Sample records for specific ph dependent

  1. Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine

    NASA Astrophysics Data System (ADS)

    Bröermann, Andreas; Steinhoff, Heinz-Jürgen; Schlücker, Sebastian

    2014-09-01

    The site-specific pH is an experimental probe for assessing models of structural folding and function of a protein as well as protein-protein and protein-ligand interactions. It can be determined by various techniques such as NMR, FT-IR, fluorescence and EPR spectroscopy. The latter require the use of external labels, i.e., employ pH-dependent dyes and spin labels, respectively. In this contribution, we outline an approach to a label-free and site-specific method for determining the local pH using deep ultraviolet resonance Raman (UVRR) spectroscopic fingerprints of the aromatic amino acids histidine and tyrosine in combination with a robust algorithm that determines the pH value using three UVRR reference spectra and without prior knowledge of the pKa.

  2. Neuroserpin Differentiates Between Forms of Tissue Type Plasminogen Activator via pH Dependent Deacylation

    PubMed Central

    Carlson, Karen-Sue B.; Nguyen, Lan; Schwartz, Kat; Lawrence, Daniel A.; Schwartz, Bradford S.

    2016-01-01

    Tissue-type plasminogen activator (t-PA), initially characterized for its critical role in fibrinolysis, also has key functions in both physiologic and pathologic processes in the CNS. Neuroserpin (NSP) is a t-PA specific serine protease inhibitor (serpin) found almost exclusively in the CNS that regulates t-PA’s proteolytic activity and protects against t-PA mediated seizure propagation and blood–brain barrier disruption. This report demonstrates that NSP inhibition of t-PA varies profoundly as a function of pH within the biologically relevant pH range for the CNS, and reflects the stability, rather than the formation of NSP: t-PA acyl-enzyme complexes. Moreover, NSP differentiates between the zymogen-like single chain form (single chain t-PA, sct-PA) and the mature protease form (two chain t-PA, tct-PA) of t-PA, demonstrating different pH profiles for protease inhibition, different pH ranges over which catalytic deacylation occurs, and different pH dependent profiles of deacylation rates for each form of t-PA. NSP’s pH dependent inhibition of t-PA is not accounted for by differential acylation, and is specific for the NSP-t-PA serpin-protease pair. These results demonstrate a novel mechanism for the differential regulation of the two forms of t-PA in the CNS, and suggest a potential specific regulatory role for CNS pH in controlling t-PA proteolytic activity. PMID:27378851

  3. [Preparation of coated tablets of glycyrrhetic acid-HP-beta-cyclodextrin tablets for colon-specific release].

    PubMed

    Cui, Qi-Hua; Cui, Jing-Hao; Zhang, Jin-Jin

    2008-10-01

    To prepare coated tablets of glycyrrhetinic acid and hydroxypropyl-beta-cyclodextrin (GTA-HP-beta-CYD) inclusion complex tablets for colon-specific release. In order to improve the solubility of GTA, the GTA-HP-beta-CYD inclusion complex was prepared by ultrasonic-lyophilization technique and its formation were characterized by X-ray powder diffraction profiles and infrared spectrometry. The effects of inclusion condition on the inclusion efficiency and stability coefficient of inclusion complex were investigated, respectively. After prepared GTA-HP-beta-CYD tablets by powder direct compression, the pH dependant polymer Eudragit III and/or mixed with Eudragit II were used for further coating materials in fluid-bed coater. The influences of coating weight on the GTA release in different pH conditions were evaluated to establish the method for prepering colon specific delivery tablets with pulsed release properties. The formation of inclusion complexes were proved by X-ray powder diffraction profile and phase solubility curve. The effect of pH value of solvent was played critical role on the preparation of GTA- HP-beta-CYD inclusion complex. And the inclusion efficiency of GTA was 9. 3% and the solubility was increased to 54. 6 times at optimized method. The Eudragit III coated GTA- HP-beta-CYD tablets with coating weight 10% and 16% were showed pH dependant colon specific release profiles with slow release rate. The release profile of tablets coated with the mixture of Eudragit II and Eudragit III (1:2) were indicated typical pH dependant colon specific and pulsed release properties while the coating weight was 17%. The preliminary method for preparation of colon specific release tablets containing glycyrrhetinic acid with improved solubility was established for further in vivo therapeutic experiment.

  4. Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

    PubMed Central

    Fischer, Ralf-Jörg; Oehmcke, Sonja; Meyer, Uta; Mix, Maren; Schwarz, Katrin; Fiedler, Tomas; Bahl, Hubert

    2006-01-01

    The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5. PMID:16855236

  5. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    PubMed

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  6. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-05-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of /sup 14/C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated inmore » the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents.« less

  7. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  8. Extracellular pH Regulates Zinc Signaling via an Asp Residue of the Zinc-sensing Receptor (ZnR/GPR39)*

    PubMed Central

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity. PMID:22879599

  9. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).

    PubMed

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-09-28

    Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.

  10. Characterization of the Regulation and Function of Zinc-Dependent Histone Deacetylases During Mouse Liver Regeneration

    PubMed Central

    Huang, Jiansheng; Barr, Emily; Rudnick, David A.

    2013-01-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575

  11. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis.

    PubMed

    Khan, Meraj A; Philip, Lijy M; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35-7.45) into the surrounding tissues encounter changes in extracellular pH (pH e ) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H + ions reducing the intracellular pH (pH i ). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pH e (ranging from 6.6 to 7.8; every 0.2 units) increased pH i of both activated and resting neutrophils within 10-20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H + ions, pH i is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pH e promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pH e -mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H + ions, whereas each bicarbonate HCO3 - ion binds 1H + ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar bicarbonate solution. For that reason, regulating NETosis by pH with specific buffers such as THAM could be more effective than bicarbonate in managing NET-related diseases.

  12. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.

    PubMed

    Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H

    2018-04-20

    Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting applications (e.g., targeting hypoxic tumor/inflammation) or in in vitro receptor identification.

  13. Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery.

    PubMed

    Seeli, D Sathya; Dhivya, S; Selvamurugan, N; Prabaharan, M

    2016-10-01

    Guar gum succinate - sodium alginate (GGS-SA) beads cross-linked with barium ions were prepared and characterized as a pH sensitive carrier for colon-specific drug delivery. The structure of GGS-SA beads was confirmed by FT-IR spectroscopy. Scanning Electron Microscope (SEM) studies revealed that the drug loaded GGS-SA beads prepared using 2:2 (w/v) weight percent of GGS and SA had a diameter about 1.4mm and roughly spherical in shape. X-ray diffraction (XRD) studies showed that the peaks corresponding to GGS and SA at 13.5°, 17.5°, 20.2° and 13.5°, 22°, 24.1°, respectively were destroyed in GGS-SA beads which show that these beads are more amorphous in nature. Swelling studies demonstrated the pH-dependent swelling behavior of GGS-SA beads. The beads showed higher swelling degrees in pH 7.4 than that in pH 1.2 due to the existence of anionic groups in the polymer chains. The drug release study showed that the amount of model drug, ibuprofen, released from the GGS-SA beads was higher in pH 7.4 than that in pH 1.2 due to the pH-dependent swelling behavior of the beads. MTT assay revealed that GGS-SA beads at a concentration range of 0-30μg/ml had no cytotoxic effect on the cultured mouse mesenchymal stem cells (C3H10T1/2). These results suggest that GGS-SA beads can be used as effective colon-specific drug delivery system with pH-dependent drug release ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In vitro dissolution of pH sensitive microparticles for colon-specific drug delivery.

    PubMed

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano

    2013-01-01

    The objective of this work is to prepare oral dosage systems based on enteric materials in order to verify their possible use as Colon-Specific Drug Delivery Systems (CSDDSs). In particular, three different copolymers of methyl-methacrylate (MMA) - acrylic acid (AA) are synthesized with increasing percentage of MMA (from 70% to 73%) and they are used to produce microparticles by the double-emulsion solvent evaporation method. The microparticles, loaded using theophylline as model drug, are then tested for drug release under varying pH to reproduce what happens in the human GI tract. All the investigated systems have shown an effective pH sensitiveness: they show a good gastro-resistance, releasing the model drug only at higher pH, small intestine or colon, depending on the kind of used copolymer. The results confirm the usefulness of both the materials and the methods proposed in this study for colon-specific delivery applications.

  15. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration.

    PubMed

    Huang, Jiansheng; Barr, Emily; Rudnick, David A

    2013-05-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. Copyright © 2012 American Association for the Study of Liver Diseases.

  16. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  18. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less

  19. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH.

    PubMed

    Chahinian, Henri; Snabe, Torben; Attias, Coralie; Fojan, Peter; Petersen, Steffen B; Carrière, Frédéric

    2006-01-24

    Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.

  20. Context-dependent environmental quality standards of soil nitrate for terrestrial plant communities.

    PubMed

    van Goethem, Thomas M W J; Schipper, Aafke M; Wamelink, G W Wieger; Huijbregts, Mark A J

    2016-10-01

    Environmental quality standards (EQS) specify the maximum permissible concentration or level of a specific environmental stressor. Here, a procedure is proposed to derive EQS that are specific to a representative species pool and conditional on confounding environmental factors. To illustrate the procedure, a dataset was used with plant species richness observations of grasslands and forests and accompanying soil nitrate-N and pH measurements collected from 981 sampling sites in the Netherlands. Species richness was related to soil nitrate-N and pH with quantile regression allowing for interaction effects. The resulting regression models were used to derive EQS for nitrate conditional on pH, quantified as the nitrate-N concentrations at a specific pH level corresponding with a species richness equal to 95% of the species pool, for both grasslands and forest communities. The EQS varied between 1.8 mg/kg nitrate-N at pH 9-65 mg/kg nitrate-N at pH 4. EQS for forests and grasslands were similar, but EQS based on Red List species richness were considerably lower (more stringent) than those based on overall species richness, particularly at high pH levels. The results indicate that both natural background pH conditions and Red List species are important factors to consider in the derivation of EQS for soil nitrate-N for terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  2. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    PubMed Central

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar bicarbonate solution. For that reason, regulating NETosis by pH with specific buffers such as THAM could be more effective than bicarbonate in managing NET-related diseases. PMID:29487850

  3. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin.

    PubMed

    Heng, Madalene C Y

    2013-05-01

    Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months. © 2012 The International Society of Dermatology.

  4. Trichomonas vaginalis: identification of soluble and membrane-associated phospholipase A1 and A2 activities with direct and indirect hemolytic effects.

    PubMed

    Vargas-Villarreal, Javier; Mata-Cárdenas, Benito David; Palacios-Corona, Rebeca; González-Salazar, Francisco; Cortes-Gutierrez, Elva I; Martínez-Rodríguez, Herminia G; Said-Fernández, Salvador

    2005-02-01

    A direct hemolytic activity, dependent on phospholipase A (PLA) activity, was located in the particulate subcellular fraction (P30) of Trichomonas vaginalis. We identified soluble direct and indirect hemolytic activities in the spent medium and soluble fraction (S30) of T. vaginalis strain GT-13. Spent medium showed the highest specific indirect hemolytic activity (SIHA) at pH 6.0 (91 indirect hemolytic units [HU]/mg/hr). Spent medium and P30, but not S30, showed direct hemolytic activity. PLA activity was protein dose dependent and time dependent. The highest PLA activity was observed at pH 6.0. All trichomonad preparations showed phospholipase A1 (PLA A1) and phospholipase A2 (PLA A2) activities. Indirect and direct hemolytic activity and PLA A1 and PLA A2 diminished at pH 6.0 and 8.0 with increasing concentrations of Rosenthal's inhibitor. The greatest effect was observed with 80 microM at pH 6.0 on the SIHA of S30 (83% reduction) and the lowest at pH 8.0, also on the SIHA of S30 (26% reduction). In conclusion, T. vaginalis contains particulate and soluble acidic, and alkaline direct and indirect hemolytic activities, which are partially dependent on alkaline or acidic PLA A1 and PLA A2 enzymes. These could be responsible for the contact-dependent and -independent hemolytic and cytolytic activities of T. vaginalis.

  5. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    PubMed

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting environmental pH modulate the expression of genes in an original strain-specific way. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. ⁵¹V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site.

    PubMed

    Gupta, Rupal; Hou, Guangjin; Renirie, Rokus; Wever, Ron; Polenova, Tatyana

    2015-04-29

    Vanadium-dependent haloperoxidases (VHPOs) perform two-electron oxidation of halides using hydrogen peroxide. Their mechanism, including the factors determining the substrate specificity and the pH-dependence of the catalytic rates, is poorly understood. The vanadate cofactor in the active site of VHPOs contains "spectroscopically silent" V(V), which does not change oxidation state during the reaction. We employed an NMR crystallography approach based on (51)V magic angle spinning NMR spectroscopy and Density Functional Theory, to gain insights into the structure and coordination environment of the cofactor in the resting state of vanadium-dependent chloroperoxidases (VCPO). The cofactor environments in the wild-type VCPO and its P395D/L241V/T343A mutant exhibiting 5-100-fold improved catalytic activity are examined at various pH values. Optimal sensitivity attained due to the fast MAS probe technologies enabled the assignment of the location and number of protons on the vanadate as a function of pH. The vanadate cofactor changes its protonation from quadruply protonated at pH 6.3 to triply protonated at pH 7.3 to doubly protonated at pH 8.3. In contrast, in the mutant, the vanadate protonation is the same at pH 5.0 and 8.3, and the cofactor is doubly protonated. This methodology to identify the distinct protonation environments of the cofactor, which are also pH-dependent, could help explain the different reactivities of the wild-type and mutant VCPO and their pH-dependence. This study demonstrates that (51)V-based NMR crystallography can be used to derive the detailed coordination environments of vanadium centers in large biological molecules.

  7. Vibrational spectroscopic study of pH dependent solvation at a Ge(100)-water interface during an electrode potential triggered surface termination transition

    NASA Astrophysics Data System (ADS)

    Niu, Fang; Rabe, Martin; Nayak, Simantini; Erbe, Andreas

    2018-06-01

    The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

  8. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion.

    PubMed

    Mair, Caroline M; Meyer, Tim; Schneider, Katjana; Huang, Qiang; Veit, Michael; Herrmann, Andreas

    2014-11-01

    The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA conformational change via its pK(a). Mutations of neighboring residues which may affect the pK(a) of His184 could play an important role in virus adaptation to a specific host. We suggest that mutation of neighboring residue 216, which is present in all highly pathogenic phenotypes of H5N1 influenza virus strains, contributed to the adaptation of these viruses to the human host via its effect on the pKa of His184. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3.

    PubMed

    Dillon, Stephanie L; Williamson, Danielle M; Elferich, Johannes; Radler, David; Joshi, Rajendra; Thomas, Gary; Shinde, Ujwal

    2012-10-12

    The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  11. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    PubMed

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. HSV-1 infection of human corneal epithelial cells: receptor-mediated entry and trends of re-infection.

    PubMed

    Shah, Arpeet; Farooq, Asim V; Tiwari, Vaibhav; Kim, Min-Jung; Shukla, Deepak

    2010-11-20

    The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors--nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression.

  13. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli

    PubMed Central

    Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  14. The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models.

    PubMed

    Nys, Charlotte; Janssen, Colin R; Van Sprang, Patrick; De Schamphelaere, Karel A C

    2016-05-01

    The environmental quality standard for Ni in the European Commission's Water Framework Directive is bioavailability based. Although some of the available chronic Ni bioavailability models are validated only for pH ≤ 8.2, a considerable fraction of European surface waters has a pH > 8.2. Therefore, the authors investigated the effect of a change in pH from 8.2 to 8.7 on chronic Ni toxicity in 3 invertebrate (Daphnia magna, Lymnaea stagnalis, and Brachionus calyciflorus) and 2 plant species (Pseudokirchneriella subcapitata and Lemna minor). Nickel toxicity was almost always significantly higher at pH 8.7 than at pH 8.2. To test whether the existing chronic Ni bioavailability models developed for pH ≤ 8.2 can be used at higher pH levels, Ni toxicity at pH 8.7 was predicted based on Ni toxicity observed at pH 8.2. This resulted in a consistent underestimation of toxicity. The results suggest that the effect of pH on Ni(2+) toxicity is dependent on the pH itself: the slope of the pH effect is steeper above than below pH 8.2 for species for which a species-specific bioavailability model exists. Therefore, the existing chronic Ni bioavailability models were modified to allow predictions of chronic Ni toxicity to invertebrates and plants in the pH range of 8.2 to 8.7 by applying a pH slope (SpH ) dependent on the pH of the target water. These modified Ni bioavailability models resulted in more accurate predictions of Ni toxicity to all 5 species (within 2-fold error), without the bias observed using the bioavailability models developed for pH ≤ 8.2. The results of the present study can decrease the uncertainty in implementing the bioavailability-based environmental quality standard under the Water Framework Directive for high-pH regions in Europe. © 2015 SETAC.

  15. pHlash: A New Genetically Encoded and Ratiometric Luminescence Sensor of Intracellular pH

    PubMed Central

    Robertson, J. Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named “pHlash” that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor–composed of a donor luciferase that is genetically fused to a Venus fluorophore–exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H+ specific; neither Ca++, Mg++, Na+, nor K+ changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H+ ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate. PMID:22905204

  16. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    PubMed

    Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  17. Design and Development of Mixed Film of Pectin: Ethyl Cellulose for Colon Specific Drug Delivery of Sennosides and Triphala

    PubMed Central

    Momin, Munira; Pundarikakshudu, K.; Nagori, S. A.

    2008-01-01

    The present study was aimed at developing colon specific drug delivery system for sennosides and Triphala. These drugs are reputed Ayurvedic medicines for constipation in India. The proposed device explored the application of pectin and ethyl cellulose as a mixed film for colon specific delivery. This mixed film was prepared using non-aqueous solvents like acetone and isopropyl alcohol. A 32 factorial design was adopted to optimize the formulation variables like, ratio of ethyl cellulose to pectin (X1) and coat weight (X2). The rate and extent of drug release were found to be related to the thickness and the ratio of pectin to ethyl cellulose within the film. Statistical treatments to the drug release data revealed that the X1 variable was more important than X2. Under simulated colonic conditions, drug release was more pronounced from coating formulations containing higher proportions of pectin. The surface of the device was coated with Eudragit S100 to ensure that the device was more pH dependent and trigger the drug release only at higher pH. The final product is expected to have the advantage of being biodegradable and pH dependant. This type of a film effectively releases the drug while maintaining its integrity. PMID:20046742

  18. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  19. The Bbgas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline pH.

    PubMed

    Luo, Zhibing; Zhang, Tongbing; Liu, Pengfei; Bai, Yuting; Chen, Qiyan; Zhang, Yongjun; Keyhani, Nemat O

    2018-05-25

    Fungal β-1,3-glucanosyltransferases are cell wall remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH = 4-10). Random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene ( Bbgas3 ). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, that activates genes in response to neutral/alkaline growth conditions. Targeted gene-knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo Red and calcofluor white), and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than wild type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased lethal time to kill (LT 50 , i.e. increased virulence) was seen for the mutant using intra-hemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall remodeling enzyme involved in resistance to extreme pH (>9). Importance Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane remodelling β-1,3-glucanosyltransferase ( Bbgas3 ), regulated by the pH-responsive PacC transcription factor forms a critical aspect of the ability of the insect pathogenic fungus, Beauveria bassiana to grow at extreme pH. Loss of Bbgas3 resulted in a unique decreased ability to grow at high pH, with little to no effects seen with respect to other stress conditions, i.e. cell wall integrity, osmotic, and oxidative stress. However, pH-dependent alternations in cell wall properties and virulence were noted for the ΔBbg as3 mutant. These data provide a mechanistic insight into the importance of specific cell wall structure required to stabilize the cell at high pH and link it to the PacC/Pal/Rim pH-sensor and regulatory system. Copyright © 2018 American Society for Microbiology.

  20. pH- and ion-sensitive polymers for drug delivery

    PubMed Central

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  1. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  2. Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating.

    PubMed

    Berger, Thomas K; Fußhöller, David M; Goodwin, Normann; Bönigk, Wolfgang; Müller, Astrid; Dokani Khesroshahi, Nasim; Brenker, Christoph; Wachten, Dagmar; Krause, Eberhard; Kaupp, U Benjamin; Strünker, Timo

    2017-03-01

    In human sperm, proton flux across the membrane is controlled by the voltage-gated proton channel Hv1. We show that sperm harbour both Hv1 and an N-terminally cleaved isoform termed Hv1Sper. The pH-control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm. In human sperm, the voltage-gated proton channel Hv1 controls the flux of protons across the flagellar membrane. Here, we show that sperm harbour Hv1 and a shorter isoform, termed Hv1Sper. Hv1Sper is generated from Hv1 by removal of 68 amino acids from the N-terminus by post-translational proteolytic cleavage. The pH-dependent gating of the channel isoforms is distinctly different. In both Hv1 and Hv1Sper, the conductance-voltage relationship is determined by the pH difference across the membrane (∆pH). However, simultaneous changes in intracellular and extracellular pH that leave ΔpH constant strongly shift the activation curve of Hv1Sper but not that of Hv1, demonstrating that cleavage of the N-terminus tunes pH sensing in Hv1. Moreover, we show that Hv1 and Hv1Sper assemble as heterodimers that combine features of both constituents. We suggest that cleavage and heterodimerization of Hv1 represents an adaptation to the specific requirements of pH control in sperm. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids.

    PubMed

    van Beilen, Johan W A; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.

  4. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  5. pH-dependent reversible inhibition of violaxanthin de-epoxidase by pepstatin related to protonation-induced structural change of the enzyme.

    PubMed

    Kawano, M; Kuwabara, T

    2000-09-15

    The redox enzyme violaxanthin de-epoxidase (VDE) was found to be sensitive to pepstatin, a specific inhibitor of aspartic protease. The inhibition was similar to that of aspartic protease in that it was reversible and accompanied by the protonation of the enzyme. Of the two peaks of VDE appearing on anion exchange chromatography, VDE-I predominated at pH 7.2. On lowering the pH of the chromatography, VDE-I decreased and VDE-II increased. Furthermore, re-chromatography of either peak yielded both peaks. These results suggest that VDE-I and VDE-II are interconvertible depending on pH, and thus, they represent the de-protonated and protonated forms of the enzyme, respectively. Presumably the protonation-induced structural change of the enzyme is responsible for the interaction with pepstatin, and also with substrate.

  6. Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH

    PubMed Central

    Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P.

    2017-01-01

    Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5–6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis. PMID:28261168

  7. Acidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels

    PubMed Central

    Vilin, Yury Y.; Peters, Colin H.; Ruben, Peter C.

    2012-01-01

    NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of NaV1.2, NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability. PMID:22701426

  8. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz; Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James

    2015-11-01

    Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one. Both esterases are pH-dependent with an optimum at pH above 7, whereas at pH values below 6 particularly the specific acetylcholinesterase is more or less inactive. Thus, acetylcholine is prevented from hydrolysis at such low pH values. The pH of the surface of the human skin is around 5 and therefore non-neuronal acetylcholine released from keratinocytes can be detected in a non-invasive manner. Several clinical conditions like metabolic acidosis, inflammation, fracture-related haematomas, cardiac ischemia and malignant tumours are associated with local or systemic pH values below 7. Thus, the present article describes some consequences of an impaired inactivation of extracellular non-neuronal acetylcholine. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hepatectomy-Related Hypophosphatemia: A Novel Phosphaturic Factor in the Liver-Kidney Axis

    PubMed Central

    Nomura, Kengo; Miyagawa, Atsumi; Shiozaki, Yuji; Sasaki, Shohei; Kaneko, Ichiro; Ito, Mikiko; Kido, Shinsuke; Segawa, Hiroko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2014-01-01

    Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia. In renal and intestinal brush-border membrane vesicles isolated from PH rats, Na+-dependent phosphate (Pi) uptake decreased by 50%–60%. PH rats also exhibited significantly decreased levels of renal and intestinal Na+-dependent Pi transporter proteins (NaPi-IIa [NaPi-4], NaPi-IIb, and NaPi-IIc). Parathyroid hormone was elevated at 6 hours after PH. Hyperphosphaturia persisted, however, even after thyroparathyroidectomy in PH rats. Moreover, DNA microarray data revealed elevated levels of nicotinamide phosphoribosyltransferase (Nampt) mRNA in the kidney after PH, and Nampt protein levels and total NAD concentration increased significantly in the proximal tubules. PH rats also exhibited markedly increased levels of the Nampt substrate, urinary nicotinamide (NAM), and NAM catabolites. In vitro analyses using opossum kidney cells revealed that NAM alone did not affect endogenous NaPi-4 levels. However, in cells overexpressing Nampt, the addition of NAM led to a marked decrease in cell surface expression of NaPi-4 that was blocked by treatment with FK866, a specific Nampt inhibitor. Furthermore, FK866-treated mice showed elevated renal Pi reabsorption and hypophosphaturia. These findings indicate that hepatectomy-induced hypophosphatemia is due to abnormal NAM metabolism, including Nampt activation in renal proximal tubular cells. PMID:24262791

  10. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  11. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  12. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  13. Underlying thermodynamics of pH-dependent allostery.

    PubMed

    Di Russo, Natali V; Martí, Marcelo A; Roitberg, Adrian E

    2014-11-13

    Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.

  14. Design, development, and optimization of polymeric based-colonic drug delivery system of naproxen.

    PubMed

    Sharma, Pooja; Chawla, Anuj; Pawar, Pravin

    2013-01-01

    The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. The in vitro drug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highest in vitro drug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.

  15. Differential Effects of Mutations on the Transport Properties of the Na+/H+ Antiporter NhaA from Escherichia coli*

    PubMed Central

    Mager, Thomas; Braner, Markus; Kubsch, Bastian; Hatahet, Lina; Alkoby, Dudu; Rimon, Abraham; Padan, Etana; Fendler, Klaus

    2013-01-01

    Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed. PMID:23836890

  16. Protonation equilibrium and lipophilicity of olamufloxacin (HSR-903), a newly synthesized fluoroquinolone antibacterial.

    PubMed

    Sun, Jin; Sakai, Shigeko; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Cheng, Gang; Chen, Jimin; Morimoto, Kazuhiro

    2003-09-01

    This study was performed to characterize the protonation equilibrium at the molecular level and pH-dependent lipophilicity of olamufloxacin. The deprotonation fraction of the carboxyl group as a function of pH was specifically calculated at the critical wavelength 294 nm, where UV pH-dependent absorbance of olamufloxacin was independent of the ionized state of the aminopyrrolidinyl amino group but heavily depended on that of the carboxyl moiety. Accordingly, micro-protonation equilibrium could be described using a nonlinear least-squares regression program MULTI. In contrast, macro-protonation equilibrium was depicted at most wavelengths where olamufloxacin absorbance was influenced by ionized states of both proton-binding groups, results coinciding with the former. Furthermore, distribution features of four microspecies in aqueous phase were assessed. The apparent partition coefficient versus pH profile of olamufloxacin showed a parabolic curve in n-octanol/buffer system which reached peak near pH 8, agreeing with the above determined isoelectric point (pI). Ion-pair effect was observed for olamufloxacin under an acidic condition, eliciting experimental values higher than those theoretically calculated, which was similar to ciprofloxacin but not levofloxacin due to amino group type. Moreover, olamufloxacin was moderately lipophilic in comparison with other quinolones, with an apparent partition coefficient of 1.95 at pH 7.4.

  17. Design, Development, and Optimization of Polymeric Based-Colonic Drug Delivery System of Naproxen

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Pawar, Pravin

    2013-01-01

    The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. The in vitro drug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highest in vitro drug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting. PMID:24198725

  18. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community.

    PubMed

    Sjöstedt, Johanna; Langenheder, Silke; Kritzberg, Emma; Karlsson, Christofer M G; Lindström, Eva S

    2018-05-07

    Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.

    PubMed

    Kaisermayer, Christian; Reinhart, David; Gili, Andreas; Chang, Martina; Aberg, Per-Mikael; Castan, Andreas; Kunert, Renate

    2016-06-10

    In biphasic cultivations, the culture conditions are initially kept at an optimum for rapid cell growth and biomass accumulation. In the second phase, the culture is shifted to conditions ensuring maximum specific protein production and the protein quality required. The influence of specific culture parameters is cell line dependent and their impact on product quality needs to be investigated. In this study, a biphasic cultivation strategy for a Chinese hamster ovary (CHO) cell line expressing an erythropoietin fusion protein (Epo-Fc) was developed. Cultures were run in batch mode and after an initial growth phase, cultivation temperature and pH were shifted. Applying a DoE (Design of Experiments) approach, a fractional factorial design was used to systematically evaluate the influence of cultivation temperature and pH as well as their synergistic effect on cell growth as well as on recombinant protein production and aggregation. All three responses were influenced by the cultivation temperature. Additionally, an interaction between pH and temperature was found to be related to protein aggregation. Compared with the initial standard conditions of 37°C and pH 7.05, a parameter shift to low temperature and acidic pH resulted in a decrease in the aggregate fraction from 75% to less than 1%. Furthermore, the synergistic effect of temperature and pH substantially lowered the cell-specific rates of glucose and glutamine consumption as well as lactate and ammonium production. The optimized culture conditions also led to an increase of the cell-specific rates of recombinant Epo-Fc production, thus resulting in a more economic bioprocess. Copyright © 2016. Published by Elsevier B.V.

  20. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  1. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins.

    PubMed

    Ferretti, E; Marshall, H; Pöpperl, H; Maconochie, M; Krumlauf, R; Blasi, F

    2000-01-01

    Direct auto- and cross-regulatory interactions between Hox genes serve to establish and maintain segmentally restricted patterns in the developing hindbrain. Rhombomere r4-specific expression of both Hoxb1 and Hoxb2 depends upon bipartite cis Hox response elements for the group 1 paralogous proteins, Hoxal and Hoxbl. The DNA-binding ability and selectivity of these proteins depend upon the formation of specific heterodimeric complexes with members of the PBC homeodomain protein family (Pbx genes). The r4 enhancers from Hoxb1 and Hoxb2 have the same activity, but differ with respect to the number and organisation of bipartite Pbx/Hox (PH) sites required, suggesting the intervention of other components/sequences. We report here that another family of homeodomain proteins (TALE, Three-Amino acids-Loop-Extension: Prep1, Meis, HTH), capable of dimerizing with Pbx/EXD, is involved in the mechanisms of r4-restricted expression. We show that: (1) the r4-specific Hoxb1 and Hoxb2 enhancers are complex elements containing separate PH and Prep/Meis (PM) sites; (2) the PM site of the Hoxb2, but not Hoxb1, enhancer is essential in vivo for r4 expression and also influences other sites of expression; (3) both PM and PH sites are required for in vitro binding of Prepl-Pbx and formation and binding of a ternary Hoxbl-Pbxla (or 1b)-Prepl complex. (4) A similar ternary association forms in nuclear extracts from embryonal P19 cells, but only upon retinoic acid induction. This requires synthesis of Hoxbl and also contains Pbx with either Prepl or Meisl. Together these findings highlight the fact that PM sites are found in close proximity to bipartite PH motifs in several Hox responsive elements shown to be important in vivo and that such sites play an essential role in potentiating regulatory activity in combination with the PH motifs.

  2. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.

    PubMed

    Ahmed, S; Booth, I R

    1983-04-15

    Valinomycin, nigericin and trichlorocarbanilide were assessed for their ability to control the protonmotive force in Escherichia coli cells. Valinomycin, at high K+ concentrations, was found to decrease the membrane potential delta phi and indirectly to decrease the pH gradient delta pH. Nigericin was found to have two modes of action. At low concentrations (0.05-2 microM) it carried out K+/H+ exchange and decreased delta pH. At higher concentrations (50 microM) it carried out a K+-dependent transfer of H+, decreasing both delta phi and delta pH. In EDTA-treated cells only the latter mode of action was evident, whereas in a mutant sensitive to deoxycholate both types of effect were observed. Trichlorocarbanilide is proposed as an alternative to nigericin for the specific control of delta pH, and it can be used in cells not treated with EDTA.

  3. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    PubMed Central

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004

  4. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.

    PubMed

    Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J

    2013-01-01

    Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  5. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  6. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  7. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids

    PubMed Central

    van Beilen, Johan W. A.; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5′ end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0–7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations. PMID:23785365

  8. Light Absorption by Brown Carbon in the Southeastern United States is pH-dependent.

    PubMed

    Phillips, Sabrina M; Bellcross, Aleia D; Smith, Geoffrey D

    2017-06-20

    Light-absorbing organic material, or "brown carbon" (BrC), can significantly influence the effect that aerosols have on climate. Here, we investigate how changing pH affects the absorption spectra of water-soluble BrC from ambient particulate matter smaller than 2.5 μm collected in Athens, Georgia, in the spring and fall of 2016, including samples from nearby wildfires. We find that absorption increases 10% per pH unit from pH 2 to pH 12 with a broad, featureless tail at visible wavelengths, where the largest fractional increase is also observed. The resulting change in the spectral shape causes the absorption Ångström exponent to decrease by 0.18 per unit increase in pH. Similar behavior with humic substances suggests that they and BrC share a common link between pH and absorption, which we propose could be a consequence of conformational changes in supramolecular assemblies thought to exist in humic substances. Specifically, we hypothesize that a wider variety and larger number of absorbing charge transfer complexes are formed as functional groups in these molecules, such as carboxylic acid and phenol moieties, become deprotonated. These findings suggest that (1) the pH of ambient particulate matter samples should be measured or controlled and (2) radiative forcing by BrC aerosols could be overestimated if their pH-dependent BrC absorption is not accounted for in models.

