) in two samples collected on a grinder operator. FTIR analysis of air samples collected from both the workers' breathing zone and area air samples revealed low concentrations of various organics with diacetyl and 2,3-pentanedione at concentrations less than the limit of detection for the FTIR methods. Neither the breathing zone nor area air samples measured using the FTIR reflected airborne concentrations of organic compounds that, when detected, approached the ACGIH TLVs or regulatory standards, when available. FTIR analysis of headspace of ground coffee beans revealed ppm concentrations of expected alpha diketones, carbon monoxide and other volatile organic compounds (VOCs). Coffee roasting and grinding, with adequate building ventilation and typical roasted bean handling and grinding, appears to generate very low, if any, concentrations of diacetyl and 2,3-pentanedione in the workers' breathing zones. This study also confirmed via FTIR that roasted coffee beans naturally generate alpha-diketones and other organic compounds as naturally occurring compounds resultant of the roasting and then released during the grinding process.
NASA Astrophysics Data System (ADS)
Weller, P.; Stein, R.
2006-12-01
In order to reconstruct the long-term Cenozoic climate history of the central Arctic Ocean and its role in earth's transition from Paleogene greenhouse to the Neogene icehouse conditions, IODP Expedition 302 (Arctic Ocean Coring Experiment ACEX) visited the Lomonosov Ridge in August 2004. Here, we present new data of organic-geochemical compounds determined in ACEX sediment samples to identify organic matter sources and biomarker proxies to decipher processes controlling organic-carbon accumulation and their paleo- environmental significance. Of special interest was the reconstruction of organic carbon composition, preservation and accumulation (i.e. high productivity vs. anoxia vs. terrigenous input) during periods of extreme global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers (e.g. n-alkanes, fatty acids, isoprenoids, carotenoids, steranes/sterenes, hopanes/hopenes, hopanoic acids, aromatic terpenoids, benzohopanes, long-chain alkenones, organic sulfur compounds) and Rock-Eval parameters were determined in the ACEX sediment samples, ranging from the late Paleocene to the middle Miocene in age. The records show highly variable TOC-contents and a large variety and variability of compounds derived from marine, terrestrial and bacterial origin. The distribution of hopanoic acid isomers was dominated by compounds with the biological 17 beta (H), 21 beta (H) configuration indicating a low level of maturity, which was in good agreement with the data from Rock-Eval pyrolysis. Based on the biomarker data, the terrestrial organic matter supply was significantly enriched during the late Paleocene and part of the early Eocene, whereas n-alkanes and n-fatty acids in samples from the PETM and Elmo events as well as the middle Eocene indicate increased aquatic contributions. Furthermore samples from the middle Eocene were characterized by the occurrence of long-chain alkenones, high proportions of lycopane and high ratios (>0.6) of (n-C35+lycopane)/n-C31. Interestingly, lycopane which might indicate photic-zone anoxia was not detected in co-occurrence with highly source-specific isorenieratene derivates.The occurrence in samples of the "freshwater" Azolla-event suggest that lycopane was more likely derived from freshwater algae (Botriococcus braunii, race L genus).
Use of ionic liquids as coordination ligands for organometallic catalysts
Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA
2009-11-10
Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.
NASA Astrophysics Data System (ADS)
Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.
2017-12-01
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.
Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.
NASA Astrophysics Data System (ADS)
Stewart, C. E.; Amatangelo, K.; Neff, J. C.
2008-12-01
Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.
Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area
NASA Astrophysics Data System (ADS)
Mikuška, P.; Křůmal, K.; Večeřa, Z.
2015-03-01
Urban aerosol particles in the fine fraction (PM2.5) were collected over the sampling interval of 24-hrs on quartz filters in Ostrava (Czech Republic) in winter 2012. The collected aerosols were analysed for selected organic compounds that serve as tracers of the main emission sources. The campaign was carried out under two different meteorological scenarios. During a smog episode due to high concentration of aerosols in the first part of the campaign, high concentrations of PM2.5 aerosols (mean concentration of 159 μg m-3) and PAHs bound to particles were found, while in the second part of the campaign, after the smog episode, much lower concentrations of aerosols (mean concentration of 49.3 μg m-3) were observed. Analysis of the source specific molecular markers and diagnostic ratios of PAHs, hopanes and alkanes imply that combustion of coniferous wood and coal in residential heating and traffic belong to the biggest emission sources of organic compounds associated with the PM2.5 aerosols collected during the winter campaign in Ostrava-Radvanice. The industrial production of coke and iron is another important contributor to the concentrations of BaP and other carcinogenic PAHs. The level of air pollution in Ostrava-Radvanice was considerably determined by the overall meteorological situation during the campaign. The highest concentrations of PM2.5 and bound organic compounds were found during a smog episode characterized by poor dispersion conditions due to temperature inversion and weak north-eastern wind, while during the subsequent period characterized by north-west or west wind, the concentrations of aerosols and bound organic compounds were much lower. Transboundary transport of polluted air from the Silesian Voivodeship could have contributed to the pollution in the Moravian-Silesian region during the smog episode.
Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao
2017-11-15
The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Development and Mining of a Volatile Organic Compound Database
Abdullah, Azian Azamimi; Ono, Naoaki; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko
2015-01-01
Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281
The energetics of organic synthesis inside and outside the cell
Amend, Jan P.; LaRowe, Douglas E.; McCollom, Thomas M.; Shock, Everett L.
2013-01-01
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids. PMID:23754809
Natural low-molecular mass organic compounds with oxidase activity as organocatalysts.
Nishiyama, Tatsuya; Hashimoto, Yoshiteru; Kusakabe, Hitoshi; Kumano, Takuto; Kobayashi, Michihiko
2014-12-02
Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of L-ascorbic acid and L-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.
Bonin, Jennifer L.; Wilson, Timothy P.
2006-01-01
Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.
Toulouse, Jacynthe L; Abraham, Sarah M J; Kadnikova, Natalia; Bastien, Dominic; Gauchot, Vincent; Schmitzer, Andreea R; Pelletier, Joelle N
Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.
Workshop Report: Juvenile toxicity testing protocols for chemicals
There is increased awareness of the specific position of children when it comes to hazards of xenobiotic exposures. Children are not small adults, since their exposure patterns, compound kinetics and metabolism, and sensitivity of their developing organs may differ extensively fr...
Herrmann, W M; Dietrich, B; Hiersemenzel, R
1990-01-01
In two double-blind, placebo-controlled clinical studies of the nootropic compound acetyl-L-carnitine on the electroencephalogram (EEG) and impaired brain functions of elderly outpatients with mild to moderate cognitive decline of the organic brain syndrome, statistically significant effects could be detected after eight weeks (on the EEG), and after 12 weeks of treatment (on the physician's clinical global impression and the patient-rated level of activities of daily living). Side-effects of acetyl-L-carnitine were generally minor and overall rare. Longer treatment periods and further specifications with regard to the aetiopathology and degree of cognitive impairment are recommended for further clinical studies of this promising compound.
Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A
2015-01-23
In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. Copyright © 2014 Elsevier B.V. All rights reserved.
Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A.
2016-01-01
In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were able to be grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. PMID:25262385
Protection against the Acute and Delayed Toxicity of Mustards and Mustard-Like Compounds.
1983-09-01
Edition, A. G. Gilman, L. S. Goodman, and A. Gilman (eds.), Macmillan, New York, 1980, pp. 1256-1313. * 2. Ludlum, D. B., Alkylating Agents and the...chemical warfare agents . They are acutely toxic to the skin, respiratory tract, eyes, bone marrow, and, in large doses, to other organs as well...related to the alkylating activity of sulfur mustards and, specifically, to alkylation of DNA (1). Investigations of related compounds have led to the
The adsorption properties of titanium dioxide
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien
2008-12-01
The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.
NASA Astrophysics Data System (ADS)
Maxwell, T.; Silva, L. C. R.; Horwath, W. R.
2016-12-01
Understanding the partitioning of evapotranspiration is critical to assessing how changes in climate affect the terrestrial water cycle. N-alkyl lipids have been successfully used to integrate local to regional scale hydrologic change through the integration of δD measured in specific compounds found in sediments. However, such studies are limited compared to contemporary hydrologic studies which have the advantage of using dual isotope methods whereby δD and δ18O are used in conjunction to partition evapotranspiration. δD values in n-alkyl lipids have been established as resistant to exchange with environmental water and, this approach has allowed for routine measurement and reconstruction of plant water δD. In contrast, the use of δ18O in organic matter remains incipient because the low oxygen content of plant lipids makes it difficult to accurately measure δ18O. In the interest of addressing both fundamental and practical potential of a lipid δ18O proxy, we present the first evidence for predictable exchange of δ18O between environmental water and hydrophobic bulk organic matter, neutral saponified lipids, and specific plant derived compounds Our data suggests that these different pools may be used to reconstruct the original source water δD/δ18O relationship from soil or sedimentary organic matter, which will help elucidate hydrologic shifts in terrestrial systems. Our results bring new insight into methods by which organic compounds might be used to partition evapotranspiration across large spatial scales in both contemporary and reconstructed systems.
NASA Astrophysics Data System (ADS)
Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.
2014-09-01
Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less
Prebiotic materials from on and off the early Earth
NASA Technical Reports Server (NTRS)
Bernstein, Max
2006-01-01
One of the great puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in compounds made mostly of carbon, the kind of which we are currently composed. Where did these organic molecules come from? In this talk I will review proposed contributions to pre-biotic organic chemistry from both terrestrial processes (i.e., hydrothermal vents, Miller-Urey syntheses) and also from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, and there is a growing consensus among scientists that molecules from space played an important role in making the Earth habitable, and perhaps even provided specific compounds that were directly related to the origin of life.
NASA Astrophysics Data System (ADS)
Ingalls, Anitra E.; Whitehead, Kenia; Bridoux, Maxime C.
2010-01-01
Diatom frustule-bound organic compounds presumably play an important role in biomineralization and constitute an important pool of organic matter preserved in diatom frustule-rich sediments. In this study, detailed analysis of diatom frustule-bound organic matter in opal-rich Southern Ocean plankton and sediments revealed for the first time the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs). Chemically cleaned diatom frustule-derived biosilica was dissolved in HF, releasing bound or entrapped organic compounds that were subsequently characterized using liquid chromatography with UV-Vis and electrospray ionization mass spectrometry (LC/PDA/ESI-MS). Palythine ([M+H] + = 245), porphyra-334 ([M+H] + = 347) and shinorine ([M+H] + = 333) were the most abundant MAAs detected in HF digests of plankton and sediment. Traces of asterina ([M+H] + = 289), palythinol ([M+H] + = 303) and palythinic acid ([M+H] + = 329) were also detected. MAAs in cleaned HF digested frustules were up to two orders of magnitude more abundant than methanol extractable MAAs. MAAs are substituted with acid hydrolysable amino acid residues. Our results suggest that MAAs, and not proteins, could be responsible for the high proportion of the amino acids glycine and threonine found in hydrolysates of HF digested diatom-rich environmental samples. Total MAAs accounted for 3-27% of the carbon and 2-18% of total nitrogen in the frustules undergoing various chemical cleaning treatments. This is the first report of MAAs in close association with a mineral phase and we hypothesize that the mineral matrix could stabilize these compounds, thereby enhancing photoprotection against the harmful effects of UV light. The presence of frustule-bound MAAs in sediment cores further suggests the possibility that they could be used in compound-specific isotope analysis of diatom-bound organic matter and as indicators of past solar irradiance.
Ultrabright fluorescent OLEDS using triplet sinks
Zhang, Yifan; Forrest, Stephen R; Thompson, Mark
2013-06-04
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.
Jiang, Ai; Cheng, Zhiwen; Shen, Zhemin; Guo, Weimin
2018-02-13
This paper aims to study temperature-dependent quantitative structure activity relationship (QSAR) models of supercritical water oxidation (SCWO) process which were developed based on Arrhenius equation between oxidation reaction rate and temperature. Through exploring SCWO process, each kinetic rate constant was studied for 21 organic substances, including azo dyes, heterocyclic compounds and ionic compounds. We propose the concept of T R95 , which is defined as the temperature at removal ratio of 95%, it is a key indicator to evaluate compounds' complete oxidation. By using Gaussian 09 and Material Studio 7.0, quantum chemical parameters were conducted for each organic compound. The optimum model is T R95 = 654.775 + 1761.910f(+) n - 177.211qH with squared regression coefficient R 2 = 0.620 and standard error SE = 35.1. Nearly all the compounds could obtain accurate predictions of their degradation rate. Effective QSAR model exactly reveals three determinant factors, which are directly related to degradation rules. Specifically, the lowest f(+) value of main-chain atoms (f(+) n ) indicates the degree of affinity for nucleophilic attack. qH shows the ease or complexity of valence-bond breakage of organic molecules. BO x refers to the stability of a bond. Coincidentally, the degradation mechanism could reasonably be illustrated from each perspective, providing a deeper insight of universal and propagable oxidation rules. Besides, the satisfactory results of internal and external validations suggest the stability, reliability and predictive ability of optimum model.
Organic Geochemistry of the Tohoku Tsunami Deposits of 2011 (Japan)
NASA Astrophysics Data System (ADS)
Reicherter, K. R.; Schwarzbauer, J.; Szczucinski, W.; Jaffe, B. E.
2014-12-01
Geochemical investigations on paleotsunami deposits have mainly focused on inorganic proxies. Organic geochemistry has been used to distinguish between terrestrial and marine matter within the sediments, reflecting the mixture and transport of marine and terrestrial matter. The approach using organic substances with indicative properties (anthropogenic and xenobiotic compounds) for recent tsunami deposits is novel, but the approach of using specific bio- and anthropogenic markers indicators to determine (pre)historic and recent processes and impacts already exists. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis pose to society and landscape, including flooding of coastal lowlands and erosion/deposition of sediments. The mainly sandy tsunamites reach more than 4.5 km inland as there were run-up heights of ca. 10 m in the Sendai plain near the Sendai airport. The destruction of infrastructure by wave action and flooding was accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean over large areas. To detect and characterize this process, we analyzed several sedimentary archives from the Bay of Sendai area (by using the same sample material as Szczucinski et al., 2012 from rice paddies of the Sendai Plain, Japan). The layers representing the tsunami deposits have been compared with pre-tsunami samples (supposedly to be unaffected) by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds and proxies. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides, source specific PAHs, halogenated aromatics from industrial sources) have been detected and quantified. Concentration profiles of distinct terrestrial pollutants revealed shifts either to increasing but for selected compounds also to decreasing contamination levels. We will extend and test the approach in future on paleotsunami deposits of the 869 AD Jogan event and others. Szczucinski et al. 2012, Sed. Geol., 282:40-56.
NASA Astrophysics Data System (ADS)
Zhang, M.; Cooper, L. W.; Biasatti, D. M.; Kedra, M.; Grebmeier, J. M.