  9. A study of the metabolism of l-αγ-diaminobutyric acid in a Xanthomonas species

    PubMed Central

    Rao, D. Rajagopal; Hariharan, K.; Vijayalakshmi, K. R.

    1969-01-01

    1. l-αγ-Diaminobutyric acid is metabolized in Xanthomonas sp. to aspartic β-semialdehyde, aspartic acid and oxaloacetic acid. 2. Aspartic β-semialdehyde is formed from diaminobutyric acid by a pyruvate-dependent γ-transamination. 3. The transaminase has a pH optimum of 9 and exhibits a high degree of substrate specificity, as analogues of diaminobutyric acid and pyruvate are inert in the system. The transaminase is inhibited by carbonyl-binding agents such as hydroxylamine. 4. Aspartic acid is formed from aspartic β-semialdehyde by an NAD+-dependent dehydrogenation. 5. The dehydrogenase has a pH optimum of 8·5 and is a thiol enzyme. It is specific for aspartic β-semialdehyde but analogues of NAD+ such as 3-acetylpyridine–adenine dinucleotide and deamino-NAD are partly active in the system. 6. The significance of these reactions is discussed in relation to diaminobutyric acid metabolism in plants and mammalian systems. PMID:4390206

  10. Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo.

    PubMed

    Vázquez-Calvo, Angela; Caridi, Flavia; Rodriguez-Pulido, Miguel; Borrego, Belén; Sáiz, Margarita; Sobrino, Francisco; Martín-Acebes, Miguel A

    2012-11-01

    The role of cellular Rab GTPases that govern traffic between different endosome populations was analysed on foot-and-mouth disease virus (FMDV) infection. Changes of viral receptor specificity did not alter Rab5 requirement for infection. However, a correlation between uncoating pH and requirement of Rab5 for infection was observed. A mutant FMDV with less acidic uncoating pH threshold was less sensitive to inhibition of Rab5, whereas another mutant with more acidic requirements was more sensitive to inhibition of Rab5. On the contrary, opposed correlations between uncoating pH and dependence of Rab function were observed upon expression of dominant-negative forms of Rab7 or 11. Modulation of uncoating pH also reduced FMDV virulence in suckling mice. These results are consistent with FMDV uncoating inside early endosomes and indicate that displacements from optimum pH for uncoating reduce viral fitness in vivo.

  11. Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.

    PubMed

    Wang, Sheng; Yan, Renhong; Zhang, Xi; Chu, Qi; Shi, Yigong

    2014-09-02

    Enteropathogenic bacteria, exemplified by Escherichia coli, rely on acid-resistance systems (ARs) to survive the acidic environment of the stomach. AR3 consumes intracellular protons through decarboxylation of arginine (Arg) in the cytoplasm and exchange of the reaction product agmatine (Agm) with extracellular Arg. The latter process is mediated by the Arg:Agm antiporter AdiC, which is activated in response to acidic pH and remains fully active at pH 6.0 and below. Despite our knowledge of structural information, the molecular mechanism by which AdiC senses acidic pH remains completely unknown. Relying on alanine-scanning mutagenesis and an in vitro proteoliposome-based transport assay, we have identified Tyr74 as a critical pH sensor in AdiC. The AdiC variant Y74A exhibited robust transport activity at all pH values examined while maintaining stringent substrate specificity for Arg:Agm. Replacement of Tyr74 by Phe, but not by any other amino acid, led to the maintenance of pH-dependent substrate transport. These observations, in conjunction with structural information, identify a working model for pH-induced activation of AdiC in which a closed conformation is disrupted by cation-π interactions between proton and the aromatic side chain of Tyr74.

  12. Reduced flavin: NMR investigation of N5-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst.

    PubMed

    Macheroux, Peter; Ghisla, Sandro; Sanner, Christoph; Rüterjans, Heinz; Müller, Franz

    2005-11-25

    The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases), redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. N(5)-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3) and N(5) resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5)-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5) signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5) signal and the proton exchange rates are little dependent on the buffer system used. The exchange rates allow an estimation of the pKa value of N(5)-H deprotonation in reduced flavin to be >or= 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK asymptotically equal to 4 for N(5)-H protonation (to form N(5)+-H2) would be consistent with a role of N(5)-H as a base.

  13. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.

    2013-01-01

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  14. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells.

    PubMed

    Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez

    2015-04-20

    Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.

    PubMed

    Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N

    2015-11-03

    Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.

  16. Prediction of pH dependent absorption using in vitro, in silico, and in vivo rat models: Early liability assessment during lead optimization.

    PubMed

    Saxena, Ajay; Shah, Devang; Padmanabhan, Shweta; Gautam, Shashyendra Singh; Chowan, Gajendra Singh; Mandlekar, Sandhya; Desikan, Sridhar

    2015-08-30

    Weakly basic compounds which have pH dependent solubility are liable to exhibit pH dependent absorption. In some cases, a subtle change in gastric pH can significantly modulate the plasma concentration of the drug and can lead to sub-therapeutic exposure of the drug. Evaluating the risk of pH dependent absorption and potential drug-drug interaction with pH modulators are important aspects of drug discovery and development. In order to assess the risk around the extent of decrease in the systemic exposure of drugs co-administered with pH modulators in the clinic, a pH effect study is carried out, typically in higher species, mostly dog. The major limitation of a higher species pH effect study is the resource and material requirement to assess this risk. Hence, these studies are mostly restricted to promising or advanced leads. In our current work, we have used in vitro aqueous solubility, in silico simulations using GastroPlus™ and an in vivo rat pH effect model to provide a qualitative assessment of the pH dependent absorption liability. Here, we evaluate ketoconazole and atazanavir with different pH dependent solubility profiles and based on in vitro, in silico and in vivo results, a different extent of gastric pH effect on absorption is predicted. The prediction is in alignment with higher species and human pH effect study results. This in vitro, in silico and in vivo (IVISIV) correlation is then extended to assess pH absorption mitigation strategy. The IVISIV predicts pH dependent absorption for BMS-582949 whereas its solubility enhancing prodrug, BMS-751324 is predicted to mitigate this liability. Overall, the material requirement for this assessment is substantially low which makes this approach more practical to screen multiple compounds during lead optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    PubMed

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1.

    PubMed

    Steel, A; Nussberger, S; Romero, M F; Boron, W F; Boyd, C A; Hediger, M A

    1997-02-01

    1. The intestinal H(+)-coupled peptide transporter PepT1, displays a broad substrate specificity and accepts most charged and neutral di- and tripeptides. To study the proton-to-peptide stoichiometry and the dependence of the kinetic parameters on extracellular pH (pHo), rabbit PepT1 was expressed in Xenopus laevis oocytes and used for uptake studies of radiolabelled neutral and charged dipeptides, voltage-clamp analysis and intracellular pH measurements. 2. PepT1 did not display the substrate-gated anion conductances that have been found to be characteristic of members of the Na(+)- and H(+)-coupled high-affinity glutamate transporter family. In conjunction with previous data on the ion dependence of PepT1, it can therefore be concluded that peptide-evoked charge fluxes of PepT1 are entirely due to H+ movement. 3. Neutral, acidic and basic dipeptides induced intracellular acidification. The rate of acidification, the initial rates of the uptake of radiolabelled peptides and the associated charge fluxes gave proton-substrate coupling ratios of 1:1, 2:1 and 1:1 for neutral, acidic and basic dipeptides, respectively. 4. Maximal transport of the neutral and charged dipeptides Gly-Leu, Gly-Glu, Gly-Lys and Ala-Lys occurred at pHo 5.5, 5.2, 6.2 and 5.8, respectively. The Imax values were relatively pHo independent but the apparent affinity (Km(app) values for these peptides were shown to be highly pHo dependent. 5. Our data show that at physiological pH (pHo 5.5-6.0) PepT1 prefers neutral and acidic peptides. The shift in transport maximum for the acidic peptide Gly-Glu to a lower pH value suggests that acidic dipeptides are transported in the protonated form. The shift in the transport maxima of the basic dipeptides to higher pH values may involve titration of a side-chain on the transporter molecule (e.g. protonation of a histidine group). These considerations have led us to propose a model for coupled transport of neutral, acidic and basic dipeptides.

  19. The mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal activation of furin.

    PubMed

    Williamson, Danielle M; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal

    2013-06-28

    The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.

  20. The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin*

    PubMed Central

    Williamson, Danielle M.; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal

    2013-01-01

    The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation. PMID:23653353

  1. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    PubMed

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  2. Apigenin and quercetin promote. Delta. pH-dependent accumulation of IAA in membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolard, D.D.; Clark, K.A.

    1990-05-01

    Flavonoids may act as regulators of polar auxin transport. In the presence of a pH gradient (pH 8{sub in}/6{sub out}) the flavonoids quercetin and apigenin, as well as the synthetic herbicide napthylphthalamic acid (NPA), promote the accumulation of IAA in membrane vesicles from dark-grown zucchini hypocotyls. Simultaneous accumulation of {sup 3}H-IAA (10 nM) and {sup 14}C-butyric acid (5 {mu}M; included as a pH probe) was determined by a filtration assay after incubating the vesicles with 3 nM to 100 {mu}M quercetin, apigenin, NPA or unlabeled IAA. Maximal stimulation (% of Control) was observed with 3 {mu}M NPA (130%), 1 {mu}Mmore » quercetin (120%), or 3 {mu}M apigenin (115%); {Delta}pH was not affected by these concentrations. As reported by others, IAA uptake was saturable: 1 {mu}M unlabeled IAA eliminated {Delta}pH-dependent uptake of {sup 3}H-IAA without altering {Delta}pH. However, at 30 to 100 {mu}M, every compound tested collapsed the imposed pH gradient and therefore abolished specific {sup 3}H-IAA uptake.« less

  3. Temperature- and pH-dependent effect of lactate on in vitro redox stability of red meat myoglobins.

    PubMed

    Nair, M N; Suman, S P; Li, S; Ramanathan, R; Mancini, R A

    2014-01-01

    Our objective was to evaluate the influence of lactate on in vitro redox stability and thermostability of beef, horse, pork, and sheep myoglobins. Lactate (200 mM) had no effect (P>0.05) on redox stability at physiological (pH7.4, 37°C) and meat (pH 5.6, 4°C) conditions. However, lactate increased (P<0.05) metmyoglobin formation at a condition simulating stressed live skeletal muscle (pH 6.5, 37°C). The redox stability of myoglobins at stressed live skeletal muscle and meat conditions was species-specific (P<0.05). Myoglobin thermostability at 71°C was lower (P<0.05) in the presence of lactate compared with controls and was influenced (P<0.05) by species. The results of the present study indicate that the effects of lactate on myoglobin are temperature and pH dependent. The observed lack of influence of lactate on myoglobin redox stability at meat condition suggests that the color stability of lactate-enhanced fresh meat is not due to direct interactions between the ingredient and the heme protein. © 2013.

  4. Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.

    PubMed

    Cherny, Vladimir V; Morgan, Deri; Thomas, Sarah; Smith, Susan M E; DeCoursey, Thomas E

    2018-05-09

    We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis , HtH V 1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtH V 1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pH i ). The H + conductance ( g H )- V relationship in the voltage-gated proton channel (H V 1) from other species shifts 40 mV when either pH i or pH o (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of H V 1 in many species and in numerous human tissues. The HtH V 1 channel exhibits normal pH o dependence but anomalously weak pH i dependence. In this study, we show that a single point mutation in human hH V 1-changing His 168 to Gln 168 , the corresponding residue in HtH V 1-compromises the pH i dependence of gating in the human channel so that it recapitulates the HtH V 1 response. This location was previously identified as a contributor to the rapid gating kinetics of H V 1 in Strongylocentrotus purpuratus His 168 mutation in human H V 1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pH o dependence, but changing pH i shifts the g H - V relationship on average by <20 mV/unit. Thus, His 168 is critical to pH i sensing in hH V 1. His 168 , located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in H V 1 that significantly impairs pH sensing when mutated. Because pH o dependence remains intact, the selective erosion of pH i dependence supports the idea that there are distinct internal and external pH sensors. Although His 168 may itself be a pH i sensor, the converse mutation, Q229H, does not normalize the pH i sensitivity of the HtH V 1 channel. We hypothesize that the imidazole group of His 168 interacts with nearby Phe 165 or other parts of hH V 1 to transduce pH i into shifts of voltage-dependent gating. © 2018 Cherny et al.

  5. Specific Inhibition of Bacterial β-Glucuronidase by Pyrazolo[4,3-c]quinoline Derivatives via a pH-Dependent Manner To Suppress Chemotherapy-Induced Intestinal Toxicity.

    PubMed

    Cheng, Kai-Wen; Tseng, Chih-Hua; Yang, Chia-Ning; Tzeng, Cherng-Chyi; Cheng, Ta-Chun; Leu, Yu-Lin; Chuang, Yu-Chung; Wang, Jaw-Yuan; Lu, Yun-Chi; Chen, Yeh-Long; Cheng, Tian-Lu

    2017-11-22

    The direct inhibition of bacterial β-glucuronidase (βG) activity is expected to reduce the reactivation of glucuronide-conjugated drugs in the intestine, thereby reducing drug toxicity. In this study, we report on the effects of pyrazolo[4,3-c]quinolines acting as a new class of bacterial βG-specific inhibitors in a pH-dependent manner. Refinement of this chemotype for establishing structure-activity relationship resulted in the identification of potential leads. Notably, the oral administration of 3-amino-4-(4-fluorophenylamino)-1H-pyrazolo[4,3-c]quinoline (42) combined with chemotherapeutic CPT-11 treatment prevented CPT-11-induced serious diarrhea while maintaining the antitumor efficacy in tumor-bearing mice. Importantly, the inhibitory effects of 42 to E. coli βG was reduced as the pH decreased due to the various surface charges of the active pocket of the enzyme, which may make their combination more favorable at neutral pH. These results demonstrate novel insights into the potent bacterial βG-specific inhibitor that would allow this inhibitor to be used for the purpose of reducing drug toxicity.

  6. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    PubMed

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    PubMed

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves.

    PubMed

    Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro

    2012-01-01

    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).

  9. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery.

    PubMed

    Varma, Manthena V; Gardner, Iain; Steyn, Stefanus J; Nkansah, Paul; Rotter, Charles J; Whitney-Pickett, Carrie; Zhang, Hui; Di, Li; Cram, Michael; Fenner, Katherine S; El-Kattan, Ayman F

    2012-05-07

    The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.

  10. Dual pH durability studies of man-made vitreous fiber (MMVF).

    PubMed Central

    Bauer, J F; Law, B D; Hesterberg, T W

    1994-01-01

    Dissolution of fibers in the deep lung may involve both extracellular and intracellular mechanisms. This process was modeled in vitro for each environment using an experimental flow-through system to characterize both total dissolution and specific chemical changes for three representative MMVF's: a glasswool, a slagwool, and a refractory ceramic fiber (RCF). Synthetic physiological fluids at pH 4 and at pH 7.6 were used to simulate macrophage intraphagolysosomal, and extracellular environments, respectively. Actual commercial fiber, sized to rat-respirable dimension, having an average fiber diameter of 1 micron and an average length between 15 and 25 microns, was used in the experiments. Fiber dissolution was monitored through change in chemistry of the fluid collected after percolation at a constant rate through a thin bed of sample. There are great differences in total fiber dissolution rates for the different fibers. Slagwool and RCF dissolve more rapidly at pH 4 than at pH 7.6, while the reverse is true for glasswool. Dissolution is sometimes accompanied by a noticeable change in fiber morphology or dimension, and sometimes by no change. There is strong dependency on pH, which affects not only total fiber dissolution, but also the leaching of specific chemical components. This effect is different for each type of fiber, indicating that specific fiber chemistry largely controls whether a fiber dissolves or leaches more rapidly under acidic or neutral conditions. Both total dissolution rates and calculated fiber composition changes are valuable guides to interpreting in vivo behavior of man-made vitreous fibers, and demonstrate the usefulness of in vitro acellular experiments in understanding overall fiber persistence. Images Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C PMID:7882957

  11. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.

    PubMed

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2017-03-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

  12. Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.

    PubMed

    Neue, Uwe D; Méndez, Alberto

    2007-05-01

    The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.

  13. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  14. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  15. Conformational stability of apoflavodoxin.

    PubMed Central

    Genzor, C. G.; Beldarraín, A.; Gómez-Moreno, C.; López-Lacomba, J. L.; Cortijo, M.; Sancho, J.

    1996-01-01

    Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors. PMID:8819170

  16. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    PubMed

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery.

    PubMed

    S Kumar, Vrinda; Rijo, John; M, Sabitha

    2018-04-15

    Colorectal cancer, also known as bowel cancer, is the uncontrolled cell growth in the colon or rectum (parts of the large intestine), or in the appendix. The colon specific drug delivery would alleviate the systemic side effects and would assure the safe therapy for colonic disorders with minimum dose and duration of therapy. The liquisolid technique refers to solubilisation of drug in a non-volatile solvent combined with inclusion of appropriate carrier and coating agent required for tableting. Colon specific degradation of natural polymer, guar gum and pH dependant degradative (pH-7) property of eudragit L100 restricts the delivery of curcumin in gastric and intestinal pH. Formulated curcumin liquisolid powder was evaluated for the micrometric properties, solubility and by differential thermal analysis, X ray powder diffraction and scanning electron microscopy. Curcumin loaded liquisolid tablet showed more anticancer activity against HCT-15 compared with free curcumin. Bioavailability study of the coated and uncoated liquisolid tablets were performed using Newzealand white rabbits. The present study concludes that liquisolid technique is a promising alternative for improving oral bioavailability and dissolution rate of water insoluble drug and coating liquisolid tablet with colon sensitive polymers showed site specific release of drug in the colon. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media.

    PubMed

    Hortsch, Ralf; Weuster-Botz, Dirk

    2011-04-01

    Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L(-1). EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L(-1). The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.

  19. Reverse Micelle Mediated synthesis of Calcium Phosphate Nanocarriers for Controlled Release of Bovine Serum Albumin (BSA)

    PubMed Central

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2010-01-01

    Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617

  20. Effect of Environmental Factors on Intra-Specific Inhibitory Activity of Carnobacterium maltaromaticum

    PubMed Central

    Bowman, John P.; Ratkowsky, David A.; Tamplin, Mark

    2017-01-01

    Carnobacterium maltaromaticum is frequently associated with foods having extended shelf-life due to its inhibitory activity to other bacteria. The quantification of such inhibition interactions affected by various environmental factors is limited. This study investigated the effect of environmental factors relevant to vacuum-packaged beef on inhibition between two model isolates of C. maltaromaticum, D0h and D8c, specifically D8c sensitivity to D0h inhibition and D0h inhibitor production. The effects of temperature (−1, 7, 15, 25 °C), atmosphere (aerobic and anaerobic), pH (5.5, 6, 6.5), lactic acid (0, 25, 50 mM) and glucose (0, 0.56, 5.55 mM) on D8c sensitivity (diameter of an inhibition zone) were measured. The effects of pH, glucose, lactic acid and atmosphere on D0h inhibitor production were measured at 25 °C. Sensitivity of D8c was the highest at 15 °C, under aerobic atmosphere, at higher concentrations of undissociated lactic acid and glucose, and at pH 5.5 (p < 0.001). pH significantly affected D0h inhibitor production (p < 0.001), which was the highest at pH 6.5. The effect of lactic acid depended upon pH level; at relatively low pH (5.5), lactic acid decreased the production rate (arbitrary inhibition unit (AU)/mL/h). This study provides a quantitative description of intra-species interactions, studied in in vitro environments that are relevant to vacuum-packaged beef. PMID:28906433

  1. Doctoral Alumni Giving: Motivations for Donating to the University of Pennsylvania

    ERIC Educational Resources Information Center

    Mastroieni, Anita

    2010-01-01

    This study sought to ascertain the specific motivations behind doctoral alumni giving. Most U.S. colleges and universities depend on alumni giving to supplement revenues from tuition and governmental support; however, relatively little alumni giving is generated from PhD graduates. The result is untapped revenue for doctoral-granting institutions.…

  2. The pH-dependent local anesthetic activity of diethylaminoethanol, a procaine metabolite.

    PubMed

    Butterworth, J F; Lief, P A; Strichartz, G R

    1988-04-01

    To test whether the products of procaine hydrolysis have local anesthetic actions resembling those of procaine, the authors compared the ability of procaine and its metabolites diethylaminoethanol (DEAE) and para-aminobenzoic acid (PABA) to block compound action potentials in excised, desheathed frog and rat sciatic nerves. Studies were performed in solutions of impermeant buffers at pH 7.4 (corresponding to mammalian physiologic pH) and at pH 9.2 (close to the pKa of procaine and DEAE) to test for extracellular pH-dependent increases in drug permeation and potency. Both procaine and DEAE inhibited compound action potentials at pH 7.4 and 9.2 in a reversible and dose-dependent manner, and both were approximately ten-fold more potent at pH 9.2 than at pH 7.4, procaine inhibiting the action potential height by 50% at 0.15 mM (pH 9.2) and 1.1 mM (pH 7.4), DEAE at 4 mM (pH 9.2) and 70 mM (pH 7.4). In contrast, PABA at concentrations up to 25 mM and at either pH failed to inhibit compound action potentials, and did not modify the effects of DEAE when both drugs were given together. Procaine produced greater use-dependent block at the higher pH and at higher stimulation rates (100 Hz vs. 40 Hz); DEAE produced almost no use-dependent block. These observations suggest: 1) that DEAE might account for some of the neuropharmacologic activity of procaine in techniques that favor the accumulation of metabolites (such as those requiring large doses or prolonged infusions); and 2) that alkalinization of procaine and DEAE solutions appears to increase their potency for both resting and use-dependent block of action potentials.

  3. A novel pH–enzyme-dependent mesalamine colon-specific delivery system

    PubMed Central

    Jin, Lei; Ding, Yi-cun; Zhang, Yu; Xu, Xiao-qing; Cao, Qin

    2016-01-01

    The aim of the present study was to design a new pH–enzyme double-dependent mesalamine colon-specific delivery system. The drug release behaviors in vitro and pharmacokinetics and biodistribution in vivo were further evaluated. The mean particle diameters of mesalamine-coated microparticles were 312.2 µm. In vitro, a small amount of mesalamine was released in HCl at a pH of 1.2 and PBS medium at a pH of 7.4 for 5 hours, and 71% of the entrapped mesalamine was further released during the subsequent 20 hours of incubation. A greater area under the plasma concentration–time curve (AUC)0–t was obtained for the coated microparticles (1.9-fold) compared to the suspensions group, which indicated that the encapsulated mesalamine had mostly been absorbed in rats over the period of 12 hours. The AUC0–t of the coated microparticles in colon was 2.63-fold higher compared to the suspensions (P<0.05). Hence, mesalamine-coated microparticles are considered to maintain the drug concentration within target ranges for a long period of time. PMID:27382255

  4. A novel pH-enzyme-dependent mesalamine colon-specific delivery system.

    PubMed

    Jin, Lei; Ding, Yi-Cun; Zhang, Yu; Xu, Xiao-Qing; Cao, Qin

    2016-01-01

    The aim of the present study was to design a new pH-enzyme double-dependent mesalamine colon-specific delivery system. The drug release behaviors in vitro and pharmacokinetics and biodistribution in vivo were further evaluated. The mean particle diameters of mesalamine-coated microparticles were 312.2 µm. In vitro, a small amount of mesalamine was released in HCl at a pH of 1.2 and PBS medium at a pH of 7.4 for 5 hours, and 71% of the entrapped mesalamine was further released during the subsequent 20 hours of incubation. A greater area under the plasma concentration-time curve (AUC)0-t was obtained for the coated microparticles (1.9-fold) compared to the suspensions group, which indicated that the encapsulated mesalamine had mostly been absorbed in rats over the period of 12 hours. The AUC0-t of the coated microparticles in colon was 2.63-fold higher compared to the suspensions (P<0.05). Hence, mesalamine-coated microparticles are considered to maintain the drug concentration within target ranges for a long period of time.

  5. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    NASA Astrophysics Data System (ADS)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  6. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  7. Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean.

    PubMed

    Barac, Miroljub B; Pesic, Mirjana B; Stanojevic, Sladjana P; Kostic, Aleksandar Z; Bivolarevic, Vanja

    2015-05-01

    The aim of this work was to compare functional properties including solubility, emulsifying and foaming properties of native and thermally treated adzuki, soy and pea protein isolates prepared under the same conditions. These functional properties were tested at four pH values: pH 3.0, pH 5.0, pH 7.0 and pH 8.0. The lowest solubility at all pH values were obtained for isolate of adzuki whereas isolates of soybean had the highest values at almost all pHs. Thermal treatment reduced solubility of soy and pea isolates at all pH values, whereas solubility of adzuki isolate was unchanged, except at pH 8. Native isolate of adzuki had the best emulsifying properties at pH 7.0 whereas at the other pH values some of native pea and soybean protein isolates were superior. After thermal treatment, depending on tested pH and selected variety all of three species could be a good emulsifier. Native soy protein isolates formed the most stable foams at all pHs. Thermal treatment significantly improved foaming properties of adzuki isolate, whereas reduced foaming capacity of soy and pea isolates, but could improve foam stability of these isolates at specific pH. Appropriate selection of legume seed as well as variety could have great importance in achievement of desirable functional properties of final products. All three tested species could find specific application in wide range of food products.

  8. Spin-lock imaging of exogenous exchange-based contrast agents to assess tissue pH.

    PubMed

    Zu, Zhongliang; Li, Hua; Jiang, Xiaoyu; Gore, John C

    2018-01-01

    Some X-ray contrast agents contain exchangeable protons that give rise to exchange-based effects on MRI, including chemical exchange saturation transfer (CEST). However, CEST has poor specificity to explicit exchange parameters. Spin-lock sequences at high field are also sensitive to chemical exchange. Here, we evaluate whether spin-locking techniques can detect the contrast agent iohexol in vivo after intravenous administration, and their potential for measuring changes in tissue pH. Two metrics of contrast based on R 1ρ , the spin lattice relaxation rate in the rotating frame, were derived from the behavior of R 1ρ at different locking fields. Solutions containing iohexol at different concentrations and pH were used to evaluate the ability of the two metrics to quantify exchange effects. Images were also acquired from rat brains bearing tumors before and after intravenous injections of iohexol to evaluate the potential of spin-lock techniques for detecting the agent and pH variations. The two metrics were found to depend separately on either agent concentration or pH. Spin-lock imaging may therefore provide specific quantification of iohexol concentration and the iohexol-water exchange rate, which reports on pH. Spin-lock techniques may be used to assess the dynamics of intravenous contrast agents and detect extracellular acidification. Magn Reson Med 79:298-305, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Permissive role of the acidification caused by wheat aleurone layers upon. alpha. -amylase induction by GA sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Campos, E.; Bernal-Lugo, I.; Hamabata, A.

    1989-04-01

    Wheat aleurone has the capacity of acidifying the incubation medium in 1 to 2 pH units. The {alpha}-amylase induction by GA{sub 3} in isolated wheat aleurone layers is strongly dependent on acidic pH of the medium (pH < 5). To examine possible mechanisms {sup 35}-Met incorporation into proteins and {alpha}-amylase, in the presence of GA{sub 3} and Ca{sup 2+} at pH, 4, 5 and 6 was studied. Although {sup 35}-Met uptake decreased markedly ({approx} 90%) at pH 4 in thepresence of GA{sub 3}, incorporation into total protein did not change significantly from other conditions. Auto-radiography of SDS-PAGE showed that mostmore » of the amino acid was in the {alpha}-amylase band, meaning that the effect of acidic pH is specific for GA{sub 3} actions on aleurone tissue. On the other hand, an increase of protonated GA{sub 3} diffusion could be ruled out. Also, there was not {alpha}-amylase inactivation at pH 6. These findings point out to the important physiological role of the acidification caused by the aleurone.« less

  10. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    PubMed

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-26

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the K i for inorganic phosphate (product inhibition) and the K M for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  11. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of diphtheria toxin to cells.

  12. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander

    ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP andmore » potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.« less

  13. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase.

    PubMed

    Filip, Jaroslav; Tkac, Jan

    2014-04-01

    This is the first study showing pH dependence of three distinct redox sites within bilirubin oxidase (BOD) adsorbed on a nanocomposite modified electrode. The 1st redox centre with the highest redox potential Ec(1st)=404 mV vs. Ag/AgCl (614 mV vs. NHE at pH7.0) exhibited pH dependence with a slope -dEc(1st)/dpH=66(±3) mV under a non-turnover process. The 2nd redox centre with a potential Ec(2nd)=228 mV vs. Ag/AgCl (438 mV vs. NHE at pH7.0) was not dependent on pH in the absence and presence of O2. Finally, the 3rd redox site with a redox potential Ec(3rd)=92 mV vs. Ag/AgCl (302 mV vs. NHE at pH7.0) exhibited pH dependence for a cathodic process with -dEc(3rd)/dpH=70(±6) mV and for anodic process with -dEa(3rd)/dpH=73(±2) mV, respectively. Moreover, two break points for dependence of Ec(1st) or Ec(3rd) on pH were observed for the 1st (T1) site and the 3rd site assigned to involvement of two acidic amino acids (Asp105 and Glu463). A diagram of a potential difference between cathodic peaks of BOD as a dependence on pH is shown. The results obtained can be of interest for construction of biofuel cells based on BOD such as for generation of a low level of electricity from body fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli.

    PubMed

    Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning

    2013-05-01

    Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.

  15. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    PubMed

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited.

    PubMed

    Kim, Min Sik; Lee, Hye-Jin; Lee, Ki-Myeong; Seo, Jiwon; Lee, Changha

    2018-05-23

    Oxidative degradation of six representative microcystins (MCs) (MC-RR, -LR, -YR, -LF, -LW and -LA) by potassium permanganate (KMnO4; Mn(VII)) was investigated, focusing on the temperature- and pH-dependent reaction kinetics, the effect of dissolved organic matter (DOM), and the oxidation mechanisms. Second-order rate constants for the reactions of the six MCs with Mn(VII) (kMn(VII),MC) were determined to be 160.4-520.1 M-1 s-1 (MC-RR > -LR  -YR > -LF  -LW > -LA) at pH 7.2 and 21°C. The kMn(VII),MC values exhibited activation energies ranging from 15.1 to 22.4 kJ mol-1. With increasing pH from 2 to 11, the kMn(VII),MC values decreased until pH 5, and plateaued over the pH range of 5-11, except for that of MC-YR (which increased at pH > 8). Species-specific second-order rate constants were calculated using predicted pKa values of MCs. The oxidation of MCs in natural waters was accurately predicted by the kinetic model using kMn(VII),MC and Mn(VII) exposure ([Mn(VII)]dt) values. Among different characteristics of DOM in natural waters, UV254, SUVA254, and the abundance of humic-like substances characterized by fluorescence spectroscopy exhibited good correlation with [Mn(VII)]dt. A thorough product study of MC-LR oxidation by Mn(VII) was performed using liquid chromatography-mass spectrometry.

  17. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure.

    PubMed

    Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus

    2018-01-01

    Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and on pH, electrostatic interactions, hydrogen bonding, and ternary surface complexation contribute in varying degrees to the adsorption process. Linear distribution coefficients K d between 8.7 and 60.5 L kg -1 (1 mmol L -1 initial PHCA concentration) indicate a considerable mineral surface affinity at very high pH, thus lowering the PHCA fraction available for the complexation of metal ions including radionuclides in solution and their subsequent mobilization.

  18. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    PubMed

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. pH Dependent Spin State Population and 19F NMR Chemical Shift via Remote Ligand Protonation in an Iron(II) Complex (Postprint)

    DTIC Science & Technology

    2017-12-11

    AFRL-RX-WP-JA-2017-0501 pH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL SHIFT VIA REMOTE LIGAND PROTONATION IN AN IRON(II...From - To) 16 November 2017 Interim 24 January 2014 – 16 October 2017 4. TITLE AND SUBTITLE PH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL...dx.doi.org/10.1039/C7CC08099A 14. ABSTRACT (Maximum 200 words) An FeII complex that features a pH- dependent spin state population, by virtue of a

  20. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    PubMed

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  1. Cullin1-P is an Essential Component of Non-Self Recognition System in Self-Incompatibility in Petunia.