2016-02-01
Food web dynamics in the Chukchi Sea have been previously evaluated using bulk analysis of stable carbon and nitrogen isotopes of organisms. However, recent advances in compound-specific stable isotope analysis of amino acids indicate the potential to better identify the contributions of different dietary sources (e.g., pelagic vs. benthic, ice algae vs. phytoplankton) and to resolve complexities of food web structure that are difficult to address with bulk isotope analysis. Here we combine amino acid δ13C and δ15N data measured from primary producers and tissues of bivalves, polychaetes and other benthic invertebrates collected during two cruises in the summer of 2013 and 2015 in the Pacific Arctic. The results showed spatial variation of carbon isotope values in amino acids with difference up to 6 per mil for each individual species or taxa studied, indicating a shift in the food-web baseline geographically. Furthermore, the spatial variation in isotopic values was related to environmental factors, specifically sea ice extent, and total organic carbon, total organic nitrogen and the carbon/nitrogen ratio of the organic fractions of surface sediments. Results also indicated that trophic levels, as estimated by differences in the nitrogen isotope composition of glutamic acid and phenylalanine [Δ15Nglu-phe (δ15Nglu - δ15Nphe)], varied spatially by 0.5 to 1.5 trophic levels for certain species or taxa such as Macoma calcarea, Maldanidae and Ampelisca, indicating trophic level shifts that were associated with the food quality of organic matter in the organic fraction of the sediments. These results can be potentially used to predict future food web change in this high latitude marine system that is known for its ecological importance and on-going environmental changes, including warming and sea ice decline.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2012-04-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2011-11-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...
Improving continuous monitoring OF VOC’s emissions from alternative fertilizers
USDA-ARS?s Scientific Manuscript database
Application of alternative fertilizers, such as biosolids, to agricultural fields is an environmentally-beneficial practice. Concerns regarding nuisance odors caused by specific volatile organic compounds (VOC) have lead to public opposition and may ultimately lead to lack of acceptance of biosolids...
CHARACTERIZATION OF MICROBIAL VOLATILE ORGANIC COMPOUNDS (MVOC) EMITTED BY STACHYBOTRYS CHARTARUM
Stachybotrys chartarum is a filamentous fungi usually found in water-damaged buildings. Severe illnesses have been reported after indoor exposure to this mold. Toxicity has caused the production of secondary metabolites or mycotoxins, and the emission of by-products, specifically...
SOURCE SAMPLING AND ANALYSIS GUIDANCE - A METHODS DIRECTORY
Sampling and analytical methodologies are needed by EPA and industry for testing stationary sources for specific organic compounds such as those listed under the Resource Conservation and Recovery Act (RCRA) Appendix VIII and Appendix IX and the Clean Air Act of 1990. omputerized...
NASA Astrophysics Data System (ADS)
Blyth, Alison
2016-04-01
Speleothems are well used archives for chemical records of terrestrial environmental change, and the integration of records from a range of isotopic, inorganic, and organic geochemical techniques offers significant power in reconstructing both changes in past climates and identifying the resultant response in the overlying terrestrial ecosystems. The use of organic geochemistry in this field offers the opportunity to recover new records of vegetation change (via biomarkers and compound specific isotopes), temperature change (via analysis of glycerol dialkyl glycerol tetraethers, a compound group derived from microbes and varying in structure in response to temperature and pH), and changes in soil microbial behaviour (via combined carbon isotope analysis). However, to date the use of organic geochemical techniques has been relatively limited, due to issues relating to sample size, concerns about contamination, and unanswered questions about the origins of the preserved organic matter and rates of transport. Here I will briefly review recent progress in the field, and present a framework for the future research needed to establish organic geochemical analysis in speleothems as a robust palaeo-proxy approach.
Five primary sources of organic aerosols in the urban atmosphere of Belgrade (Serbia).
Zangrando, Roberta; Barbaro, Elena; Kirchgeorg, Torben; Vecchiato, Marco; Scalabrin, Elisa; Radaelli, Marta; Đorđević, Dragana; Barbante, Carlo; Gambaro, Andrea
2016-11-15
Biomass burning and primary biological aerosol particles (PBAPs) represent important primary sources of organic compounds in the atmosphere. These particles and compounds are able to affect climate and human health. In the present work, using HPLC-orbitrapMS, we determined the atmospheric concentrations of molecular markers such as anhydrosugars and phenolic compounds that are specific for biomass burning, as well as the concentrations of sugars, alcohol sugars and d- and l-amino acids (D-AAs and L-AAs) for studying PBAPs in Belgrade (Serbia) aerosols collected in September-December 2008. In these samples, high levels of all these biomarkers were observed in October. Relative percentages of vanillic (V), syringic compounds (S) and p-coumaric acid (PA), as well as levoglucosan/mannosan (L/M) ratios, helped us discriminate between open fire events and wood combustion for domestic heating during the winter. L-AAs and D-AAs (1% of the total) were observed in Belgrade aerosols mainly in September-October. During open fire events, mean D-AA/L-AA (D/L) ratio values of aspartic acid, threonine, phenylalanine, alanine were significantly higher than mean D/L values of samples unaffected by open fire. High levels of AAs were observed for open biomass burning events. Thanks to four different statistical approaches, we demonstrated that Belgrade aerosols are affected by five sources: a natural source, a source related to fungi spores and degraded material and three other sources linked to biomass burning: biomass combustion in open fields, the combustion of grass and agricultural waste and the combustion of biomass in stoves and industrial plants. The approach employed in this work, involving the determination of specific organic tracers and statistical analysis, proved useful to discriminate among different types of biomass burning events. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments
NASA Astrophysics Data System (ADS)
Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.
2012-04-01
Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.
Solid materials for removing metals and fabrication method
Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.
2004-10-19
Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.
Parawira, W; Tekere, M
2011-03-01
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.
NASA Astrophysics Data System (ADS)
Johnston, N. A. C.; Bundy, B. A.; Andrew, J. P.; Grimm, B. K.; Ketcherside, D.; Rivero-Zevallos, J. A.; Uhlorn, R. P.
2017-12-01
Lewiston, Idaho is a small city in the Snake River Valley bordering North-Central Idaho and Southeastern Washington, with a population of over 40,000 including the surrounding areas. One of the main industries and employers in the region is a kraft paper mill in North Lewiston, which results in odorous levels of sulfur air pollutants there. The Idaho Department of Environmental Quality has an air monitoring station in Lewiston but measures only air particulate matter (PM). Surprisingly, not much long-term data exists on this area for specific air constituents such as volatile organics, hazardous air pollutants, and sulfur compounds. One year-long study conducted in 2006-2007 by the Nez Perce Tribe found high formaldehyde levels in the area, and warranted further study in July of 2016-2017. Our ongoing study began in the fall of 2016 and investigates the seasonal air composition in the Lewiston area. Specifically, active air sampling via sorbent tubes and analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). was utilized to measure over 50 volatile organic compounds, hazardous air pollutants, and sulfurous compounds in ambient air (adapted from EPA Method TO-17). Seasonal, diurnal, and spatial variations in air composition were explored with weekly to monthly grab sampling. Dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were the primary sulfur compounds detected, and these varied considerably depending on time of day, season, location and meteorology. DMS was more prevalent in the summer months, while DMDS was more prevalent in the spring. Elevated concentrations of benzene and chloroform were found in the region during 2017, with average values of short term grab samples over three times the acceptable ambient concentrations in Idaho. These levels did not persist during longer term sampling of 12-hours, however further monitoring is needed to assess a potential health concern.
Pascual, Javier; von Hoermann, Christian; Rottler-Hoermann, Ann-Marie; Nevo, Omer; Geppert, Alicia; Sikorski, Johannes; Huber, Katharina J; Steiger, Sandra; Ayasse, Manfred; Overmann, Jörg
2017-08-01
The decomposition of dead mammalian tissue involves a complex temporal succession of epinecrotic bacteria. Microbial activity may release different cadaveric volatile organic compounds which in turn attract other key players of carcass decomposition such as scavenger insects. To elucidate the dynamics and potential functions of epinecrotic bacteria on carcasses, we monitored bacterial communities developing on still-born piglets incubated in different forest ecosystems by combining high-throughput Illumina 16S rRNA sequencing with gas chromatography-mass spectrometry of volatiles. Our results show that the community structure of epinecrotic bacteria and the types of cadaveric volatile compounds released over the time course of decomposition are driven by deterministic rather than stochastic processes. Individual cadaveric volatile organic compounds were correlated with specific taxa during the first stages of decomposition which are dominated by bacteria. Through best-fitting multiple linear regression models, the synthesis of acetic acid, indole and phenol could be linked to the activity of Enterobacteriaceae, Tissierellaceae and Xanthomonadaceae, respectively. These conclusions are also commensurate with the metabolism described for the dominant taxa identified for these families. The predictable nature of in situ synthesis of cadaveric volatile organic compounds by epinecrotic bacteria provides a new basis for future chemical ecology and forensic studies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...
2018-03-08
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
Prevalence of organic and inorganic contaminants within a rapidly developing catchment
NASA Astrophysics Data System (ADS)
Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.
2003-04-01
Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of environmental degradation within this system.
Herbal Compounds and Toxins Modulating TRP Channels
Vriens, Joris; Nilius, Bernd; Vennekens, Rudi
2008-01-01
Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels. PMID:19305789
Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance
Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous
2012-01-01
The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008
NASA Astrophysics Data System (ADS)
Startsev, V. V.; Dymov, A. A.; Prokushkin, A. S.
2017-08-01
Morphological features, physicochemical properties, and specific characteristics of the organic matter of cryozems (Cryosols) under postpyrogenic larch forests affected by fires 2, 6, 22, 55, and 116 years ago are considered. The morphological changes in the soils affected by fires are manifested by the burning of the upper organic horizons with preservation of pyrogenic features in the soils for more than a century after the fire. In the first years (2 and 6 years) after the fire, the acidity of the organic horizons and their base saturation become lower. The postpyrogenic soils are characterized by the smaller contribution of the organic horizons to the total pools of soil organic carbon. In the studied cryozems, the organic carbon content is correlated with the contents of oxalate-extractable iron and aluminum. A decrease in the content of water-soluble organic compounds in the soils is observed after the fires; gradually, their content increases upon restoration of the ground cover.
Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J
2015-01-01
Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources.
Amador-Muñoz, O; Villalobos-Pietrini, R; Miranda, J; Vera-Avila, L E
2011-03-15
A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM(2.5)), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM(2.5) and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM(2.5), SEOM and PAH (≥ 228 gmol(-1)). Benzo[ghi]perylene was the most abundant PAH, with C(24)-C(26) the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM(2.5) in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM(2.5) in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatté, C.; Balesdent, J.; Derenne, S.; Derrien, D.; Dignac, M.; Egasse, C.; Ezat, U.; Gauthier, C.; Mendez-Millan, M.; Nguyen Tu, T.; Rumpel, C.; Sicre, M.; Zeller, B.
2009-12-01
Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and described molecules will be carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers. (*) funded by the French National Agency of Research (ANR): ANR-07-Blan-0222-01, http://dynamos.lsce.ipsl.fr
NASA Astrophysics Data System (ADS)
Rodríguez-Escales, P.; Fernà ndez-Garcia, D.; Drechsel, J.; Folch, A.; Sanchez-Vila, X.
2017-05-01
Improving degradation rates of emerging organic compounds (EOCs) in groundwater is still a challenge. Although their degradation is not fully understood, it has been observed that some substances are preferably degraded under specific redox conditions. The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection-engineering. In this work, we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The degradation of the first two compounds was fastest under aerobic conditions whereas the third compound was best degraded under denitrification conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time, facilitating the degradation of EOCs.
NASA Astrophysics Data System (ADS)
Holtvoeth, J.; Rushworth, D.; Imeri, A.; Cara, M.; Vogel, H.; Wagner, T.; Wolff, G. A.
2015-08-01
We present elemental, lipid biomarker and compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmental change of at least 1.2 M years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terrestrial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass, while compound-specific isotopes (δ13C, δ2H) determined for n-alkanoic acids confirm a dominant terrestrial source of organic matter to the lake. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distributions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α,ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their average chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognizable in the carbonate and organic carbon records of Lake Ohrid sediments. Our new proxies indicate biome modification in response to hydrological changes, identifying two phases of increased soil OM supply, first from topsoils and then from mineral soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical.
Mewa-Ngongang, Maxwell; du Plessis, Heinrich W; Hutchinson, Ucrecia F; Mekuto, Lukhanyo; Ntwampe, Seteno Ko
2017-06-01
Biological antimicrobial compounds from yeast can be used to address the critical need for safer preservatives in food, fruit and beverages. The inhibition of Candida guilliermondii, a common fermented beverage spoilage organism, was achieved using antimicrobial compounds produced by Candida pyralidae KU736785. The antimicrobial production system was modelled and optimised using response surface methodology, with 22.5 ℃ and pH of 5.0 being the optimum conditions. A new concept for quantifying spoilage organism inhibition was developed. The inhibition activity of the antimicrobial compounds was observed to be at a maximum after 17-23 h of fermentation, with C. pyralidae concentration being between 0.40 and 1.25 × 10 9 CFU ml -1 , while its maximum specific growth rate was 0.31-0.54 h -1 . The maximum inhibitory activity was between 0.19 and 1.08 l contaminated solidified media per millilitre of antimicrobial compound used. Furthermore, the antimicrobial compound formation rate was 0.037-0.086 l VZI ml -1 ACU h -1 , respectively. The response surface methodology analysis showed that the model developed sufficiently described the antimicrobial compound formation rate 1.08 l VZI ml -1 ACU, as 1.17 l VZI ml -1 ACU, predicted under the optimum production conditions.
Sagona, Jessica A; Dukett, James E; Hawley, Harmonie A; Mazurek, Monica A
2014-10-03
Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks. Here, we discuss a dual derivatization method with PFBHA and BSTFA which targets only organic compounds that contain functional groups reacting with both reagents. The method also reduced potential contamination by minimizing the amount of sample processing from the field through the GCMS analysis steps. Once derivatized only gas chromatographic separation and selected ion monitoring (SIM) are needed to identify and quantify the polar organic compounds of interest. Concentrations of the detected total keto-acids in individual cloud water samples ranged from 27.8 to 329.3ngmL(-1) (ppb). Method detection limits for the individual HPOC ranged from 0.17 to 4.99ngmL(-1) and the quantification limits for the compounds ranged from 0.57 to 16.64ngmL(-1). The keto-acids were compared to the total organic carbon (TOC) results for the cloud water samples with concentrations of 0.607-3.350mgL(-1) (ppm). GCMS analysis of all samples and blanks indicated good control of the entire collection and analysis steps. Selected ion monitoring by GCMS of target keto-acids was essential for screening the complex organic carbon mixtures present at low ppb levels in cloud water. It was critical for ensuring high levels of quality assurance and quality control and for the correct identification and quantification of key marker compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Supported fischer-tropsch catalyst and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...
A set of three complementary analytical methods were developed specifically for exhaled breath as collected in evacuated stainless steel canisters using gas chromatography - mass spectrometry detection. The first is a screening method to quantify the carbon dioxide component (gen...