    PubMed

    Kubo, Ken-Ichi; Tsukahara, Mai; Fujii, Sota; Murase, Kohji; Wada, Yuko; Entani, Tetsuyuki; Iwano, Megumi; Takayama, Seiji

    2016-11-01

    Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen. Multiple SLFs collaboratively detoxify non-self S-RNases, therefore, non-self recognition is the mode of self-/non-self discrimination in Solanaceae. It is considered that SLFs function as a substrate-recognition module of the Skp1-Cullin1-F-box (SCF) complex that inactivates non-self S-RNases via their polyubiquitination, which leads to degradation by 26S proteasome. In fact, PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1) was identified as a specific component of SCF SLF and was shown to be essential for detoxification of S-RNase in Petunia However, different molecules are proposed as the candidate Cullin1, another component of SCF SLF , and there is as yet no definite conclusion. Here, we identified five Cullin1s from the expressed sequence tags (ESTs) derived from the male reproductive organ in Petunia Among them, only PhCUL1-P was co-immunoprecipitated with S 7 -SLF2. In vitro protein-binding assay suggested that PhSSK1 specifically forms a complex with PhCUL1-P in an SLF-dependent manner. Knockdown of PhCUL1-P suppressed fertility of transgenic pollen in cross-compatible pollination in the functional S-RNase-dependent manner. These results suggested that SCF SLF selectively uses PhCUL1-P. Phylogeny of Cullin1s indicates that CUL1-P is recruited into the SI machinery during the evolution of Solanaceae, suggesting that the SI components have evolved differently among species in Solanaceae and Rosaceae, despite both families sharing the S-RNase-based SI. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery.

    PubMed

    Gao, Yaohua; Yang, Cuihong; Liu, Xue; Ma, Rujiang; Kong, Deling; Shi, Linqi

    2012-02-01

    A multifunctional drug delivery system based on MCM-41-type mesoporous silica nanoparticles is described that behaves as if nanogates were covalently attached to the outlets of the mesopores through a highly acid-sensitive benzoic-imine linker. Tumor-specific uptake and intracellular delivery results from the pH-dependent progressive hydrolysis of the benzoic-imine linkage that starts at tumor extracellular pH = 6.8 and increases with decreasing pH. The cleavage of the benzoic-imine bond leads to the removal of the polypseudorotaxane caps and subsequent release of the payload drugs at tumor sites. At the same time, the carrier surface becomes positively charged, which further facilitates cellular uptake of the nanocarriers, thus offering a tremendous potential for targeted tumor therapy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    PubMed

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  4. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils

    USGS Publications Warehouse

    Kurwadkar , Sudarshan T.; Adams, Craig D.; Meyer, Michael T.; Kolpin, Dana W.

    2007-01-01

    Sorption of sulfamethazine (SMN) and sulfathiazole (STZ) was investigated in three soils, a North Carolina loamy sand, an Iowa sandy loam, and a Missouri loam, under various pH conditions. A significant increase in the sorption coefficient (KD) was observed in all three soils, as the sulfonamides converted from an anionic form at higher pH to a neutral/cationic form at lower pH. Above pH 7.5, sulfonamides exist primarily in anionic form and have higher aqueous solubility and no cationic character, thereby consequently leading to lower sorption to soils. The effect of speciation on sorption is not the same for all sulfonamides; it is a function of the pH of the soil and the pKa of the sulfonamides. The results indicate that, for the soils under investigation, SMN has comparatively lower KD values than STZ. The pH-dependent sorption of sulfonamides was observed to be consistent in all three soils investigated. The KD values for each speciated formcationic, neutral, and anionicwere calculated using an empirical model in which the species-specific sorption coefficients (KD0, KD1, and KD2) were weighted with their respective fractions present at any given pH.

  5. The transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori†

    PubMed Central

    Gray, Lawrence R; Gu, Sean X; Quick, Matthias; Khademi, Shahram

    2017-01-01

    Helicobacter pylori’s unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure/function relationship of this channel, we have developed conditions for the high-yield expression and purification of stable recombinant HpUreI that allowed its detailed kinetic characterization in solubilized form and reconstituted into liposomes. Detergent-solubilized HpUreI forms homo-trimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay (SPA), whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH sensitive and saturable with a half-saturation concentration (or K0.5) of ~163 mM. Binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (~150 mM) was not significantly pH dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, water diffusion through HpUreI is pH-dependent with low water permeability at neutral pH. PMID:21877689

  6. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.

    PubMed

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2009-10-01

    Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.

  7. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.

    PubMed

    Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L

    2015-02-17

    Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.

  8. Relaxation Dynamics in Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the highest tier, tier 0, but not on the relaxation rates. Two different viscosities in myoglobin-CO are compared. The dependence of relaxations on the thermodynamic history of a sample is shown. For substrate-free P450cam-CO, relaxations after a p-jump are observed far above the glass transition of the protein-solvent system.

  9. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles.

    PubMed

    Krüger, Julia; Bohrmann, Johannes

    2015-01-16

    Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis. To obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca(2+)-channels, amiloride-sensitive Na(+)-channels and Na(+),H(+)-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca(2+)-channels were found, suggesting a mechanism for transducing bioelectric signals into cellular responses. Moreover, gradients of electrical potential and pH were observed within single cells. Our data suggest that spatial patterning of Vmem, pHi and specific membrane-channel proteins results in bioelectric signals that are supposed to play important roles during oogenesis, e. g. by influencing spatial coordinates, regulating migration processes or modifying the cytoskeletal organization. Characteristic stage-specific changes of bioelectric activity in specialized cell types are correlated with various developmental processes.

  10. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Thermodynamic properties of pressurized PH3 superconductor

    NASA Astrophysics Data System (ADS)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  12. A pH/enzyme-responsive polymer film consisting of Eudragit FS 30 D and arabinoxylane as a potential material formulation for colon-specific drug delivery system.

    PubMed

    Rabito, Mirela Fulgencio; Reis, Adriano Valim; Freitas, Adonilson dos Reis; Tambourgi, Elias Basile; Cavalcanti, Osvaldo Albuquerque

    2012-01-01

    Polymer film based on pH-dependent Eudragit FS 30 D acrylic polymer in association with arabinoxylane, a polysaccharide issued from gum psyllium, was produced by way of solvent casting. Physical-chemical characterization of the polymer film samples was performed by means of thermogravimetry (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Furthermore, water-equilibrium swelling index (I(s)) and weight loss of the films in KCl buffer solution of pH 1.2, in KH(2)PO(4) buffer solution of pH 5.0, or in KH(2)PO(4) buffer solution of pH 5.0 consisting of 4% enzyme Pectinex 3X-L (w/v) were also carried out for the film characterization. No chemical interactions between the Eudragit FS 30 D and the arabinoxylane polymer chains were evidenced, thus suggesting that the film-forming polymer structure was obtained from a physical mixture of both polymers. The arabinoxylane-loader films showed a more pronounced weight loss after their immersion in buffer solution containing enzyme Pectinex 3X-L. The introduction of the arabinoxylane makes the film more susceptible to undergo an enzymatic degradation. This meant that the enzyme-dependent propriety issued from the arabinoxylane has been imprinted into the film formulation. This type of polymer film is an interesting system for applications in colon-specific drug delivery system.

  13. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers

    PubMed Central

    Chen, Guoju; Liu, Heping; Wei, Qian; Zhao, Huina

    2017-01-01

    Abstract Anthocyanins, a class of flavonoids, are responsible for the orange to blue coloration of flowers and act as visual attractors to aid pollination and seed dispersal. Malonyl-CoA is the precursor for the formation of flavonoids and anthocyanins. Previous studies have suggested that malonyl-CoA is formed almost exclusively by acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA from acetyl-CoA and bicarbonate. In the present study, the full-length cDNA of Petunia hybrida acyl-activating enzyme 13 (PhAAE13), a member of clade VII of the AAE superfamily that encodes malonyl-CoA synthetase, was isolated. The expression of PhAAE13 was highest in corollas and was down-regulated by ethylene. Virus-induced gene silencing of petunia PhAAE13 significantly reduced anthocyanin accumulation, fatty acid content, and cuticular wax components content, and increased malonic acid content in flowers. The silencing of PhAAE3 and PhAAE14, the other two genes in clade VII of the AAE superfamily, did not change the anthocyanin content in petunia flowers. This study provides strong evidence indicating that PhAAE13, among clade VII of the AAE superfamily, is specifically involved in anthocyanin biosynthesis in petunia flowers. PMID:28204578

  14. Inactivation of coliphage Q beta by potassium ferrate.

    PubMed

    Kazama, F

    1994-05-15

    The kinetics of inactivation of a bacteriophage by potassium ferrate were studied with the F-specific RNA-coliphage Q beta. Inactivation in phosphate buffer (pH 6, 7 and 8) containing ferrate could be described by Hom's model. The inactivation rate depended on the pH. However, the relative effects of ferrate concentration and exposure time on inactivation were not affected by a change in pH from 6 to 8. In a study of the mechanism by which ferrate inactivated the virus, the efficiency of viral inactivation after ferrate decomposed in buffer was assayed. Inactivation was still effective and still followed Hom's equation after the complete decomposition of ferrate ion; however, the efficiency of that inactivation disappeared when sodium thiosulfate was added, suggesting that long-lived oxidative intermediates capable of viral inactivation were generated during the decomposition of ferrate ions.

  15. Melanin as an active layer in biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12.more » EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.« less

  16. Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery.

    PubMed

    Zhou, Qing; Yang, Tiehong; Qiao, Youbei; Guo, Songyan; Zhu, Lin; Wu, Hong

    2015-01-01

    In this study, a multifunctional poly(β-L-malic acid)-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid) (PEPM) was first synthesized. Then, the fragment HAb18 F(ab')2 and 2,3-dimethylmaleic anhydride were covalently attached to the PEPM to form the nanoconjugate, HDPEPM. In this nanoconjugate, the 2,3-dimethylmaleic anhydride, the shielding group, could shield the positive charge of the conjugate at pH 7.4, while it was selectively hydrolyzed in the tumor extracellular space (pH 6.8) to expose the previously-shielded positive charge. To study the anticancer activity, the anticancer drug, doxorubicin, was covalently attached to the nanoconjugate. The doxorubicin-loaded HDPEPM nanoconjugate was able to efficiently undergo a quick charge conversion from -11.62 mV to 9.04 mV in response to the tumor extracellular pH. The electrostatic interaction between the positively charged HDPEPM nanoconjugates and the negatively charged cell membrane significantly enhanced their cellular uptake, resulting in the enhanced anticancer activity. Also, the tumor targetability of the nanoconjugates could be further improved via the fragment HAb18 F(ab')2 ligand-receptor-mediated tumor cell-specific endocytosis.

  17. PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens

    PubMed Central

    2013-01-01

    Background In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4–6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. Results We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. Conclusions PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH. PMID:23445374

  18. The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action.

    PubMed

    Chaili, Siyang; Cheung, Ambrose L; Bayer, Arnold S; Xiong, Yan Q; Waring, Alan J; Memmi, Guido; Donegan, Niles; Yang, Soo-Jin; Yeaman, Michael R

    2016-02-01

    Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  20. Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH

    PubMed Central

    2013-01-01

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725–13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis. PMID:24392967

  1. Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.

    PubMed

    Yang, Kun-Yun; Haynes, Chad A; Spatzal, Thomas; Rees, Douglas C; Howard, James B

    2014-01-21

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725-13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis.

  2. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    PubMed

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  3. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  4. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  5. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

    PubMed Central

    2016-01-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  6. The effects of surface chemistry of mesoporous silica materials and solution pH on kinetics of molsidomine adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinina, E.S.; Parfenyuk, E.V., E-mail: terrakott37@mail.ru

    2014-01-15

    Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbedmore » molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.« less

  7. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    PubMed Central

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  8. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  9. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    PubMed

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  10. Time dependence of the pH of rain

    Treesearch

    John A. Kadlecek; Volkar A. Mohnen

    1976-01-01

    Standard procedures for determining the pH of rain samples usually involve substantial delays from the time of rainfall to the time of analysis. This assumes that no change in pH occurs during the storage period. We have found that this is not always true. We have determined that individual rain water samples possess a time dependent pH which can be correlated with the...

  11. V-ATPase as an effective therapeutic target for sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perut, Francesca, E-mail: francesca.perut@ior.it; Avnet, Sofia; Fotia, Caterina

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles andmore » induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.« less

  12. Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions

    PubMed Central

    Yamanaka, Renata; Soares, Clarissa F.; Matheus, Dácio R.; Machado, Kátia M.G.

    2008-01-01

    The expression of the enzymatic system produced by basidiomycetous fungi, which is involved in the degradation of xenobiotics, mainly depends on culture conditions, especially of the culture medium composition. Trametes villosa is a strain with a proven biotechnological potential for the degradation of organochlorine compounds and for the decolorization of textile dyes. The influence of glucose concentration, addition of a vegetable oil-surfactant emulsion, nature of the surfactant and the presence of manganese and copper on the growth, pH and production of laccase, total peroxidase and manganese-dependent peroxidase activities were evaluated. In general, acidification of the medium was observed, with the pH reaching a value close to 3.5 within the first days of growth. Laccase was the main activity detected under the different conditions and was produced throughout the culture period of the fungus, irrespective of the growth phase. Supplementation of the medium with vegetable oil emulsified with a surfactant induced manganese-dependent peroxidase activity in T. villosa. Higher specific yields of laccase activity were obtained with the addition of copper. PMID:24031184

  13. Control of Gastric H,K-ATPase Activity by Cations, Voltage and Intracellular pH Analyzed by Voltage Clamp Fluorometry in Xenopus Oocytes

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Friedrich, Thomas

    2012-01-01

    Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively. PMID:22448261

  14. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  15. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  16. Effect of pH and glucose on cultured human peritoneal mesothelial cells.

    PubMed

    Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M

    1999-08-01

    We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.

  17. A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells.

    PubMed

    Wu, Chunxiao; Wang, Shu

    2012-01-01

    Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.

  18. Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro.

    PubMed Central

    Thomson, C A; Ananthanarayanan, V S

    2000-01-01

    Hsp47, a 47 kDa heat shock protein whose expression level parallels that of collagen, has been regarded as a collagen-specific molecular chaperone. Studies from other laboratories have established the association of Hsp47 with the nascent as well as the triple-helical procollagen molecule in the endoplasmic reticulum and its dissociation from procollagen in the Golgi. One of several roles suggested for Hsp47 in collagen biosynthesis is the prevention of aggregation of procollagen in the endoplasmic reticulum. However, no experimental evidence has been available to verify this suggestion. In the present study we have followed the aggregation of mature triple-helical collagen molecules into fibrils by using turbidimetric measurements in the absence and presence of Hsp47. In the pH range 6-7, fibril formation of type I collagen, as monitored by turbidimetry, proceeds with a lag of approx. 10 min and levels off by approx. 60 min. The addition of Hsp47 at pH 7 effectively inhibits fibril formation at and above a 1:1 molar ratio of Hsp47 to triple-helical collagen. This inhibition is markedly pH-dependent, being significantly diminished at pH 6. CD and fluorescence spectral data of Hsp47 in the pH range 4.2-7.4 reveal a significant alteration in its structure at pH values below 6.2, with a decrease in alpha-helix and an increase in beta-structure. This conformational change is likely to be the basis of the decreased binding of Hsp47 to collagen in vitro at pH 6.3 as well as its inability to inhibit collagen fibril formation at this pH. Our results also provide a functional assay for Hsp47 that can be used in studies on collagen and Hsp47 interactions. PMID:10903151

  19. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.

    PubMed

    Di Gianfilippo, Martina; Costa, Giulia; Verginelli, Iason; Gavasci, Renato; Lombardi, Francesco

    2016-10-01

    This paper investigates the leaching behaviour of specific types of waste thermal treatment bottom ash (BA) as a function of both pH and the liquid-to-solid ratio (L/S). Specifically, column percolation tests and different types of batch tests (including pH-dependence) were applied to BA produced by hospital waste incineration (HW-I), Refuse Derived Fuel (RDF) gasification (RDF-G) and RDF incineration (RDF-I). The results of these tests were interpreted applying an integrated graphical and modelling approach aimed at identifying the main mechanisms (solubility, availability or time-controlled dissolution and diffusion) governing the release of specific constituents from each type of BA. The final aim of this work was in fact to gain insight on the information that can be provided by the leaching tests applied, and hence on which ones may be more suitable to apply for assessing the leaching concentrations expected in the field. The results of the leaching tests showed that the three samples of analysed BA presented differences of orders of magnitude in their leaching behaviour, especially as a function of pH, but also in terms of the L/S. These were mainly related to the differences in mineralogy of the samples. In addition, for the same type of bottom ash, the comparison between the results of batch and percolation column tests, expressed in terms of cumulative release, showed that for some constituents (e.g. Mg for HW-I BA and Cu for RDF-G BA) differences of over one order of magnitude were obtained due to variations in pH and DOC release. Similarly, the eluate concentrations observed in the percolation tests, for most of the investigated elements, were not directly comparable with the results of the pH-dependence tests. In particular, in some cases the percolation test results showed eluate concentrations of some constituents (e.g. K and Ca in HW-I BA) of up to one order of magnitude higher than the values obtained from the pH-dependence experiments at the same pH value. This was attributed to a rapid washout from the column of the soluble phases present in the BA. In contrast, for other constituents (e.g. Mg and Ba for the RDF-G BA), especially at high L/S ratios, the concentrations in the column tests were of up to one order of magnitude lower than the solubility value, indicating release under non-equilibrium conditions. In these cases, batch pH-dependence tests should be preferred, since column tests results could underestimate the concentrations expected in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Rellán-Alvarez, Rubén; Abadía, Javier; Alvarez-Fernández, Ana

    2008-05-01

    Nicotianamine (NA) is considered as a key element in plant metal homeostasis. This non-proteinogenic amino acid has an optimal structure for chelation of metal ions, with six functional groups that allow octahedral coordination. The ability to chelate metals by NA is largely dependent on the pK of the resulting complex and the pH of the solution, with most metals being chelated at neutral or basic pH values. In silico calculations using pKa and pK values have predicted the occurrence of metal-NA complexes in plant fluids, but the use of soft ionization techniques (e.g. electrospray), together with high-resolution mass spectrometers (e.g. time-of-flight mass detector), can offer direct and metal-specific information on the speciation of NA in solution. We have used direct infusion electrospray ionization mass spectrometry (time-of-flight) ESI-MS(TOF) to study the complexation of Mn, Fe(II), Fe(III), Ni, Cu by NA. The pH dependence of the metal-NA complexes in ESI-MS was compared to that predicted in silico. Possible exchange reactions that may occur between Fe-NA and other metal micronutrients as Zn and Cu, as well as between Fe-NA and citrate, another possible Fe ligand candidate in plants, were studied at pH 5.5 and 7.5, values typical of the plant xylem and phloem saps. Metal-NA complexes were generally observed in the ESI-MS experiments at a pH value approximately 1-2 units lower than that predicted in silico, and this difference could be only partially explained by the estimated error, approximately 0.3 pH units, associated with measuring pH in organic solvent-containing solutions. Iron-NA complexes are less likely to participate in ligand- and metal-exchange reactions at pH 7.5 than at pH 5.5. Results support that NA may be the ligand chelating Fe at pH values usually found in phloem sap, whereas in the xylem sap NA is not likely to be involved in Fe transport, conversely to what occurs with other metals such as Cu and Ni. Some considerations that need to be addressed when studying metal complexes in plant compartments by ESI-MS are also discussed.

  1.  De novo isolation of antibodies with pH-dependent binding properties.

    PubMed

    Bonvin, Pauline; Venet, Sophie; Fontaine, Gaëlle; Ravn, Ulla; Gueneau, Franck; Kosco-Vilbois, Marie; Proudfoot, Amanda Ei; Fischer, Nicolas

    2015-01-01

    pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.

  2. RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans

    PubMed Central

    Davis, Dana; Wilson, R. Bryce; Mitchell, Aaron P.

    2000-01-01

    Growth and differentiation of Candida albicans over a broad pH range underlie its ability to infect an array of tissues in susceptible hosts. We identified C. albicans RIM101, RIM20, and RIM8 based on their homology to components of the one known fungal pH response pathway. PCR product-disruption mutations in each gene cause defects in three responses to alkaline pH: filamentation, induction of PRA1 and PHR1, and repression of PHR2. We find that RIM101 itself is an alkaline-induced gene that also depends on Rim20p and Rim8p for induction. Two observations indicate that a novel pH response pathway also exists. First, PHR2 becomes an alkaline-induced gene in the absence of Rim101p, Rim20p, or Rim8p. Second, we created strains in which Rim101p activity is independent of Rim20p and Rim8p; in these strains, filamentation remains pH dependent. Thus, pH governs gene expression and cellular differentiation in C. albicans through both RIM101-dependent and RIM101-independent pathways. PMID:10629054

  3. Effects of pH on frog gustatory responses to chloride salts of alkali-metal and alkali-earth-metal.

    PubMed

    Kumai, T; Nomura, H

    1980-01-01

    The pH effects on frog gustatory responses to alkali-metal and alkali-earth-metal chloride salts were examined using single fungi-form papilla preparations. Responses to 0.1-0.5 M NaCl were clearly dependent upon the pH of the stimulating solutions. The responses increased as the pH decreased from 6.5 to 4.5 and were almost completely suppressed at pH's above 6.5. There was no significant difference in the pH dependency of the response among alkali-metal chlorides. HCl solutions elicited only a poor response under conditions in which the water response was suppressed by the simultaneous presence of a low NaCl concentration. Responses to alkali-earth-metal chlorides varied in their pH dependency. Response to CaCl2 was slightly affected by pH changes from 4.5 to 9.0, response to SrCl2 was considerably suppressed in the alkaline region, and responses to BaCl2 and MgCl2 were strongly suppressed at pH's above 6.5. BeCl2 solutions showed less marked stimulating effects over the pH range tested. The differences in pH dependency described above suggest the existence of two kinds of receptor sites, one being pH-insensitive sites responsible for the calcium response and the other pH-sensitive sites responsible for the sodium response. A cross-adaptation test appeared to support this possibility. Assuming that the pH effect mentioned is related to changes in the state of ionization of the receptor molecule, the pKa of the ionizable group responsible for the sodium response was determined to be approximately 5.5.

  4. H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization.

    PubMed

    Sipma, Jan; Osuna, M Begoña; Parshina, Sofiya N; Lettinga, Gatze; Stams, Alfons J M; Lens, Piet N L

    2007-08-01

    Desulfotomaculum carboxydivorans, recently isolated from a full-scale anaerobic wastewater treatment facility, is a sulfate reducer capable of hydrogenogenic growth on carbon monoxide (CO). In the presence of sulfate, the hydrogen formed is used for sulfate reduction. The organism grows rapidly at 200 kPa CO, pH 7.0, and 55 degrees C, with a generation time of 100 min, producing nearly equimolar amounts of H(2) and CO(2) from CO and H(2)O. The high specific CO conversion rates, exceeding 0.8 mol CO (g protein)(-1) h(-1), makes this bacterium an interesting candidate for a biological alternative of the currently employed chemical catalytic water-gas shift reaction to purify synthesis gas (contains mainly H(2), CO, and CO(2)). Furthermore, as D. carboxydivorans is capable of hydrogenotrophic sulfate reduction at partial CO pressures exceeding 100 kPa, it is also a good candidate for biodesulfurization processes using synthesis gas as electron donor at elevated temperatures, e.g., in biological flue gas desulfurization. Although high maximal specific sulfate reduction rates (32 mmol (g protein)(-1) h(-1)) can be obtained, its sulfide tolerance is rather low and pH dependent, i.e., maximally 9 and 5 mM sulfide at pH 7.2 and pH 6.5, respectively.

  5. The 2-Aminoethylphosphonate-Specific Transaminase of the 2-Aminoethylphosphonate Degradation Pathway

    PubMed Central

    Kim, Alexander D.; Baker, Angela S.; Dunaway-Mariano, Debra; Metcalf, W. W.; Wanner, B. L.; Martin, Brian M.

    2002-01-01

    The 2-aminoethylphosphonate transaminase (AEPT; the phnW gene product) of the Salmonella enterica serovar Typhimurium 2-aminoethylphosphonate (AEP) degradation pathway catalyzes the reversible reaction of AEP and pyruvate to form phosphonoacetaldehyde (P-Ald) and l-alanine (l-Ala). Here, we describe the purification and characterization of recombinant AEPT. pH rate profiles (log Vm and log Vm/Km versus pH) revealed a pH optimum of 8.5. At pH 8.5, Keq is equal to 0.5 and the kcat values of the forward and reverse reactions are 7 and 9 s−1, respectively. The Km for AEP is 1.11 ± 0.03 mM; for pyruvate it is 0.15 ± 0.02 mM, for P-Ald it is 0.09 ± 0.01 mM, and for l-Ala it is 1.4 ± 0.03 mM. Substrate specificity tests revealed a high degree of discrimination, indicating a singular physiological role for the transaminase in AEP degradation. The 40-kDa subunit of the homodimeric enzyme is homologous to other members of the pyridoxalphosphate-dependent amino acid transaminase superfamily. Catalytic residues conserved within well-characterized members are also conserved within the seven known AEPT sequences. Site-directed mutagenesis demonstrated the importance of three selected residues (Asp168, Lys194, and Arg340) in AEPT catalysis. PMID:12107130

  6. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly(acrylic acid) films incorporating {Beta}-cyclodextrin receptors and amine-functionalized filter layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.

    1999-02-02

    The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less

  7. Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology.

    PubMed

    Xu, Hang; Ding, Mingmei; Shen, Kunlun; Cui, Jianfeng; Chen, Wei

    2017-04-01

    A vacuum electrokinetic apparatus was operated at a municipal water supply plant in Wuxi, China to study the removal of aluminum from the plant's drinking water treatment sludge, high in trivalent aluminum content. The effect of several experimental variables (initial pH, potential gradient, and zone in the sludge tank) and the trivalent aluminum removal mechanism were analyzed. The speciation of trivalent aluminum mainly depends on the initial pH of drinking water treatment sludge, and more fractions of trivalent aluminum were migrated at pH 4 than at higher or lower pH. The application of high voltage can enhance the removal efficiency of aluminum. A three-dimensional electric field analysis explained the difference in the removal efficiency at different zones in the sludge tank. In view of energy consumption, when the initial pH was 4 and a potential gradient of 2 V cm -1 was applied, achieving a final aluminum concentration of 30 g kg -1 after 120 h. The specific energy consumption was 11.7 kWh kg -1 of Al removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PhEXPA1, a Petunia hybrida expansin, is involved in cell wall metabolism and in plant architecture specification.

    PubMed

    Dal Santo, Silvia; Fasoli, Marianna; Cavallini, Erika; Tornielli, Giovanni Battista; Pezzotti, Mario; Zenoni, Sara

    2011-12-01

    Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern. © 2011 Landes Bioscience

  9. Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation

    PubMed Central

    Flagg, Thomas P; Yoo, Dana; Sciortino, Christopher M; Tate, Margaret; Romero, Michael F; Welling, Paul A

    2002-01-01

    The ROMK subtypes of inward-rectifier K+ channels mediate potassium secretion and regulate NaCl reabsorption in the kidney. Loss-of-function mutations in this pH-sensitive K+ channel cause Bartter's disease, a familial salt wasting nephropathy. One disease-causing mutation truncates the extreme COOH-terminus and induces a closed gating conformation. Here we identify a region within the deleted domain that plays an important role in pH-dependent gating. The domain contains a structural element that functionally interacts with the pH sensor in the cytoplasmic NH2-terminus to set a physiological range of pH sensitivity. Removal of the domain shifts the pKa towards alkaline pH values, causing channel inactivation under physiological conditions. Suppressor mutations within the pH sensor rescued channel gating and trans addition of the cognate peptide restored pH sensitivity. A specific interdomain interaction was revealed in an in vitro protein-protein binding assay between the NH2- and COOH-terminal cytoplasmic domains expressed as bacterial fusion proteins. These results provide new insights into the molecular mechanisms underlying Kir channel regulation and channel gating defects that are associated with Bartter's disease. PMID:12381810

  10. Identification of a molecular pH sensor in coral.

    PubMed

    Barott, Katie L; Barron, Megan E; Tresguerres, Martin

    2017-11-15

    Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).

  11. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  12. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the labile fraction may lower solution pH into a regime that favours abiotic oxidation of recalcitrant C by MnO2. This project demonstrates that the co-occurrence of mineral particles with metabolically active cells provides a direct link between the C and Mn cycles.

  13. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.

    PubMed

    Wilson, David R; Routkevitch, Denis; Rui, Yuan; Mosenia, Arman; Wahlin, Karl J; Quinones-Hinojosa, Alfredo; Zack, Donald J; Green, Jordan J

    2017-07-05

    There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  14. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells.

    PubMed

    Lauber, Sandra N; Gooderham, Nigel J

    2011-01-11

    The cooked meat derived genotoxic carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces cancer of the colon, prostate and mammary gland when fed to rats. Epidemiology studies link these tumours to a Western diet and exposure to heterocyclic amines such as PhIP. We have shown that PhIP is also potently estrogenic and have proposed that this hormonal activity contributes to its target site carcinogenicity. We now postulate that the estrogenic properties of PhIP influence metastatic potential. We have used an in vitro assay for cell invasion based upon digestion and migration through a reconstituted basement membrane model. Zymography and immunoblotting were used to confirm PhIP-mediated changes associated with induction of the invasive phenotype. Treatment of the mammary cancer cell lines MCF-7 and T47D with PhIP induces cells to digest and migrate through a reconstituted basement membrane. The response was dose dependent, observed at sub-nanomolar concentrations of PhIP and was inhibited by the antiestrogen ICI 182,780. The PhIP-induced invasive phenotype was associated with expression of cathepsin D, cyclooxygenase-2 and matrix metalloproteinase activity. These findings emphasise the range and potency of the biological activities associated with this cooked meat product and mechanistically support the tissue-specific carcinogenicity of the chemical. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Dual modal endoscopic cancer detection based on optical pH sensing and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Soogeun; Kim, ByungHyun; Sohn, Won Bum; Byun, Kyung Min; Lee, Soo Yeol

    2017-02-01

    To discriminate between normal and cancerous tissue, a dual modal approach using Raman spectroscopy and pH sensor was designed and applied. Raman spectroscopy has demonstrated the possibility of using as diagnostic method for the early detection of precancerous and cancerous lesions in vivo. It also can be used in identifying markers associated with malignant change. However, Raman spectroscopy lacks sufficient sensitivity due to very weak Raman scattering signal or less distinctive spectral pattern. A dual modal approach could be one of the solutions to solve this issue. The level of extracellular pH in cancer tissue is lower than that in normal tissue due to increased lactic acid production, decreased interstitial fluid buffering and decreased perfusion. High sensitivity and specificity required for accurate cancer diagnosis could be achieved by combining the chemical information from Raman spectrum with metabolic information from pH level. Raman spectra were acquired by using a fiber optic Raman probe, a cooled CCD camera connected to a spectrograph and 785 nm laser source. Different transmission spectra depending on tissue pH were measured by a lossy-mode resonance sensor based on fiber optic. The discriminative capability of pH-Raman dual modal method was evaluated using principal component analysis (PCA). The obtained results showed that the pH-Raman dual modal approach can improve discriminative capability between normal and cancerous tissue, which can lead to very high sensitivity and specificity. The proposed method for cancer detection is expected to be used in endoscopic diagnosis later.

  16. The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics.

    PubMed

    Devanaboyina, Siva Charan; Lynch, Sandra M; Ober, Raimund J; Ram, Sripad; Kim, Dongyoung; Puig-Canto, Alberto; Breen, Shannon; Kasturirangan, Srinath; Fowler, Susan; Peng, Li; Zhong, Haihong; Jermutus, Lutz; Wu, Herren; Webster, Carl; Ward, E Sally; Gao, Changshou

    2013-01-01

    A drawback of targeting soluble antigens such as cytokines or toxins with long-lived antibodies is that such antibodies can prolong the half-life of the target antigen by a "buffering" effect. This has motivated the design of antibodies that bind to target with higher affinity at near neutral pH relative to acidic endosomal pH (~pH 6.0). Such antibodies are expected to release antigen within endosomes following uptake into cells, whereas antibody will be recycled and exocytosed in FcRn-expressing cells. To understand how the pH dependence of antibody-antigen interactions affects intracellular trafficking, we generated three antibodies that bind IL-6 with different pH dependencies in the range pH 6.0-7.4. The behavior of antigen in the presence of these antibodies has been characterized using a combination of fixed and live cell fluorescence microscopy. As the affinity of the antibody:IL-6 interaction at pH 6.0 decreases, an increasing amount of antigen dissociates from FcRn-bound antibody in early and late endosomes, and then enters lysosomes. Segregation of antibody and FcRn from endosomes in tubulovesicular transport carriers (TCs) into the recycling pathway can also be observed in live cells, and the extent of IL-6 association with TCs correlates with increasing affinity of the antibody:IL-6 interaction at acidic pH. These analyses result in an understanding, in spatiotemporal terms, of the effect of pH dependence of antibody-antigen interactions on subcellular trafficking and inform the design of antibodies with optimized binding properties for antigen elimination.

  17. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors.

    PubMed

    Lauquin, G J; Villiers, C; Michejda, J W; Hryniewiecka, L V; Vignais, P V

    1977-05-11

    1. A procedure for preparation of sonic submitochondrial particles competent for adenine nucleotide transport is described. ADP or ATP transport was assayed, in the presence of oligomycin, in a saline medium made of 0.125 M KCl, 1 mM EDTA, 10 mM 4-morpholinopropane sulfonic acid buffer, pH 6.5. 2. Sonic particles transport ADP and ATP by an exchange diffusion process. Externally added ADP (or ATP) is exchanged with internal ADP and ATP with a stoichiometry of one to one. The V value for ADP transport 5 degrees C was between 2 and 3 nmol/min per mg protein. 3. The transport system in sonic particles is specific for ADP and ATP. It is strongly dependent on temperature. The activation energy between 0 and 9 degrees C is approx. 35 kcal/mol. The optimum pH is 6.5, 4, Like in intact mitochondria, externally added ADP is transported into sonic particles faster at a given concentration than externally added ATP. The V value for ADP transport is 1.5-2 times higher than the V value for ATP transport. 5. The transition from the energized to the deenergized state in sonic particles results in a decrease of the pH gradient across the membrane (internal pH less than external pH) and in a 2-4 fold increase in the Km value for ATP. This latter effect is opposite that found for transport of added ATP in intact mitochondria (Souverijn, J.H.M., Huisman, L.A., Rosing J. and Kemp, Jr., A. (1973) Biochim. Biophys. Acta 305, 185-198). Energization has no effect on the V value of ATP transport in sonic particles. 6. In contrast to intact mitochondria, inhibition of ADP transport in sonic particles by bongkrekic acid does not have any lag-time and does not depend on pH. The inhibition caused by bongkrekic acid is a mixed type inhibition with a Ki value of 1.2 micronM. Atractyloside and carboxyatractyloside do not inhibit ADP transport in sonic particles, unless the particles have been preloaded with these inhibitors during the sonication. 7. Palmityl-CoA added to sonic particles inhibits efficiently ADP transport. The mixed type inhibition found with palmityl-CoA has a Ki value of 1.6 micronM. 8. [3H]Bongkrekic acid binds to sonic particles readily and with high affinity. Bongkrekic acic binding to sonic particles does not depend on pH and it has a saturation plateau, corresponding approximately to 1.3 mol of site per mol of cytochrome a. The number of [3H]atracytloside binding sites is much lower (one-fifth of the bongkrekic acid). External carboxyatractyloside does not compete with [3H]bongkrekic acid for binding to sonic particles. However, when carboxyatractyloside is present inside the particles, it inhibits the binding of [3H]bongkrekic acid.

  18. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [The action of low-intensity extremely high-freguency electromagnetic radiation on growth parameters for bacteria Enterococcus hirae].

    PubMed

    Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A

    2008-01-01

    It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.

  20. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyun-Sang

    2008-01-01

    In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of the natural Mn oxides present in soil, was investigated in various experimental conditions (reaction time, Mn oxide loadings, pH). The removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-visible and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, k, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amounts of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, the surface area normalised specific rate constant, k(surf), was also determined to be 9.3 x 10(-4) (L/m(2).min) for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4. (c) IWA Publishing 2008.

  1. Multifunctional materials such as MCM-41÷Fe3O4÷folic acid as drug delivery system.

    PubMed

    Popescu, Simona; Ardelean, Ioana Lavinia; Gudovan, Dragoş; Rădulescu, Marius; Ficai, Denisa; Ficai, Anton; Vasile, Bogdan Ştefan; Andronescu, Ecaterina

    2016-01-01

    In this study, MCM-41 mesoporous silica nanoparticles (NPs) and MCM-41÷Fe3O4 mesoporous silica NPs were prepared by sol-gel method using CTAB (cetyltrimethylammonium bromide) as template and TEOS (tetraethyl orthosilicate) as silica precursor in order to use these materials as drug delivery system (DDS) for different biologically active agents. The MCM-41 and MCM-41÷Fe3O4 mesoporous silica NPs were characterized using specific physico-chemical methods [transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption and desorption studies - BET (Brunauer-Emmett-Teller) method, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy], while the release studies were done by a high-performance liquid chromatography (HPLC)-modified method. The pH dependence of the delivery of folic acid from the mesoporous structures was analyzed and found that the release is pH sensitive. The lower delivery at strongly acid pH comparing with neutral/slightly alkaline pH could be beneficial because in stomach the folic acid can be destroyed.

  2. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone.

    PubMed

    Gadalla, Hytham H; Soliman, Ghareb M; Mohammed, Fergany A; El-Sayed, Ahmed M

    2016-09-01

    The colon is a promising target for drug delivery owing to its long transit time of up to 78 h, which is likely to increase the time available for drug absorption. Progesterone has a short elimination half-life and undergoes extensive first-pass metabolism, which results in very low oral bioavailability (∼25%). To overcome these shortcomings, we developed an oral multiparticulate system for the colonic delivery of progesterone. Zn-pectinate/chitosan microparticles were prepared by ionotropic gelation and characterized for their size, shape, weight, drug entrapment efficiency, mucoadhesion and swelling behavior. The effect of cross-linking pH, cross-linking time and chitosan concentration on progesterone release were also studied. Spherical microparticles having a diameter of 580-720 µm were obtained. Drug entrapment efficiency of ∼75-100% was obtained depending on the microparticle composition. Microparticle mucoadhesive properties were dependent on the pectin concentration, as well as the cross-linking pH. Progesterone release in simulated gastric fluids was minimal (3-9%), followed by burst release at pH 6.8 and a sustained phase at pH 7.4. The in vivo study revealed that the microparticles significantly increased progesterone residence time in the plasma and increased its relative bioavailability to ∼168%, compared to the drug alone. This study confirms the potential of Zn-pectinate/chitosan microparticles as a colon-specific drug delivery system able to enhance the oral bioavailability of progesterone or similar drugs.

  3. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    PubMed

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.

    PubMed

    Jacot, Damien; Tosetti, Nicolò; Pires, Isa; Stock, Jessica; Graindorge, Arnault; Hung, Yu-Fu; Han, Huijong; Tewari, Rita; Kursula, Inari; Soldati-Favre, Dominique

    2016-12-14

    Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Chronic use of PAH-specific therapy in World Health Organization Group III Pulmonary Hypertension: a systematic review and meta-analysis.

    PubMed

    Prins, Kurt W; Duval, Sue; Markowitz, Jeremy; Pritzker, Marc; Thenappan, Thenappan

    2017-03-01

    Pulmonary hypertension (PH) complicating chronic obstructive pulmonary disease (COPD-PH) and interstitial lung disease (ILD-PH) (World Health Organization [WHO] Group III PH) increases medical costs and reduces survival. Despite limited data, many clinicians are using pulmonary arterial hypertension (PAH)-specific therapy to treat WHO Group III PH patients. To further investigate the utility of PAH-specific therapy in WHO Group III PH, we performed a systematic review and meta-analysis. Relevant studies from January 2000 through May 2016 were identified in the MEDLINE, EMBASE, and COCHRANE electronic databases and www.clinicaltrials.gov. Change in six-minute walk distance (6MWD) was estimated using random effects meta-analysis techniques. Five randomized controlled trials (RCTs) in COPD-PH (128 placebo or standard treatment and 129 PAH-medication treated patients), two RCTs in ILD-PH (23 placebo and 46 treated patients), and four single-arm clinical trials (50 patients) in ILD-PH were identified. Treatment in both COPD-PH and ILD-PH did not worsen hypoxemia. Symptomatic burden was not consistently reduced but there were trends for reduced pulmonary artery pressures and pulmonary vascular resistance with PAH-specific therapy. As compared to placebo, 6MWD was not significantly improved with PAH-specific therapy in the five COPD-PH RCTs (42.7 m; 95% confidence interval [CI], -1.0 - 86.3). In the four single-arm studies in ILD-PH patients, there was a significant improvement in 6MWD after PAH-specific treatment (46.2 m; 95% CI, 27.9-64.4), but in the two ILD-PH RCTs there was not an improvement (21.6 m; 95% CI, -17.8 - 61.0) in exercise capacity when compared to placebo. Due to the small numbers of patients evaluated and inconsistent beneficial effects, the utility of PAH-specific therapy in WHO Group III PH remains unproven. A future clinical trial that is appropriately powered is needed to definitively determine the efficacy of this widely implemented treatment approach.

  6. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon

    PubMed Central

    Guariglia-Oropeza, Veronica; Orsi, Renato H.; Guldimann, Claudia; Wiedmann, Martin; Boor, Kathryn J.

    2018-01-01

    Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters. PMID:29467736

  7. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe

    NASA Astrophysics Data System (ADS)

    Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez

    2018-02-01

    Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.

  8. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    PubMed Central

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  9. Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.

    PubMed

    Ng, Derek P; Deber, Charles M

    2016-08-09

    Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes.

  10. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    PubMed

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  11. The Growth Advantage in Stationary-Phase Phenotype Conferred by rpoS Mutations Is Dependent on the pH and Nutrient Environment

    PubMed Central

    Farrell, Michael J.; Finkel, Steven E.

    2003-01-01

    Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent. PMID:14645263

  12. A pH-dependent conformational ensemble mediates proton transport through the influenza A/M2 protein†

    PubMed Central

    Polishchuk, Alexei L.; Lear, James D.; Ma, Chunlong; Lamb, Robert A.; Pinto, Lawrence H.; DeGrado, William F.

    2010-01-01

    The influenza A M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pKas. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pHs and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution NMR and crystallographic structures, optical spectroscopy, and MD calculations. PMID:20968306

  13. Foaming and emulsifying properties of porcine red cell protein concentrate.

    PubMed

    Salvador, P; Saguer, E; Parés, D; Carretero, C; Toldrà, M

    2010-08-01

    This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.

  14. Gold Binding by Native and Chemically Modified Hops Biomasses

    PubMed Central

    López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087

  15. Accuracy of diagnosing gastroesophageal reflux disease by GerdQ, esophageal impedance monitoring and histology.

    PubMed

    Zhou, Li Ya; Wang, Ye; Lu, Jing Jing; Lin, Lin; Cui, Rong Li; Zhang, He Jun; Xue, Yan; Ding, Shi Gang; Lin, San Ren

    2014-05-01

    To assess the performance of self-assessment gastroesophageal reflux disease questionnaire (GerdQ), 24-h impedance monitoring, proton pump inhibitor (PPI) test and intercellular space of esophageal mucosal epithelial cells in the diagnosis of gastroesophageal reflux disease (GERD). Patients with symptoms suspected of GERD were administered the GerdQ and underwent endoscopy (measurement of intercellular space in the biopsy specimen sampling at 2 cm above the Z-line) and 24-h impedance pH monitoring, together with a 2-week experimental treatment with esomeprazole. A total of 636 patients were included for the final analysis, including 352 with GERD. The sensitivity and specificity of GerdQ and 24-h impedance monitoring for diagnosing GERD were 57.7% and 48.9%, and 66.4% and 43.3%, respectively. The sensitivity of 24-h impedance pH monitoring increased to 93.7%. The sensitivity and specificity of dilated intercellular spaces (DIS) (≥0.9 μm) for diagnosing GERD were 61.2% and 56.1%, respectively, whereas those for PPI test were 70.5% and 44.4%. GerdQ score or PPI test alone cannot accurately diagnose GERD in a Chinese population suspected of GERD. A definitive diagnosis of GERD still depends on endoscopy or 24-h pH monitoring. 24-h impedance pH monitoring may increase the sensitivity for diagnosing GERD by 20%; however, when used alone, it results in poor specificity in patients without acid suppressive therapy. © 2014 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  16. Allele-specific Characterization of Alanine: Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria

    PubMed Central

    Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375

  17. Diversities and similarities in pH dependency among bacterial NhaB-like Na+/H+ antiporters.

    PubMed

    Kiriyama, Wakako; Honma, Kei; Hiratsuka, Tomoaki; Takahashi, Itsuka; Nomizu, Takahiro; Takashima, Yuta; Ohtsuka, Masataka; Takahashi, Daiki; Moriyama, Kazuya; Mori, Sayoko; Nishiyama, Shiho; Fukuhara, Masahiro; Nakamura, Tatsunosuke; Shigematsu, Toru; Yamaguchi, Toshio

    2013-10-01

    NhaB-like antiporters were the second described class of Na(+)/H(+) antiporters, identified in bacteria more than 20 years ago. While nhaB-like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent Km values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent Km at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of Km in the course of molecular evolution.

  18. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.

    PubMed

    Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten

    2014-01-09

    The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction. © 2013.

  19. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  20. Role of the pH in state-dependent blockade of hERG currents

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  1. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation.

    PubMed

    Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo

    2017-01-03

    Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.

  2. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron tomore » a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.« less

  3. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH

    PubMed Central

    Kumar, Sujeet

    2015-01-01

    ABSTRACT The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. IMPORTANCE The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved but poorly characterized family of membrane proteins. Here, we show that the DedA/Tvp38 protein YqjA is critical for E. coli to survive at pH 8.5 to 9.5. YqjA requires sodium and potassium for this function. At low cation concentrations, osmolytes, including sucrose, can facilitate rescue of E. coli growth by YqjA at high pH. These data are consistent with YqjA functioning as an osmosensing cation-dependent proton transporter. PMID:25917916

  4. Estimation of the IC to CG Ratio Using JEM-GLIMS and Ground-based Lightning Network Data

    NASA Astrophysics Data System (ADS)

    Bandholnopparat, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.

    2017-12-01

    The ratio between intracloud (IC) discharge and cloud-to-ground (CG) discharge, which is denoted by Z, is the important parameter for the studies on the climatological differences of thunderstorm structures and for the quantitative evaluation of lightning contributions to the global electric circuit. However, the latitudinal, regional, and seasonal dependences of Z-value are not fully clarified. The purposes of this study are (i) to develop new methods to identify IC and CG discharges using optical data obtained by the Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) from space and ground-based lightning data, (ii) to estimate Z-value and its latitudinal, regional, and seasonal dependences. As a first step, we compared the JEM-GLIMS data to the ground-based lightning data obtained by JLDN, NLDN, WWLLN, and GEON in order to distinguish the lightning discharge type detected by JEM-GLIMS. As a next step, we have calculated intensity ratios between the blue and red PH channels, that is, PH2(337 nm)/PH3(762 nm), PH5(316 nm)/PH3, PH6(392 nm)/PH3, PH2/PH4(599-900 nm), PH5/PH4, and PH6/PH4 for each lightning event. From these analyses, it is found that 447 and 454 of 8355 lightning events were identified to be CG and IC discharges, respectively. It is also found that the PH intensity ratio of IC discharges is clearly higher than that of CG discharges. In addition, the difference of the PH2/PH3, PH2/PH4, and PH6/PH4 ratio between IC and CG cases is relatively large, which means these three ratios are the useful proxy to classify the discharge types for other 7454 lightning events. Finally, the estimated Z-value varies from 0.18 - 0.84 from the equator to the higher latitude. The decrease of the Z-value from the equator to the higher latitude is confirmed both in the northern and the southern hemispheres. Although this latitudinal dependence of the Z-value is similar to previous studies, i.e., Boccippio et al. (2001), the estimated absolute Z-value is smaller than that in previous studies. The reason of the smaller absolute Z-value may be because JEM-GLIMS used the high threshold for the event triggering and missed many lightning events having lower optical energies. At the presentation, we will show the regional and seasonal dependences of the Z-value in detail.

  5. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.

    PubMed

    Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi

    2006-12-15

    We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.

  6. Isolation and purification of Bacillus thuringiensis var. israelensis IМV В-7465 peptidase with specificity toward elastin and collagen.

    PubMed

    Nidialkova, N A; Varbanets, L D; Chernyshenko, V O

    2016-01-01

    Peptidase of Bacillus thuringiensis var. israelensis IМV В-7465 was isolated from culture supernatant using consecutive fractionations by an ammonium sulphate (60% saturation), ion-exchange chromatography and gel-filtration on the TSK-gels Toyoperl HW-55 and DEAE 650(M). Specific elastase (442 U∙mg of protein-1) and collagenase (212.7 U∙mg of protein-1) activities of the purified enzyme preparation were 8.0- and 6.1-fold, respectively higher than ones of the culture supernatant. Peptidase yields were 33.5% for elastase activity and 30.1% for collagenase activity. It was established that the enzyme is serine metal-dependent alkaline peptidase with Mr about 37 kDa. Maximal hydrolysis of elastin and collagen occurs at the optimum pH 8.0 and t° – 40 and 50 °С, respectively. The purified preparation has high stability at pH in the range of 7.0 to 10.0 and 40-50 °С.

  7. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB) Cells.

    PubMed

    Wang, Ling; Wang, Zhouli; Yuan, Yahong; Cai, Rui; Niu, Chen; Yue, Tianli

    2015-01-01

    The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB) cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM). Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0).

  8. Transdermal Delivery of Cimetidine Across Microneedle-Treated Skin: Effect of Extent of Drug Ionization on the Permeation.

    PubMed

    Song, Yang; Herwadkar, Anushree; Patel, Meera G; Banga, Ajay K

    2017-05-01

    The objective of this work was to optimize a gel formulation of cimetidine to maximize its transdermal delivery across microporated skin. Specifically, the effect of extent of ionization in formulation on permeation of cimetidine across microporated skin was studied. Cimetidine was formulated into a gel using propylene glycol, water, and carbopol 980NF. Three strengths of gels (0.1% w/w, 0.5% w/w, and 0.8% w/w) were made and Tris base was used to adjust the pH of formulations to pH 5, pH 6.8, and pH 7.5. In vitro permeation testing was performed on vertical Franz cells with dermatomed porcine ear skin. Permeation studies suggested that pH 5 gels showed highest permeation through microchannels. This trend was more prominent with an increase in drug loading. The total amount of cimetidine delivered from 0.8% w/w gel at pH 5 at 24 h was 28.20 ± 4.63 μg, which was significantly higher than that from pH 6.8 (16.89 ± 3.56 μg) and pH 7.5 (12.03 ± 1.66 μg) gels. Cimetidine permeation across microporated skin was found to be pH dependent, with lower pH/highest ionization resulting in greatest permeation. The effect of ionization contributing to faster release was more pronounced when drug concentration was increased. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    PubMed

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    PubMed Central

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  11. Control of continuous phase PH using visible light to activate PH-dependent fibers and gels in a controlled and reversible manner

    NASA Astrophysics Data System (ADS)

    Zirino, Albert

    1994-08-01

    A transparent polyelectrolyte fiber or gel, such as crosslinked polyacrylic acid, which contracts and expands upon the addition of an acid or base to an aqueous medium solution, is placed in the same solution with a pH dependent dye, a colored photochromatic indicator dye. The dye preferably has a pAa value that is the same as the pH at a null contraction point of the fiber. By irradiating the solution with light of a wavelength of the absorption band of either the acid or base form of the dye, the solution pH is made to change, and the fiber is made to expand or contract, depending upon the wavelength. Thus, light energy is readily converted to work energy and may be used to power a pump, for example or an artificial muscle can be powered via an optical fiber.

  12. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.

    PubMed

    Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian

    2015-01-01

    Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.

  13. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite.

    PubMed

    He, Yinhai; Lin, Hai; Dong, Yingbo; Liu, Quanli; Wang, Liang

    2016-12-01

    Simultaneous ammonium and phosphate removal characteristics and mechanism, as well as the major influencing factors, such as pH, temperature and co-existing ions, onto NaOH-activated and lanthanum-impregnated zeolite (NLZ) were investigated. The phosphate adsorption increases from 0.2 mg g -1 for natural zeolite up to 8.96 mg g -1 for NLZ, while only a slight decrease on the ammonium adsorption capacity from 23.9 mg g -1 for NaOH-activated zeolite to 21.2 mg g -1 for NLZ was observed. The ammonium and phosphate adsorption showed little pH dependence in the range from pH 3 to 7, while it decreased sharply with the pH increased above pH 7. Adsorption of ammonium and phosphate could be well described by the pseudo-second-order model and the process was mainly governed by intra-particle diffusion. The Langmuir and Freundlich model can be acceptably applied to fit the experimental data, which suggested that adsorption was caused by both the monolayer and homogeneous coverage at specific and equal affinity sites available NLZ. The underlying mechanism for the specific adsorption of phosphate by NLZ was revealed with the aid of SEM-EDS, XPS, and FTIR analysis, and the formation of (LaO)(OH)PO 2 was verified to be the dominant pathway for selective phosphate adsorption by lanthanum-impregnated zeolite. While the removal mechanism of ammonium could be well interpreted by SEM-EDS, FTIR and ICP analysis, and ion-exchange was expected to be the main removal process for ammonium. The results indicate that NLZ could efficiently and simultaneously remove low concentration of ammonium and phosphate from contaminated waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    PubMed

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of pH on Urine Chemistry Assayed on Roche Analyzers.

    PubMed

    Cohen, R; Alkouri, R; Tostivint, I; Djiavoudine, S; Mestari, F; Dever, S; Atlan, G; Devilliers, C; Imbert-Bismut, F; Bonnefont-Rousselot, D; Monneret, D

    2017-10-01

    The pH may impact the concentration of certain urinary parameters, making urine pre-treatment questionable. 1) Determining the impact of pH in vitro on the urinary concentration of chemistry parameters assayed on Roche Modular analyzers. 2) Evaluating whether concentrations depended on pH in non-pretreated urines from patients. 1) The optimal urinary pH values for each measurement were: 6.3 ± 0.8 (amylase), < 5.5 (calcium and magnesium), < 6.5 (phosphorus), > 6.5 (uric acid). Urinary creatinine, sodium and urea concentrations were not pH-dependent. 2) In urines from patients, the pH was negatively associated with the concentration of some urinary parameters. However, concentrations of all the parameters were strongly and positively correlated with urinary creatinine, and relationships with pH were no longer evidenced after creatinine-normalization. The need for urine pH adjustment does not seem necessary when considering renal function. However, from an analytical and accreditation standpoint, the relationship between urine pH and several parameters justifies its measurement.

  16. Evaluation of vaginal pH for detection of bacterial vaginosis

    PubMed Central

    Hemalatha, R.; Ramalaxmi, Baru Anantha; Swetha, Eluru; Balakrishna, N.; Mastromarino, Paola

    2013-01-01

    Background & objectives: Bacterial vaginosis (BV) is highly prevalent among women in reproductive age group. Little information exists on routine vaginal pH measurement in women with BV. We undertook this study to assess the utility of vaginal pH determination for initial evaluation of bacterial vaginosis. Methods: In this cross-sectional study vaginal swabs were collected from women with complaints of white discharge, back ache and pain abdomen attending a government hospital and a community health clinic, and subjected to vaginal pH determination, Gram stain, wet mount and whiff test. Nugent score and Amsel criteria were used for BV confirmation. Results: Of the 270 women included in the analysis, 154 had BV based on Nugents’ score. The mean vaginal pH in women with BV measured by pH strips and pH glove was 5 and 4.9, respectively. The vaginal pH was significantly higher in women with BV. Vaginal discharge was prevalent in 84.8 per cent women, however, only 56.8 per cent of these actually had BV by Nugent score (NS). Presence of clue cells and positive whiff test were significant for BV. Vaginal pH >4.5 by pH strips and pH Glove had a sensitivity of 72 and 79 per cent and specificity of 60 and 53 per cent, respectively to detect BV. Among the combination criteria, clue cells and glove pH >4.5 had highest sensitivity and specificity to detect BV. Interpretation & conclusions: Vaginal pH determination is relatively sensitive, but less specific in detecting women with BV. Inclusion of whiff test along with pH test reduced the sensitivity, but improved specificity. Both, the pH strip and pH glove are equally suitable for screening women with BV on outpatient basis. PMID:24135180

  17. pH value promotes growth of Staphylococcus epidermidis in platelet concentrates.

    PubMed

    Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-05-01

    The platelet (PLT) storage lesion is characterized metabolically by a pH value associated with lactic acid generation. PLT storage conditions support the growth of Staphylococcus epidermidis, the most common organism implicated in bacterial contamination of PLT concentrates (PCs). Here, different factors that influence bacterial growth in PCs are discussed and the relation between pH values of PCs and citrate plasma (CP) is studied, with emphasis on bacterial proliferation. The PLT lesion with regard to pH decrease and lactic acid production was monitored during storage and correlated to bacterial proliferation properties. A total of 115 coagulase-negative staphylococci, especially S. epidermidis isolates, were characterized for their proliferation in different blood components (CP, buffy coat-derived, and apheresis PCs). Furthermore, the influence of donor-specific, product-specific, species-specific, and strain-specific factors on bacterial proliferation was investigated. PCs showed a lower pH value in comparison to plasma during storage. Bacterial proliferation in PCs and the failure to grow in CP were determined with all organisms tested. No correlation to donor-specific, species-specific, or strain-specific factors was observed. Lowering the pH of CP resulted in bacterial proliferation, whereas a pH increase in the PC unit inhibited the proliferation of S. epidermidis. With emphasis on bacterial proliferation, the significant difference between PC and CP is the presence of metabolizing PLTs. The pH values of stored PLTs, but not those of stored plasma, support the growth of S. epidermidis.

  18. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

    PubMed Central

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-01-01

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377

  19. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    PubMed

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  20. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase*

    PubMed Central

    Stojanovski, Bosko M.; Breydo, Leonid; Hunter, Gregory A.; Uversky, Vladimir N.; Ferreira, Gloria C.

    2014-01-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  1. Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4'-substituted acetophenones, and follows Swain-Lupton parameterisation.

    PubMed

    Cassimjee, Karim Engelmark; Humble, Maria Svedendahl; Land, Henrik; Abedi, Vahak; Berglund, Per

    2012-07-28

    For biocatalytic production of pharmaceutically important chiral amines the ω-transaminase enzymes have proven useful. Engineering of these enzymes has to some extent been accomplished by rational design, but mostly by directed evolution. By use of a homology model a key point mutation in Chromobacterium violaceum ω-transaminase was found upon comparison with engineered variants from homologous enzymes. The variant Trp60Cys gave increased specificity for (S)-1-phenylethylamine (29-fold) and 4'-substituted acetophenones (∼5-fold). To further study the effect of the mutation the reaction rates were Swain-Lupton parameterised. On comparison with the wild type, reactions of the variant showed increased resonance dependence; this observation together with changed pH optimum and cofactor dependence suggests an altered reaction mechanism.

  2. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  3. What dictates which ion, I- or Br-, mediates the growth of cubic Pd nanocrystals?

    PubMed

    Wang, Ze-Hong; Wu, Ya-Jiao; Xue, Huan-Huan; Zhou, Lin-Nan; Geng, Wen-Chao; Yi, Hai-Bo; Li, Yong-Jun

    2018-04-25

    Cubic Pd nanocrystals (CPNCs) as one of typical nanostructures are generally fabricated using I- or Br- as capping ions. However, which ion, I- or Br-, exclusively mediates the growth of CPNCs in a given reaction system is not well understood. Herein, regardless of I- or Br- as the capping ion, we successfully achieved CPNCs in the same reaction system simply by adjusting the pH. Based on the Finke-Watzky kinetic model, an increase in pH accelerates the overall reduction rate of Pd2+, and the formation of CPNCs only occurs over the range of specific solution reduction rate constants (k1). This kinetically illuminates that the reduction rate of Pd2+ is the physicochemical parameter that determines which ion, I- or Br-, dictates the growth of CPNCs. Also, density functional theory (DFT) calculations further elucidate the dependence of the reduction rate of Pd2+ on pH and the configuration of the activated Pd2+ complex.

  4. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates.

    PubMed

    Rougée, Luc R A; Mohutsky, Michael A; Bedwell, David W; Ruterbories, Kenneth J; Hall, Stephen D

    2017-09-01

    Surrogate assays for drug metabolism and inhibition are traditionally performed in buffer systems at pH 7.4, despite evidence that hepatocyte intracellular pH is 7.0. This pH gradient can result in a pK a -dependent change in intracellular/extracellular concentrations for ionizable drugs that could affect predictions of clearance and P450 inhibition. The effect of microsomal incubation pH on in vitro enzyme kinetic parameters for CYP2C9 (diclofenac, (S)-warfarin) and CYP3A4 (midazolam, dextromethorphan, testosterone) substrates, enzyme specific reversible inhibitors (amiodarone, desethylamiodarone, clozapine, nicardipine, fluconazole, fluvoxamine, itraconazole) and a mechanism-based inhibitor (amiodarone) was investigated. Intrinsic clearance through CYP2C9 significantly increased (25% and 50% for diclofenac and (S)-warfarin respectively) at intracellular pH 7.0 compared with traditional pH 7.4. The CYP3A4 substrate dextromethorphan intrinsic clearance was decreased by 320% at pH 7.0, while midazolam and testosterone remained unchanged. Reversible inhibition of CYP2C9 was less potent at pH 7.0 compared with 7.4, while CYP3A4 inhibition potency was variably affected. Maximum enzyme inactivation rate of amiodarone toward CYP2C9 and CYP3A4 decreased at pH 7.0, while the irreversible inhibition constant remained unchanged for CYP2C9, but decreased for CYP3A4 at pH 7.0. Predictions of clearance and drug-drug interactions made through physiologically based pharmacokinetic models were improved with the inclusion of predicted intracellular concentrations based at pH 7.0 and in vitro parameters determined at pH 7.0. No general conclusion on the impact of pH could be made and therefore a recommendation to change buffer pH to 7.0 cannot be made at this time. It is recommended that the appropriate hepatocyte intracellular pH 7.0 be used for in vitro determinations when in vivo predictions are made. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era. PMID:27809281

  6. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent

    PubMed Central

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean

    2015-01-01

    Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637

  7. Gold Binding by Native and Chemically Modified Hops Biomasses

    DOE PAGES

    López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less

  8. Arrestin-related proteins mediate pH signaling in fungi.

    PubMed

    Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier

    2005-08-23

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.

  9. Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers

    PubMed Central

    DiPolo, R.

    1972-01-01

    Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810

  10. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    PubMed

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  11. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    PubMed Central

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soileau, S.D.

    Chlordecone (CHLO, 1-30 uM) and chlordecone alcohol (CHLO ALC, 1-23 uM) altered the permeability of isolated ovine erythrocytes (OE) as evidenced by a concentration- and time-dependent induction of K/sup +/ efflux and hemolysis. Hemolysis, but no K/sup +/ efflux, was markedly delayed when OE were suspended in isotonic sucrose. Low concentrations of both compounds (1-4 uM) protected OE against hypotonic hemolysis. Neither CHLO (30 uM) nor CHLO ALC (23 uM) induced the release of trapped K/sup +/ from KSCN-loaded, OE-lipid, unilamellar liposomes. CHLO- and CHLO ACL-induced hemolysis and K/sup +/ efflux were dependent upon the pH of the external media.more » CHLO ALC-induced K/sup +/ efflux and hemolysis showed a slight pH dependence, with increased potency of the compound detected over the pH range 8.3-9.4 CHLO ALC-induced protection against hypotonic hemolysis was pH independent. The potency of CHLO in all three assays decreased as the pH was raised from 6.4 to 9.4. (/sup 14/C)-CHLO and (/sup 14/C)-CHLO ALC binding to OE and OE membranes was pH independent. However, the binding of (/sup 14/C)-CHLO to polypropylene and glass was pH dependent. (/sup 14/C)-CHLO binding to polypropylene and glass decreased from pH 6.4 to pH 10.4. The pKa of CHLO was estimated to be 8.9. After the CHLO results were corrected for the fraction of CHLO present in the unionized form, it was estimated the ionized CHLO possessed 1/3 to 1/20 of the activity of the unionized species.« less

  13. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented.

  14. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.

  16. PH DEPENDENT TOXICITY OF FIVE METALS TO THREE MARINE ORGANISMS

    EPA Science Inventory

    The pH of natural marine systems is relatively stable; this may explain why metal toxicity changes with pH have not been well documented. However, changes in metal toxicity with pH in marine waters are of concern in toxicity testing. During porewater toxicity testing pH can chang...

  17. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses.

    PubMed

    King, Thea; Lucchini, Sacha; Hinton, Jay C D; Gobius, Kari

    2010-10-01

    The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.

  18. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-10-15

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates.