The report gives results of an evaluation and assessment of the perfor-mance, economics, and emission reduction potential upon application of low-volatile organic compound (VOC) waterborne contact adhesive formulations specifically ina manual laminating operation for assembling s...
RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT
Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...
Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann
2017-05-01
In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.
Detecting Pyrolysis Products from Bacteria on Mars
NASA Technical Reports Server (NTRS)
Glavin, Daniel; Schubert, Michael; Botta, Oliver; Kminek, Gerhard; Bada, Jeffrey L.
2001-01-01
A pyrolysis/sublimation technique was developed to isolate volatile amine compounds from a Mars soil analogue inoculated with approx. 10 billion Escherichia coli cells. In this technique, the inoculated soil is heated to 500 C for several seconds at Martian ambient pressure and the sublimate, collected by a cold finger, then analyzed using high performance liquid chromatography. Methylamine and ethylamine, produced from glycine and alanine decarboxylation, were the most abundant amine compounds detected after pyrolysis of the cells. A heating cycle similar to that utilized in our experiment was also used to release organic compounds from the Martian soil in the 1976 Viking gas chromatography/mass spectrometry (GC/MS) pyrolysis experiment. The Viking GC/MS did not detect any organic compounds of Martian origin above a level of a few parts per billion in the Martian surface soil. Although the Viking GC/MS instruments were not specifically designed to search for the presence of living cells on Mars, our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected.
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Thriumani, Reena; Zakaria, Ammar; Hashim, Yumi Zuhanis Has-Yun; Jeffree, Amanina Iymia; Helmy, Khaled Mohamed; Kamarudin, Latifah Munirah; Omar, Mohammad Iqbal; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Persaud, Krishna C
2018-04-02
Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...
2015-09-22
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Method for halogenating or radiohalogenating a chemical compound
Kabalka, George W.
2006-05-09
A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.
Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.
Ippolito, A; Todeschini, R; Vighi, M
2012-03-01
Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.
NASA Astrophysics Data System (ADS)
Chan, Shun-Hsiang; Lin, Tz-Feng; Wu, Ming-Chung; Chen, Shih-Hsuan; Su, Wei-Fang; Lai, Chao-Sung
2018-04-01
In this study, we developed a novel sensing material fabricated using a poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) blend fiber on a glass substrate. The sensing materials can easily be used for sensing toluene vapor detected from extinction spectral changes. The extinction spectra variation is noted from the absorption of volatile organic compounds in a highly specific surface area of fibrous coating. An electrospinning technique is applied to generate a nonwoven structure and uniaxial orientation by fibrous coating. The response of the uniaxially orientated fibrous film is even improved at several toluene vapor concentrations. The best detection limit of this well-aligned fibrous film is up to 200 ppm for toluene vapor.
In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.
Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A
2011-09-01
In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
Zhou, Hui; Wuest, James D
2013-06-18
Linear D2h-symmetric bisisophthalic acids 1 and 2 and related substances have well-defined flattened structures, high affinities for graphite, and strong abilities to engage in specific intermolecular interactions. Their adsorption produces characteristic nanopatterns that reveal how 2D molecular organization can be controlled by reliable interadsorbate interactions such as hydrogen bonds when properly oriented by molecular geometry. In addition, the behavior of these compounds shows how large-scale organization can be obstructed by programming molecules to associate strongly according to competing motifs that have similar stability and can coexist smoothly without creating significant defects. Analogous new bisisophthalic acids 3a and 4a have similar associative properties, and their unique C2h-symmetric crankshaft geometry gives them the added ability to probe the poorly understood effect of chirality on molecular organization. Their adsorption shows how nanopatterns composed predictably of a single enantiomer can be obtained by depositing molecules that can respect established rules of association only by accepting neighbors of the same configuration. In addition, an analysis of the adsorption of crankshaft compounds 3a and 4a and their derivatives by STM reveals directly on the molecular level how kinetics and thermodynamics compete to control the crystallization of chiral compounds. In such ways, detailed studies of the adsorption of properly designed compounds on surfaces are proving to be a powerful way to discover and test rules that broadly govern molecular organization in both 2D and 3D.
Fischer, Anko; Manefield, Mike; Bombach, Petra
2016-10-01
Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ju, Soomi; Lee, Ki-Young; Min, Sun-Joon; Yoo, Yong Kyoung; Hwang, Kyo Seon; Kim, Sang Kyung; Yi, Hyunjung
2015-03-01
Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
D'Haese, Arnout; Le-Clech, Pierre; Van Nevel, Sam; Verbeken, Kim; Cornelissen, Emile R; Khan, Stuart J; Verliefde, Arne R D
2013-09-15
In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution. Copyright © 2013 Elsevier Ltd. All rights reserved.
The provenance, formation, and implications of reduced carbon phases in Martian meteorites
NASA Astrophysics Data System (ADS)
Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.
2016-11-01
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.
NASA Astrophysics Data System (ADS)
Sinninghe Damsté, Jaap S.; Eglinton, Timothy I.; De Leeuw, Jan W.; Schenck, P. A.
1989-04-01
The distributions of sulphur-containing compounds generated by flash pyrolysis of macromolecular sedimentary organic matter (kerogen, coal, asphaltenes) were studied by gas chromatography in combination with Sselective flame photometric detection or mass spectrometry. The abundance of S-containing pyrolysis products in the pyrolysates relative to other products was highly variable depending on the sample but the types of products were generally similar, being mainly composed of "gaseous" compounds ( e.g., hydrogen sulphide) and low molecular weight alkylthiophenes and alkylbenzothiophenes. The distribution patterns of the alkylated thiophenes were dominated by a limited number of all theoretically possible isomers. The alkyl substitution patterns of the dominant isomers bear a strong similarity to those of the organic S compounds present in the GC-amenable fractions of bitumens and immature oils. Therefore, it is suggested that these S-containing pyrolysis products are formed by pyrolysis of related thiophenic and benzothiophenic moieties present in the macromolecular sedimentary substances. Specific examples include those with linear alkyl, iso and anteiso alkyl, isoprenoid alkyl and steroidal carbon skeletons. The presence of higher molecular weight alkylthiophenes and alkylbenzothiophenes with these same carbon skeletons in pyrolysates of S-rich kerogens provided further evidence for the presence of these S-containing moieties. It is likely that these moieties have been formed by abiogenic S incorporation into sedimentary organic matter during early diagenesis.
Comparative Analyses of Cuticular Waxes on Various Organs of Potato (Solanum tuberosum L.).
Guo, Yanjun; Jetter, Reinhard
2017-05-17
Complex mixtures of cuticular waxes coat plant surfaces to seal them against environmental stresses, with compositions greatly varying between species and possibly organs. This paper reports comprehensive analyses of the waxes on both above- and below-ground organs of potato, where total wax coverages varied between petals (2.6 μg/cm 2 ), leaves, stems, and tubers (1.8-1.9 μg/cm 2 ), and rhizomes (1.1 μg/cm 2 ). The wax mixtures on above-ground organs were dominated by alkanes, occurring in homologous series of isomeric C 25 -C 35 n-alkanes, C 25 -C 35 2-methylalkanes, and C 26 -C 34 3-methylalkanes. In contrast, below-ground organs had waxes rich in monoacylglycerols (C 22 -C 28 acyls) and C 18 -C 30 alkyl ferulates, together with fatty acids (rhizomes) or primary alcohols (tubers). The organ-specific wax coverages, compound class distribution, and chain length profiles suggest highly regulated activities of wax biosynthesis enzymes, likely related to organ-specific ecophysiological functions.
Srivastava, D; Favez, O; Bonnaire, N; Lucarelli, F; Haeffelin, M; Perraudin, E; Gros, V; Villenave, E; Albinet, A
2018-09-01
The present study aimed at performing PM 10 source apportionment, using positive matrix factorization (PMF), based on filter samples collected every 4h at a sub-urban station in the Paris region (France) during a PM pollution event in March 2015 (PM 10 >50μgm -3 for several consecutive days). The PMF model allowed to deconvolve 11 source factors. The use of specific primary and secondary organic molecular markers favoured the determination of common sources such as biomass burning and primary traffic emissions, as well as 2 specific biogenic SOA (marine+isoprene) and 3 anthropogenic SOA (nitro-PAHs+oxy-PAHs+phenolic compounds oxidation) factors. This study is probably the first one to report the use of methylnitrocatechol isomers as well as 1-nitropyrene to apportion secondary OA linked to biomass burning emissions and primary traffic emissions, respectively. Secondary organic carbon (SOC) fractions were found to account for 47% of the total OC. The use of organic molecular markers allowed the identification of 41% of the total SOC composed of anthropogenic SOA (namely, oxy-PAHs, nitro-PAHs and phenolic compounds oxidation, representing 15%, 9%, 11% of the total OC, respectively) and biogenic SOA (marine+isoprene) (6% in total). Results obtained also showed that 35% of the total SOC originated from anthropogenic sources and especially PAH SOA (oxy-PAHs+nitro-PAHs), accounting for 24% of the total SOC, highlighting its significant contribution in urban influenced environments. Anthropogenic SOA related to nitro-PAHs and phenolic compounds exhibited a clear diurnal pattern with high concentrations during the night indicating the prominent role of night-time chemistry but with different chemical processes involved. Copyright © 2018 Elsevier B.V. All rights reserved.
CAFFEINE SPECIFICITY OF VARIOUS NON-IMPRINTED POLYMERS IN AQUEOUS MEDIA
Limitations exist in applying the conventional microbial methods to the detection of human fecal contamination in water. Certain organic compounds such as caffeine, have been reported by the U.S. Geological Survey as a more suitable tracer. The employment of caffeine has been h...
Nano-Scale Fabrication Using Optical-Near-Field
NASA Astrophysics Data System (ADS)
Yatsui, Takashi; Ohtsu, Motoichi
This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.
Bromochloromethane (BCM) is a volatile organic compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications and a PBPK model for BCM, Updated with F-344 specific input parameters,...
Advanced Tools Webinar Series Presents: Regulatory Issues and Case Studies of Advanced Tools
U.S. EPA has released A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA) [EPA 600/R-08/148 | December 2008 | www.epa.gov/ada]. The Guide provides recommendations for sample collecti...
Use of column experiments to investigate the fate of organic micropollutants - a review
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus H.
2016-09-01
Although column experiments are frequently used to investigate the transport of organic micropollutants, little guidance is available on what they can be used for, how they should be set up, and how the experiments should be carried out. This review covers the use of column experiments to investigate the fate of organic micropollutants. Alternative setups are discussed together with their respective advantages and limitations. An overview is presented of published column experiments investigating the transport of organic micropollutants, and suggestions are offered on how to improve the comparability of future results from different experiments. The main purpose of column experiments is to investigate the transport and attenuation of a specific compound within a specific sediment or substrate. The transport of (organic) solutes in groundwater is influenced by the chemical and physical properties of the compounds, the solvent (i.e., the groundwater, including all solutes), and the substrate (the aquifer material). By adjusting these boundary conditions a multitude of different processes and related research questions can be investigated using a variety of experimental setups. Apart from the ability to effectively control the individual boundary conditions, the main advantage of column experiments compared to other experimental setups (such as those used in field experiments, or in batch microcosm experiments) is that conservative and reactive solute breakthrough curves can be derived, which represent the sum of the transport processes. There are well-established methods for analyzing these curves. The effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) is an important factor, in contrast to batch experiments where all processes are observed until equilibrium is reached in the substrate-solution system. Slight variations in the boundary conditions of different experiments can have a marked influence on the transport and degradation of organic micropollutants. This is of critical importance when comparing general results from different column experiments investigating the transport behavior of a specific organic compound. Such variations unfortunately mean that the results from most column experiments are not transferable to other hydrogeochemical environments but are only valid for the specific experimental setup used. Column experiments are fast, flexible, and easy to manage; their boundary conditions can be controlled and they are cheap compared to extensive field experiments. They can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale of the experiment and are not directly transferrable to field scales as too many parameters are exclusive to the column setup. The challenge for the future is to develop standardized column experiments on organic micropollutants in order to overcome these issues.
Mateus, Maria-L; Lindinger, Christian; Gumy, Jean-C; Liardon, Remy
2007-12-12
The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.
Fluorine-18 labeled tracers for PET studies in the neurosciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Yu-Shin; Fowler, J.S.
This chapter focuses on fluorine-18, the positron emitter with the longest half-life, the lowest positron energy and probably, the most challenging chemistry. The incorporation of F-18 into organic compounds presents many challenges, including: the need to synthesize and purify the compound within a 2--3 hour time frame; the limited number of labeled precursor molecules; the need to work on a microscale; and the need to produce radiotracers which are chemically and radiochemically pure, sterile and pyrogen-free, and suitable for intravenous injection. The PET method and F-18 labeling of organic molecules are described followed by highlights of the applications of F-18more » labeled compounds in the neurosciences and neuropharmacology. It is important to emphasize the essential and pivotal role that organic synthesis has played in the progression of the PET field over the past twenty years from one in which only a handful of institutions possessed the instrumentation and staff to carry out research to the present-day situation where there are more than 200 PET centers worldwide. During this period PET has become an important scientific tool in the neurosciences, cardiology and oncology. It is important to point out that PET is by no means a mature field. The fact that a hundreds of different F-18 labeled compounds have been developed but only a few possess the necessary selectivity and sensitivity in vivo to track a specific biochemical process illustrates this and underscores a major difficulty in radiotracer development, namely the selection of priority structures for synthesis and the complexities of the interactions between chemical compounds and living systems. New developments in rapid organic synthesis are needed in order to investigate new molecular targets and to improve the quantitative nature of PET experiments.« less
Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang
2017-12-31
Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment processes. Alcohol and ketone removals were probably related to the reduction in protein-like materials. Alkane removal was probably related to the reduction in fulvic acid-like and humic acid-like materials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.
2006-01-01
Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis
Wang, Feng; Cao, Shiyu; Yan, Ruxia; Wang, Zewei; Wang, Dan; Yang, Haifeng
2017-01-01
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique. PMID:29160798
NASA Astrophysics Data System (ADS)
Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad
2017-08-01
Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.
THE REDUCTION OF CYTHOCHROME C BY FREE RADICALS PRODUCED BY GAMMA RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, S.; Stein, G.
In previous papers it had been shown that when oxygen-free aqueous solutions (10/sup -5/ M) of suitable acceptors such as methylene blue, coenzyme I, or cytochrome-C are irradiated in the presence of a large excess (1 M) of organic compounds complete reduction of the substrate can be obtained in high yield. Results are reported from an investigation of the quantitative aspects of the reduction of cytochrome-c in the presence of suitable organic substances, malate, lactate, betahydroxybutyrate, ethanol, succinate, glutamate, and alpha- glycerophosphate, as well as in the presence of molecular hydrogen. It was possible to show that the free radicalsmore » derived from organic compounds act as reducing agents on the cytochrome-c, and that the Gvalues of reduction obtained, the extent of the denaturation of cytochrome-c and the formation of new products from cytochrome-c depend on the nature of the organic substance added. Differences can be correlated with the structure of the organic molecule and the free radical derived from it in a specific manner. (auth)« less
Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun
2017-12-01
The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Xin; Kuipers, Oscar P
2016-11-07
Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Irmisch, Sandra; Krause, Sandra T; Kunert, Grit; Gershenzon, Jonathan; Degenhardt, Jörg; Köllner, Tobias G
2012-06-08
The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.
Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro
2016-10-18
The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.
Screening of ground water samples for volatile organic compounds using a portable gas chromatograph
Buchmiller, R.C.
1989-01-01
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author
Method and reaction pathway for selectively oxidizing organic compounds
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.
Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.
Bohlin, P; Audy, O; Škrdlíková, L; Kukučka, P; Přibylová, P; Prokeš, R; Vojta, Š; Klánová, J
2014-03-01
The most commonly used passive air sampler (PAS) (i.e. polyurethane foam (PUF) disk) is cheap, versatile, and capable of accumulating compounds present both in gas and particle phases. Its performance for particle associated compounds is however disputable. In this study, twelve sets of triplicate PUF-PAS were deployed outdoors for exposure periods of 1-12 weeks together with continuously operated active samplers, to characterize sampling efficiency and derive sampling rates (RS) for compounds belonging to 7 SVOC classes (including particle associated compounds). PUF-PAS efficiently and consistently sampled polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and eight novel brominated flame retardant (nBFR) compounds. Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes. Application of compound specific RS was found crucial for all compounds except PCBs. Sampling efficiency of the particle associated compounds was often low.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
NASA Astrophysics Data System (ADS)
Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William
2017-06-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
The Search for a Volatile Human Specific Marker in the Decomposition Process
Rosier, E.; Loix, S.; Develter, W.; Van de Voorde, W.; Tytgat, J.; Cuypers, E.
2015-01-01
In this study, a validated method using a thermal desorber combined with a gas chromatograph coupled to mass spectrometry was used to identify the volatile organic compounds released during decomposition of 6 human and 26 animal remains in a laboratory environment during a period of 6 months. 452 compounds were identified. Among them a human specific marker was sought using principle component analysis. We found a combination of 8 compounds (ethyl propionate, propyl propionate, propyl butyrate, ethyl pentanoate, pyridine, diethyl disulfide, methyl(methylthio)ethyl disulfide and 3-methylthio-1-propanol) that led to the distinction of human and pig remains from other animal remains. Furthermore, it was possible to separate the pig remains from human remains based on 5 esters (3-methylbutyl pentanoate, 3-methylbutyl 3-methylbutyrate, 3-methylbutyl 2-methylbutyrate, butyl pentanoate and propyl hexanoate). Further research in the field with full bodies has to corroborate these results and search for one or more human specific markers. These markers would allow a more efficiently training of cadaver dogs or portable detection devices could be developed. PMID:26375029
The combination of compound specific stable isotopic analysis with phospholipid fatty acid (PLFAS) analysis is useful in determining the source of organic carbon used by groups of a microbial community. Determination of the effect of certain environmental parameters is important ...
ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...
Methods have been developed for screening and assessing the level of volatile, semi-volatile and non-volatile organic pollutants in human blood. The specific methodology is developed for measuring the presence of "native" compounds rather than their metabolites. Spe...
The report gives results of a project, in support of the intergared Air Cancer Project (IACP), to provide data on the specific effects of appliance type and operating variables on woodstove emissions. samples of particulate material and volatile organic compounds (VOCs) were coll...
GEOCHEMICAL AND MICROBIAL REACTIONS AFFECTING THE LONG-TERM PERFORMANCE OF IN SITU 'IRON BARRIERS'
The in situ application of granular iron (Fe0) has become popular for the destruction of halogenated organic compounds for the immobilization of specific metals in groundwater. However, a knowledge gap exists concerning the long-term performance of the Fe0-barriers. The corrosi...
Kim, Yeon Jeong; Kim, Yeon Bok; Li, Xiaohua; Choi, Su Ryun; Park, Suhyoung; Park, Jong Seok; Lim, Yong Pyo; Park, Sang Un
2015-08-05
This study investigated optimum light conditions for enhancing phenylpropanoid biosynthesis and the distribution of phenylpropanoids in organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Blue light caused a high accumulation of most phenolic compounds, including p-hydroxybenzoic acid, ferulic acid, quercetin, and kaempferol, at 12 days after irradiation (DAI). This increase was coincident with a noticeable increase in expression levels of BrF3H, BrF3'H, BrFLS, and BrDFR. Red light led to the highest ferulic acid content at 12 DAI and to elevated expression of the corresponding genes during the early stages of irradiation. White light induced the highest accumulation of kaempferol and increased expression of BrPAL and BrDFR at 9 DAI. The phenylpropanoid content analysis in different organs revealed organ-specific accumulation of p-hydroxybenzoic acid, quercetin, and kaempferol. These results demonstrate that blue light is effective at increasing phenylpropanoid biosynthesis in Chinese cabbage, with leaves and flowers representing the most suitable organs for the production of specific phenylpropanoids.
Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.
2009-01-01
A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619
Kronimus, Alexander; Schwarzbauer, Jan
2007-05-01
Subaquatic sediment samples derived form Elbe and Mulde Rivers, Germany, were analyzed for extractable and non-extractable anthropogenic organic compounds by a non-target screening approach. Applied methodologies were gas chromatography-mass spectrometry, dispersion extraction and degradation procedures, particularly alkaline and acidic hydrolysis, boron tribromide treatment, ruthenium tetroxide oxidation as well as pyrolysis and TMAH (tetramethylammonium hydroxide)-thermochemolysis. Numerous compounds were identified, including halogenated benzenes, anisoles, styrenes, alkanes, diphenylmethane derivates, anilines, phenols and diphenyl ethers. The results were interpreted with respect to compound specific modes of incorporation as well as to potential sources (e.g. municipal, agricultural, industrial). Extractable and non-extractable fractions differed significantly with respect to their qualitative and quantitative composition. For example, quantities in the extractable and non-extractable fractions of chlorinated benzenes differed up to factor 50. Among other significant results, the investigation revealed hints for a dependence of the mode of incorporation of chlorinated benzenes on their substitution pattern.
Tuominen, Anu; Salminen, Juha-Pekka
2017-08-09
The seasonal variation of polyphenols in the aboveground organs and roots of Geranium sylvaticum in four populations was studied using UPLC-DAD-ESI-QqQ-MS/MS. The content of the main compound, geraniin, was highest (16% of dry weight) in the basal leaves after the flowering period but stayed rather constant throughout the growing season. Compound-specific mass spectrometric methods revealed the different seasonal patterns in minor polyphenols. Maximum contents of galloylglucoses and flavonol glycosides were detected in the small leaves in May, whereas the contents of further modified ellagitannins, such as ascorgeraniin and chebulagic acid, increased during the growing season. In flower organs, the polyphenol contents differed significantly between ontogenic phases so that maximum amounts were typically found in the bud phase, except in pistils the amount of gallotannins increased significantly in the fruit phase. These results can be used in evaluating the role of polyphenols in plant-herbivore interactions or in planning the best collection times of G. sylvaticum for compound isolation purposes.
Effect of sorption on exposures to organic gases from environmental tobacco smoke (ETS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, B.C.; Hodgson, A.T.; Nazaroff, W.W.
The effects of sorption processes on dynamic ETS organic gas concentrations and potential exposures were studied in a carpeted and furnished 50-m{sup 3} room ventilated at 0.6 h{sup -1}. Ten cigarettes were machine-smoked on six of every seven days over four weeks. Concentrations of ETS-specific tracers and regulated toxic compounds were quantified during daily smoking, post-smoking and background periods. Potential exposures were calculated by period and day. Large sorption effects were observed for the widely used tracers 3-ethenylpyridine and nicotine, and for several toxic compounds including naphthalene and cresol isomers. Short-term adsorption to indoor surfaces reduced concentrations and potential exposuresmore » during smoking, while later reemission increased concentrations and exposures hours after smoking ended. Concentrations during nonsmoking periods rose from day to day over the first few weeks, presumably from increased reemission associated with increased sorbed mass concentrations. For sorbing compounds, more than half of daily potential exposures occurred during nonsmoking periods.« less
Arasaradnam, R P; Covington, J A; Harmston, C; Nwokolo, C U
2014-04-01
The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians. © 2014 John Wiley & Sons Ltd.
MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan
2010-01-01
Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were generally low and did not exceed established U.S. or Canadian health and safety exposure limits. Avoidance of ground power unit-assisted dual-engine starts and closing the hangar door prior to start minimize or eliminate the occupational exposure.
Mashburn, Shana L.; Smith, S. Jerrod
2007-01-01
The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.
Removal of organic compounds from shale gas flowback water.
Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P; Rijnaarts, Huub H M
2018-07-01
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discourse for slide presentation: An overview of chemical detection systems
NASA Technical Reports Server (NTRS)
Peters, Randy Alan; Galen, Theodore J.; Pierson, Duane L.
1990-01-01
A brief overview of some of the analytical techniques currently used in monitoring and analyzing permanent gases and selected volatile organic compound in air are presented. Some of the analytical considerations in developing a specific method are discussed. Four broad groups of hardware are discussed: compound class specific personal monitors, gas chromatographic systems, infrared spectroscopic systems, and mass spectrometric residual gas analyzer systems. Three types of detectors are also discussed: catalytic sensor based systems, photoionization detectors, and wet or dry chemical reagent systems. Under gas chromatograph based systems five detector systems used in combination with a GC are covered: thermal conductivity detectors, photoionization detectors, Fourier transform infrared spectrophotometric systems, quadrapole mass spectrometric systems, and a relatively recent development, a surface acoustic wave vapor detector.
Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro.
Filipiak, Wojciech; Sponring, Andreas; Mikoviny, Tomas; Ager, Clemens; Schubert, Jochen; Miekisch, Wolfram; Amann, Anton; Troppmair, Jakob
2008-11-24
The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells. 50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.
Twinning, Epitaxy and Domain Switching in Ferroelastic Inclusion Compounds
NASA Technical Reports Server (NTRS)
Hollingsworth, Mark D.; Peterson, Matthew L.
2003-01-01
Our research is in the area of solid-state organic chemistry, which lies at the interface between physical organic chemistry and materials science. We use crystalline solids as models to probe fundamental issues about physical processes, molecular interactions and chemical reactions that are important for fabrication, stabilization and application of technological materials. Much of our most recent work has focused on the phenomena of ferroelastic and ferroelectric domain switching, in which application of an external force or electric field to a crystal causes the molecules inside the crystal to reorient, in tandem, to a new orientational state. To better understand and control the domain switching process, we have designed and synthesized over twenty closely related, ferroelastic organic crystals. Our approach has been to use crystalline inclusion compounds, in which one molecule (the guest) is trapped within the crystalline framework of a second molecule (the host). By keeping the host constant and varying the proportions and kinds of guests, it has been possible to tailor these materials so that domain switching is rapid and reversible (which is desirable for high technology applications). Inclusion compounds therefore serve as powerful systems for understanding the specific molecular mechanisms that control domain switching.
Halbfeld, Christoph; Ebert, Birgitta E.; Blank, Lars M.
2014-01-01
Volatile organic compounds (VOCs) produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS). The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control. PMID:25197771
Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires
NASA Astrophysics Data System (ADS)
Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon
2014-06-01
Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.
The Atmospheric Fate of Organic Nitrogen Compounds
NASA Astrophysics Data System (ADS)
Borduas, Nadine
Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.
Toraman, Hilal E; Franz, Kristina; Ronsse, Frederik; Van Geem, Kevin M; Marin, Guy B
2016-08-19
Insight in the composition of the algae derived bio-oils is crucial for the development of efficient conversion processes and better upgrading strategies for microalgae. Comprehensive two-dimensional gas chromatography (GC×GC) coupled to nitrogen chemiluminescence detector (NCD) and time-of-flight mass spectrometer (TOF-MS) allows to obtain the detailed quantitative composition of the nitrogen containing compounds in the aqueous and the organic fraction of fast pyrolysis bio-oils from microalgae. Normal phase (apolar×mid-polar) and reverse phase column (polar×apolar) combination are investigated to optimize the separation of the detected nitrogen containing compounds. The reverse phase column combination gives the most detailed information in terms of the nitrogen containing compounds. The combined information from the GC×GC-TOF-MS (qualitative) and GC×GC-NCD (quantitative) with the use of a well-chosen internal standard, i.e. caprolactam, enables the identification and quantification of nitrogen containing compounds belonging to 13 different classes: amines, imidazoles, amides, imides, nitriles, pyrazines, pyridines, indoles, pyrazoles, pyrimidines, quinolines, pyrimidinediones and other nitrogen containing compounds which were not assigned to a specific class. The aqueous fraction mostly consists of amines (4.0wt%) and imidazoles (2.8wt%) corresponding to approximately 80wt% of the total identified nitrogen containing compounds. On the other hand, the organic fraction shows a more diverse distribution of nitrogen containing compounds with the majority of the compounds quantified as amides (3.0wt%), indoles (2.0wt%), amines (1.7wt%) and imides (1.3wt%) corresponding to approximately 65wt% of the total identified nitrogen containing compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Catalyst for selective conversion of synthesis gas and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald
1986-01-01
A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
The organic inventory of primitive meteorites
NASA Astrophysics Data System (ADS)
Martins, Zita
Carbonaceous meteorites are primitive samples that provide crucial information about the solar system genesis and evolution. This class of meteorites has also a rich organic inventory, which may have contributed the first prebiotic building blocks of life to the early Earth. We have studied the soluble organic inventory of several CR and CM meteorites, using high performance liquid chromatography with UV fluorescence detection (HPLC-FD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our target organic molecules include amino acids, nucleobases and polycyclic aromatic hydrocarbons (PAHs), among others. CR chondrites contain the highest amino acids concentration ever detected in a meteorite. The degree of aqueous alteration amongst this class of meteorites seems to be responsible for the amino acid distribution. Pioneering compound-specific carbon isotope measurements of nucleobases present in carbonaceous chondrites show that these compounds have a non-terrestrial origin. This suggests that components of the ge-netic code may have had a crucial role in life's origin. Investigating the abundances, distribution and isotopic composition of organic molecules in primitive meteorites significantly improves our knowledge of the chemistry of the early solar system, and the resources available for the first living organisms on Earth.