  19. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed Central

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-01-01

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates. PMID:12837132

  20. Functional characterization of transmembrane intracellular pH regulators and mechanism of alcohol-induced intracellular acidosis in human umbilical cord blood stem cell-like cells.

    PubMed

    Tsai, Yi-Ting; Liu, Jah-Yao; Lee, Chung-Yi; Tsai, Chien-Sung; Chen, Ming-Hurng; Ou, Chien-Chih; Chen, Wei-Hwa; Loh, Shih-Hurng

    2011-12-01

    Changing intracellular pH (pHi) exerts considerable influence on many cellular functions. Different pHi regulators, such as the Na-H exchanger (NHE), Na/(Equation is included in full-text article.)symporter, and Cl/OH exchanger (CHE), have been identified in mature mammalian cells. The aims of the present study were to investigate the physiological mechanisms of pHi recovery and to further explore the effects of alcohol on the pHi in human umbilical cord blood CD34 stem cell-like cells (HUCB-CD34STs). HUCB-CD34STs were loaded with the pH-sensitive dye, 2',7'-bis(2-carboxethyl)-5(6)-carboxyfluorescein, to examine pHi. In isolated HUCB-CD34STs, we found that (1) the resting pHi is 7.03 ± 0.02; (2) 2 Na-dependent acid extruders and a Cl-dependent acid loading carrier exist and are functional; (3) alcohol functions in a concentration-dependent manner to reduce pHi and increase NHE activity, but it does not affect CHE activity; and (4) fomepizole, a specific alcohol dehydrogenase inhibitor, does not change the intracellular acidosis and NHE activity-induced by alcohol, whereas 3-amino-1, 2,4-trizole, a specific catalase inhibitor, entirely abolishes these effects. In conclusion, we demonstrate that 2 acid extruders and 1 acid loader (most likely NHE, NBC, and CHE, respectively) functionally existed in HUCB-CD34STs. Additionally, the intracellular acidosis is mainly caused by catalase-mediated alcohol metabolites, which provoke the activity of NHE.

  1. Simultaneous in vitro and in vivo evaluation of both trimethoprim and sulfamethoxazole from certain dosage forms.

    PubMed

    Meshali, M; El-Sabbagh, H; Ghanem, A; Foda, A

    1983-06-01

    The dissolution rates of trimethoprim (T), and sulphamethoxazole (S), from different brands of tablets and suspensions were studied at pH = 1.1 and 7.2. The bioavailabilities of both drugs in humans were studied by the urine excretion method. The dissolution rates were dependent on the pH of the dissolution medium, the solubilities of the drugs at the pH involved, the dosage form and the brand studied. While the dissolution rates of T from all brands studied were consistent with their pH-dependent solubility, those of S were not. The dissolution rates of S from suspensions were found to be equal at pH = 7.2, but different at pH = 1.1. A correlation existed between the dissolution rate of T at pH = 1.1 from tablets and the excretion rate in humans. With S, however, no such correlation was observed at either pH.

  2. Detection of low back pain using pH level-dependent imaging of the intervertebral disc using the ratio of R1ρ dispersion and -OH chemical exchange saturation transfer (RROC).

    PubMed

    Liu, Qi; Tawackoli, Wafa; Pelled, Gadi; Fan, Zhaoyang; Jin, Ning; Natsuaki, Yutaka; Bi, Xiaoming; Gart, Avrom; Bae, Hyun; Gazit, Dan; Li, Debiao

    2015-03-01

    Low pH is associated with intervertebral disc (IVD)-generated low back pain (LBP). The purpose of this work was to develop an in vivo pH level-dependent magnetic resonance imaging (MRI) method for detecting discogenic LBP, without using exogenous contrast agents. The ratio of R1ρ dispersion and chemical exchange saturation transfer (CEST) (RROC) was used for pH-level dependent imaging of the IVD while eliminating the effect of labile proton concentration. The technique was validated by numerical simulations and studies on phantoms and ex vivo porcine spines. Four male (ages 42.8 ± 18.3) and two female patients (ages 55.5 ± 2.1) with LBP and scheduled for discography were examined with the method on a 3.0 Tesla MR scanner. RROC measurements were compared with discography outcomes using paired t-test. Simulation and phantom results indicated RROC is a concentration independent and pH level-dependent technique. Porcine spine study results found higher RROC value was related to lower pH level. Painful discs based on discography had significant higher RROC values than those with negative diagnosis (P < 0.05). RROC imaging is a promising pH level dependent MRI technique that has the potential to be a noninvasive imaging tool to detect painful IVDs in vivo. © 2014 Wiley Periodicals, Inc.

  3. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    PubMed Central

    Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.

    2016-01-01

    Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080

  4. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE PAGES

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora; ...

    2016-01-27

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  5. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  6. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  7. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    PubMed

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH.

    PubMed

    Kumar, Sujeet; Doerrler, William T

    2015-07-01

    The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved but poorly characterized family of membrane proteins. Here, we show that the DedA/Tvp38 protein YqjA is critical for E. coli to survive at pH 8.5 to 9.5. YqjA requires sodium and potassium for this function. At low cation concentrations, osmolytes, including sucrose, can facilitate rescue of E. coli growth by YqjA at high pH. These data are consistent with YqjA functioning as an osmosensing cation-dependent proton transporter. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. pH-Dependent Solution Structure and Activity of a Reduced Form of the Host-Defense Peptide Myticin C (Myt C) from the Mussel Mytilus galloprovincialis

    PubMed Central

    Martinez-Lopez, Alicia; Encinar, Jose Antonio; Medina-Gali, Regla Maria; Balseiro, Pablo; Garcia-Valtanen, Pablo; Figueras, Antonio; Novoa, Beatriz; Estepa, Amparo

    2013-01-01

    Myticin C (Myt C) is a highly variable host-defense peptide (HDP) associated to the immune response in the mediterranean mussel (Mytilus galloprovincialis), which has shown to be active across species due to its strong antiviral activity against a fish rhabdovirus found in fish cells overexpressing this HDP. However, the potential antimicrobial properties of any synthetic analogue of Myt C has not yet been analysed. Thus, in this work we have synthesised the sequence of the mature peptide of Myt C variant c and analysed the structure activity relationships of its reduced (non-oxidized) form (red-MytCc). In contrast to results previously reported for oxidized isoforms of mussel myticins, red-MytCc was not active against bacteria at physiological pH and showed a moderate antiviral activity against the viral haemorrhagic septicaemia (VHS) rhabdovirus. However, its chemotactic properties remained active. Structure/function studies in neutral and acid environments by means of infrared spectroscopy indicated that the structure of red-MytCc is pH dependent, with acid media increasing its alpha-helical content. Furthermore, red-MytCc was able to efficiently aggregate artificial phospholipid membranes at low pH, as well as to inhibit the Escherichia coli growth, suggesting that this activity is attributable to its more structured form in an acidic environment. All together, these results highlight the dynamic and environmentally sensitive behavior of red-Myt C in solution, and provide important insights into Myt C structure/activity relationships and the requirements to exert its antimicrobial/immunomodulatory activities. On the other hand, the pH-dependent direct antimicrobial activity of Myt C suggests that this HDP may be a suitable template for the development of antimicrobial agents that would function selectively in specific pH environments, which are sorely needed in this “antibiotic-resistance era”. PMID:23880927

  10. Complexation Key to a pH Locked Redox Reaction

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman

    2016-01-01

    An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…

  11. Structure of bovine cytochrome c oxidase crystallized at a neutral pH using a fluorinated detergent.

    PubMed

    Luo, Fangjia; Shinzawa-Itoh, Kyoko; Hagimoto, Kaede; Shimada, Atsuhiro; Shimada, Satoru; Yamashita, Eiki; Yoshikawa, Shinya; Tsukihara, Tomitake

    2017-07-01

    Cytochrome c oxidase (CcO) couples proton pumping to O 2 reduction. Its enzymatic activity depends sensitively on pH over a wide range. However, owing to difficulty in crystallizing this protein, X-ray structure analyses of bovine CcO aimed at understanding its reaction mechanism have been conducted using crystals prepared at pH 5.7, which is significantly lower than that in the cell. Here, oxidized CcO at pH 7.3 was crystallized using a fluorinated octyl-maltoside derivative, and the structure was determined at 1.77 Å resolution. No structural differences between crystals obtained at the neutral pH and the acidic pH were detected within the molecules. On the other hand, some differences in intermolecular interactions were detected between the two types of crystal. The influence of pH on the molecular surface is likely to contribute to the pH dependency of the aerobic oxidation of ferrocytochrome c.

  12. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique.

    PubMed

    Kondo, Masahiro; Niwa, Toshiyuki; Okamoto, Hirokazu; Danjo, Kazumi

    2009-07-01

    A spray freeze drying (SFD) method was developed to prepare the composite particles of poorly water-soluble drug. The aqueous solution dissolved drug and the functional polymer was sprayed directly into liquid nitrogen. Then, the iced droplets were lyophilized with freeze-dryer to prepare solid particles. Tolbutamide (TBM) and hydroxypropylmethylcellulose (HPMC) were used as a model drug and water-soluble polymeric carrier in this study, respectively. The morphological observation of particles revealed that the spherical particles having porous structure could be obtained by optimizing the loading amount of drug and polymer in the spray solution. Especially, SFD method was characterized that the prepared particles had significantly larger specific surface area comparing with those prepared by the standard spray drying technique. The physicochemical properties of the resultant particles were found to be dependent on the concentration of spray solution. When the solution with high content of drug and polymer was used, the particle size of the resulting composite particles increased and they became spherical. The specific surface area of the particles also increased as a result of higher concentration of solution. The evaluation of spray solution indicated that these results were dependent on the viscosity of spray solution. In addition, when composite particles of TBM were prepared using the SFD method with HPMC as a carrier, the crystallinity of TBM decreased as the proportion of HPMC increased. When the TBM : HPMC ratio reached 1 : 5, the crystallinity of the particles completely disappeared. The dissolution tests showed that the release profiles of poorly water-soluble TBM from SFD composite particles were drastically improved compared to bulk TBM. The 70% release time T(70) of composite particles prepared by the SFD method in a solution of pH 1.2 was quite smaller than that of bulk TBM, while in a solution of pH 6.8, it was slightly lower. In addition, the release rates were faster than those of standard spray dried (SD) composite particles for solutions of pH 1.2 and 6.8, respectively. When composite particles were prepared from mixtures with various composition ratios, T(70) was found to decrease as the proportion of HPMC increased; the release rate was faster than that of bulk TBM in a solution of pH 6.8, as well as solution of pH 1.2.

  13. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    PubMed

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  14. Optimum Disinfection Properties and Commercially Available Disinfectants

    DTIC Science & Technology

    1989-07-01

    organic constituents that display a chlorine demand.) d. Upon addition to water, the agent should dissolve quickly and release its active ingredient(s...trione pH dependence alkaline pH favored Temperature dependence high at low residual Palatability Taste and odor claimed to be lartgly absent Color...CryptosgortdLjM at various temperature and pH levels. 2. A field procedwu for masueing disinfectant residual is ".eded for chlorin dioaide. 3. Stability

  15. Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation.

    PubMed

    French, Kinsley C; Makhatadze, George I

    2012-12-21

    PAPf39, a 39-residue peptide fragment from human prostatic acidic phosphatase, has been shown to form amyloid fibrils in semen (SEVI), which increase HIV infectivity by up to 5 orders of magnitude. The sequence of the PAPf39 fibrillar core was identified using hydrogen-deuterium exchange (HDX) mass spectrometry and protease protection assays. The central and C-terminal regions are highly protected from HDX and proteolytic cleavage and, thus, are part of the fibrillar core. Conversely, the N-terminal region is unprotected from HDX and proteolytic cleavage, suggesting that it is exposed and not part of the fibrillar core. This finding was tested using two N-terminal truncated variants, PAPf39Δ1-8 and PAPf39Δ1-13. Both variants formed amyloid fibrils at neutral pH. However, these variants showed a markedly different pH dependence of fibril formation versus that of PAPf39. PAPf39 fibrils can form at pH 7.7, but not at pH 5.5 or 2.5, while both N-terminally truncated variants can form fibrils at these pH values. Thus, the N-terminal region is not necessary for fibril formation but modulates the pH dependence of PAPf39 fibril formation. PAPf39Δ1-8 and PAPf39Δ1-13 are capable of seeding PAPf39 fibril formation at neutral pH, suggesting that these variants are structurally compatible with PAPf39, yet no mixed fibril formation occurs between the truncated variants and PAPf39 at low pH. This suggests that pH affects the PAPf39 monomer conformational ensemble, which is supported by far-UV circular dichroism spectroscopy. A conceptual model describing the pH dependence of PAPf39 aggregation is proposed and provides potential biological implications.

  16. Direct comparison of two different mesalamine formulations for the induction of remission in patients with ulcerative colitis: A double-blind, randomized study

    PubMed Central

    Ito, Hiroaki; Iida, Mitsuo; Matsumoto, Takayuki; Suzuki, Yasuo; Sasaki, Hidetaka; Yoshida, Toyomitsu; Takano, Yuichi; Hibi, Toshifumi

    2010-01-01

    Background: Mesalamine is the first-line drug for the treatment of ulcerative colitis (UC). We directly compared the efficacy and safety of two mesalamine formulations for the induction of remission in patients with UC. Methods: In a multicenter, double-blind, randomized study, 229 patients with mild-to-moderate active UC were assigned to 4 groups: 66 and 65 received a pH-dependent release formulation of 2.4 g/day (pH-2.4 g) or 3.6 g/day (pH-3.6 g), respectively; 65 received a time-dependent release formulation of 2.25 g/day (Time-2.25 g), and 33 received placebo (Placebo). The drugs were administered three times daily for eight weeks. The primary endpoint was a decrease in the UC disease activity index (UC-DAI). Results: In the full analysis set (n = 225) the decrease in UC-DAI in each group was 1.5 in pH-2.4 g, 2.9 in pH-3.6 g, 1.3 in Time-2.25 g and 0.3 in Placebo, respectively. These results demonstrate the superiority of pH-3.6 g over Time-2.25 g (P = 0.003) and the noninferiority of pH-2.4 g to Time-2.25 g. Among the patients with proctitis-type UC, a significant decrease in UC-DAI was observed in pH-2.4 g and pH-3.6 g as compared to Placebo, but not in Time-2.25 g. No differences were observed in the safety profiles. Conclusions: Higher dose of the pH-dependent release formulation was more effective for induction of remission in patients with mild-to-moderate active UC. Additionally, the pH-dependent release formulation was preferable to the time-dependent release formulation for patients with proctitis-type UC (UMIN Clinical Trials Registry, no. C000000288). (Inflamm Bowel Dis 2010) PMID:20049950

  17. Direct measurement of the poliovirus RNA polymerase error frequency in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.

    1988-02-01

    The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less

  18. Site specific solubility improvement using solid dispersions of HPMC-AS/HPC SSL--mixtures.

    PubMed

    Zecevic, Damir Elmar; Meier, Robin; Daniels, Rolf; Wagner, Karl-Gerhard

    2014-07-01

    Many upcoming drug candidates are pH-dependent poorly soluble weak bases in the pH range of the gastrointestinal tract. This often leads to a high in vivo variability and bioavailability issues. Aiming to overcome these limitations, the design of solid dispersions for site specific dissolution improvement or maintenance of a potent supersaturation over the entire gastro-intestinal pH-range, is proposed to assure a reliable drug therapy. Solid dispersions containing different ratios of Dipyridamole (DPD) or Griseofulvin (GRI) and the enteric polymer hydroxypropylmethylcellulose-acetate succinate (HPMC-AS) and the water soluble low-viscosity hydroxypropylcellulose (HPC-SSL) were prepared by hot melt extrusion (HME). The solid dispersions were evaluated for their solid state, dissolution characteristics applying a three pH-step dissolution method following an acidic to neutral pH transition and stability. The use of HPMC-AS in binary mixtures with DPD and GRI facilitated increased solubility and supersaturation at pH-controlled release of the preserved amorphous state of the dispersed drug, which even inverted the pH-dependent solubility profile of the weakly basic model drug (Dipyridamole). I.e. a potent site specific delivery system was created. With ternary solid dispersions of API, HPMC-AS and HPC-SSL, tailored release profiles with superior supersaturation over the applied pH-range could be obtained. At the same time, binary and ternary mixtures showed favorable stability properties at a temperature difference between glass transition temperature and the applied storage temperature of down to 16°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. pH-dependent electron-transport properties of carbon nanotubes.

    PubMed

    Back, Ju Hee; Shim, Moonsub

    2006-11-30

    Carbon nanotube electrochemical transistors integrated with microfluidic channels are utilized to examine the effects of aqueous electrolyte solutions on the electron-transport properties of single isolated carbon nanotubes. In particular, pH and concentration of supporting inert electrolytes are examined. A systematic threshold voltage shift with pH is observed while the transconductance and subthreshold swing remain independent of pH and concentration. Decreasing pH leads to a negative shift of the threshold voltage, indicating that protonation does not lead to hole doping. Changing the type of contact metal does not alter the observed pH response. The pH-dependent charging of SiO2 substrate is ruled out as the origin based on measurements with suspended nanotube transistors. Increasing the ionic strength leads to reduced pH response. Contributions from possible surface chargeable chemical groups are considered.

  20. Studies on the extraction of nitrogenous and phosphorus-containing materials from the seeds of kidney beans (Phaseolus vulgaris)

    PubMed Central

    Pusztai, A.

    1965-01-01

    1. The conditions of extracting nitrogenous, phosphorus-containing and glucosamine-containing components of the seeds of kidney bean have been studied. 2. The dispersing of proteins was incomplete below pH 7, and the exact amount of protein extracted depended on the pH and the ionic strength of the solvent. 3. The extraction of proteins was practically complete in the range pH 7–9, but the relative amounts of the individual proteins obtained still depended on the pH of the extracting media, indicating a pH-dependent association–dissociation reaction between the protein molecules present. 4. The extraction of phosphorus-containing material showed an optimum at pH 6–7, and only a part of this was removed on dialysis. The precipitates obtained with trichloroacetic acid, on the other hand, retained very little phosphorus-containing material. 5. The significance of these findings is discussed. PMID:14340051

  1. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release.

    PubMed

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji

    2017-07-01

    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Isotherm modeling of organic activated bentonite and humic acid polymer used as mycotoxin adsorbents.

    PubMed

    Santos, R R; Vermeulen, S; Haritova, A; Fink-Gremmels, J

    2011-11-01

    The aim of the current study was to evaluate and compare two representative samples of different classes of adsorbents intended for use as feed additives in the prevention or reduction of the adverse effects exerted by mycotoxins, specifically ochratoxin A (OTA) and zearalenone (ZEN). The adsorbents, an organically activated bentonite (OAB) and a humic acid polymer (HAP), were tested in a common in vitro model with a pH course comparing the maximum pH changes that can be expected in the digestive system of a monogastric animal, i.e. pH 7.4 for the oral cavity, pH 3.0 for the stomach, and pH 8.4 for the intestines. In the first experiment, the concentration-dependent adsorbent capacity of OAB and HAB were tested using a fixed concentration of either mycotoxin. Thereafter, adsorption was evaluated applying different isotherms models, such as Freundlich, Langmuir, Brunauer-Emmett-Teller (BET) and Redlich-Peterson, to characterize the adsorption process as being either homo- or heterogeneous and representing either mono- or multilayer binding. At the recommended statutory level for the mycotoxins of 0.1 mg kg(-1) OTA and 0.5 mg kg(-1) ZEN, OAB showed an adsorbed capacity of >96% towards both mycotoxins, regardless of the pH. The HAP product was also able to absorb >96% of both mycotoxins at pH 3.0, but extensive desorption occurred at pH 8.4. Based on χ-square (χ(2)) values, Langmuir and Redlich-Peterson equations proved to be the best models to predict monolayer equilibrium sorption of OTA and ZEN onto the organically activated bentonite and the humic acid polymer. The applied methodology has a sufficient robustness to facilitate further comparative studies with different mycotoxin-adsorbing agents.

  3. Synergetic effect of pH and biochemical components on bacterial diversity during mesophilic anaerobic fermentation of biomass-origin waste.

    PubMed

    Lü, F; Shao, L M; Bru, V; Godon, J J; He, P J

    2009-02-01

    To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro-organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.

  4. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. pH dependent unfolding characteristics of DLC8 dimer: Residue level details from NMR.

    PubMed

    Mohan, P M Krishna; Hosur, Ramakrishna V

    2008-11-01

    Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.

  6. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent.

    PubMed

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E; Sherry, A Dean

    2016-06-01

    This study explored the feasibility of using a pH responsive paramagnetic chemical exchange saturation transfer (paraCEST) agent to image the pH gradient in kidneys of healthy mice. CEST signals were acquired on an Agilent 9.4 Tesla small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min postinjection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. Magn Reson Med 75:2432-2441, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Potentiometric and Relaxometric Properties of a Gadolinium-based MRI Contrast Agent for Sensing Tissue pH

    PubMed Central

    Kálmán, Ferenc K.; Woods, Mark; Caravan, Peter; Jurek, Paul; Spiller, Marga; Tircsó, Gyula; Király, Róbert; Brücher, Ernő; Sherry, A. Dean

    2008-01-01

    The pH sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during preparation of GdDOTA, we tentatively assign this to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of pH dependent change in relaxivity of Gd1 was found to be less than earlier reported (S. Zhang, K. Wu, and A. D. Sherry, Angew. Chem., Int. Ed., 1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the NMRD and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side-chains enables rapid prototropic exchange between the single bound water of the complex with those of the bulk water thereby giving Gd1 a unique pH dependent relaxivity that is quite useful for pH mapping of tissues by MRI. PMID:17539632

  8. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

    PubMed

    Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho

    2014-01-01

    Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

  9. Inositol Pentakisphosphate Isomers Bind PH Domains with Varying Specificity and Inhibit Phosphoinositide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Jackson; S Al-Saigh; C Schultz

    2011-12-31

    PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similaritymore » of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathway.« less

  10. S-Adenosylmethionine decarboxylase from human prostate. Activation by putrescine

    PubMed Central

    Zappia, Vincenzo; Cartenì-Farina, Maria; Pietra, Gennaro Della

    1972-01-01

    1. The presence of S-adenosylmethionine decarboxylase in human prostate gland is reported. A satisfactory radiochemical enzymic assay was developed and the enzyme was partially characterized. 2. Putrescine stimulates the reaction rate by up to 6-fold at pH7.5: the apparent activation constant was estimated to be 0.13mm. The stimulation is pH-dependent and a maximal effect is observed at acid pH values. 3. Putrescine activation is rather specific: other polyamines, such as spermidine and spermine, did not show any appreciable effect. 4. The apparent Km for the substrate is 4×10−5m. The calculated S-adenosylmethionine content of human prostate (0.18μmol/g wet wt. of tissue) demonstrates that the cellular amounts of sulphonium compound are saturating with respect to the enzyme. 5. The enzyme is moderately stable at 0°C and is rapidly inactivated at 40°C. The optimum pH is about 7.5, with one-half of the maximal activity occurring at pH6.6. 6. Several carboxy-14C-labelled analogues and derivatives of S-adenosylmethionine were tested as substrates. The enzyme appears to be highly specific: the replacement of the 6′-amino group of the sulphonium compound alone results in a complete loss of activity. 7. Inhibition of the enzyme activity by several carbonyl reagents suggests an involvement of either pyridoxal phosphate or pyruvate in the catalytic process. 8. The inhibitory effect of thiol reagents indicates the presence of `essential' thiol groups. PMID:4658995

  11. Purification, characterization, molecular cloning and extracellular production of a phospholipase A1 from Streptomyces albidoflavus NA297.

    PubMed

    Sugimori, Daisuke; Kano, Kota; Matsumoto, Yusaku

    2012-01-01

    A novel metal ion-independent phospholipase A1 of Streptomyces albidoflavus isolated from Japanese soil has been purified and characterized. The enzyme consists of a 33-residue N-terminal signal secretion sequence and a 269-residue mature protein with a deduced molecular weight of 27,199. Efficient and extracellular production of the recombinant enzyme was successfully achieved using Streptomyces lividans cells and an expression vector. A large amount (25 mg protein, 14.7 kU) of recombinant enzyme with high specific activity (588 U/mg protein) was purified by simple purification steps. The maximum activity was found at pH 7.2 and 50 °C. At pH 7.2, the enzyme preferably hydrolyzed phosphatidic acid and phosphatidylserine; however, the substrate specificity was dependent on the reaction pH. The enzyme hydrolyzed lysophosphatidylcholine and not triglyceride and the p-nitrophenyl ester of fatty acids. At the reaction equilibrium, the molar ratio of released free fatty acids (sn-1:sn-2) was 63:37. The hydrolysis of phosphatidic acid at 50 °C and pH 7.2 gave apparent V max and k cat values of 1389 μmol min(-1) mg protein(-1) and 630 s(-1), respectively. The apparent K m and k cat/K m values were 2.38 mM and 265 mM(-1) s(-1), respectively. Mutagenesis analysis showed that Ser11 is essential for the catalytic function of the enzyme and the active site may include residues Ser216 and His218.

  12. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    PubMed

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only ~3 mg l-1 of purified humic acid. Destruction by UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only approx. 3 mg l-1 of purified humic acid. Destruction of UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from the static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.

  14. Solubility relationships of aluminum and iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.

    1988-06-01

    The ability to properly manage the oxidation of pyritic minerals and associated acid mine drainage is dependent upon understanding the chemistry of the disposal environment. One accepted disposal method is placing pyritic-containing materials in the groundwater environment. The objective of this study was to examine solubility relationships of Al and Fe minerals associated with pyritic waste disposed in a low leaching aerobic saturated environment. Two eastern oil shales were used in this oxidizing equilibration study, a New Albany Shale (unweathered, 4.6 percent pyrite), and a Chattanooga Shale (weathered, 1.5 percent pyrite). Oil shale samples were equilibrated with distilled-deionized water from 1 to 180 d with a 1∶1 solid-to-solution ratio. The suspensions were filtered and the clear filtrates were analyzed for total cations and anions. Ion activities were calculated from total concentrations. Below pH 6.0, depending upon SO{4/2-} activity, Al3+ solubility was controlled by AlOHSO4 (solid phase) for both shales. Initially, Al3+ solubility for the New Albany Shale showed equilibrium with amorphous Al(OH)3. The pH decreased with time, and Al3+ solubility approached equilibrium with AlOHSO4(s). Below pH 6.0, Fe3+ solubility appeared to be regulated by a basic iron sulfate solid phase with the stoichiometric composition of FeOHSO4(s). The results of this study indicate that below pH 6.0, Al3+ solubilities, are limited by basic Al and Fe sulfate solid phases (AlOHSO4(s) and FeHSO4(s)). The results from this study further indicate that the acidity in oil shale waters is produced from the hydrolysis of Al3+ and Fe3+ activities in solution. These results indicate a fundamental change in the stoichiometric equations used to predict acidity from iron sulfide oxidation. The results of this study also indicate that water quality predictions associated with acid mine drainage can be based on fundamental thermodynamic relationships. As a result, waste management decisions can be based on waste-specific/site-specific test methods.

  15. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  16. Proton modulation of recombinant GABAA receptors: influence of GABA concentration and the β subunit TM2–TM3 domain

    PubMed Central

    Wilkins, Megan E; Hosie, Alastair M; Smart, Trevor G

    2005-01-01

    Regulation of GABAA receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABAA receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both αβ and αβγ subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the β subunit TM2–TM3 linker, was critically important for alkaline pH to modulate the function of both α1β2 and α1β2γ2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABAA receptors was also examined at acidic pH. At pH 6.4, GABA activation of αβγ receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the β subunit. Decreasing the pH further to 5.4 inhibited GABA responses via αβγ receptors, whereas those responses recorded from αβ receptors were potentiated. Inserting homologous β subunit residues into the γ2 subunit to recreate, in αβγ receptors, the proton modulatory profile of αβ receptors, established that in the presence of β2H267, the mutation γ2T294K was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the β subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABAA receptor. PMID:15946973

  17. Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus.

    PubMed

    Kim, Kyung Hyun; Jia, Baolei; Jeon, Che Ok

    2017-01-01

    Halobacillus halophilus , a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1 H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus , was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus . Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli . The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster ( pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria.

  18. Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus

    PubMed Central

    Kim, Kyung Hyun; Jia, Baolei; Jeon, Che Ok

    2017-01-01

    Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus, was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus. Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli. The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster (pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria. PMID:29104571

  19. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.

    PubMed

    el-Ziney, M G; De Meyer, H; Debevere, J M

    1997-03-03

    The influence of different organic acids (lactic, acetic, formic and propionic acids) at equimolar concentrations of undissociated acid with pH range of 3.9, 5.8, on the aerobic and anaerobic growth and survival kinetics of the virulent strain of Y. enterocolitica IP 383 0:9, was determined in tryptone soy broth at 4 degrees C. Growth and survival data were analyzed and fitted by a modification of the Whiting and Cygnarowicz-Provost model, using the Minpack software library. Initial generation times, initial specific growth rates, lag time and dead rate were subsequently calculated from the model parameters. The results demonstrate that the inhibitory effects of the acids were divided into two categories dependent upon pH. At high pH (5.8) the order of inhibition was formic acid > acetic acid > propionic acid > lactic acid, whereas at lower pH it became formic acid > lactic acid > acetic acid > propionic acid. The inhibitory effect of lactic acid is enhanced under anaerobic condition. Nevertheless, when the organism was cultured anaerobically, it was shown to be more tolerant to formic and acetic acids. Moreover, these variables (type of organic acid, pH and atmosphere) did not lead to the loss of the virulence plasmid in growing and surviving cells. The mechanism of inhibitory effect for each of the acids are also discussed.

  20. Longitudinal meta-analysis of NIST pH Standard Reference Materials(®): a complement to pH key comparisons.

    PubMed

    Pratt, Kenneth W

    2015-04-01

    This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).

  1. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  2. Characterization of Functional Antibody and Memory B-Cell Responses to pH1N1 Monovalent Vaccine in HIV-Infected Children and Youth

    PubMed Central

    Curtis, Donna J.; Muresan, Petronella; Nachman, Sharon; Fenton, Terence; Richardson, Kelly M.; Dominguez, Teresa; Flynn, Patricia M.; Spector, Stephen A.; Cunningham, Coleen K.; Bloom, Anthony; Weinberg, Adriana

    2015-01-01

    Objectives We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. Methods Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. Results At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. Conclusions HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response to the vaccine was dependent on B-cell subset distribution, but not on CD4 counts or viral load. Trial Registration ClinicalTrials.gov NCT00992836 PMID:25785995

  3. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling.

    PubMed

    Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie

    2003-12-05

    Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.

  4. HIF evaluation of In-Situ Aqua TROLL 400

    USGS Publications Warehouse

    Tillman, Evan F.

    2017-10-18

    The In-Situ Aqua TROLL 400 (Aqua TROLL 400) was tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the Aqua TROLL 400’s operating temperature to verify the manufacturer’s stated accuracy specifications and the USGS recommendations for pH, dissolved oxygen (DO), and specific conductance (SC). The Aqua TROLL 400 manufacturer’s specifications are within the USGS recommendations for all parameters tested, except for DO, which is outside the USGS recommendation at DO concentrations of 8.0 milligrams per liter (mg/L) and higher. The Aqua TROLL 400 was compliant with Serial Digital Interface at 1200 baud (SDI-12) version 1.3. During laboratory testing of pH, the Aqua TROLL 400 sonde met the U.S. Geological Survey “National Field Manual for the Collection of Water-Quality Data” (NFM) recommendations for pH at all values tested, except at 4 degrees Celsius (°C) at pH 9.395 and pH 3.998. The Aqua TROLL 400 met the manufacturer specifications for pH at all values tested, except for pH buffers 3.998, 9.395, and 10.245 at 4 °C; pH 2.990 and 3.998 at 15 °C; and pH 3.040 at 40 °C. The Aqua TROLL 400 met the NFM recommendations at 93.7 percent of the SC values tested and met the manufacturer’s accuracy specifications at 56.3 percent of the SC values tested. During the laboratory testing for DO, the Aqua TROLL 400 met the manufacturer specifications, except at 5.55 mg/L, and met the NFM recommendations at all concentrations tested. An Aqua TROLL 400 was field tested at USGS Station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River for 6 weeks and showed good agreement with the well-maintained site sonde data for pH, DO, temperature, and SC.

  5. Species Differences in Human and Rodent PEPT2-Mediated Transport of Glycylsarcosine and Cefadroxil in Pichia Pastoris Transformants

    PubMed Central

    Song, Feifeng; Hu, Yongjun; Jiang, Huidi

    2017-01-01

    The proton-coupled oligopeptide transporter PEPT2 (SLC15A2) plays an important role in the disposition of di/tripeptides and peptide-like drugs in kidney and brain. However, unlike PEPT1 (SLC15A1), there is little information about species differences in the transport of PEPT2-mediated substrates. The purpose of this study was to determine whether PEPT2 exhibited a species-dependent uptake of glycylsarcosine (GlySar) and cefadroxil using yeast Pichia pastoris cells expressing cDNA from human, mouse, and rat. In such a system, the functional activity of PEPT2 was evaluated with [3H]GlySar as a function of time, pH, substrate concentration, and specificity, and with [3H]cefadroxil as a function of concentration. We observed that the uptake of GlySar was pH-dependent with an optimal uptake at pH 6.5 for all three species. Moreover, GlySar showed saturable uptake kinetics, with Km values in human (150.6 µM) > mouse (42.8 µM) ≈ rat (36.0 µM). The PEPT2-mediated uptake of GlySar in yeast transformants was specific, being inhibited by di/tripeptides and peptide-like drugs, but not by amino acids and nonsubstrate compounds. Cefadroxil also showed a saturable uptake profile in all three species, with Km values in human (150.8 μM) > mouse (15.6 μM) ≈ rat (11.9 μM). These findings demonstrated that the PEPT2-mediated uptake of GlySar and cefadroxil was specific, species dependent, and saturable. Furthermore, based on the Km values, mice appeared similar to rats but both were less than optimal as animal models in evaluating the renal reabsorption and pharmacokinetics of peptides and peptide-like drugs in humans. PMID:27836942

  6. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization

    PubMed Central

    2016-01-01

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick’s law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid–liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine–saccharin (CBZ-SAC) and carbamazepine–salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals. PMID:26877267

  7. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    PubMed

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  8. Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1.

    PubMed

    Hiramatsu, Hirotsugu; Takeuchi, Katsuyuki; Takeuchi, Hideo

    2013-04-02

    The pH dependence of the β-galactoside binding activity of human galectin-1 (hGal-1) was investigated by fluorescence spectroscopy using lactose as a ligand. The obtained binding constant Kb was 2.94 ± 0.10 mM(-1) at pH 7.5. The Kb value decreased at acidic pH with a midpoint of transition at pH 6.0 ± 0.1. To elucidate the molecular mechanism of the pH dependence, we investigated the structures of hGal-1 and its two His mutants (H44Q and H52Q) using fluorescence, circular dichroism, UV absorption, and UV resonance Raman spectroscopy. Analysis of the spectra has shown that the pKa values of His44 and His52 are 5.7 ± 0.2 and 6.3 ± 0.1, respectively. The protonation of His52 below pH 6.3 induces a small change in secondary structure and partly reduces the galactoside binding activity. On the other hand, the protonation of His44 below pH 5.7 exerts a cation-π interaction with Trp68 and largely diminishes the galactoside binding activity. With reference to the literature X-ray structures at pH 7.0 and 5.6, protonated His52 is proposed to move slightly away from the galactoside-binding region with a partial unfolding of the β-strand containing His52. On the other hand, protonated His44 becomes unable to form a hydrogen bond with galactoside and additionally induces a reorientation and/or displacement of Trp68 through cation-π interaction, leading to a loosening of the galactoside-binding pocket. These structural changes associated with His protonation are likely to be the origin of the pH dependence of the galactoside binding activity of hGal-1.

  9. Remote-loading labeling of liposomes with (99m)Tc-BMEDA and its stability evaluation: effects of lipid formulation and pH/chemical gradient.

    PubMed

    Li, Shihong; Goins, Beth; Phillips, William T; Bao, Ande

    2011-03-01

    Efficient, convenient, and stable radiolabeling plays a critical role for the monitoring of liposome behavior via either blood sampling, organ distribution, or noninvasive nuclear imaging. The direct labeling of liposome-carrying drugs without any prior modification undoubtedly is convenient and optimal for liposomal drug testing. In this article, we investigated the effect of various lipid formulations and pH/chemical gradients on the radiolabeling efficiency and entrapment stability of technetium-99m ((99m)Tc) remotely loaded into liposomes, using (99m)Tc-N,N-bis(2-mercaptoethyl)-N',N'-diethyl-ethylenediamine ((99m)Tc-BMEDA) complex. The tested liposomes either contained unsaturated lipid or possessed various surface charges. (99m)Tc could be efficiently loaded into various premanufactured liposomes containing either an ammonium sulfate pH, citrate pH, or glutathione (GSH) chemical gradient. (99m)Tc-entrapment stabilities of these liposomes in phosphate-buffered saline (PBS; pH 7.4) buffer at 25°C were mainly dependent on the pH/chemical gradient, but not lipid formulation. Stability sequence was ammonium sulfate pH-gradient>citrate pH-gradient>GSH-gradient. Stabilities of (99m)Tc-liposomes in 50% fetal bovine serum (FBS)/PBS (pH 7.4) buffer at 37°C are dependent on both lipid formulation and pH/chemical gradient. Specifically, (99m)Tc labeling of the ammonium sulfate pH-gradient liposomes were less stable in 50% FBS/PBS than in PBS, whereas noncationic liposomes with citrate pH- or GSH-gradient displayed higher stability, except that anionic citrate pH-gradient liposomes showed no stability difference in these two media. Cationic liposomes aggregated in 50% FBS/PBS, forming a new discrete fraction with larger particle sizes. These in vitro characterization results have indicated the optimism of using (99m)Tc-BMEDA for labeling pH/GSH gradient liposomes without the requirement of modifying lipid formulation for liposomal therapeutic-agent development.

  10. Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage.

    PubMed

    Oliva, J; Cama, J; Cortina, J L; Ayora, C; De Pablo, J

    2012-04-30

    Apatite II™ is a biogenic hydroxyapatite (expressed as Ca(5)(PO(4))OH) derived from fish bone. Using grains of Apatite II™ with a fraction size between 250 and 500 μm, batch and flow-through experiments were carried out to (1) determine the solubility constant for the dissolution reaction Ca(5)(PO(4))(3)(OH) ⇔ 5Ca(2+) + 3PO(4)(3-) + OH(-), (2) obtain steady-state dissolution rates over the pH range between 2.22 and 7.14, and (3) study the Apatite II™'s mechanisms to remove Pb(2+), Zn(2+), Mn(2+), and Cu(2+) from metal polluted water as it dissolves. The logK(S) value obtained was -50.8±0.82 at 25 °C. Far-from-equilibrium fish-bone hydroxyapatite dissolution rates decrease by increasing pH. Assuming that the dissolution reaction is controlled by fast adsorption of a proton on a specific surface site that dominates through the pH range studied, probably ≡PO(-), followed by a slow hydrolysis step, the dissolution rate dependence is expressed in mol m(-2) s(-1) as where Rate(25 °C) = -8.9 × 10(-10) × [9.96 × 10(5) × a(H+)]/[1 + 9.96 × 10(5) × a(H+)] where a(H+) is the proton activity in solution. Removal of Pb(2+), Zn(2+), Mn(2+) and Cu(2+) was by formation of phosphate-metal compounds on the Apatite II™ substrate, whereas removal of Cd(2+) was by surface adsorption. Increase in pH enhanced the removal of aqueous heavy metals. Using the kinetic parameters obtained (e.g., dissolution rate and pH-rate dependence law), reactive transport simulations reproduced the experimental variation of pH and concentrations of Ca, P and toxic divalent metal in a column experiment filled with Apatite II™ that was designed to simulate the Apatite II™-metal polluted water interaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Bimodal MR-PET agent for quantitative pH imaging

    PubMed Central

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  12. FAST TRACK COMMUNICATION Spectral signatures of the surface reconstructions of Au(110)/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.

    2010-10-01

    It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).

  13. Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence.

    PubMed

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Nunn, Nicholas; Shenderova, Olga A; Gibson, Brant C

    2018-02-06

    Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles' absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.

  14. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    PubMed

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties.

    PubMed

    ter Laak, Thomas L; Gebbink, Wouter A; Tolls, Johannes

    2006-04-01

    Environmental exposure assessment of veterinary pharmaceuticals requires estimating the sorption to soil. Soil sorption coefficients of three common, ionizable, antimicrobial agents (oxytetracycline [OTC], tylosin [TYL], and sulfachloropyridazine [SCP]) were studied in relation to the soil properties of 11 different soils. The soil sorption coefficient at natural pH varied from 950 to 7,200, 10 to 370, and 0.4 to 35 L/kg for OTC, TYL, and SCP, respectively. The variation increased by almost two orders of magnitude for OTC and TYL when pH was artificially adjusted. Separate soil properties (pH, organic carbon content, clay content, cation-exchange capacity, aluminum oxyhydroxide content, and iron oxyhydroxide content) were not able to explain more than half the variation observed in soil sorption coefficients. This reflects the complexity of the sorbent-sorbate interactions. Partial-least-squares (PLS) models, integrating all the soil properties listed above, were able to explain as much as 78% of the variation in sorption coefficients. The PLS model was able to predict the sorption coefficient with an accuracy of a factor of six. Considering the pH-dependent speciation, species-specific PLS models were developed. These models were able to predict species-specific sorption coefficients with an accuracy of a factor of three to four. However, the species-specific sorption models did not improve the estimation of sorption coefficients of species mixtures, because these models were developed with a reduced data set at standardized aqueous concentrations. In conclusion, pragmatic approaches like PLS modeling might be suitable to estimate soil sorption for risk assessment purposes.

  16. Concentration dependences of the physicochemical properties of a water-acetone system

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.

    2017-01-01

    Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.

  17. INFLUENCE OF PH AND REDOX CONDITIONS ON COPPER LEACHING

    EPA Science Inventory

    Leaching behavior of metals from a mineral processing waste at varying pH and redox conditions was studies. Effect of combinations of pH and Eh on leaching of copper is described. Leaching of copper was found to be dependent on both pH and Eh. Higher concentrations of Cu were ...

  18. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  19. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.

    PubMed

    Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi

    2017-02-01

    The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm -1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.

  20. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    PubMed

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  1. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.

    PubMed

    Komonweeraket, Kanokwan; Cetin, Bora; Benson, Craig H; Aydilek, Ahmet H; Edil, Tuncer B

    2015-04-01

    Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2-14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sedimentation equilibrium of a small oligomer-forming membrane protein: effect of histidine protonation on pentameric stability.

    PubMed

    Surya, Wahyu; Torres, Jaume

    2015-04-02

    Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.

  3. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.

    PubMed

    Serrano, Raquel; Martín, Humberto; Casamayor, Antonio; Ariño, Joaquín

    2006-12-29

    Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.

  4. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    PubMed

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  5. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2.

    PubMed

    Su, Hanrui; Yu, Chunyang; Zhou, Yongfeng; Gong, Lidong; Li, Qilin; Alvarez, Pedro J J; Long, Mingce

    2018-05-02

    Tetra-amido macrocyclic ligand (TAML) activator is a functional analog of peroxidase enzymes, which activates hydrogen peroxide (H 2 O 2 ) to form high valence iron-oxo complexes that selectively degrade persistent aromatic organic contaminants (ACs) in water. Here, we develop quantitative structure-activity relationship (QSAR) models based on measured pseudo first-order kinetic rate coefficients (k obs ) of 29 ACs (e.g., phenols and pharmaceuticals) oxidized by TAML/H 2 O 2 at neutral and basic pH values to gain mechanistic insight on the selectivity and pH dependence of TAML/H 2 O 2 systems. These QSAR models infer that electron donating ability (E HOMO ) is the most important AC characteristic for TAML/H 2 O 2 oxidation, pointing to a rate-limiting single-electron transfer (SET) mechanism. Oxidation rates at pH 7 also depend on AC reactive indices such as f min - and qH + , which respectively represent propensity for electrophilic attack and the most positive net atomic charge on hydrogen atoms. At pH 10, TAML/H 2 O 2 is more reactive towards ACs with a lower hydrogen to carbon atoms ratio (#H:C), suggesting the significance of hydrogen atom abstraction. In addition, lnk obs of 14 monosubstituted phenols is negatively correlated with Hammett constants (σ) and exhibits similar sensitivity to substituent effects as horseradish peroxidase. Although accurately predicting degradation rates of specific ACs in complex wastewater matrices could be difficult, these QSAR models are statistically robust and help predict both relative degradability and reaction mechanism for TAML/H 2 O 2 -based treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.

    PubMed

    Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T

    2006-05-01

    A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.

  7. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  8. Inhibition of DNA-Dependent Protein Kinase Activity for Breast Cancer Therapy

    DTIC Science & Technology

    2002-06-01

    Dependent Protein Kinase Activity for Breast Cancer Therapy PRINCIPAL INVESTIGATOR: Chin-Rang Yang, Ph.D. CONTRACTING ORGANIZATION: University of Rochester...Activity for Breast Cancer Therapy 6. AUTHOR(S) Chin-Rang Yang, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...The formation of DNA double strand breaks (DSBs) correlates well with lethality of cancer cells following ionizing radiation (IR). The DNA-dependent

  9. A long-term stability study of Prussian blue: A quality assessment of water content and cesium binding.

    PubMed

    Mohammad, Adil; Yang, Yongsheng; Khan, Mansoor A; Faustino, Patrick J

    2015-01-25

    Prussian blue (PB) is the active pharmaceutical ingredient (API) of Radiogardase, the first approved medical countermeasure for the treatment of radiocesium poisoning in the event of a major radiological incident such as a "dirty bomb" or nuclear attack. The purpose of this study is to assess the long-term stability of Prussian blue drug products (DPs) and APIs under laboratory storage condition by monitoring the loss in water content and the in vitro cesium binding. The water content was measured by thermal gravimetric analysis (TGA). The in-vitro cesium binding study was conducted using a surrogate model to mimic gastric residence and intestinal transport. Free cesium was analyzed using a validated flame atomic emission spectroscopy (AES) method. The binding equilibrium was reached at 24h. The Langmuir isotherm was plotted to calculate the maximum binding capacity (MBC). Comparison of the same PB samples with 2003 data samples, the water content of both APIs and DPs decreased on an average by approximately 12-24%. Consequently, the MBC of cesium was decreased from 358mg/g in 2003 to 265mg/g @ pH 7.5, a decrease of approximately 26%. The binding of cesium is also pH dependent with lowest binding at pH 1.0 and maximum binding at pH 7.5. At pH 7.5, the amount of cesium bound decreased by an average value of 7.9% for APIs and 8.9% for DPs (for 600ppm initial cesium concentration). These findings of water loss, pH dependence and decrease in cesium binding are consistent with our previously published data in 2003. Over last 10 years the stored DPs and APIs of PB have lost about 20% of water which has a negative impact on the PB cesium binding, however PB still meets the FDA specification of >150mg/g at equilibrium. The study is the first quantitative assessment of the long-term stability of PB and directs that proper long-term and short-term storage of PB is required to ensure that it is safe and efficacious at the time of an emergency situation. Published by Elsevier B.V.

  10. An EPR study of the pH dependence of formate effects on Photosystem II.

    PubMed

    Jajoo, Anjana; Katsuta, Nobuhiro; Kawamori, Asako

    2006-04-01

    Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.

  11. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.

  12. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways. PMID:27921082

  13. Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ Single-Pass Perfusion Studies in Wild-Type and Pept1 Knockout Mice

    PubMed Central

    Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun

    2010-01-01

    The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs. PMID:20660104

  14. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility.

    PubMed

    Taniguchi, Chika; Kawabata, Yohei; Wada, Koichi; Yamada, Shizuo; Onoue, Satomi

    2014-04-01

    Drug release and oral absorption of drugs with pH-dependent solubility are influenced by the conditions in the gastrointestinal tract. In some cases, poor oral absorption has been observed for these drugs, causing insufficient drug efficacy. The pH-modification of a formulation could be a promising approach to overcome the poor oral absorption of drugs with pH-dependent solubility. The present review aims to summarize the pH-modifier approach and strategic analyses of microenvironmental pH for formulation design and development. We also provide literature- and patent-based examples of the application of pH-modification technology to solid dosage forms. For the pH-modification approach, the microenvironmental pH at the diffusion area can be altered by dissolving pH-modifying excipients in the formulation. The modulation of the microenvironmental pH could improve dissolution behavior of drugs with pH-dependent solubility, possibly leading to better oral absorption. According to this concept, the modulated level of microenvironmental pH and its duration can be key factors for improvement in drug dissolution. The measurement of microenvironmental pH and release of pH-modifier would provide theoretical insight for the selection of an appropriate pH-modifier and optimization of the formulation.

  15. Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix).

    PubMed

    Klomklao, Sappasith; Benjakul, Soottawat; Visessanguan, Wonnop; Kishimura, Hideki; Simpson, Benjamin K

    2007-12-01

    Trypsin was purified from the pyloric caeca of bluefish (Pomatomus saltatrix) by ammonium sulfate precipitation, acetone precipitation and soybean trypsin inhibitor-Sepharose 4B affinity chromatography. Bluefish trypsin migrated as a single band using both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native-PAGE and had a molecular mass of 28 kDa. The optima pH and temperature for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide (BAPNA) were 9.5 and 55 degrees C, respectively. The enzyme was stable over a broad pH range (7 to 12), but was unstable at acidic pH, and at temperatures greater than 40 degrees C. The enzyme was inhibited by specific trypsin inhibitors: soybean trypsin inhibitor (SBTI), N-p-tosyl-l-lysine chloromethyl ketone (TLCK) and the serine protease inhibitor phenylmethyl sulfonylfluoride (PMSF). CaCl2 partially protected trypsin against activity loss at 40 degrees C, but NaCl (0 to 30%) decreased the activity in a concentration dependent manner. The N-terminal amino acid sequence of trypsin was determined as IVGGYECKPKSAPVQVSLNL and was highly homologous to other known vertebrate trypsins.

  16. The diphtheria toxin transmembrane domain as a pH sensitive membrane anchor for human interleukin-2 and murine interleukin-3.

    PubMed

    Liger, D; Nizard, P; Gaillard, C; vanderSpek, J C; Murphy, J R; Pitard, B; Gillet, D

    1998-11-01

    We have constructed two fusion proteins T-hIL-2 and T-mIL-3 in which human interleukin-2 (hIL-2) or murine interleukin-3 (mIL-3) are fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). Two additional fusion proteins, T-(Gly4-Ser)2-hIL-2 and T-(Gly4-Ser)2-mIL-3, were derived by introduction of the (Gly4-Ser)2 spacer between the T domain and cytokine components. Recognition of the hIL-2 receptor or the mIL-3 receptor by the corresponding recombinant proteins was demonstrated by their capacity to stimulate cytokine-dependent cell lines. All proteins retained the capacity of the T domain to insert into phospholipid membranes at acidic pH. Finally, anchoring of both cytokines to the membrane of lipid vesicles or living cells was assessed by specific antibody recognition. Our results show that the T domain fused to the N-terminus of a given protein can function as a pH sensitive membrane anchor for that protein.

  17. Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres

    PubMed Central

    Acosta, Niuris; Sánchez, Elisa; Calderón, Laura; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Dom, Senne; Heras, Ángeles

    2015-01-01

    A chitosan-based hydrophilic system containing an olive leaf extract was designed and its antioxidant capacity was evaluated. Encapsulation of olive leaf extract in chitosan microspheres was carried out by a spray-drying process. The particles obtained with this technique were found to be spherical and had a positive surface charge, which is an indicator of mucoadhesiveness. FTIR and X-ray diffraction results showed that there are not specific interactions of polyphenolic compounds in olive leaf extract with the chitosan matrix. Stability and release studies of chitosan microspheres loaded with olive leaf extract before and after the incorporation into a moisturizer base were performed. The resulting data showed that the developed formulations were stable up to three months. The encapsulation efficiency was around 44% and the release properties of polyphenols from the microspheres were found to be pH dependent. At pH 7.4, polyphenols release was complete after 6 h; whereas the amount of polyphenols released was 40% after the same time at pH 5.5. PMID:26389926

  18. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification

    PubMed Central

    Cole, Nelson B.; DiEuliis, Diane; Leo, Paul; Mitchell, Drake C.; Nussbaum, Robert L.

    2008-01-01

    Mitochondrial dysfunction plays a central role in the selective vulnerability of dopaminergic neurons in Parkinson’s disease (PD) and is influenced by both environmental and genetic factors. Expression of the PD protein α-synuclein or its familial mutants often sensitizes neurons to oxidative stress and to damage by mitochondrial toxins. This effect is thought to be indirect, since little evidence physically linking α-synuclein to mitochondria has been reported. Here, we show that the distribution of α-synuclein within neuronal and non-neuronal cells is dependent on intracellular pH. Cytosolic acidification induces translocation of α-synuclein from the cytosol onto the surface of mitochondria. Translocation occurs rapidly under artificially-induced low pH conditions and as a result of pH changes during oxidative or metabolic stress. Binding is likely facilitated by low pH-induced exposure of the mitochondria-specific lipid cardiolipin. These results imply a direct role for α-synuclein in mitochondrial physiology, especially under pathological conditions, and in principle, link α-synuclein to other PD genes in regulating mitochondrial homeostasis. PMID:18440504

  19. Methylation stabilizes the imino tautomer of dAMP and amino tautomer of dCMP in solution.

    PubMed

    Jayanth, Namrata; Puranik, Mrinalini

    2011-05-19

    Alkylating agents cause methylation of adenosine and cytidine in DNA to generate 1-methyladenosine and 3-methylcytidine. These modified nucleosides can serve as regulators of cells or can act as agents of mutagenesis depending on the context and the partner enzymes. Solution structures and the chemical interactions with enzymes that lead to their recognition are of inherent interest. At physiological pH, 1-methyladenosine and 3-methylcytidine are presumed to be in the protonated amino forms in the literature. We report the structures, ionization states, and UV resonance Raman spectra of both substrates over a range of pH (2.5-11.0). The Raman excitation wavelength was tuned to selectively enhance Raman scattering from the nucleobase (260 nm) and further specifically from the imino form (210 nm) of 1-me-dAMP. We find that contrary to the general assumption, 1-me-dAMP is present in its neutral imino form at physiological pH and 3-me-dCMP is in the amino form. © 2011 American Chemical Society

  20. Folding and Aggregation of Mucin Domains.

    NASA Astrophysics Data System (ADS)

    Urbanc, Brigita; Bansil, Rama; Turner, Bradley

    2007-03-01

    Mucin glycoproteins consist of tandem repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin via disulfide bonds and play an important role in the pH dependent gelation of gastric mucin, which is essential to protecting the stomach from autodigestion. We have examined the folding and aggregation of the non-repetitive sequence of von Willebrand factor vWF-C1 domain (67 amino acids) and PGM 2X (242 amino acids) using Discrete Molecular Dynamics (four-bead protein model with hydrogen bonding and amino acid-specific hydrophobic/hydrophilic and electrostatic interactions of side chains). Simulations of vWF C1 show 4-6 β-strands separated by turns/loops with more loops at lower pH. A simulation of several vWF C1 proteins at low pH shows aggregates still with a high content of β-strands and enhanced turn/loop regions. For the PGM 2X simulation the contact map shows several salt bridges enclosing hairpin turns. The implications of these simulations for describing the aggregation/gelation of PGM will be discussed.

  1. Cancer Survival Estimates Due to Non-Uniform Loss to Follow-Up and Non-Proportional Hazards

    PubMed

    K M, Jagathnath Krishna; Mathew, Aleyamma; Sara George, Preethi

    2017-06-25

    Background: Cancer survival depends on loss to follow-up (LFU) and non-proportional hazards (non-PH). If LFU is high, survival will be over-estimated. If hazard is non-PH, rank tests will provide biased inference and Cox-model will provide biased hazard-ratio. We assessed the bias due to LFU and non-PH factor in cancer survival and provided alternate methods for unbiased inference and hazard-ratio. Materials and Methods: Kaplan-Meier survival were plotted using a realistic breast cancer (BC) data-set, with >40%, 5-year LFU and compared it using another BC data-set with <15%, 5-year LFU to assess the bias in survival due to high LFU. Age at diagnosis of the latter data set was used to illustrate the bias due to a non-PH factor. Log-rank test was employed to assess the bias in p-value and Cox-model was used to assess the bias in hazard-ratio for the non-PH factor. Schoenfeld statistic was used to test the non-PH of age. For the non-PH factor, we employed Renyi statistic for inference and time dependent Cox-model for hazard-ratio. Results: Five-year BC survival was 69% (SE: 1.1%) vs. 90% (SE: 0.7%) for data with low vs. high LFU respectively. Age (<45, 46-54 & >54 years) was a non-PH factor (p-value: 0.036). However, survival by age was significant (log-rank p-value: 0.026), but not significant using Renyi statistic (p=0.067). Hazard ratio (HR) for age using Cox-model was 1.012 (95%CI: 1.004 -1.019) and the same using time-dependent Cox-model was in the other direction (HR: 0.997; 95% CI: 0.997- 0.998). Conclusion: Over-estimated survival was observed for cancer with high LFU. Log-rank statistic and Cox-model provided biased results for non-PH factor. For data with non-PH factors, Renyi statistic and time dependent Cox-model can be used as alternate methods to obtain unbiased inference and estimates. Creative Commons Attribution License

  2. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.

    PubMed

    Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M

    2000-07-01

    The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.

  3. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, S.; Kawahara, T; Beltramini, M

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less

  4. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39.

    PubMed

    Ganay, Thibault; Asraf, Hila; Aizenman, Elias; Bogdanovic, Milos; Sekler, Israel; Hershfinkel, Michal

    2015-12-01

    Synaptically released Zn(2+) acts as a neurotransmitter, in part, by activating the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39). In previous work using epithelial cells, we described crosstalk between Zn(2+) signaling and changes in intracellular pH and/or extracellular pH (pHe). As pH changes accompany neuronal activity under physiological and pathological conditions, we tested whether Zn(2+) signaling is involved in regulation of neuronal pH. Here, we report that up-regulation of a major H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), is induced by mZnR/GPR39 activation in an extracellular-regulated kinase 1/2-dependent manner in hippocampal neurons in vitro. We also observed that changes in pHe can modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. Similarly, Zn(2+)-dependent extracellular-regulated kinase 1/2 phosphorylation and up-regulation of NHE activity were absent at acidic pHe. Thus, our results suggest that when pHe is maintained within the physiological range, mZnR/GPR39 activation can up-regulate NHE-dependent recovery from intracellular acidification. During acidosis, as pHe drops, mZnR/GPR39-dependent NHE activation is inhibited, thereby attenuating further H(+) extrusion. This mechanism may serve to protect neurons from excessive decreases in pHe. Thus, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain. We show that the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39) activation induces up-regulation of a major neuronal H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), thereby enhancing neuronal recovery from intracellular acidification. Changes in extracellular pH (pHe), however, modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. This mechanism may serve to protect neurons from excessive decreases in pHe during acidosis. Hence, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain. © 2015 International Society for Neurochemistry.

  5. Whitefly feeding behavior and retention of a foregut-borne crinivirus exposed to artificial diets with different pH values.

    PubMed

    Zhou, Jaclyn S; Chen, Angel Y S; Drucker, Martin; Lopez, Nicole H; Carpenter, Alyssa; Ng, James C K

    2017-12-01

    Transmission of plant viruses by phytophagous hemipteran insects encompasses complex interactions underlying a continuum of processes involved in virus acquisition, retention and inoculation combined with vector feeding behavior. Here, we investigated the effects of dietary pH on whitefly (Bemisia tabaci) feeding behavior and release of Lettuce infectious yellows virus (LIYV) virions retained in the vector's foregut. Electrical penetration graph analysis revealed that variables associated with whitefly probing and ingestion did not differ significantly in pH (4, 7.4, and 9) adjusted artificial diets. To investigate virus retention and release, whiteflies allowed to acquire LIYV virions in a pH 7.4 artificial diet were fed pH 4, 7.4, or 9 virion-free artificial (clearing) diets. Immunofluorescent localization analyses indicated that virions remained bound to the foreguts of approximately 20%-24% of vectors after they fed on each of the 3 pH-adjusted clearing diets. When RNA preparations from the clearing diets were analyzed by reverse transcription (RT) nested-PCR and, in some cases, real-time qPCR, successful amplification of LIYV-specific sequence was infrequent but consistently repeatable for the pH 7.4 diet but never observed for the pH 4 and 9 diets, suggesting a weak pH-dependent effect for virion release. Viruliferous vectors that fed on each of the 3 pH-adjusted clearing diets transmitted LIYV to virus-free plants. These results suggest that changes in pH values alone in artificial diet do not result in observable changes in whitefly feeding behaviors, an observation that marks a first in the feeding of artificial diet by whitefly vectors; and that there is a potential causal and contingent relationship between the pH in artificial diet and the release/inoculation of foregut bound virions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harter, C.; Baechi, T.S.; Semenza, G.

    1988-03-22

    To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) and a new analogue of a phospholipid, 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-/sup 3/H) undecanoyl)-sn-glycero-3-phosphocholine ((/sup 3/H)-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with (/sup 125/I)TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes ismore » mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.« less

  9. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.

    PubMed

    Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W

    2012-02-07

    Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.

  10. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    PubMed Central

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  11. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

    PubMed

    Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L

    2014-11-04

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.

  12. Dural stimulation in rats causes BDNF-dependent priming to subthreshold stimuli including a migraine trigger

    PubMed Central

    Burgos-Vega, Carolina C.; Quigley, Lilyana D.; Avona, Amanda; Price, Theodore; Dussor, Gregory

    2016-01-01

    Migraine is one of the most common and most disabling disorders. Between attacks, migraine patients are otherwise normal but are sensitized to non-noxious events known as triggers. The purpose of these studies was to investigate whether a headache-like event causes sensitization, or priming, to subsequent subthreshold events. Interleukin-6 (IL-6) was applied to the rat cranial dura mater which produced cutaneous facial and hindpaw allodynia that lasted 24 hours. At 72-hours, IL-6 treated rats developed allodynia in response to dural stimulation with either a pH 6.8 or pH 7.0 solution and to a systemic nitric oxide (NO) donor, a well-known migraine trigger. Vehicle-treated rats did not respond to either pH stimulus nor to the NO donor, demonstrating that IL-6 exposure primes rats to subthreshold stimuli. Inhibitors of brain-derived neurotrophic factor (BDNF) signaling given either systemically or intracisternally 24-hours after IL-6 eliminated responses to dural pH stimulation at 72 hours. Additionally, intracisternal administration of BDNF without prior dural stimulation produced allodynia and once resolved, animals were primed to dural pH 6.8/pH 7.0 and a systemic NO donor. Finally, hindpaw IL-6 produced paw allodynia but not priming to paw injection of pH 7.0 at 72 hours demonstrating differences in priming depending on location. These data indicate that afferent input from the meninges produces BDNF-dependent priming of the dural nociceptive system. This primed state mimics the interictal period of migraine where attacks can be triggered by normally non-noxious events and suggests that BDNF-dependent plasticity may contribute to migraine. PMID:27841839

  13. Buffer capacity of the coelomic fluid in echinoderms.

    PubMed

    Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe

    2013-09-01

    The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH7.7 but not for those at pH7.4. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Microbial Ecology and Process Technology of Sourdough Fermentation.

    PubMed

    De Vuyst, Luc; Van Kerrebroeck, Simon; Leroy, Frédéric

    2017-01-01

    From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Calcium phosphate formation due to pH-induced adsorption/precipitation switching along salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-07-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation along salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a P-unenriched site. To improve analytical specificity, octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite; CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Sediment pH primarily affected P fractions across ecosystems and independent of the P status. Increasing pH caused a pronounced downstream transition from adsorbed Al/Fe-P to mineral Ca-P. Downstream decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. This marked upstream-to-downstream switch occurred at near-neutral sediment pH and was enhanced by increased P loads. Accordingly, the site comparison indicated two location-dependent accumulation mechanisms at the P-enriched site, which mainly resulted in elevated Al/Fe-P at pH < 6.6 (upstream; adsorption) and elevated Ca-P at pH > 6.6 (downstream; precipitation). Enhanced Ca-P precipitation by increased loads was also evident from disproportional accumulation of metastable Ca-P (Ca-PMmeta). The average Ca-Pmeta concentration was six-fold, whereas total Ca-P was only twofold higher at the P-enriched site compared to the P-unenriched site. Species concentrations showed that these largely elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP due to decreasing acidity from land to the sea. Formation of OCP and CFAP results in P retention in coastal zones, which may lead to substantial inorganic P accumulation by anthropogenic P input in near-shore sediments.

  16. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH

    NASA Astrophysics Data System (ADS)

    Varshney, G. K.; Kintali, S. R.; Gupta, P. K.; Das, K.

    2017-02-01

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p6 (Cp6). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp6 significantly enhanced the transport of LDS at pH 4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH 7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects.

  17. Detection and characterization of uranium-humic complexes during 1D transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesher, Emily K.; Honeyman, Bruce D.; Ranville, James F.