Altenburger, Rolf; Scholze, Martin; Busch, Wibke; Escher, Beate I; Jakobs, Gianina; Krauss, Martin; Krüger, Janet; Neale, Peta A; Ait-Aissa, Selim; Almeida, Ana Catarina; Seiler, Thomas-Benjamin; Brion, François; Hilscherová, Klára; Hollert, Henner; Novák, Jiří; Schlichting, Rita; Serra, Hélène; Shao, Ying; Tindall, Andrew; Tolefsen, Knut-Erik; Umbuzeiro, Gisela; Williams, Tim D; Kortenkamp, Andreas
2018-05-01
Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nag, Sangram; Lehmann, Lutz; Heinrich, Tobias; Thiele, Andrea; Kettschau, Georg; Nakao, Ryuji; Gulyás, Balázs; Halldin, Christer
2011-10-27
The aim in this project was to synthesize and to study fluorine-18 labeled analogues of l-deprenyl which bind selectively to the enzyme monoamine oxidase B (MAO-B). Three fluorinated l-deprenyl analogues have been generated in multistep organic syntheses. The most promising fluorine-18 compound N-[(2S)-1-[(18)F]fluoro-3-phenylpropan-2-yl]-N-methylprop-2-yn-1-amine (4c) was synthesized by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography on human brain tissue sections demonstrated specific binding for compound 4c to brain regions known to have a high content of MAO-B. In addition, the corresponding nonradioactive fluorine-19 compound (13) inhibited recombinant human MAO-B with an IC(50) of 170.5 ± 29 nM but did not inhibit recombinant human MAO-A (IC(50) > 2000 nM), demonstrating its specificity. Biodistribution of 4c in mice showed high initial brain uptake leveling at 5.2 ± 0.04%ID/g after 2 min post injection. In conclusion, compound 4c is a specific inhibitor of MAO-B with high initial brain uptake in mice and is, therefore, a candidate for further investigation in PET.
NASA Astrophysics Data System (ADS)
Rovira, Pere; Grasset, Laurent
2015-04-01
Plant- versus microbial signature in densimetric fractions of mediterranean forest soils: a study by thermochemolysis gas chromatography mass spectrometry The ageing of a given organic substrate decomposing in soil is strongly dependant of its microbial utilization and transformation (reworking) by the soil microflora. How far a given substrate or soil fraction has gone in this evolution is usually measured by means of molecular signatures, ratios between organic compounds which enlighten us about the origin and/or the degree of microbial reworking of a specific group of compounds: lipids, proteins, lignin, carbohydrates, etc. Owing to the biochemical heterogeneity of decomposing substrates it is unlikely that the degree of microbial reworking can be approached with a single signature. Applying a couple of them is much better, but obtaining a wide collection of molecular signatures can be time consuming. Here, instead of applying specific methods to obtain a collection of specific signatures, we apply TMAH-thermochemolysis to obtain a panoramic view of the biochemical composition of a series of densimetric fractions of soils. From the compounds identified after TMAH-thermochemolysis, a collection of indicators was obtained: (a) ratio between short and long-chained linear alkanoic acids; (b) ratio between branched and long-chained linear alkanoic acids; (c) ratio between C16 and total alpha-omega-alkanedioic acids; (d) ratio microbial to plant-derived 1-methoxyalkanes; (e) ratio syringyl to total lignin-derived phenolic compounds; (f) vanillic acid to vanillin ratio; (g) fucose/glucose ratio; and (h) xylose/glucose ratio. From these indicators a single numerical value is distilled, allowing to order a couple of densimetric fractions of soil organic matter according to its degree of microbial reworking. This approach was applied to the comparison of a couple of densimetric fractions of soil organic matter of three organic H horizons from mediterranean forest soils. Fractions were obtained by a sequential extraction with sodium polytungstate (NaPT) at density 1.6, 1.8 and 2.0, after ultrasonic disintegration of the sample. Before ultrasonic treatment, a previous extraction was done with NaPT d = 1.6, to isolate the free light fraction. Results were overall consistent in the sense that occluded fractions of density <1.8, and particularly those of density < 1.6, appear as the most microbially evolved. The free light fraction was overall the most fresh-, least evolved fraction. The dense fraction (d > 2.0), made of organomineral complexes with fine silt plus clay, was overall fresh and poorly microbially reworked. Our future work will be the application of this approach to the study of complete soil profiles and soil fractions, thus allowing to obtain a panoramic view of the stabilization of soil organic matter at different depths.
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences result in significant differences in their environmental metal speciation, and likely impact metal uptake within the rhizosphere of calcareous soils.« less
NASA Astrophysics Data System (ADS)
Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias
2014-05-01
Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation processes are greatly enhanced by the addition of the reactive layer. However, a significant portion of recharge occurs through preferential flow paths with short residence times in the reactive layer.
Molina-Fernandez, N; Perez-Conde, C; Rainieri, S; Sanz-Landaluze, J
2017-04-01
Pharmaceuticals such as nonsteroidal anti-inflammatory drugs (NSAIDs) and lipid regulators are being repeatedly detected at low concentrations (pg · mL -1 -ng · mL -1 ) in the environment. A large fraction of these compounds are ionizable. Ionized compounds show different physico-chemical properties and environmental behavior in comparison to their neutral analogs; as a consequence, the quantification methods currently available, based on the neutral molecules, might not be suitable to detect the corresponding ionized compounds. To overcome this problem, we developed a specific analytical method to quantify NSAIDs and lipid regulators (i.e., ibuprofen, diclofenac, naproxen, and clofibric acid) and their ionized compounds. This method is based on three steps: (1) the extraction of the organic compounds with an organic solvent assisted with an ultrasonic probe, (2) the cleaning of the extracts with a dispersive SPE with C 18 , and (3) the determination of the chemical compounds by GC-MS (prior derivatization of the analytes). We demonstrated that the proposed method can successfully quantify the pharmaceuticals and their ionized compounds in aqueous samples, lumpfish eggs, and zebrafish eleutheroembryos. Additionally, it allows the extraction and the cleanup of extracts from small samples (0.010 g of wet weight in pools of 20 larvae) and complex matrixes (due to high lipid content) and can be used as a basis for bioaccumulation assays performed with zebrafish eleutheroembryos in alternative to OECD test 305.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William
2017-01-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Overview of human health and chemical mixtures: problems facing developing countries.
Yáñ ez, Leticia; Ortiz, Deogracias; Calderón, Jaqueline; Batres, Lilia; Carrizales, Leticia; Mejía, Jesús; Martínez, Lourdes; García-Nieto, Edelmira; Díaz-Barriga, Fernando
2002-01-01
In developing countries, chemical mixtures within the vicinity of small-scale enterprises, smelters, mines, agricultural areas, toxic waste disposal sites, etc., often present a health hazard to the populations within those vicinities. Therefore, in these countries, there is a need to study the toxicological effects of mixtures of metals, pesticides, and organic compounds. However, the study of mixtures containing substances such as DDT (dichlorodiphenyltrichloroethane, an insecticide banned in developed nations), and mixtures containing contaminants such as fluoride (of concern only in developing countries) merit special attention. Although the studies may have to take into account simultaneous exposures to metals and organic compounds, there is also a need to consider the interaction between chemicals and other specific factors such as nutritional conditions, alcoholism, smoking, infectious diseases, and ethnicity. PMID:12634117
Overview of human health and chemical mixtures: problems facing developing countries.
Yáñ ez, Leticia; Ortiz, Deogracias; Calderón, Jaqueline; Batres, Lilia; Carrizales, Leticia; Mejía, Jesús; Martínez, Lourdes; García-Nieto, Edelmira; Díaz-Barriga, Fernando
2002-12-01
In developing countries, chemical mixtures within the vicinity of small-scale enterprises, smelters, mines, agricultural areas, toxic waste disposal sites, etc., often present a health hazard to the populations within those vicinities. Therefore, in these countries, there is a need to study the toxicological effects of mixtures of metals, pesticides, and organic compounds. However, the study of mixtures containing substances such as DDT (dichlorodiphenyltrichloroethane, an insecticide banned in developed nations), and mixtures containing contaminants such as fluoride (of concern only in developing countries) merit special attention. Although the studies may have to take into account simultaneous exposures to metals and organic compounds, there is also a need to consider the interaction between chemicals and other specific factors such as nutritional conditions, alcoholism, smoking, infectious diseases, and ethnicity.
Catabolism of volatile organic compounds influences plant survival.
Oikawa, Patricia Y; Lerdau, Manuel T
2013-12-01
Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zafar, R.
2017-12-01
The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified on extraterrestrial bodies including meteorites and Mars.
Selected ground-water data, Chester County, Pennsylvania
Sloto, Ronald A.
1989-01-01
Hydrologic data for Chester County, Pennsylvania are given for 3,010 wells and 32 springs. Water levels are given for 48 observation wells measured monthly during 1936-86. Chemical analyses of ground water are given for major ions, physical properties, nutrients, metals and other trace constituents, volatile organic compounds, acid organic compounds, base-neutral organic compounds, organochlorine insecticides, polychlorinated biphenyls, polychlorinated napthalenes, organophosphorous insecticides, organic acid herbicides, triazine herbicides, other organic compounds, and radionuclides.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
COMPENDIUM OF METHODS FOR THE DETERMINATION ...
This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist those persons responsible for sampling and analysis of toxic organic pollutants in complying with the requirements of Title III of the Clean Air Act. This revised Compendium presents a set of 17 methods in a standardized format with a variety of applicable sampling methods, as well as several analytical techniques, for specific classes of organic pollutants, as appropriate to the specific pollutant compound, its level, and potential interferences. Consequently, this treatment allows the user flexibility in selecting alternatives to complement his or her background and laboratory capability. Information
Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; Van Wezel, Annemarie P
2017-05-02
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.
2017-01-01
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined. PMID:28376616
Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.
1999-01-01
During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.
Orem, W.H.; Feder, G.L.; Finkelman, R.B.
1999-01-01
Balkan endemic nephropathy (BEN) is a fatal kidney disease that is known to occur only in clusters of villages in alluvial valleys of tributaries of the Danube River in Bulgaria, Romania, Yugoslavia, Bosnia, and Croatia. The confinement of this disease to a specific geographic area has led to speculation that an environmental factor may be involved in the etiology of BEN. Numerous environmental factors have been suggested as causative agents for producing BEN, including toxic metals in drinking water, metal deficiency in soils of BEN areas, and environmental mycotoxins to name a few. These hypotheses have either been disproved or have failed to conclusively demonstrate a connection to the etiology of BEN, or the clustering of BEN villages. In previous work, we observed a distinct geographic relationship between the distribution of Pliocene lignites in the Balkans and BEN villages. We hypothesized that the long-term consumption of well water containing toxic organic compounds derived from the leaching of nearby Pliocene lignites by groundwater was a primary factor in the etiology of BEN. In our current work, chemical analysis using 13C nuclear magnetic resonance (13CNMR) spectroscopy indicated a high degree of organic functionality in Pliocene lignite from the Balkans, and suggested that groundwater can readily leach organic matter from these coal beds. Semi-quantitative gas chromatography/mass spectroscopy analysis of solvent extracts of groundwater from shallow wells in BEN villages indicated the presence of potentially toxic aromatic compounds, such as napthalene, fluorene, phenanthrene, and pyrene at concentrations in the ppb range. Laboratory leaching of Balkan Pliocene lignites with distilled water yielded soluble organic matter (> 500 MW) containing large amounts of aromatic structures similar to the simple/discrete aromatic compounds detected in well water from BEN villages. These preliminary results are permissive of our hypothesis and suggest that further work on the possible relationship between the etiology of BEN and toxic aromatic substances leached from Pliocene lignites in well water is warranted.A distinct geographic relationship between the distribution of Pliocene lignites in the Balkans and villages where Balkan endemic nephropathy (BEN) occurs has been observed, indicating a possible link between BEN and the long-term consumption of well water containing toxic organic compounds derived from the leaching of nearby Pliocene lignites. Preliminary investigations by NMR spectroscopy, gas chromatography/mass spectroscopy and leaching experiments show a high degree of organic functionality in the Pliocene lignites, high-leachability by groundwater of organic matter from these beds, and the presence of toxic aromatic compounds.
Becker, Mark F.; Peter, Kathy D.; Masoner, Jason
2002-01-01
Samples collected and analyzed by the Oklahoma Department of Agriculture, Food, and Forestry from 1999 to 2001 determined that nitrate exceeded the U.S. Environmental Protection Agency maximum contaminant level for public drinking-water supplies of 10 milligrams per liter as nitrogen in 79 monitoring wells at 35 swine licensed-managed feeding operations (LMFO) in Oklahoma. The LMFOs are located in rural agricultural settings where long-term agriculture has potentially affected the ground-water quality in some areas. Land use prior to the construction of the LMFOs was assessed to evaluate the types of agricultural land use within a 500-meter radius of the sampled wells. Chemical and microbiological techniques were used to determine the possible sources of nitrate in water sampled from 10 wastewater lagoons and 79 wells. Samples were analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, nitrogen isotope ratios of nitrate and ammonia, wastewater organic compounds, and fecal coliform bacteria. Bacteria ribotyping analysis was done on selected samples to identify possible specific animal sources. A decision process was developed to identify the possible sources of nitrate. First, nitrogen isotope ratios were used to define sources as animal, mixed animal and fertilizer, or fertilizer. Second, wastewater organic compound detections, nitrogen-isotope ratios, fecal coliform bacteria detections, and ribotyping were used to refine the identification of possible sources as LFMO waste, fertilizer, or unidentified animal or mixtures of these sources. Additional evidence provided by ribotyping and wastewater organic compound data can, in some cases, specifically indicate the animal source. Detections of three or more wastewater organic compounds that are indicators of animal sources and detections of fecal coliform bacteria provided additional evidence of an animal source. LMFO waste was designated as a possible source of nitrate in water from 10 wells. The source of waste in water from five of those wells was determined through ribotyping, and the source of waste in water from the remaining five wells was determined by detections of three or more animal-waste compounds in the well samples. LMFO waste in the water from wells with unidentified animal source of nitrate does not indicate that LMFO waste was not the source, but indicated that multiple animal sources, including LMFO waste, may be the source of the nitrate.
Smith, James A.; Witkowski, Patrick J.; Fusillo, Thomas V.
1987-01-01
This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves between water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be absorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rate commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence that the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison to concentrations determined during ongoing research. Finally, where sufficient data exist, regional and temporal contamination trends in the United States are discussed.
Smith, James A.; Witkowski, P.J.; Fusillo, Thomas V.
1988-01-01
This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves among water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be adsorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rates commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison with concentrations determined during ongoing research. Finally, where data are sufficient, regional and temporal contamination trends in the United States are discussed.
Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen
2018-02-15
This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.
Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments
NASA Astrophysics Data System (ADS)
Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.
2017-12-01
Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species. Moreover, molecular analysis of subsamples collected from each incubation will link carbon utilization with the underlying gene expression. Our study sheds light on the degree to which the metabolic capacities of microorganisms affect carbon transformation in sedimentary environments.
Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries
Doherty, Joseph P.; Marek, James C.
1989-01-01
A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.
Inhibition of adenovirus replication by a trisubstituted piperazin-2-one derivative.
Sanchez-Cespedes, Javier; Moyer, Crystal L; Whitby, Landon R; Boger, Dale L; Nemerow, Glen R
2014-08-01
The number of disseminated adenovirus (Ad) infections continues to increase mostly due to the growing use of immunosuppressive treatments. Recipients of solid organ or hematopoietic stem cell transplants, mainly in pediatric units, exhibit a high morbidity and mortality due to these infections. Unfortunately, there are no Ad-specific antiviral drugs currently approved for medical use. To address this situation, we used high-throughput screening (HTS) of synthetic small molecule libraries to identify compounds that restrict Ad infection. Among the more than 25,000 compounds screened, we identified a hit compound that significantly inhibited Ad infection. The compound (15D8) is a trisubstituted piperazin-2-one derivative that showed substantial antiviral activity with little or no cytotoxicity at low micromolar concentrations. Compound 15D8 selectively inhibits Ad DNA replication in the nucleus, providing a potential candidate for the development of a new class of antiviral compounds to treat Ad infections. Copyright © 2014 Elsevier B.V. All rights reserved.