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity andmore » residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.« less

  18. An enzyme kinetics study of the pH dependence of chloride activation of oxygen evolution in photosystem II.

    PubMed

    Baranov, Sergei; Haddy, Alice

    2017-03-01

    Oxygen evolution by photosystem II (PSII) involves activation by Cl - ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na 2 SO 4 /pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl - binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl - at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl - activation, K S , was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK a s were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I , was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na 2 SO 4 /pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O 2 evolution activity than has been previously presented.

  19. HNO and NO release from a primary amine-based diazeniumdiolate as a function of pH

    PubMed Central

    Salmon, Debra J.; Torres de Holding, Claudia L.; Thomas, Lynta; Peterson, Kyle V.; Goodman, Gens P.; Saavedra, Joseph E.; Srinivasan, Aloka; Davies, Keith M.; Keefer, Larry K.; Miranda, Katrina M.

    2011-01-01

    The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH3)2CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli’s salt (Na2N2O3). The decomposition mechanism of Angeli’s salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N2). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli’s salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor. PMID:21405089

  20. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    PubMed

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  1. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    PubMed Central

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  3. Quantifying Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction.

    PubMed

    Ryu, Jaeyune; Wuttig, Anna; Surendranath, Yogesh

    2018-05-15

    We quantify changes in the interfacial pH local to the electrochemical double layer during electrocatalysis, using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with a selectivity that is linearly dependent on the bulk solution pH. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH within molecular length scales of the surface. We use the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and find that the local pH can vary dramatically, > 3 units, relative to the bulk value even at modest current densities in well-buffered electrolytes. This work highlights the key role that interfacial pH variation plays in modulating inner-sphere electrocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  5. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  6. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    NASA Astrophysics Data System (ADS)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  7. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    PubMed

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  8. Preparing "Chameleon Balls" from Natural Plants: Simple Handmade pH Indicator and Teaching Material for Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Kanda, Naoki; Asano, Takayuki; Itoh, Toshiyuki; Onoda, Makoto

    1995-12-01

    Anthocyanins are found in the flowers and fruits of natural plants. Since their color depends on pH, they are sometines used as a pH indicator. Since these sequences are reversible, they are also useful in demonstrating chemical equilibrium in the repetitive color changes of anthocyanins from flowers by controlling pH conditions. We prepared the polysaccharide beads conatining water extracts of red cabbage as calcium alginate. The beads showed a clear red color under acidic conditions, turned blue at neutral pH of 7, and orange-yellow at pH of 13. This color change could be demonstrated over and over. Because the color changes of these polysaccharide beads depended darmatically on pH, junior high students in science classes called them "chameleon balls" when we demonstrated this reaction for them. In this paper we describe how polysaccharide beads, which are made from calcium alginate with natural pigments, served as a teaching tool for the chemical equilibrium of anthocyanins under different pH conditions. Preparation of the chameleon ball is very easy. The most important thing is that making the chameleon ball is great fun. The ball should therefore be viewed not only as a handmade pH indicator but also an interesting teaching tool of the chemical equilibrium reaction.

  9. The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails.

    PubMed

    Biswas, C; Mandal, C

    1999-02-01

    Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.

  10. Effects of pH on transport properties of articular cartilages.

    PubMed

    Loret, Benjamin; Simões, Fernando M F

    2010-02-01

    Articular cartilages swell and shrink depending on the ionic strength of the electrolyte they are in contact with. This electro-chemo-mechanical coupling is due to the presence of fixed electrical charges on proteoglycans (PGs). In addition, at nonphysiological pH, collagen fibers become charged. Therefore, variation of the pH of the electrolyte has strong implications on the electrical charge of cartilages and, by the same token, on their transport and mechanical properties. Articular cartilages are viewed as three-phase multi-species porous media. The constitutive framework is phrased in the theory of thermodynamics of porous media. Acid-base reactions, as well as calcium binding, are embedded in this framework. Although macroscopic in nature, the model accounts for a number of biochemical details defining collagen and PGs. The change of the electrical charge is due to the binding of hydrogen ions on specific sites of PGs and collagen. Simulations are performed mimicking laboratory experiments where either the ionic strength or the pH of the bath, the cartilage piece is in contact with, is varied. They provide the evolutions of the chemical compositions of mobile ions, of the sites of acid-base reactions and calcium binding, and of the charges of collagen and glycosaminoglycans, at constant volume fraction of water. Emphasis is laid on the effects of pH, ionic strength and calcium binding on the transport properties of cartilages, and, in particular, on the electrical conductivity and electro-osmotic coefficient.

  11. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor implanted inside the esophagus. Our pH electrode can monitor the pH changes of gastric juice in real time when the reflux happening in the esophagus. Our micro flexible pH sensor performed clear responses in each distinct pH reflux episode quickly and accurately comparing with the other commercial pH monitoring system. For the food freshness monitoring applications, we used the flexible pH sensor as a freshness indicator to monitor the pH changing profile during the food spoilage procedure. The sensor was then embedded with radio frequency identification (RFID) based passive telemetry enabling remote monitoring of food freshness. In the result, our pH-wireless RFID system presented 633Hz/pH of the sensitivity in the frequency calibration. The calibration of stability and dynamical response of the RFID system were also demonstrated before the test on food freshness monitoring. Finally, a white fish meat for long term spoilage procedure monitoring was applied and tested by using our wireless IrOx pH sensing system. Our RFID pH sensing module is able to monitor, collect and transmit the pH information continuously for 18 hours during the food spoilage procedure. In this dissertation, a micro size of IrOx/AgCl pH sensor was fabricated on a flexible substrate. The physical properties of the IrO x thin film was verified in the work. The different sensing capability such as the sensitivity, stability, reversibility, response time, repeatability, selectivity, and temperature dependence was then demonstrated in this work. After the different in-vitro tests, the pH sensor were embedded with our passive RFID circuitry for the in-vivo GERD diagnosis and food freshness monitoring application. Our wireless pH sensing system was able to deliver the accurate and quick pH sensing data wirelessly. In conclusion, our deformable IrOx pH electrodes have been demonstrated with the advantages of accommodating and conforming sensors in small spaces or curved surfaces. This miniature IrOx pH sensor can respond to distinct potentials of the various pH levels as traditional glass electrodes, however, the miniature, bio-compatible and flexible substrate and the ability to be integrated in batterryless telemetry enable the pH sensor to be applied on many new medical, bio-chemical and biological field.

  12. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  13. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

    PubMed Central

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-01-01

    Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010

  14. pH-sensitive optrode

    DOEpatents

    Hirschfeld, Tomas B.; Wang, Francis T.

    1989-01-01

    An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage betwen the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH.

  15. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    PubMed

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-05

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.

    PubMed

    Wang, Suowei; Hu, Jun; Li, Jiaxing; Dong, Yunhui

    2009-08-15

    This work contributed to the adsorption of Pb(II) onto GMZ bentonite in the absence and presence of soil humic acid (HA)/fulvic acid (FA) using a batch technique. The influences of pH from 2 to 12, ionic strengths from 0.004M to 0.05M NaNO(3), soil HA/FA concentrations from 1.6 mg/L to 20mg/L, foreign cations (Li+, Na+, K+), anions (Cl(-), NO(3)(-)), and addition sequences on the adsorption of Pb(II) onto GMZ bentonite were tested. The adsorption isotherms of Pb(II) were determined at pH 3.6+/-0.1 and simulated with the Langmuir, Freundlich, and D-R adsorption models, respectively. The results demonstrated that the adsorption of Pb(II) onto GMZ bentonite increased with increasing pH from 2 to 6. HA was shown to enhance Pb(II) adsorption at low pH, but to reduce Pb(II) adsorption at high pH, whereas FA was shown to decrease Pb(II) adsorption at pH from 2 to 11. The results also demonstrated that the adsorption was strongly dependent on ionic strength and slightly dependent on the concentration of HA/FA. The adsorption of Pb(II) onto GMZ bentonite was dependent on foreign ions in solution. The addition sequences of bentonite/Pb(II)/HA had no effect on the adsorption of Pb(II).

  17. Dependence of precipitation of trace elements on pH in standard water

    NASA Astrophysics Data System (ADS)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  18. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  19. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.

    PubMed

    Glaser, T A; Mukkada, A J

    1992-03-01

    Amastigotes of Leishmania donovani develop and multiply within the acidic phagolysosomes of mammalian macrophages. Isolated amastigotes are acidophilic; they catabolize substrates and synthesize macromolecules optimally at pH 5.5. Substrate transport in amastigotes has not been characterized. Here we show that amastigotes exhibit an uphill transport of proline (active transport) with an acid pH optimum (pH 5.5). It is dependent upon metabolic energy and is driven by proton motive force. Agents which selectively disturb the component forces of proton motive force, such as carbonyl cyanide chlorophenylhydrazone, nigericin and valinomycin, inhibit proline transport. Transport is sensitive to dicyclohexylcarbodiimide and insensitive to ouabain, demonstrating the involvement of a proton ATPase in the maintenance of proton motive force. It is suggested that the plasma membrane pH gradient probably makes the greatest contribution to proton motive force that drives substrate transport in the amastigote stage.

  20. Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus.

    PubMed

    Kristiansen, Marianne; Frøystad, Marianne K; Rishovd, Anne Lise; Gjøen, Tor

    2002-11-01

    Infectious salmon anaemia virus (ISAV) infects cells via the endocytic pathway and, like many other enveloped viruses, ISAV contains a receptor-destroying enzyme. We have analysed this acetylesterase activity with respect to substrate specificity, enzyme kinetics, inhibitors, temperature and pH stability. The ISAV acetylesterase was inhibited by di-isopropyl fluorophosphate (DFP) in a dose-dependent fashion but not by other known hydrolase inhibitors, suggesting that a serine residue is part of the active site. The pH optimum of the enzyme was in the range 7.5-8.0 and the enzymatic activity was lessened at temperatures above 40 degrees C. The effect of DFP on agglutination/elution of erythrocytes by ISAV demonstrated that the acetylesterase activity is the bona fide receptor-destroying enzyme. A haemadsorption assay was used to analyse whether the esterase was active on the surface of infected cells or not.

  1. Tracking the Growth Transitions of A Solvent-Charged Model Globular Protein

    NASA Astrophysics Data System (ADS)

    Babcock, Jeremiah; Friday, Jacob; Brancaleon, Lorenzo

    2011-03-01

    Biophysical studies have shown that solutes like proteins undergo aggregation through specific pathways that often lead to long polymeric structures called fibrils. The knowledge of the size of early-stage protein aggregates (oligomers) has an important bearing on the elucidation of the dynamics of the process of protein unit combinations. In this study, bovine serum albumin, a well-characterized model protein known to polymerize in alkaline and acidic conditions in the normal (N) to basic (B) or (N) to (E) transition, was incubated at pH 9.0 and pH 3.1 for longer than eight days. Particle growth in solution was monitored by absorption, fluorescence and circular dichroism spectroscopy and concurrently measured by atomic force microscopy (AFM) methods to yield BSA oligomer size distributions. Results show that the BSA aggregation pathway is concentration-dependent and rapidly forms spherical aggregates, which preferentially come together to form flexible polymers.

  2. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  3. Assembly and Immunological Processing of Polyelectrolyte Multilayers Composed of Antigens and Adjuvants.

    PubMed

    Chiu, Yu-Chieh; Gammon, Joshua M; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M

    2016-07-27

    While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.

  4. The AMPK-v-ATPase-pH axis: A key regulator of the pro-fibrogenic phenotype of human hepatic stellate cells.

    PubMed

    Marrone, Giusi; De Chiara, Francesco; Böttcher, Katrin; Levi, Ana; Dhar, Dipok; Longato, Lisa; Mazza, Giuseppe; Zhang, Zhenzhen; Marrali, Martina; Iglesias, Anabel Fernández-; Hall, Andrew; Luong, Tu Vinh; Viollet, Benoit; Pinzani, Massimo; Rombouts, Krista

    2018-04-17

    Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSC) which is associated with higher intracellular pH (pHi). The vacuolar H + adenosine-tri-phosphatase (v-ATPase) multi-subunit complex is a key regulator of intracellular pH homeostasis. The present work was aimed at investigating the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific AMPK subunits. Here, we demonstrated that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSC, compared to non-activated hHSC. Specific inhibition of v-ATPase with Bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and a lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with Diflunisal, A769662 and ZLN024, reduced the expression of v-ATPase subunits and pro-fibrogenic markers. V-ATPase expression was differently regulated by AMPKα1 and AMPKα2, as demonstrated in mouse embryo fibroblasts (MEF) specific deficient for AMPKα subunits. In addition, the activation of v-ATPase in hHSC was shown to be AMPKα1 dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSC prevented v-ATPase downregulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from Bile Duct Ligated mice and in human cirrhotic livers. The down-regulation of v-ATPase might represent a new promising target for the development of anti-fibrotic strategies. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  5. Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change

    PubMed Central

    Borda, Emily J.; Markley, John C.; Sigurdsson, Snorri Th.

    2003-01-01

    We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site is observed in proximity to the U4 cleavage site in either of the crystal structures, point toward a pH-dependent conformational change in the hammerhead ribozyme. We have described previously Zn2+-dependent cleavage between G8 and A9 in the hammerhead ribozyme and have discovered that U4 cleavage occurs only after A9 cleavage. To our knowledge, this is the first example of sequential cleavage events as a possible regulatory mechanism in ribozymes. PMID:12736309

  6. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding.

    PubMed

    Frantz, Christian; Barreiro, Gabriela; Dominguez, Laura; Chen, Xiaoming; Eddy, Robert; Condeelis, John; Kelly, Mark J S; Jacobson, Matthew P; Barber, Diane L

    2008-12-01

    Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.

  7. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  8. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production.

    PubMed

    Reynal, Anna; Pastor, Ernest; Gross, Manuela A; Selim, Shababa; Reisner, Erwin; Durrant, James R

    2015-08-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye ( RuP ) and a nickel bis(diphosphine) electrocatalyst ( NiP ) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H 2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP - NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP , which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP - NiP photocatalytic system, which can be widely applied to other photocatalytic systems.

  9. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    PubMed

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  10. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W5O18)2]9- form stable, high relaxivity MRI contrast agents.

    PubMed

    Ly, Joanne; Li, Yuhuan; Vu, Mai N; Moffat, Bradford A; Jack, Kevin S; Quinn, John F; Whittaker, Michael R; Davis, Thomas P

    2018-04-19

    Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.

  11. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition.

    PubMed

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-11-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.

  12. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  13. Computational Tools for Interpreting Ion Channel pH-Dependence

    PubMed Central

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  14. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Xu, Peng; Kemp, Brandon A; Carlson, Julia M; Tran, Hanh T; Bigler Wang, Dora; Langouët-Astrié, Christophe J; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2018-01-01

    Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A (HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was abolished by HNF4A antagonists. NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.

  15. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  16. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    NASA Astrophysics Data System (ADS)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional occupancies. The pH dependent sorption determined for trace Zn concentrations showed large Rd values across the entire pH range with almost no dependence on the background electrolyte concentration. Additional sorption experiments carried out at substantial fractional Zn loadings demonstrated that the selectivity for the exchange of Na+ for Zn2+ at the planar sites could not explain the large Rd values measured at low pH and trace Zn concentrations. This suggests that another mechanism is ruling Zn uptake under these conditions.

  17. Anilinomethylrhodamines: pH sensitive probes with tunable photophysical properties by substituent effect.

    PubMed

    Best, Quinn A; Liu, Chuangjun; van Hoveln, Paul D; McCarroll, Matthew E; Scott, Colleen N

    2013-10-18

    A series of pH dependent rhodamine analogues possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These anilinomethylrhodamines (AnMR) maintain a colorless, nonfluorescent spirocyclic structure at high pH. The spirocyclic structures open in mildly acidic conditions and are weakly fluorescent; however, at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation.

  18. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface.

    PubMed

    Ambrosio, Francesco; Wiktor, Julia; Pasquarello, Alfredo

    2018-03-28

    We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pH PZC , and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO 4 (010)-water interface, yields a pH PZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p K a values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.

  19. Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds.

    PubMed

    Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit

    2011-07-01

    A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  20. pH-activatable nanoparticles for tumor-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Karen C.

    To address the need for a tumor-specific drug delivery system that can achieve both prolonged circulation and cellular retention at the tumor site, nanocomplexes of Zwitterionic Chitosan (ZWC) and Polyamidoamine (PAMAM) generation 5 were designed. Polyamidoamine (PAMAM) dendrimers have been widely explored as carriers of therapeutics and imaging agents, however, amine-terminated PAMAM dendrimers are rarely utilized in systemic applications due to its cytotoxicity and risk of opsonization, caused by its cationic charge. Such undesirable effects may be mitigated by shielding the PAMAM dendrimer surface with polymers that reduce the charges. However, this shielding may also interfere with PAMAM dendrimers' ability to interact with target cells, thus reducing cellular uptake and overall efficacy of the delivery system. ZWC, a new chitosan derivative, has a unique pH-sensitive charge profile and can shield the cationic surface of PAMAM dendrimers and block adsorption of serum proteins to allow for prolonged circulation. The hypothesis of this approach is that ZWC is anionic and able to coat PAMAM in neutral pH but becomes positive in the acidic tumor microenvironment, revealing the polycationic drug carrier. We expect that ZWC will provide (i) stealth coating for PAMAM drug carrier during circulation (pH 7.4) and (ii) be removed from the PAMAM drug carrier at acidic pH (pH ~6.3), allowing for cellular interaction. The cationic charge of PAMAM has been demonstrated to facilitate uptake and drug delivery to tumor cells via interactions with the negatively charged cell surface. Stable electrostatic complexes of ZWC and PAMAM dendrimers were formed at pH 7.4, as demonstrated by fluorescence spectroscopy and transmission electron microscopy. The presence of ZWC coating protected red blood cells and fibroblast cells from hemolytic and cytotoxic activities of PAMAM dendrimers, respectively. Confocal microscopy showed that the protective effect of ZWC disappeared at low pH as the complex dissociated due to the charge conversion of ZWC, allowing PAMAM dendrimers to enter cells. These results demonstrate that ZWC is able to provide a surface coverage of PAMAM dendrimers in a pH-dependent manner and, thus, enhance the utility of PAMAM dendrimers as a drug carrier to solid tumors with acidifying microenvironment. Paclitaxel, curcumin, and camptothecin were evaluated as model drugs for use in ZWC(PAMAM) drug carrier based on bioactivity against SKOV-3 ovarian cancer cells and drug loading and release. Stability of nanocarriers in circulation is a requirement for successful tumor-specific drug release. Strategies to improve the stability of ZWC(PAMAM) NPs were also explored and evaluated.

  1. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates.

    PubMed

    Gutsche, S; Krause, M; Kranz, H

    2008-12-01

    Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.

  2. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix andmore » in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less

  3. Pathways of proton release in the bacteriorhodopsin photocycle

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Varo, G.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The pH dependencies of the rate constants in the photocycles of recombinant D96N and D115N/D96N bacteriorhodopsins were determined from time-resolved difference spectra between 70 ns and 420 ms after photoexcitation. The results were consistent with the model suggested earlier for proteins containing D96N substitution: BR hv----K----L----M1----M2----BR. Only the M2----M1 back-reaction was pH-dependent: its rate increased with increasing [H+] between pH 5 and 8. We conclude from quantitative analysis of this pH dependency that its reverse, the M1----M2 reaction, is linked to the release of a proton from a group with a pKa = 5.8. This suggests a model for wild-type bacteriorhodopsin in which at pH greater than 5.8 the transported proton is released on the extracellular side from this as yet unknown group and on the 100-microseconds time scale, but at pH less than 5.8, the proton release occurs from another residue and later in the photocycle most likely directly from D85 during the O----BR reaction. We postulate, on the other hand, that proton uptake on the cytoplasmic side will be by D96 and during the N----O reaction regardless of pH. The proton kinetics as measured with indicator dyes confirmed the unique prediction of this model: at pH greater than 6, proton release preceded proton uptake, but at pH less than 6, the release was delayed until after the uptake. The results indicated further that the overall M1----M2 reaction includes a second kinetic step in addition to proton release; this is probably the earlier postulated extracellular-to-cytoplasmic reorientation switch in the proton pump.

  4. Urinalysis: MedlinePlus Health Topic

    MedlinePlus

    ... Urine odor (Medical Encyclopedia) Also in Spanish Urine pH test (Medical Encyclopedia) Also in Spanish Urine specific gravity ... Urine - abnormal color Urine - bloody Urine odor Urine pH test Urine specific gravity test Show More Show Less ...

  5. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons

    PubMed Central

    Niemeyer, María Isabel; Cid, L Pablo; Yusef, Yamil R; Briones, Rodolfo; Sepúlveda, Francisco V

    2009-01-01

    The ClC transport protein family comprises both Cl− ion channel and H+/Cl− and H+/NO3− exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl− passage and in addition serves as a staging post for H+ exchange. This same conserved glutamate acts as a gate to regulate Cl− flow in ClC channels. The activity of ClC-2, a genuine Cl− channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than ∼7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl− acts as a voltage-independent modulator, as though regulating the pKa of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl− efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts. PMID:19153159

  6. Structural Insights into the Phospholipid Binding Specificity of Human Evectin-2

    NASA Astrophysics Data System (ADS)

    Okazaki, Seiji; Kato, Ryuichi; Wakatsuki, Soichi; Uchida, Yasunori; Taguchi, Tomohiko; Arai, Hiroyuki

    Evectin-2 is a recycling endosomal protein and plays an essential role in retrograde transport from recycling endosomes to the trans-Golgi network. The pleckstrin homology (PH) domain of Evectin-2 can specifically binds to phosphatidylserine (PS), which is enriched in recycling endosomes. To elucidate the molecular mechanism how it specifically binds to PS, we solved the crystal structures of human Evectin-2 PH domain for apo and O-phospho-L-serine complexed forms at 1.75 and 1.00 Å resolution, respectively. These structural analyses clearly show that PS-induced conformational change of Evectin-2 PH domain effectively explains the strict phospholipid binding specificity.

  7. A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures.

    PubMed

    Wang, Ping; Xia, Zhiwei; Yan, Juan; Liu, Xunwei; Yao, Guangbao; Pei, Hao; Zuo, Xiaolei; Sun, Gang; He, Dannong

    2015-04-21

    We monitored the shrink and stretch of the tetrahedral DNA nanostructure (TDN) and the i-motif connected TDN structure at pH 8.5 and pH 4.5, and we found that not only the i-motif can change its structure when the pH changes, but also the TDN and the DNA double helix change their structures when the pH changes.

  8. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    PubMed

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fermentation pH Modulates the Size Distributions and Functional Properties of Gluconobacter albidus TMW 2.1191 Levan

    PubMed Central

    Ua-Arak, Tharalinee; Jakob, Frank; Vogel, Rudi F.

    2017-01-01

    Bacterial levan has gained an increasing interest over the last decades due to its unique characteristics and multiple possible applications. Levan and other exopolysaccharides (EPSs) production are usually optimized to obtain the highest concentration or yield while a possible change of the molecular size and mass during the production process is mostly neglected. In this study, the molar mass and radius of levan samples were monitored during fermentations with the food-grade, levan-producing acetic acid bacterium Gluconobacter (G.) albidus TMW 2.1191 in shake flasks (without pH control) and bioreactors (with pH control at 4.5, 5.5 and 6.5, respectively). In uncontrolled fermentations, the levan size/molar mass continuously decreased concomitantly with the continuous acidification of the nutrient medium. On the contrary, the amount, molar mass and size of levan could be directly influenced by controlling the pH during fermentation. Using equal initial substrate amounts, the largest weight average molar mass and geometric radius of levan were observed at constant pH 6.5, while the highest levan concentration was obtained at constant pH 4.5. Since there is a special demand to find suitable hydrocolloids from food-grade bacteria to develop novel gluten-free (GF) products, these differently produced levans were used for baking of GF breads, and the best quality improvement was obtained by addition of levan with the highest mass and radius. This work, therefore, demonstrates for the first time that one bacterial strain can produce specific high molecular weight fractions of one EPS type, which differ in properties and sizes among each other in dependence of the controllable production conditions. PMID:28522999

  10. A pK change of acidic residues contributes to cation countertransport in the Ca-ATPase of sarcoplasmic reticulum. Role of H+ in Ca(2+)-ATPase countertransport.

    PubMed

    Yu, X; Hao, L; Inesi, G

    1994-06-17

    Proteoliposomal vesicles reconstituted with sarcoplasmic reticulum ATPase and exogenous lipids sustain ATP-dependent Ca2+ uptake and H+ ejection, as well as net charge displacement by Ca2+. We have studied the effect of lumenal (inner) and medium (extravesicular) pH variations on the countertransport ratios of H+ and Ca2+. We find that the Ca2+/H+ molar ratio is approximately 1 when the lumenal and medium pH is near neutrality, but changes with a specific pattern when the medium pH is varied in the presence of a constant lumenal pH and when the lumenal pH is varied in the presence of a constant medium pH. Empirical analysis of the experimental data shows that the apparent pK of the residue(s) releasing H+ into the medium is approximately 6.1, whereas the apparent pK of the residue(s) binding lumenal H+ is approximately 7.7. Assuming that the same acidic residues are involved in H+ and Ca2+ countertransport, our findings suggest a lower affinity for H+ in their outward orientation (prevalent in the ground state of the enzyme) and a higher affinity for H+ in lumenal orientation (prevalent in the phosphorylated state of the enzyme). Cyclic pK changes, coupled to ATP utilization, promote cation exchange, Ca2+ uptake, and H+ ejection by the vesicles. The stoichiometry of countertransport and net charge displacement is matched by a corresponding electrogenic behavior. A calculation of voltage development related to initial rates of charge transfer (dV/dt = (dQ/dt)/Cm) is given as a corrective replacement of a previous steady state calculation.

  11. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  12. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry.

    PubMed

    Zhang, Qi; Castro Smirnov, Jose R; Xia, Ruidong; Pedrosa, Jose M; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-04-07

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10-11 pH range.

  13. pH-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.; Wang, F.T.

    1989-02-07

    An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage between the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH. 4 figs.

  14. Amino Acids Inhibitory Effects and Mechanism on 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b]Pyridine (PhIP) Formation in the Maillard Reaction Model Systems.

    PubMed

    Linghu, Ziyi; Karim, Faris; Smith, J Scott

    2017-12-01

    This study was to investigate the inhibitory effects of amino acids (AAs) on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and to evaluate the inhibition mechanism of PhIP in Maillard model systems. Different AAs were individually added into model systems heat-treated at 180 °C/1 h. The PhIP, phenylacetaldehyde (PheAce), and pyrazines derivatives were determined using HPLC and GC-MS. AAs significantly reduced (P < 0.05) PhIP levels in a dose-dependent response, ranking as: Trp = Lys > Pro > Leu > Met > Val > Ile > Thr > Phe > Asp, at the highest molar ratio. The PheAce content was gradually reduced with increasing AAs levels, suggesting that AAs may inhibit PhIP formation through scavenging the available PheAce. A correlation between PhIP inhibition and PheAce-scavenging activity of AAs was observed when PheAce and AAs were heated. The variety and quantity of pyrazines formed are highly depending on the type of AAs. © 2017 Institute of Food Technologists®.

  15. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate.

    PubMed

    Graham, Nigel; Jiang, Cheng-Chun; Li, Xiang-Zhong; Jiang, Jia-Qian; Ma, Jun

    2004-09-01

    This paper presents information concerning the influence of solution pH on the aqueous reaction between potassium ferrate and phenol and three chlorinated phenols: 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP). The redox potential and aqueous stability of the ferrate ion, and the reactivity of dissociating compounds, are known to be pH dependent. Laboratory tests have been undertaken over a wide range of pH (5.8-11) and reactant concentrations (ferrate:compound molar ratios of 1:1 to 8:1). The reactivity of trichloroethylene was also investigated as a reference compound owing to its non-dissociating nature. The extent of compound degradation by ferrate was found to be highly pH dependent, and the optimal pH (maximum degradation) decreased in the order: phenol/CP, DCP, TCP; at the optimal pH the degree of degradation of these compounds was similar. The results indicate that for the group of phenol and chlorophenols studied, the presence of an increasing number of chlorine substituent atoms corresponds to an increasing reactivity of the undissociated compound, and a decreasing reactivity of the dissociated compound.

  16. [Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].

    PubMed

    Liber, E E; Dorozhko, A I; Pomortseva, N V

    1978-06-01

    The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.

  17. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses.

    PubMed

    Cao, Yu; Chen, Min; Tang, Dehua; Yan, Hongli; Ding, Xiwei; Zhou, Fan; Zhang, Mingming; Xu, Guifang; Zhang, Weijie; Zhang, Shu; Zhuge, Yuzheng; Wang, Lei; Zou, Xiaoping

    2018-05-22

    Proton pump inhibitors (PPIs) play a role in antitumor activity, with studies showing specialized impacts of PPIs on cancer cell apoptosis, metastasis, and autophagy. In this study, we demonstrated that pantoprazole (PPI) increased autophagosomes formation and affected autophagic flux depending on the pH conditions. PPI specifically elevated SQSTM1 protein levels by increasing SQSTM1 transcription via NFE2L2 activation independent of the specific effect of PPI on autophagic flux. Via decreasing proteasome subunits expression, PPI significantly impaired the function of the proteasome, accompanied by the accumulation of undegraded poly-ubiquitinated proteins. Notably, PPI-induced autophagy functioned as a downstream response of proteasome inhibition by PPI, while suppressing protein synthesis abrogated autophagy. Blocking autophagic flux in neutral pH condition or further impairing proteasome function with proteasome inhibitors, significantly aggravated PPI cytotoxicity by worsening protein degradation ability. Interestingly, under conditions of mitochondrial stress, PPI showed significant synergism when combined with Bcl-2 inhibitors. Taken together, these findings provide a new understanding of the impact of PPIs on cancer cells' biological processes and highlight the potential to develop more efficient and effective combination therapies.

  18. Investigation on formaldehyde release from preservatives in cosmetics.

    PubMed

    Lv, C; Hou, J; Xie, W; Cheng, H

    2015-10-01

    To understand formaldehyde residue in cosmetics, an investigation on formaldehyde release from eight preservatives (methenamine - MA, paraformaldehyde - PF, poly(p-toluenesulfonamide-co-formaldehyde) -PTSAF, quaternium-15 - QU, imidazolidinyl urea - IU, diazolidinyl urea - DU, dimethyloldimethyl hydantoin - DMDM and bronopol - BP) under various conditions was performed. The concentration of released formaldehyde was determined by high-performance liquid chromatography with photodiode array detection after derivatization with 2,4-dinitrophenylhydrazine. The amounts of formaldehyde release were in the order of PF > DU > DMDM ≈ QU ≈ IU > MA > BP > PTSAF. The releasing amounts of formaldehyde were the highest in the presence of aqueous matrices for the releasers except QU and IU, and the releasing effect was also relative to pH. More formaldehyde was released with longer storage time and higher temperature. Furthermore, all preservatives in cosmetic matrices released fewer amounts of formaldehyde than in pure aqueous or organic matrices, and the formaldehyde-releasing amounts were also cosmetic specific. Formaldehyde release was dependent on the matrix, pH, time and mainly temperature, and the releasing effect was also cosmetic specific. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins.

    PubMed

    Wacker, Tobias; Garcia-Celma, Juan J; Lewe, Philipp; Andrade, Susana L A

    2014-07-08

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4(+) scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4(+)/NH3 transport is used instead in acid-base and pH homeostasis in kidney or NH4(+)/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

  20. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion.

    PubMed

    Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing

    2015-08-01

    Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.

  2. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  3. A novel Na+/HCO3--codependent choline transporter in the syncytial epithelium of the cestode Hymenolepis diminuta.

    PubMed

    Webb, R A; Xue, L

    1998-02-01

    Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.

  4. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH.

    PubMed

    Varshney, G K; Kintali, S R; Gupta, P K; Das, K

    2017-02-15

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p 6 (Cp 6 ). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp 6 significantly enhanced the transport of LDS at pH4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor.

    PubMed Central

    Pearce, F L; Thompson, H L

    1986-01-01

    Nerve growth factor (NGF) isolated from mouse submandibular gland or from snake venom produced a dose-dependent release of histamine from isolated rat peritoneal mast cells. The response was almost totally dependent on the presence of extracellular calcium ions and on added phosphatidylserine or its lyso-derivative. At high concentrations, strontium ions could substitute for calcium. The process was non-cytotoxic, relatively slow, pH dependent and blocked by polyclonal antibodies to NGF. Binding of NGF to the mast cell was not dependent on added calcium. The release was unaffected by low molecular weight glucose polymers or specific quaternary ammonium salts and thus differed from that evoked by clinical dextran or polyamines. The release was not inhibited by soluble rat IgE or IgG and was unimpaired in mast cells recovered from specific pathogen free rats. As such it did not appear to be mediated through interaction with cell-fixed antibodies. The process further differed from anaphylactic histamine release in that there was no accompanying change in the intracellular level of adenosine 3',5'-cyclic monophosphate (cyclic AMP), the activated state induced by NGF was much more persistent than that evoked by antigen, and there was no cross-desensitization between the two latter stimuli. In total, these data suggest that NGF may induce secretion from rat mast cells by interaction with a specific receptor on the plasma membrane, possibly similar to that present on sensory and sympathetic neurones. PMID:2425086

  6. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  7. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study reveals the importance of the multilayer structure and architecture to control the detachment force of cells onto such films.