Mir, Rafia; Jallu, Shais; Singh, T P
2015-06-01
The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.
Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea
NASA Astrophysics Data System (ADS)
Choi, A.; Lee, J.; Shin, H. J.; Lee, M.; Jin seok, H.; Lim, J.
2016-12-01
Organic aerosols contain thousands of organic compounds and contribute to 20%-90% of the total fine aerosol mass (Kanakidou et al., 2005). These organic aerosols originate from anthropogenic and natural (biogenic and geologic) sources and alter physical and chemical properties in the atmosphere depending on the atmospheric and meteorological conditions. About one hundred individual organic compounds in PM2.5 at Seoul (urban area) and Baengnyeong Island (remote area) were identified and quantified using gas chromatography/mass spectrometry (GC/MS) in order to understand the characteristics of organic compounds in PM2.5 at these areas. Further, major factors to determine their concentrations in the atmosphere were investigated. Organic compounds analyzed in this study were classified into six groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, fatty acids (FA), dicarboxylic acids (DCAs), and sugars. Daily variation of organic compounds concentrations at Seoul were not high, while, the concentrations of organic compounds at Baengnyeong Island showed high daily variation. This is might due to frequent change of source strength and/or SOA formation in this region. Through correlations of organic compounds with other air pollutants and factor analysis at both sites, it found that major factors (or source) for the determination of organic compounds concentrations at Seoul and Baengnyeong Island were different. The major sources at Seoul were anthropogenic sources such as vehicular emission and coal combustions, while, SOA formation and biomass burning were more attributed more to the organic compounds concentrations at Baengnyeong Island.References Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J., 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053e1123.
NASA Astrophysics Data System (ADS)
Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa
2016-04-01
Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.
Ferreira da Costa, Joana; Silva, David; Caamaño, Olga; Brea, José M; Loza, Maria Isabel; Munteanu, Cristian R; Pazos, Alejandro; García-Mera, Xerardo; González-Díaz, Humbert
2018-06-25
Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC 50 , EC 50 , K i , etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.
Mechanochemical synthesis of organic compounds and composites with their participation
NASA Astrophysics Data System (ADS)
Lyakhov, Nikolai Z.; Grigorieva, Tatiana F.; Barinova, Antonina P.; Vorsina, I. A.
2010-05-01
The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.
Brown, L.R.
1997-01-01
Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...
NASA Astrophysics Data System (ADS)
Jin, Biao; Rolle, Massimo
2016-04-01
Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.
NASA Astrophysics Data System (ADS)
Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug
2010-05-01
Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of experiment course. The SOA was simultaneously characterized by an aerosol mass spectrometer (AMS). The ACM-GC-MS results will be compared with PMF analysis of the AMS organic aerosol. The correlation of specific compounds with PMF factors will be discussed together with future applications of the ACM-GC-MS system for ambient aerosol measurements. Acknowledgement This work was supported by the US Environmental Protection Agency (EPA Grant No. RD-83107701-0) and the Department of Energy (DOE SBIR Grant No. DE-FG02-05ER84269). References Intergovernmental Panel on Climate Change (IPCC): Climate Change 2007, Cambridge University Press, UK, 2007 Hallquist et al., The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys, Vol.9, 5155-5236, 2009
Volatile organic compounds of polyethylene vinyl acetate plastic are toxic to living organisms.
Meng, Tingzhu Teresa
2014-01-01
Volatile organic compounds (VOCs) in polyvinyl chloride (PVC) plastic products readily evaporate; as a result, hazardous gases enter the ecosystem, and cause cancer in humans and other animals. Polyethylene vinyl acetate (PEVA) plastic has recently become a popular alternative to PVC since it is chlorine-free. In order to determine whether PEVA is harmful to humans, this research employed the freshwater oligochaete Lumbriculus variegatus as a model to compare their oxygen intakes while they were exposed to the original stock solutions of PEVA, PVC or distilled water at a different length of time for one day, four days or eight days. During the exposure periods, the oxygen intakes in both PEVA and PVC groups were much higher than in the distilled water group, indicating that VOCs in both PEVA and PVC were toxins that stressed L. variegatus. Furthermore, none of the worms fully recovered during the24-hr recovery period. Additionally, the L. variegatus did not clump together tightly after four or eight days' exposure to either of the two types of plastic solutions, which meant that both PEVA and PVC negatively affected the social behaviors of these blackworms. The LD50 tests also supported the observations above. For the first time, our results have shown that PEVA plastic has adverse effects on living organisms, and therefore it is not a safe alternative to PVC. Further studies should identify specific compounds causing the adverse effects, and determine whether toxic effect occurs in more complex organisms, especially humans.
Natural compounds and combination therapy in colorectal cancer treatment.
Rejhová, A; Opattová, A; Čumová, A; Slíva, D; Vodička, P
2018-01-20
Colorectal cancer (CRC) therapy using conventional chemotherapeutics represents a considerable burden for the patient's organism because of high toxicity while the response is relatively low. Our review summarizes the findings about natural compounds as chemoprotective agents for decreasing risk of CRC. It also identifies natural compounds which possess anti-tumor effects of various characteristics, mainly in vitro on colorectal cell lines or in vivo studies on experimental models, but also in a few clinical trials. Many of natural compounds suppress proliferation by inducing cell cycle arrest or induce apoptosis of CRC cells resulting in the inhibition of tumor growth. A novel employment of natural substances is a so-called combination therapy - administration of two or more substances - conventional chemotherapeutics and a natural compound or more natural compounds at a time. Some natural compounds may sensitize to conventional cytotoxic therapy, reinforce the drug effective concentration, intensify the combined effect of both administered therapeutics or exert cytotoxic effects specifically on tumor cells. Moreover, combined therapy by targeting multiple signaling pathways, uses various mechanisms to reduce the development of resistance to antitumor drugs. The desired effect could be to diminish burden on the patient's organism by replacing part of the dose of a conventional chemotherapeutic with a natural substance with a defined effect. Many natural compounds are well tolerated by the patients and do not cause toxic effects even at high doses. Interaction of conventional chemotherapeutics with natural compounds introduces a new aspect in the research and therapy of cancer. It could be a promising approach to potentially achieve improvements, while minimizing of adverse effects associated with conventional chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gottardi, W; Klotz, S; Nagl, M
2014-06-01
To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.
Contribution of Organically Grown Crops to Human Health
Johansson, Eva; Hussain, Abrar; Kuktaite, Ramune; Andersson, Staffan C.; Olsson, Marie E.
2014-01-01
An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely. PMID:24717360
Pesticide toxicity index for freshwater aquatic organisms
Munn, Mark D.; Gilliom, Robert J.
2001-01-01
The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 75 of the 83 pesticide compounds measured in NAWQA samples, but with a wide range of bioassays per compound (1 to 65). There were a total of 2,824 bioassays for the 75 compounds, including 287 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a nonlethal response) for freshwater cladocerans, 585 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 1,952 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups.While the PTI does not determine whether water in a sample is toxic, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.
Rapid and Convenient Synthesis of the 1,4-Dihydropyridine Privileged Structure
ERIC Educational Resources Information Center
Cheung, Lawrence L. W.; Styler, Sarah A.; Dicks, Andrew P.
2010-01-01
A short, semi-microscale synthesis of two 1,4-dihydropyridine drug analogues via a Hantzsch reaction is described, which is appropriate for a second-year undergraduate organic laboratory. Products are specifically chosen to highlight the biological relevance of this compound type while introducing the notion of a privileged structure.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... (VOC) from Consumer and Commercial Products, Section 3.0--Portable Fuel Containers. This amendment will... Organic Compounds from Consumer and Commercial Products, Section 3.0--Portable Fuel Containers). I... Products, Section 3.0--Portable Fuel Containers is concerned specifically with the use of portable fuel...
48 CFR 552.238-72 - Identification of Products That Have Environmental Attributes.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and low volatile organic compounds (VOCs). Post-consumer material means a material or finished product... life as a consumer item. Post-consumer material is part of the broader category of “recovered material... and post-consumer material content levels for the specific products designated by EPA (40 CFR part 247...
48 CFR 552.238-72 - Identification of Products That Have Environmental Attributes.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and low volatile organic compounds (VOCs). Post-consumer material means a material or finished product... life as a consumer item. Post-consumer material is part of the broader category of “recovered material... and post-consumer material content levels for the specific products designated by EPA (40 CFR part 247...
48 CFR 552.238-72 - Identification of Products That Have Environmental Attributes.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and low volatile organic compounds (VOCs). Post-consumer material means a material or finished product... life as a consumer item. Post-consumer material is part of the broader category of “recovered material... and post-consumer material content levels for the specific products designated by EPA (40 CFR part 247...
48 CFR 552.238-72 - Identification of Products That Have Environmental Attributes.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and low volatile organic compounds (VOCs). Post-consumer material means a material or finished product... life as a consumer item. Post-consumer material is part of the broader category of “recovered material... and post-consumer material content levels for the specific products designated by EPA (40 CFR part 247...
ERIC Educational Resources Information Center
Key, Jessie A.; Li, Matthew D.; Cairo, Christopher W.
2011-01-01
Normal-phase chromatography is an essential technique for monitoring chemical reactions, identifying the presence of specific components, as well as the purification of organic compounds. An experiment to facilitate the instruction and understanding of the concepts behind normal-phase chromatography at the introductory and intermediate…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... interior panels, exterior siding, and tileboard. A typical flat wood coating facility applies stains and..., Volatile Organic Compounds from Specific Processes. This action affects facilities that apply stains and... these emission limits: lb VOC per gallon material (grams Surface coatings, inks, or adhesives applied to...
Kermit to Kermette? Does the Herbicide Atrazine Feminize Male Frogs?
ERIC Educational Resources Information Center
Dinan, Frank J.
2006-01-01
This interrupted case study, developed for an honors seminar and a nonmajors chemistry course, is based on data taken from a series of published research articles. The case explores the unintended side effects of chemicals introduced into the environment, specifically organic compounds that can act as environmental estrogens. Students examine the…
Leadership Misplacement: How Can This Affect Institutions of Higher Education?
ERIC Educational Resources Information Center
Wang, Victor C. X.; Sedivy-Benton, Amy Lynn
2016-01-01
Well-reasoned leadership theories are described in many academic books, yet they may not apply specifically to practices in higher education. In higher education, the absence of tailored leadership theories is compounded by the lack of technical skills or leadership ethics, resulting in leadership issues that impact the organization. To illustrate…
The report gives results of a project, in support of the intergrated Air Canver Project (IACP) to provide data on the specific effects of appliance type and operating variales on woodstove emissions. Samples of particulate material and volatile organic compounds (VOCs) were colle...
NASA Technical Reports Server (NTRS)
Bonner, J.
1976-01-01
A highly sensitive fluorometric technique is developed for the determination of biological and geo-organic compounds in ancient sediments and extraterrestrial samples. This technique is used to establish chemical evidence for fossil pigments in an extraterrestrial sample. Also developed is a highly sensitive and specific fluorometric method for the determination of total primary amine nitrogen in soil samples.
Use of the Analysis of the Volatile Faecal Metabolome in Screening for Colorectal Cancer
2015-01-01
Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT. PMID:26086914
Products and mechanisms of the oxidation of organic compounds in atmospheric air plasmas
NASA Astrophysics Data System (ADS)
Marotta, Ester; Schiorlin, Milko; Rea, Massimo; Paradisi, Cristina
2010-03-01
Atmospheric plasma-based technologies are developing as a powerful means for air purification, specifically for the oxidation of organic pollutants. To achieve a better control on the emissions produced by such treatments mechanistic insight is needed in the complex reactions of volatile organic compounds (VOCs) within the plasma. An account is given here of our comparative studies of the behaviour of model VOCs in response to different corona regimes (+dc, -dc and +pulsed) implemented within the same flow reactor. Model VOCs considered include two alkanes (n-hexane and i-octane), one aromatic hydrocarbon (toluene) and two halogenated methanes, dibromomethane (CH2Br2) and dibromodifluoromethane (CF2Br2, halon 1202). Efficiency and product data are reported and discussed as well as various possible initiation reactions. A powerful diagnostic tool is ion analysis, performed by atmospheric pressure chemical ionization-mass spectrometry: it provides a map of major ions and ion-molecule reactions and a rationale for interpreting current/voltage characteristics of dc coronas. It is shown that, depending on the specific VOC and corona regime adopted, different initiation steps prevail in the VOC-oxidation process and that the presence of a VOC, albeit in small amounts (500 ppm), can greatly affect some important plasma properties (ion population, current/voltage profile, post-discharge products).
In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies
NASA Astrophysics Data System (ADS)
Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.
2008-12-01
Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.
Tobeña-Santamaria, Rafael; Bliek, Mattijs; Ljung, Karin; Sandberg, Göran; Mol, Joseph N.M.; Souer, Erik; Koes, Ronald
2002-01-01
The mechanisms that determine the relative positions of floral organs, and thereby their numbers, is a poorly understood aspect of flower development. We isolated a petunia mutant, floozy (fzy), in which the formation of floral organ primordia in the outermost three floral whorls and one of the two bracts at the base of the flower is blocked at an early stage. In addition, fzy mutants fail to generate secondary veins in leaves and bracts and display a decreased apical dominance in the inflorescence. FZY encodes an enzyme with homology to flavin mono-oxygenases and appears to be the ortholog of YUCCA genes of Arabidopsis. FZY is expressed in young leafs and bracts and in developing flowers. In young floral meristems FZY is expressed in the center of the meristem dome and, later, expression becomes localized on the flanks of the initiating petal and stamen primordia and at several sites in maturing anthers and carpels. These findings indicate that FZY is involved in synthesizing a signaling compound that is required for floral organ initiation and specification of the vascularization pattern in leaves. Although fzy mutants contain normal auxin levels, ectopic expression of FZY results in excessive auxin accumulation, suggesting that the signaling compound is auxin. PMID:11914280
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...
Nambo, Masakazu; Kurihara, Daisuke; Yamada, Tomomi; Nishiwaki-Ohkawa, Taeko; Kadofusa, Naoya; Kimata, Yusuke; Kuwata, Keiko; Umeda, Masaaki; Ueda, Minako
2016-11-01
Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng
2004-01-01
Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.
Identification of specific organic contaminants in different units of a chemical production site.
Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J
2014-07-01
Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process. The chemical composition of the inflow samples showed a very heterogenic composition and strongly varied, reflecting that large scale industrial synthesis is carried out in batches. The outflow contained mainly unspecific chlorinated educts or intermediates of industrial syntheses as well as compounds which are known as typical constituents of municipal wastewaters.
Cvetković, B Z; Salazar, G; Kunz, D; Szidat, S; Wieland, E
2018-06-25
The combination of ion chromatography (IC) with accelerator mass spectrometry (AMS) was developed to determine the speciation of 14C-(radiocarbon) bearing organic compounds in the femto to pico molar concentration range. The development of this compound-specific radiocarbon analysis (CSRA) of carboxylic acids is reported and the application of the method on a leaching solution from neutron-irradiated steel is demonstrated. The background and the dynamic range of the AMS-based method were quantified. On using 14C-labelled standards, the measurements demonstrate the repeatability of the analytical method and the reproducible recovery of the main target carboxylic acids (i.e., acetate, formate, malonate, and oxalate). The detection limit was determined to be in the mid fmol 14C per L level while the dynamic range of the analytical method covers three orders of magnitude from the low fmol to the mid pmol 14C per L level. Cross contamination was found to be negligible during IC fractionation and was accounted for during eluate processing and 14C detection by AMS. The 14C-bearing carboxylates released from an irradiated steel nut into an alkaline leaching solution were analysed using the CSRA-based analytical method with the aim to check the applicability of the approach and develop appropriate sample preparation. The concentrations of 14C-bearing formate and acetate, the main organic corrosion products, were at a low pmol 14C per L level for convenient dimensions of the alkaline leaching experiment which demonstrates that compound-specific 14C AMS is an extremely sensitive analytical method for analysing 14C-bearing compounds. The content of total organic 14C in solution (TO14C) determined by the direct measurement of an aliquot of the leaching solution agrees well with the sum of the 14C concentrations of the individual carboxylates within the uncertainty of the data. Furthermore, the TO14C content is in good agreement with the calculated value using the corrosion rate determined from the 60Co release and the 14C inventory of the irradiated steel specimen.
Chemical reactions of metal powders with organic and inorganic liquids during ball milling
NASA Technical Reports Server (NTRS)
Arias, A.
1975-01-01
Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.
Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, Grorge
2001-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.
ERIC Educational Resources Information Center
Anderson, G.
1979-01-01
A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2014 CFR
2014-07-01
... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...
GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER
The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...
Soil amino compound and carbohydrate contents influenced by organic amendments
USDA-ARS?s Scientific Manuscript database
Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...
NASA Astrophysics Data System (ADS)
Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.
1997-11-01
Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.
NASA Astrophysics Data System (ADS)
Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Pillet, Laetitia; Sarda-Estève, Roland; Baisnée, Dominique; Bonsang, Bernard; Locoge, Nadine
2016-04-01
Volatile organic compounds (VOCs) include a large number of species from various anthropic and natural sources. Their interest is linked to their toxicity and they are key players in photochemical processes leading to secondary pollutant formation such as ozone, oxygenated species and secondary organic aerosols. More than 7,000 atmospheric measurements of over eighty C2-C16 VOCs, including a wide range of tracers of different specific sources, have been conducted at a background site in Cyprus during a 29-day intensive field campaign held in March 2015 within the framework of ChArMEx and ENVI-Med "CyAr" programs. Primary anthropogenic and biogenic VOCs and oxygenated VOCs (OVOCs), including a number of secondary oxidation products, were measured on-line thanks to flame ionization detection/gas chromatography and proton transfer mass spectrometry (2 GC-FID, time resolution 30 min, 1 PTR-QMS, time resolution 5 min). Additionally, more than 400 off-line 3h-integrated air samples were collected on cartridge and analyzed by GC-FID. Recovery of the different techniques, regular quality checks and uncertainty determination approach allow insuring a good robustness of the dataset. In order to study the variability and the origin of these VOCs, their time series were first analyzed here on the basis of meteorological data and clustering of air mass trajectories. Biogenic compounds appear mainly of local origin and present specific diurnal cycles such as daily maximum for isoprene and a nighttime maximum for monoterpenes. Long-lived anthropogenic compounds as well as OVOCs display higher mixing ratios under the influence of eastern and northern sectors (i.e. Middle East and Turkey) indicating that long-range transport significantly contributes to the VOCs levels in the area. A first factor analysis performed in order to examine different species co-variations allows discerning different source types (primary/secondary, anthropogenic/biogenic, local/regional).
Development of water quality standards criteria. [for consumables (spacecrew supplies)
NASA Technical Reports Server (NTRS)
1976-01-01
Qualitative and semiquantitative analyses were made of volatile organic compounds in water supplies collected at various stages of processing in the space station prototype vacuum compression distillation unit to evaluate the process and the product water. Additional evaluation was made of specific ingredients required to adequately enhance the taste of the reclaimed water. A concept for the in-flight addition of these ingredients was developed. Revisions to previously recommended potable water criteria and specifications are included.
Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.
1999-07-13
An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.
Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries
Doherty, J.P.; Marek, J.C.
1987-02-25
A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.
Oceanic protection of prebiotic organic compounds from UV radiation
NASA Technical Reports Server (NTRS)
Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)
1998-01-01
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.
1999-01-01
An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.
Schwab, S M; Menge, J A; Leonard, R T
1983-11-01
A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2011-06-07
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2008-09-16
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Organic compounds in radiation fogs in Davis (California)
NASA Astrophysics Data System (ADS)
Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.
New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.
Gao, Tingting; Andino, Jean M; Alvarez-Idaboy, J Raul
2010-09-07
Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C(4)mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C(4)mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C(4)mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C(4)mimBF(4)) were also studied. In comparing C(4)mimCl, C(4)mimBr, and C(4)mimBF(4), the computational results suggest that C(4)mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C(4)mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C(4)mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C(4)mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C(4)mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C(4)mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.
Pesticide toxicity index for freshwater aquatic organisms, 2nd edition
Munn, Mark D.; Gilliom, Robert J.; Moran, Patrick W.; Nowell, Lisa H.
2006-01-01
The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups. Although the PTI does not determine whether water in a sample is toxic to aquatic organisms, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.
Aspects of deceased organ donation in paediatrics.
Brierley, J; Hasan, A
2012-01-01
Organ transplantation offers children in acute or chronic severe organ failure similar opportunities to adults. However, while the number who might benefit is relatively low, significantly fewer cadaveric donors exist for any given child compared with an adult. Incompatible organ size and relatively low donation rates mean that despite living parental donation and innovations to reduce donated organ size, children die before organs become available. The severity of the UK situation is compounded by restrictions on paediatric living donation, uncertainties over the application of brain death criteria, and ethical concerns about the use of donation after circulatory death. The UK Department of Health's Organ Donation Task Force suggested the means by which the adult donor pool might be increased, recommending that outstanding ethical and legal issues be resolved, but made no specific recommendations about children.
Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A
2009-08-01
Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.
Search for Unique Organic Biomarkers in ALH84001
NASA Technical Reports Server (NTRS)
Zare, Richard N.
1999-01-01
Four goals were outlined for this project. These were: [1] to reproduce the measurement of polycyclic aromatic hydrocarbons (PAHS) in ALH84001 with both a higher spatial resolution and sensitivity than has been previously reported; [2] to extend such measurements to include other members of the Martian SNC (Shergotties, Nahklites, and Chassigny) meteorite clan, in particular the Antarctic Martian meteorite EETA79001; [3] to address issues of potential organic contamination, because at present very little is known about the effect of terrestrial weathering in the Antarctic environment as it pertains to perturbing an indigenous organic distribution within a meteoritic matrix; and [4] to diversify the range of organic compounds studied to include species that can serve as unique biological markers - "molecular fossils" - derived from once living organisms. In order to achieve this, three specific goals were outlined for the funding period 06/01/97 to 02/28/98. They were: [1] to investigate the effects of terrestrial weathering and organic contamination of meteoritic samples collected from Antarctica; [2] to reproduce and extend upon the measurements of PAHs in ALH84001 with the aim of establishing or refuting the indigeneity of these species; and [3] to extend the analysis of organic compounds in ALH84001 and EETA79001 to address compounds that are considered to be more biologically relevant than PAHS. All three were successfully accomplished, as detailed in the previous performance report. In brief, however, the results achieved were to establish that the PAHs found in ALH84001 were indigenous and not due to contamination, and to determine that a novel and sensitive technique in meteoritic work, capillary zone electrophoresis (CE), could indeed detect amino acids, a potential class of biomarker.
Analytical chemistry in water quality monitoring during manned space missions
NASA Astrophysics Data System (ADS)
Artemyeva, Anastasia A.
2016-09-01
Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.
NASA Astrophysics Data System (ADS)
Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen
2011-08-01
The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.
"Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.
Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin
2011-06-01
In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.
Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2015-12-01
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boron-containing organic pigments from a Jurassic red alga
Wolkenstein, Klaus; Gross, Jürgen H.; Falk, Heinz
2010-01-01
Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae. PMID:20974956
Boron-containing organic pigments from a Jurassic red alga.
Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz
2010-11-09
Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae.
Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T
2017-05-15
Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.
Prebiotic materials from on and off the early Earth
Bernstein, Max
2006-01-01
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller–Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System. PMID:17008210
Prebiotic materials from on and off the early Earth.
Bernstein, Max
2006-10-29
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...
Yun, Lifen; Peng, Yue'e; Chang, Qing; Zhu, Qingxin; Guo, Wei; Wang, Yanxin
2017-07-05
The consumption of edible iodized salt is a key strategy to control and eliminate iodine deficiency disorders worldwide. We herein report the identification of the organic iodine compounds present in different edible iodized salt products using liquid chromatography combined with high resolution mass spectrometry. A total of 38 organic iodine compounds and their transformation products (TPs) were identified in seaweed iodine salt from China. Our experiments confirmed that the TPs were generated by the replacement of I atoms from organic iodine compounds with Cl atoms. Furthermore, the organic iodine compound contents in 4 seaweed iodine salt samples obtained from different manufacturers were measured, with significant differences in content being observed. We expect that the identification of organic iodine compounds in salt will be important for estimating the validity and safety of edible iodized salt products.
Methods of making organic compounds by metathesis
Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John
2015-09-01
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
Van Lancker, Fien; Adams, An; Delmulle, Barbara; De Saeger, Sarah; Moretti, Antonio; Van Peteghem, Carlos; De Kimpe, Norbert
2008-10-01
An automated headspace solid phase microextraction method followed by GC-MS analysis was used to evaluate and compare the in vitro production of microbial volatile organic compounds (MVOCs) on malt extract agar, plasterboard and wallpaper. Five fungal strains were isolated from the walls of water-damaged houses and identified. In addition, four other common molds were studied. In general, MVOC production was the highest on malt extract agar. On this synthetic medium, molds typically produced 2-methylpropanol, 2-methylbutanol and 3-methylbutanol. On wallpaper, mainly 2-ethylhexanol, methyl 2-ethylhexanoate and compounds of the C8-complex such as 1-octene-3-ol, 3-octanone, 3-octanol and 1,3-octadiene were detected. The detection of 2-ethylhexanol and methyl 2-ethylhexanoate indicates an enhanced degradation of the substrate by most fungi. For growth on plasterboard, no typical metabolites were detected. Despite these metabolite differences on malt extract agar, wallpaper and plasterboard, some molds also produced specific compounds independently of the used substrate, such as trichodiene from Fusarium sporotrichioides and aristolochene from Penicillium roqueforti. Therefore, these metabolites can be used as markers for the identification and maybe also mycotoxin production of these molds. All five investigated Penicillium spp. in this study were able to produce two specific diterpenes, which were not produced by the other species studied. These two compounds, which remain unidentified until now, therefore seem specific for Penicillium spp. and are potentially interesting for the monitoring of this fungal genus. Further experiments will be performed with other Penicillium spp. to study the possibility that these two compounds are specific for this group of molds.
Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.
Franke, Matthias; Jandl, Gerald; Leinweber, Peter
2006-10-01
Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.
Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M
2010-10-01
The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and are most appropriately applied to central tendency estimates for such datasets. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Comparison of methods for determination of volatile organic compounds in drinking water.
Golfinopoulos, S K; Lekkas, T D; Nikolaou, A D
2001-10-01
Comparison of four methods including liquid-liquid extraction (LLE), direct aqueous injection (DAI), purge and trap (PAT) and head space (HS) were carried out in this work for determination of volatile organic compounds (VOCs) including trihalomethanes (THMs) in drinking water. This comparison is made especially to show the advantages and disadvantages and specifically the different detection limits (DL) that can be obtained for a given type of analysis. LLE is applicable only for determination of the THMs concentrations, while DAI, PAT, HS methods with different DL each of them are applicable for all VOCs, with PAT to be the most sensitive. Sampling apparatus and procedure for all these methods except of PAT are very simple and easy, but possible disadvantages for LLE and DAI are the low sensitivity and especially the detection only of THMs with LLE.
Characteristics of unstable resonators in flashlamp-pumped organic-compound lasers
NASA Astrophysics Data System (ADS)
Alekseyev, V. A.; Trinchuk, B. F.; Shulenin, A. V.
1985-01-01
A symmetrical confocal resonator formed by two blind convex mirrors was investigated. The space energy characteristics of radiation from a laser with an unstable resonator were investigated as a function of the specific pumping energy per cubic centimeter of active medium and the magnification of the resonator. Oscillograms of laser pulses were recorded in different cross sections of the laser beam, as were the lasing field patterns at various distances from the exit mirror of the resonator. The maximum spectral wavelengths of flat and unstable resonators were tabulated. It was found that the proper choice of parameters of an unstable resonator reduces laser beam divergence significantly and provides greater axial brightness of radiation than that provided by a flat resonator, even with a highly nonhomogeneous active medium, making it possible to extend the capabilities of flashlamp pumped organic compound lasers.
No Organic Compounds on Mars? Understanding the Structure of Spiral Galaxies
NASA Technical Reports Server (NTRS)
Morrison, Nancy D.; Morrison, David
1977-01-01
A prime goal of the Viking missions to Mars is to search for life on that planet. Each of the two landers incorporate three specific life-detection experiments, and all have operated successfully. However, as any newspaper reader knows, the results are ambiguous, in that some experiments suggest a highly active martian biology while others appear to indicate that the samples are sterile. It would be premature to conclude from the results of the biological experiments that martian life forms have definitely been detected. In addition, the picture is clouded by unexpected results from another Viking experiment, which is designed to detect organic and inorganic chemical compounds in the martian soil. In Science for 1 October 1976, K. Biemann of MIT and ten of his colleagues report the first results from the Viking 1 Gas-Chromatograph/Mass Spectrometer (GCMS) experiment.
NASA Astrophysics Data System (ADS)
Barry, Stephen; O'Regan, Bernadette
2016-08-01
This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the Tier 1 approach currently used in the emission inventory, using activity data and emission factors unadjusted for volatility and adjusted for volatility. The unadjusted estimate is useful, because it demonstrates the failure to properly account for volatility can produce significantly over-estimated emissions from the Domestic Solvent Usage sector. Unadjusted emissions were found to be 30% lower than the EMEP/EEA (2013) Tier 1 period in 2014. Emissions were found to reduce a further 20.9% when the volatility of the organic compounds was included. This new method shows that member parties may be significantly overestimating emissions from Domestic Solvent Use including pesticides and further work should include refining organic compound content and the sectorial adjustment factor of products.
Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R
2013-05-15
Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.
NASA Astrophysics Data System (ADS)
Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine
2015-04-01
The overall impacts of climate change on agriculture are expected to be negative, threatening global food security. In the agricultural areas of the European Union, water erosion risk is expected to increase by about 80% by the year 2050. Reducing soil erosion and sedimentation-related environmental problems represent a key requirement for mitigating the impact of climate change. A new forensic stable isotope technique, using the compound specific stable isotope (CSSI) signatures of inherent soil organic biomarkers, can discriminate and apportion the source soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigation, the CSSI technique is based on the measurement of carbon-13 (13-C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have tested this innovative stable isotopic approach in a small Austrian agricultural catchment located 60 km north of Vienna. A previous fallout radionuclide (i.e. 137-Cs) based investigation established a sedimentation rate of 4 mm/yr in the lowest part of the study site. To gain knowledge about the origin of these sediments, the CSSI technique was then tested using representative samples from the different land-uses of the catchment as source material. Values of 13-C signatures of specific FAs (i.e. C22:0 = Behenic Acid ; C24:0 = Lignoceric Acid) and the bulk 13-C of the sediment mixture and potential landscape sources were analyzed with the mixing models IsoSource and CSSIAR v1.00. Using both mixing models, preliminary results highlighted that about 50-55% of the sediment located in the deposition area originated from the main grassed waterway of the catchment.
Possible complex organic compounds on Mars.
Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T
1997-01-01
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.
Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta
2017-02-15
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao
2013-01-01
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127
NASA Astrophysics Data System (ADS)
Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.
2012-04-01
In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.
NASA Technical Reports Server (NTRS)
Gibson, Everett K., Jr.; Chang, Sherwood
1992-01-01
The specific objectives of the organic chemical exploration of the Moon involve the search for molecules of possible biological or prebiological origin. Detailed knowledge of the amount, distribution, and exact structure of organic compounds present on the Moon is extremely important to our understanding of the origin and history of the Moon and to its relationship to the history of the Earth and solar system. Specifically, such knowledge is essential for determining whether life on the Moon exists, ever did exist, or could develop. In the absence of life or organic matter, it is still essential to determine the abundance, distribution, and origin of the biogenic elements (e.g., H, C, O, N, S, P) in order to understand how the planetary environment may have influenced the course of chemical evolution. The history and scope of this effort is presented.
NASA Astrophysics Data System (ADS)
Bones, D. L.; Bateman, A. P.; Nguyen, T. B.; Laskin, J.; Laskin, A.; Nizkorodov, S.
2009-12-01
This study investigated long term changes in the chemical composition of model biogenic secondary organic aerosol (SOA) prepared via ozonolysis of the terpene limonene. This SOA has been observed to turn brown when exposed to NH4+. Our hypothesis is that the chromophoric compounds responsible for this color change are suspected to be imidazole-like or pyridinium-like compounds. These compounds are only present in small relative amounts, hence standard mass spectrometry is insufficient to unambiguously detect these compounds. However, a combination of HPLC and high resolution electrospray ionization mass spectrometry allows assignments of chemical formulae to individual peaks. These and other experiments confirm the presence of N-containing compounds in treated SOA. We are in the process of determining the exact identity of these species by MS/MS methods. LC-MS can also provide information about the polarity of the compounds in SOA. Most compounds in limonene-O3 SOA are polar and are detected at short retention times; peaks suggesting trimeric species appear at longer retention times in the case of fresh SOA, but at shorter times with the bulk of the components for aged SOA. Limonene SOA has been shown to be composed of monomers, dimers, trimers and larger oligomers. The appearance of trimers in specific regions of the chromatogram suggests these species are genuine SOA components and not an artifact of electrospray ionization. Changes in biogenic SOA over time are important because of the propensity of SOA to affect direct and indirect radiative forcing.
Hong, Yu-Jue; Huang, Yen-Ching; Lee, I-Long; Chiang, Che-Ming; Lin, Chitsan; Jeng, Hueiwang Anna
2015-01-01
This study was conducted to assess (1) levels of volatile organic compounds (VOCs) and particulate matter (PM) in a dental clinic in southern Taiwan and (2) dental care personnel's health risks associated with due to chronic exposure to VOCs. An automatic, continuous sampling system and a multi-gas monitor were employed to quantify the air pollutants, along with environmental comfort factors, including temperature, CO2, and relative humidity at six sampling sites in the clinic over eight days. Specific VOC compounds were identified and their concentrations were quantified. Both non-carcinogenic and carcinogenic VOC compounds were assessed based on the US Environmental Protection Agency's Principles of Health Risk Assessment in terms of whether those indoor air pollutants increased health risks for the full-time dental care professionals at the clinic. Increased levels of VOCs were recorded during business hours and exceeded limits recommended by the Taiwan Environmental Protection Agency. A total of 68 VOC compounds were identified in the study area. Methylene methacrylate (2.8 ppm) and acetone (0.176 ppm) were the only two non-carcinogenic compounds that posed increased risks for human health, yielding hazard indexes of 16.4 and 4.1, respectively. None of the carcinogenic compounds increased cancer risk. All detected PM10 levels ranged from 20 to 150 μg/m(3), which met the Taiwan EPA and international limits. The average PM10 level during business hours was significantly higher than that during non-business hours (P = 0.04). Improved ventilation capacity in the air conditioning system was recommended to reduce VOCs and PM levels.
Individual organic compounds in water extracts from podzolic soils of the Komi Republic
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Punegov, V. V.; Gruzdev, I. V.; Vanchikova, E. V.; Vetoshkina, A. A.
2012-10-01
The contents of organic compounds in water extracts from organic horizons of loamy soils with different water contents from the medium taiga zone of the Komi Republic were determined by gas-liquid chromatography and chromatography-mass spectrometry. The mass concentration of organic carbon in the extracts was in the range of 290-330 mg/dm3; the mass fraction of the carbon from the identified compounds was 0.5-1.9%. Hydrocarbons made up about 60% of the total identified compounds; acids and their derivatives composed less than 40%. Most of the acids (40-70%) were aliphatic hydroxy acids. The tendencies in the formation of different classes of organic compounds were revealed depending on the degree of the soil hydromorphism. The acid properties of the water-soluble compounds were studied by pK spectroscopy. Five groups of compounds containing acid groups with similar pKa values were revealed. The compounds containing groups with pKa < 4.0 were predominant. The increase in the surface wetting favored the formation of compounds with pKa 3.2-4.0 and 7.4-8.4.
NASA Astrophysics Data System (ADS)
Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe
2014-09-01
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
NASA Astrophysics Data System (ADS)
Bendle, James; Kawamura, Kimitaka; Yamazaki, Koji; Niwai, Takeji
2007-12-01
We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C 15 to C 35n-alkanes, C 8 to C 34n-alkanoic acids, C 12 to C 30n-alkanols) and compound-specific stable isotopes (δ 13C of C 29 and C 31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C 29 (-25.6‰ to -34.5‰) and C 31n-alkanes (-28.3‰ to -37‰) revealed heavier δ 13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.
NASA Astrophysics Data System (ADS)
Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.
2014-01-01
In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS2 and MS3 fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m / z 201, C9H14O5 and m / z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m / z 201 and 215 compounds were tentatively identified as a C9- and C10-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, as well as detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH derivatives.
NASA Astrophysics Data System (ADS)
Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.
2013-08-01
In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised with 2,4-dinitrophenylhydrazine (DNPH) followed by Liquid Chromatography/negative ion Electrospray Ionisation Time-of-Flight Mass Spectrometry analysis and were compared to the gas-phase compounds detected by online Proton-Transfer-Reaction Mass Spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and MS2 and MS3 fragmentation studies. Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m/z 201, C9H14O5 and m/z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m/z 201 and 215 compounds were tentatively identified as a C9- and C10-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH-derivatives.
A method of isolating organic compounds present in water
NASA Technical Reports Server (NTRS)
Calder, G. V.; Fritz, J.; Junk, G. A.
1972-01-01
Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-01-01
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget. PMID:26015574
Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T
2002-10-15
Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-06-09
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.
Movement and fate of detergents in groundwater: a field study
Thurman, E.M.; Barber, L.B.; LeBlanc, D.
1986-01-01
The major cations, anions, and detergents in a plume of contaminated groundwater at Otis Air Base on Cape Cod (Mass., U.S.A.) have moved approximately 3.5 km down gradient from the disposal beds. We hypothesize that the detergents form two distinct plumes, which consist of alkyl benzene sulfonates (ABS) detergents and linear alkyl sulfonates (LAS) and sodium dodecyl sulfate (NaLS) detergents. The ABS detergents were deposited from approximately 1940 through 1965, when ABS detergents were banned. From 1965 to the present, LAS and NaLS detergents were in the sewage. The ABS detergents appear to be transported in the aquifer at the same rate as the specific conductance (major cations and anions) and boron, which are currently used as conservative tracers of the plume of contaminated groundwater. There appears to be little or no biological degradation of the ABS detergents in the aquifer, based on their concentration in the plume. On the other hand, the LAS and NaLS detergents have degraded rapidly and have been detected only 0.6 km down gradient. The roleof the detergents in the transport of other organic compounds in the plume is nuclear. There is a separation of the ABS detergent plume and the volatile organic compound plume; however, the time of entry of the detergents and the volatile organic compounds is unknown. Therefore, it is not possible to conclude on the interaction of these two classes of compounds. ?? 1986.
Use of beer bran as an adsorbent for the removal of organic compounds from wastewater.
Adachi, Atsuko; Ozaki, Hiroaki; Kasuga, Ikuno; Okano, Toshio
2006-08-23
Beer bran was found to effectively adsorb several organic compounds, such as dichloromethane, chloroform, trichloroethylene, benzene, pretilachlor, and esprocarb. Equilibrium adsorption isotherms conformed to the Freundlich isotherm (log-log linear). Adsorption of these organic compounds by beer bran was observed in the pH range of 1-11. At equilibrium, the adsorption efficiency of beer bran for benzene, chloroform, and dichiloromethane was higher than that of activated carbon. The removal of these organic compounds by beer bran was attributed to the uptake by intracellular particles called spherosomes. The object of this work was to investigate several adsorbents for the effective removal of organic compounds from wastewater.
Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds
Vanhoutte, Ilse; Audenaert, Kris; De Gelder, Leen
2016-01-01
Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented. PMID:27199907
Synthesis of labeled compounds using recovered tritium from expired beta light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matei, L.; Postolache, C.; Bubueanu, G.
2008-07-15
In this paper, the technological procedures for extracting tritium from beta light source are highlighted. The recovered tritium was used in the synthesis of organically labeled compounds and in the preparation of tritiated water (HTO) with high specific activity. Technological procedures for treatment of beta light sources consist of: envelope breaking into evacuated enclosure, the radioactive gaseous mixture pumping and its storage on metallic sodium. The mixtures of T{sub 2} and {sup 3}He were used in the synthesis of tritium labeled steroid hormones, nucleosides analogues and for the preparation of HTO with high radioactivity concentrations. (authors)
Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C
2018-02-28
The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.
The use of high-throughput screening techniques to evaluate mitochondrial toxicity.
Wills, Lauren P
2017-11-01
Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.
Delivery of complex organic compounds from evolved stars to the solar system.
Kwok, Sun
2011-12-01
Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.
Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C
2014-06-01
The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.
Physiological effects of toxic substances on wildlife species
Haseltine, S.D.; Kacmar, Peter; Legath, J.
1983-01-01
Study of the physiological effects of contaminants on wildlife species has expanded as more sophisticated medical techniques are adapted to wildlife and as the mode of action of new classes of pesticides increase the number of organ systems which may be sublethally or lethally impacted. This paper summarizes some of the latest data published on toxicant affects on organ systems of warm-blooded vertebrates. Reporting on effects with enzyme systems concentrates on cholinesterase in blood and plasma after sublethal and lethal exposure to organophosphate end carbamate pesticides, but also covers, recent work with Na+, k+-ATPases, AST, AAT, and AL.AD. A discussion of recent work on hormones, biogenlc amines, and other compounds which indicate alteration of specific organ systems, is followed by examples of histopathological lesions associated both pathognomically and non-specifically with widely-used and/or severely toxic contaminants. All these specific effects and lesions are then discussed in terms of their potential for use diagnostically in field problems and their practical and possible impact on wildlife populations.
Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents
NASA Astrophysics Data System (ADS)
Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.
2017-07-01
The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.
NASA Astrophysics Data System (ADS)
Delort, A.
2013-12-01
Within cloud water, microorganisms are metabolically active; so they are suspected to contribute to atmospheric chemistry. This paper is focused on the interactions between microorganisms and Reactive Oxygenated Species present in cloud water since these chemical compounds are driving the oxidant capacity of the cloud system. For this, real cloud waters with contrasting features (marine, continental, urban) were sampled at the puy de Dôme mountain (France). They exhibit high microbial biodiversity and complex chemical composition. These media were incubated in the dark and subjected to UV-light radiation in specifically designed photo-bio-reactors. The concentrations of hydrogen peroxide (H2O2), organic compounds and the ATP/ADP ratio were monitored during the incubation period. Microorganisms remained metabolically active in the presence of hydroxyl radicals photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry: first, they could directly metabolize organic carbon species; second they could reduce the available source of radicals due to their oxidative metabolism. Consequently, molecules such as H2O2 would be no longer available for photochemical or other chemical reactions, decreasing the cloud oxidant capacity.
Insights into the sorption properties of cutin and cutan biopolymers.
Shechter, Michal; Chefetz, Benny
2008-02-15
Plant cuticles have been reported as highly efficient sorbents for organic compounds. The objective of this study was to elucidate the sorption and desorption behavior of polar and nonpolar organic compounds with the major structural components of the plant cuticle: the biopolymers cutin and cutan. The sorption affinity values of the studied compounds followed the order: phenanthrene > atrazine > chlorotoluron > carbamazepine. A higher sorption affinity of phenanthrene and atrazine to cutin was probably due to the higher level of amorphous paraffinic carbon in this biopolymer. Phenanthrene exhibited reversible sorption behavior and a high ratio of organic-carbon-normalized distribution coefficient (Koc) to carbon-normalized octanol-water partitioning coefficients (Kowc) with both biopolymers. This suggests that both biopolymers provide phenanthrene with a partition medium for hydrophobic interactions with the flexible long alkyl-chain moieties of the biopolymers. The low Koc/Kowc ratios obtained for the polar sorbates suggest that the polar sites in the biopolymers are not accessible for sorption interactions. Atrazine and carbamazepine exhibited sorption-desorption hysteresis with both sorbents, indicating that both sorbates interact with cutin and cutan via both hydrophobic and specific interactions. In general, the sorptive properties of the studied biopolymers were similar, signifying that the active sorption sites are similar even though the biopolymers exhibit different properties.
Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds
NASA Astrophysics Data System (ADS)
Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie
2013-01-01
Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.