  8. A pH Switch Regulates the Inverse Relationship between Membranolytic and Chaperone-like Activities of HSP-1/2, a Major Protein of Horse Seminal Plasma.

    PubMed

    Kumar, C Sudheer; Swamy, Musti J

    2016-07-05

    HSP-1/2, a major protein of horse seminal plasma binds to choline phospholipids present on the sperm plasma membrane and perturbs its structure by intercalating into the hydrophobic core, which results in an efflux of choline phospholipids and cholesterol, an important event in sperm capacitation. HSP-1/2 also exhibits chaperone-like activity (CLA) in vitro and protects target proteins against various kinds of stress. In the present study we show that HSP-1/2 exhibits destabilizing activity toward model supported and cell membranes. The membranolytic activity of HSP-1/2 is found to be pH dependent, with lytic activity being high at mildly acidic pH (6.0-6.5) and low at mildly basic pH (8.0-8.5). Interestingly, the CLA is also found to be pH dependent, with high activity at mildly basic pH and low activity at mildly acidic pH. Taken together the present studies demonstrate that the membranolytic and chaperone-like activities of HSP-1/2 have an inverse relationship and are regulated via a pH switch, which is reversible. The higher CLA observed at mildly basic pH could be correlated to an increase in surface hydrophobicity of the protein. To the best of our knowledge, this is the first study reporting regulation of two different activities of a chaperone protein by a pH switch.

  9. pH-Induced interfacial properties of Chaplin E from Streptomyces coelicolor.

    PubMed

    Dokouhaki, Mina; Hung, Andrew; Prime, Emma L; Qiao, Greg G; Day, Li; Gras, Sally L

    2017-12-01

    Chaplin E, or Chp E, is a surface active peptide secreted by Streptomyces coelicolor that adopts different structures depending on solution pH but the effect of these structures on the interfacial properties of Chp E is not known. In experiments paired with simulations, Chp E was found to display pH-dependent interfacial assembly and surface activity. At pH 3.0, Chp E formed an ordered non-amyloidal interfacial film with high surface activity; while at pH 10.0, Chp E self-assembled into a heterogeneous film containing randomly arranged fibrils at the interface that was less surface active compared to the film formed at pH 3.0. In simulations at pH 10.0, Chp E molecules showed a higher propensity for dimerization within the solution phase, lower rate of adsorption to the interface and tighter inter-molecular associations at the interface, consistent with the lower surface activity and smaller interfacial area coverage per molecule measured at this pH compared to at pH 3.0. A model is presented for the role of Chp E in the developmental differentiation of Streptomyces coelicolor, where Chp E contributes to changes in surface tension at low pH and the formation of fibrils on the surface of aerial hyphae at high pH. Our data also suggest Chp E could be a promising surface active agent with functional activity that can be controlled by pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    PubMed

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, S.; Marti, T.; Khorana, H.G.

    Previous studies with site-specific mutants of bacteriorhodopsin have demonstrated that replacement of Asp-85 or Arg-82 affects the absorption spectrum. Between pH 5.5 and 7, the Asp-85----Glu and Arg-82----Ala mutants exist in a pH-dependent equilibrium between purple (lambda max approximately 550/540 nm) and blue (lambda max approximately 600/590 nm) forms of the pigment. Measurement of proton transport as a function of wavelength in reconstituted vesicles shows that proton-pumping activities for the above mutants reside exclusively in their respective purple species. For both mutants, formation of the blue form with decreasing pH is accompanied by loss of proton transport activity. The Asp-85----Asnmore » mutant displays a blue chromophore (lambda max approximately 588 nm), is inactive in proton translocation from pH 5 to 7.5, and shows no transition to the purple form. In contrast, the Asp-212----Asn mutant is purple (lambda max approximately 555 nm) and shows no transition to a blue chromophore with decreasing pH. The experiments suggest that (i) the pKa of the purple-to-blue transition is directly influenced by the pKa of the carboxylate at residue 85 and (ii) the relative strengths of interaction between the protonated Schiff base, Asp-85, Asp-212, and Arg-82 make a major contribution to the regulation of color and function of bacteriorhodopsin.« less

  12. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health.

    PubMed

    Koch, Carl D; Gladwin, Mark T; Freeman, Bruce A; Lundberg, Jon O; Weitzberg, Eddie; Morris, Alison

    2017-04-01

    Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dental caries and salivary alterations in Type I Diabetes.

    PubMed

    Rai, K; Hegde, A M; Kamath, A; Shetty, S

    2011-01-01

    Insulin dependent diabetes mellitus is a severe disease that raises blood glucose levels because of hyperglycemia and insulinopenia. Fluctuations in water and electrolyte levels may result in xerostomia and other changes in the salivary composition. Since diabetes has an influence on oral health, it is important for the dentist to be aware of newer advances in the field of diabetes and to recognize specific oral problems related to diabetes. Thus, the dentist becomes an important part of the health care team for the patients with diabetes. The present study correlated salivary flow rate, salivary pH and total salivary antioxidant levels and dental caries in type I diabetic patients. A total of 200 children that included 100 known diabetic children (study group) and 100 healthy children (controls) of both the sexes and from similar socioeconomic backgrounds formed the part of this study. Dental caries was assessed using DMFT index. The salivary total anti-oxidant level was estimated using phospho molybdic acid using spectrophotometric method. The salivary flow rate was recorded using the Zunt method and the salivary pH using the pH indicating paper. The results were statistically analyzed using t-test. The analyzed parameters showed increase in salivary anti-oxidant levels, reduced salivary flow rate, increase incidence of dental caries, salivary pH was decreased when compared to the control group.

  14. Unexpected dependence on pH of NO release from Paracoccus pantotrophus cytochrome cd1.

    PubMed

    Sam, Katharine A; Tolland, John D; Fairhurst, Shirley A; Higham, Christopher W; Lowe, David J; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J

    2008-07-11

    A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd(1) at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d(1)-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d(1)Fe(II)-NO and 45% cFe(II)d(1)Fe(II)-NO(+). No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.

  15. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching

    Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).

  16. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase's adaptation to alkaline conditions.

    PubMed

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Svedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.

  17. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  18. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    PubMed

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  19. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  20. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komonweeraket, Kanokwan; Cetin, Bora, E-mail: bora.cetin@sdsmt.edu; Benson, Craig H., E-mail: chbenson@wisc.edu

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, weremore » studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.« less

  1. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3

    PubMed Central

    Li, Haiyan; Santos, Magda S.; Park, Chihyung K.; Dobry, Yuriy; Voglmaier, Susan M.

    2017-01-01

    Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling. PMID:29123471

  2. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3.

    PubMed

    Li, Haiyan; Santos, Magda S; Park, Chihyung K; Dobry, Yuriy; Voglmaier, Susan M

    2017-01-01

    Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.

  3. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  4. SABRE hyperpolarisation of vitamin B3 as a function of pH.

    PubMed

    Olaru, A M; Burns, M J; Green, G G R; Duckett, S B

    2017-03-01

    In this work we describe how the signal enhancements obtained through the SABRE process in methanol- d 4 solution are significantly affected by pH. Nicotinic acid (vitamin B3, NA ) is used as the agent, and changing pH is shown to modify the level of polarisation transfer by over an order of magnitude, with significant improvements being seen in terms of the signal amplitude and relaxation rate at high pH values. These observations reveal that manipulating pH to improve SABRE enhancements levels may improve the potential of this method to quantify low concentrations of analytes in mixtures. 1 H NMR spectroscopy results link this change to the form of the SABRE catalyst, which changes with pH, resulting in dramatic changes in the magnitude of the ligand exchange rates. The presented data also uses the fact that the chemical shifts of the nicotinic acids NMR resonances are affected by pH to establish that hyperpolarised 1 H-based pH mapping with SABRE is possible. Moreover, the strong polarisation transfer field dependence shown in the amplitudes of the associated higher order longitudinal terms offers significant opportunities for the rapid detection of hyperpolarised NA in H 2 O itself without solvent suppression. 1 H and 13 C MRI images of hyperpolarised vitamin B3 in a series of test phantoms are presented that show pH dependent intensity and contrast. This study therefore establishes that when the pH sensitivity of NA is combined with the increase in signal gain provided for by SABRE hyperpolarisation, a versatile pH probe results.

  5. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  6. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology.

    PubMed

    Ghazvini, Saba; Alonso, Ryan; Alhakamy, Nabil; Dhar, Prajnaparamita

    2018-01-23

    Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P - -N + dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes electrostatic repulsion between the headgroups. Our results also show that active interfacial microrheology is a sensitive technique for detecting minute changes in the lipid headgroup orientation induced by changes in the local membrane environment, even in unsaturated phospholipids where the surface viscosity is close to the experimental detection limit.

  7. Impact of capillary flow hydrodynamics on carrier-mediated transport of opioid derivatives at the blood-brain barrier, based on pH-dependent Michaelis-Menten and Crone-Renkin analyses.

    PubMed

    Yusof, Siti R; Abbott, N Joan; Avdeef, Alex

    2017-08-30

    Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, P app , and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, F pf , than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P 0 =398×10 -6 cm·s -1 . The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of F pf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (pH-MME) analysis of the data indicated a smooth sigmoidal transition from a higher capacity uptake process affecting cationic naloxone (pH5.0-7.0) to a lower capacity uptake process affecting the neutral drug (pH8.0-8.5), with cross-over point near pH7.4. Evidently, measurements at multiple pH values can reveal important information about both cerebrovascular flow and BBB transport kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. pH effects on the hyaluronan hydrolysis catalysed by hyaluronidase in the presence of proteins: Part I. Dual aspect of the pH-dependence.

    PubMed

    Lenormand, Hélène; Deschrevel, Brigitte; Vincent, Jean-Claude

    2010-05-01

    Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at a low ratio of HAase to HA concentrations and at low ionic strength. This is because long HA chains can form non-active complexes with HAase. Bovine serum albumin (BSA) is able to compete with HAase to form electrostatic complexes with HA so freeing HAase which then recovers its catalytic activity. This BSA-dependence is characterised by two main domains separated by the optimal BSA concentration: below this concentration the HAase activity increases when the BSA concentration is increased, above this concentration the HAase activity decreases. This occurs provided that HA is negatively charged and BSA is positively charged, i.e. in a pH range from 3 to 5.25. The higher the pH value the higher the optimal BSA concentration. Other proteins can also modulate HAase activity. Lysozyme, which has a pI higher than that of BSA, is also able to compete with HAase to form electrostatic complexes with HA and liberate HAase. This occurs over a wider pH range that extends from 3 to 9. These results mean that HAase can form complexes with HA and recover its enzymatic activity at pH as high as 9, consistent with HAase having either a high pI value or positively charged patches on its surface at high pH. Finally, the pH-dependence of HAase activity, which results from the influence of pH on both the intrinsic HAase activity and the formation of complexes between HAase and HA, shows a maximum at pH 4 and a significant activity up to pH 9. Copyright 2009 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    PubMed

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  10. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  11. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01349f Click here for additional data file.

    PubMed Central

    Pastor, Ernest; Gross, Manuela A.; Selim, Shababa

    2015-01-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (RuP) and a nickel bis(diphosphine) electrocatalyst (NiP) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP–NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP, which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP–NiP photocatalytic system, which can be widely applied to other photocatalytic systems. PMID:28717491

  12. Direct comparison of two different mesalamine formulations for the maintenance of remission in patients with ulcerative colitis: a double-blind, randomized study.

    PubMed

    Ito, Hiroaki; Iida, Mitsuo; Matsumoto, Takayuki; Suzuki, Yasuo; Aida, Yoshiyuki; Yoshida, Toyomitsu; Takano, Yuichi; Hibi, Toshifumi

    2010-09-01

    Mesalamine has been used as the first-line medication for the treatment of ulcerative colitis (UC). We directly compared the efficacy and safety of two different mesalamine formulations in the maintenance of remission in patients with UC. In a multicenter, double-blind, randomized study, 131 patients with quiescent UC were assigned to two groups: 65 to receive a pH-dependent release formulation of mesalamine at 2.4 g/day (pH-2.4 g) and 66 to receive a time-dependent release formulation of mesalamine at 2.25 g/day (Time-2.25 g). Both formulations were administered three times daily for 48 weeks. The primary endpoint was the proportion of patients without bloody stools. In the full analysis set (n = 130), the proportion of patients without bloody stools was 76.9% in the pH-2.4 g and 69.2% in the Time-2.25 g, demonstrating the noninferiority of pH-2.4 g to Time-2.25 g. No statistically significant difference in time to bloody stools was found between the two formulations (P = 0.27, log-rank test), but the time to bloody stools tended to be longer in pH-2.4 g compared to Time-2.25 g, and a similar trend was observed with regard to the time to relapse. No differences were observed between the safety profiles of the two formulations. The pH- and time-dependent release of mesalamine formulations were similarly safe and effective. Interestingly, the remission phase tended to be longer in the group that received the pH-dependent formulation compared to the group that received the time-dependent formulation (UMIN Clinical Trials Registry, no. C000000289).

  13. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH

    Treesearch

    Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen

    2008-01-01

    Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...

  14. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+–oligopeptide transporter as a case study

    PubMed Central

    Romano, Alessandro; Barca, Amilcare; Storelli, Carlo; Verri, Tiziano

    2014-01-01

    Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010–March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary ‘molecular diversity’ with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+–oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g. the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g. the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g. the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g. molecular structure–function analyses) and applied research (e.g. optimizing diets to enhance growth of commercially valuable fish). PMID:23981715

  15. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: a preliminary anti- Alzheimer's study.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Khan, Mir Azam; Ahmad, Waqar; Shah, Muhammad Raza; Imran, Muhammad; Ahmad, Sajjad

    2015-11-04

    Cholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer's disease (AD). Similarly, free radicals are implicated in the progression of various diseases like neurodegenerative disorders. Due to lipid solubility and potential to easily cross blood brain barrier, this study was designed to investigate the anticholinesterase and antioxidant potentials of the standardized essential oils from the leaves and flowers of Polygonum hydropiper. Essential oils from the leaves (Ph.LO) and flowers (Ph.FO) of P. hdropiper were isolated using Clevenger apparatus. Oil samples were analyzed by GC-MS to identify major components and to attribute the antioxidant and anticholinesterase activity to specific components. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potentials of the samples were determined following Ellman's assay. Antioxidant assays were performed using 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) and hydrogen peroxide (H2O2) free radical scavenging assays. In the GC-MS analysis 141 and 122 compounds were indentified in Ph.LO and Ph.FO respectively. Caryophylene oxide (41.42 %) was the major component in Ph.FO while decahydronaphthalene (38.29 %) was prominent in Ph.LO. In AChE inhibition, Ph.LO and Ph.FO exhibited 87.00** and 79.66***% inhibitions at 1000 μg/ml with IC50 of 120 and 220 μg/ml respectively. The IC50 value for galanthamine was 15 μg/ml. In BChE inhibitory assay, Ph.LO and Ph.FO caused 82.66*** (IC50 130 μg/ml) and 77.50***% (IC50 225 μg/ml) inhibitions respectively at 1000 μg/ml concentration. In DPPH free radical scavenging assay, Ph.LO and Ph.FO exhibited IC50 of 20 and 200 μg/ml respectively. The calculated IC50s were 180 & 60 μg/ml for Ph.LO, and 45 & 50 μg/ml for Ph.FO in scavenging of ABTS and H2O2 free radicals respectively. In the current study, essential oils from leaves and flowers of P. hydropiper exhibited dose dependent anticholinesterase and antioxidant activities. Leaves essential oil were more effective and can be subjected to further in-vitro and in-vivo anti-Alzheimer's studies.

  16. pH-Dependent stability of azithromycin in aqueous solution and structure identification of two new degradation products.

    PubMed

    Saita, Maria Grazia; Aleo, Danilo; Melilli, Barbara; Mangiafico, Sergio; Cro, Melina; Sanfilippo, Claudia; Patti, Angela

    2018-05-28

    The degradation profile of azithromycin in buffered solutions was investigated using HPLC and found to be pH dependent in the range of 6.0-7.2. Desosaminylazitromycin, derived from hydrolytic loss of cladinose of the parent molecule, was the major degradation product at pH 6.0 but its amount progressively decreased moving toward pH 7.2. Two additional unreported degradation products were also observed and their structures were fully elucidated by MS- and NMR-spectroscopy to be associated with opening of the macrocyclic lactone ring. Copyright © 2018. Published by Elsevier B.V.

  17. Calculation of the acid-base equilibrium constants at the alumina/electrolyte interface from the ph dependence of the adsorption of singly charged ions (Na+, Cl-)

    NASA Astrophysics Data System (ADS)

    Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.

    2011-05-01

    A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.

  18. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Fetal scalp pH testing

    MedlinePlus

    ... such as HIV/AIDS or hepatitis C. Normal Results Normal fetal blood sample results are: Normal pH: ... meaning of your specific test results. What Abnormal Results Mean A fetal scalp blood pH level of ...

  20. AnilinoMethylRhodamines: pH Sensitive Probes with Tunable Photophysical Properties by Substituent Effect

    PubMed Central

    Best, Quinn A.; Liu, Chuangjun; van Hoveln, Paul D.; McCarroll, Matthew E.

    2013-01-01

    A series of pH dependent rhodamine analogs possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These Anilinomethylrhodamines (AnMR) maintain a colorless, non-fluorescent spiro-cyclic structure at high pH. The spiro-cyclic structures open in mildly acidic conditions and are weakly fluorescent; however at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation. PMID:24050117

  1. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  2. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  3. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  4. Data-driven RBE parameterization for helium ion beams

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Dokic, I.; Valle, S. M.; Tessonnier, T.; Galm, R.; Ciocca, M.; Parodi, K.; Ferrari, A.; Jäkel, O.; Haberer, T.; Pedroni, P.; Böhlen, T. T.

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter {{(α /β )}\\text{ph}} of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the \\text{RB}{{\\text{E}}α}={α\\text{He}}/{α\\text{ph}} and {{\\text{R}}β}={β\\text{He}}/{β\\text{ph}} ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (\\text{RB}{{\\text{E}}10} ) are compared with the experimental ones. Pearson’s correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with {{(α /β )}\\text{ph}}=5.4 Gy at the entrance of a 56.4 MeV u-1He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and {{(α /β )}\\text{ph}} as input parameters is proposed, allowing a straightforward implementation in a TP system.

  5. Membrane Targeting of Grb2-associated Binder-1 (Gab1) Scaffolding Protein through Src Myristoylation Sequence Substitutes for Gab1 Pleckstrin Homology Domain and Switches an Epidermal Growth Factor Response to an Invasive Morphogenic Program

    PubMed Central

    Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag

    2003-01-01

    The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619

  6. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.

    PubMed

    Piccinini, Esteban; Bliem, Christina; Reiner-Rozman, Ciril; Battaglini, Fernando; Azzaroni, Omar; Knoll, Wolfgang

    2017-06-15

    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500mV) and were able to monitor urea in the range of 1-1000µm, with a limit of detection (LOD) down to 1µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Selective Electrocatalytic Reduction of Nitrite to Dinitrogen Based on Decoupled Proton-Electron Transfer.

    PubMed

    He, Daoping; Li, Yamei; Ooka, Hideshi; Go, Yoo Kyung; Jin, Fangming; Kim, Sun Hee; Nakamura, Ryuhei

    2018-02-14

    The development of denitrification catalysts which can reduce nitrate and nitrite to dinitrogen is critical for sustaining the nitrogen cycle. However, regulating the selectivity has proven to be a challenge, due to the difficulty of controlling complex multielectron/proton reactions. Here we report that utilizing sequential proton-electron transfer (SPET) pathways is a viable strategy to enhance the selectivity of electrochemical reactions. The selectivity of an oxo-molybdenum sulfide electrocatalyst toward nitrite reduction to dinitrogen exhibited a volcano-type pH dependence with a maximum at pH 5. The pH-dependent formation of the intermediate species (distorted Mo(V) oxo species) identified using operando electron paramagnetic resonance (EPR) and Raman spectroscopy was in accord with a mathematical prediction that the pK a of the reaction intermediates determines the pH-dependence of the SPET-derived product. By utilizing this acute pH dependence, we achieved a Faradaic efficiency of 13.5% for nitrite reduction to dinitrogen, which is the highest value reported to date under neutral conditions.

  8. Development of gastro intestinal sustained release tablet formulation containing acryl-EZE and pH-dependent swelling HPMC K 15 M.

    PubMed

    Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel

    2012-05-01

    The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.

  9. Nonlinear ultrafast optical response in organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.; Turkowski, Volodymyr; Leuenberger, Michael N.

    2012-02-01

    We analyze possible nonlinear excitonic effects in the organic molecule crystals by using a combined time-dependent DFT and many-body approach. In particular, we analyze possible effects of the time-dependent (retarded)interaction between different types of excitations, Frenkel excitons, charge transfer excitons and excimers, on the electric and the optical response of the system. We pay special attention to the case of constant electric field and ultrafast pulses, including that of four-wave mixing experiments. As a specific application we examine the optical excitations of pentacene nanocrystals and compare the results with available experimental data.[1] Our results demostrate that the nonlinear effects can play an important role in the optical response of these systems. [1] A. Kabakchiev, ``Scanning Tunneling Luminescence of Pentacene Nanocrystals'', PhD Thesis (EPFL, Lausanne, 2010).

  10. Natural and synthetic polymers in fabric and home care applications

    NASA Astrophysics Data System (ADS)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  11. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    PubMed

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  12. Ionization of isocitrate bound to pig hear NADP/sup +/-dependent isocitrate dehydrogenase: /sup 13/C NMR study of substrate binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrlich, R.S.; Colman, R.F.

    1987-06-16

    Isocitrate and ..cap alpha..-ketoglutarate have been synthesized with carbon-13 enrichment at specific positions. The /sup 13/C NMR spectra of these derivatives were measured as a function of pH. The magnitudes of the changes in chemical shifts with pH for free isocitrate and the magnesium-isocitrate complex suggest that the primary site of ionization at the ..beta..-carboxyl. In the presence of the enzyme NADP/sup +/-dependent isocitrate dehydrogenase and the activating metal magnesium, the carbon-13 resonances of all three carboxyls remain constant from pH 5.5 to pH 7.5. Thus, the carboxyls remain in the ionized form in the enzyme-isocitrate complex. The ..cap alpha..-hydroxylmore » carbon resonance could not be located in the enzyme-isocitrate complex, suggesting immobilization of this group. Magnesium produces a 2 ppm downfield shift of the ..beta..-carboxyl but does not change the resonances of the ..cap alpha..- and ..gamma..-carboxyls. This result is consistent with metal activation of both the dehydrogenation and decarboxylation reactions. The /sup 13/C NMR spectrum of ..cap alpha..-ketoglutarate remains unchanged in the presence of isocitrate dehydrogenase, implying the absence of alterations in geometry in the enzyme-bound form. Formation of the quaternary complex with Mg/sup 2 +/ and NADPH leads to loss of the ..cap alpha..-ketoglutarate resonances and the appearance of new resonances characteristic of ..cap alpha..-hydroxyglutarate. In addition, a broad peak ascribed to the enol form of ..cap alpha..-ketoglutarate is observed. The substantial change in the shift of the ..beta..-carboxyl of isocitrate and the lack of significant shifts in the other carboxyls of isocitrate or ..cap alpha..-ketoglutarate suggest that interaction of the ..beta..-carboxyl with the enzyme contributes to the tighter binding of isocitrate and may be significant for the oxidative decarboxylation function of isocitrate dehydrogenase.« less

  13. Sedimentation Equilibrium of a Small Oligomer-forming Membrane Protein: Effect of Histidine Protonation on Pentameric Stability

    PubMed Central

    Surya, Wahyu; Torres, Jaume

    2015-01-01

    Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.   PMID:25867485

  14. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.

    PubMed

    Salis, Andrea; Boström, Mathias; Medda, Luca; Cugia, Francesca; Barse, Brajesh; Parsons, Drew F; Ninham, Barry W; Monduzzi, Maura

    2011-09-20

    The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential). © 2011 American Chemical Society

  15. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  16. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1

    PubMed Central

    Heber, Ulrich; Andrews, T. John; Boardman, N. Keith

    1976-01-01

    Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466

  17. Light-dependent delta pH and membrane potential changes in halobacterial vesicles coupled to sodium transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamo, N.; Racanelli, T.; Packer, L.

    1982-01-01

    Bacteriorhodopsin and Halorhodopsin present in Halobacterium halobium strains have been investigated in relation to Na/sup +//H/sup +/ exchange in isolated cell envelope vesicles. Upon illumination, these retinal proteins result in extrusion of sodium ions by either an electrogenic Na/sup +//Ha/sup +/ antiporter and/or a direct sodium pump. Since a molecular characterization of these mechanism(s) of sodium extrusion has not yet been realized, it was of interest to measure directly the light- and sodium-dependent changes in delta pH and membrane potential under nearly identical conditions in S9 and R1mR cell membrane vesicles to gain information on the relation of these retinalmore » proteins to sodium extrusion. These activities were evaluated in terms of their dependence on light intensity, and on the inhibitory effect of chemical modifiers of carboxyl groups (carbodiimides); electroneutral exchanges (monensin and triphenyltin); digitoxin and some analogues; and phloretin. Under most of the conditions and treatments employed, light- and sodium-dependent delta pH led to similar effects in both membrane vesicle types. Hence, it is concluded that the delta pH and delta psi which arise from sodium transport occur by either a single mechanism or by one which shares common features.« less

  18. Investigation of pharmaceutical transport in saturated sandy aquifers using column experiments: the effect of pH

    NASA Astrophysics Data System (ADS)

    Börnick, Hilmar; Boxberger, Norman; Licha, Tobias; Worch, Eckhard

    2010-05-01

    Due to the development of advanced analytical techniques it is increasingly known that a high number of polar organic trace compounds, particularly residues of pharmaceuticals, occur in the aquatic environment. In contrast to the sources and pathways of such compounds, their impact on ecosystems and their fate in different environmental compartments are comparatively less investigated. Because of the spatial extension and time available, the zone between water and natural solids (e.g. sediments or soil in groundwater zones, bank filtration sites and for soil aquifer treatment) plays an important role in the elimination of anthropogenic trace compounds from water phase. Here, degradation and sorption processes mainly influence the content of trace compounds. Correlations, specific for compound groups, between n-octanol-water distribution coefficients, available from experiment or calculations, and sorption coefficients (e.g. KOC) often allow a suitable prognosis of the transport behavior of organic pollutants in an underground passage. In case of polar, ionizable organic compounds such prediction is problematic and often not possible. Here, besides relatively weak non-polar van der Waals attraction, other interaction mechanisms, such as covalent bonding, complex formation, or ion exchange, can dominate. The latter is closely connected with the type of basic and/or acid groups in a molecule. The degree of protonation could be changed in dependence of type and concentration of other ions and of the acidity constants (pKa) and therefore from pH. Laboratory column studies at different pH value (range from 4 to 8) were carried out using natural sandy sediments from aquifers and model water containing selected pharmaceuticals to investigate the influence of degree of protonation on sorption. Eight different pharmaceuticals were chosen for laboratory column experiments. Their selection was based on the presence of basic/acid functional groups, pKa, high production and consumption rates, and occurrence in environment. The long-term objective of this research is to consider specific interactions such as ion exchange for the improved transport models. Breakthrough experiments show that retardation is significantly influenced by pH for the majority of the selected pharmaceuticals. As a general tendency, it was observed that a decreasing pH caused an enhanced delay. For acidic compounds such as naproxen, this behavior was expected because of the neutral species being the dominating one. The stronger retardation of cationic agents such as atenolol with decreased pH could be explained by additional cation exchange effects. With the exception of atenolol all chosen model compounds show a high stability towards microbial degradation at aerobic conditions. All experiments were repeated at least three times at identical conditions, whereby a good reproducibility was observed. Further experiments are currently performed to characterize pH-depending change of sediment surfaces and to investigate the competitive influence of other presented cations.

  19. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j

  20. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Kim, YoungJae; Yuan, Ke; Ellis, Brian R.; Becker, Udo

    2017-02-01

    Although previous studies have demonstrated redox transformations of selenium (Se) in the presence of Fe-bearing minerals, the specific mechanism of magnetite-mediated Se electron transfer reactions are poorly understood. In this study, the redox chemistry of Se on magnetite is investigated over an environmentally relevant range of Eh and pH conditions (+0.85 to -1.0 V vs. Ag/AgCl; pH 4.0-9.5). Se redox peaks are found via cyclic voltammetry (CV) experiments at pH conditions of 4.0-8.0. A broad reduction peak centered at -0.5 V represents a multi-electron transfer process involving the transformation of selenite to Se(0) and Se(-II) and the comproportionation reaction between Se(-II) and Se(IV). Upon anodic scans, the oxidation peak centered at -0.25 V is observed and is attributed to the oxidation of Se(-II) to higher oxidation states. Deposited Se(0) may be oxidized at +0.2 V when pH is below 7.0. Over a pH range of 4.0-8.0, the pH dependence of peak potentials is less pronounced than predicted from equilibrium redox potentials. This is attributed to pH gradients in the microporous media of the cavity where the rate of proton consumption by the selenite reduction is faster relative to mass transfer from the solution. In chronoamperometry measurements at potentials ⩾-0.6 V, the current-time transients show good linearity between the current and time in a log-log scale. In contrast, deviation from the linear trend is observed at more negative potentials. Such a trend is indicative of Se(0) nucleation and growth on the magnetite surface, which can be theoretically explained by the progressive nucleation model. XPS analysis reveals the dominance of elemental selenium at potentials ⩽-0.5 V, in good agreement with the peak assignment on the cyclic voltammograms and the nucleation kinetic results.

  1. Acid extrusion via blood–brain barrier causes brain alkalosis and seizures after neonatal asphyxia

    PubMed Central

    Helmy, Mohamed M.; Ruusuvuori, Eva; Watkins, Paul V.; Voipio, Juha; Kanold, Patrick O.; Kaila, Kai

    2012-01-01

    Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid–alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood–brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood–brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood–brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood–brain barrier and to consequent brain alkalosis. These results suggest targeting of blood–brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures. PMID:23125183

  2. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia.

    PubMed

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2013-04-01

    Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4-h hypoxic incubation reduced NHE-flux reversibly with a time-constant of 1-2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48-h hypoxia, inhibition of NHE-flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid-extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads. Copyright © 2012 Wiley Periodicals, Inc.

  3. A comparative review of cutaneous pH.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L

    2002-12-01

    This review describes the role of pH in cutaneous structure and function. We first describe the molecules that contribute to the acidity or alkalinity of the skin. Next, differences in cutaneous pH among species, among individuals of the same species and within individuals are described. The potential functions of cutaneous pH in normal and diseased skin are analysed. For example, cutaneous pH has a role in the selection and maintenance of the normal cutaneous microbiota. In addition, cutaneous acidity may protect the skin against infection by microbes. Finally, there is evidence that a cutaneous pH gradient activates pH-dependent enzymes involved in the process of keratinization.

  4. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

    PubMed

    Higashi, Akifumi; Dohi, Yoshihiro; Yamabe, Sayuri; Kinoshita, Hiroki; Sada, Yoshiharu; Kitagawa, Toshiro; Hidaka, Takayuki; Kurisu, Satoshi; Yamamoto, Hideya; Yasunobu, Yuji; Kihara, Yasuki

    2017-11-01

    Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO 2 ) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO 2 at the anaerobic threshold (AT) and mPAP (r = -0.66; P < 0.01). Multiple regression analysis showed that PETCO 2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO 2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO 2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

  5. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History

    PubMed Central

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; Carlson, Kathryn E.; Mayne, Christopher G.; Granick, Steve; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2016-01-01

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the non-genomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine, TMR) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM reveal high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol and diphenolic acid PAMAM conjugates experience a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicate that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers. PMID:26186415

  6. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    PubMed

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  7. Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings.

    PubMed

    Sherstneva, O N; Vodeneev, V A; Katicheva, L A; Surova, L M; Sukhov, V S

    2015-06-01

    Electrical signals presented in plants by action potential and by variation potential (VP) can induce a reversible inactivation of photosynthesis. Changes in the intracellular and extracellular pH during VP generation are a potential mechanism of photosynthetic response induction; however, this hypothesis requires additional experimental investigation. The purpose of the present work was to analyze the influence of pH changes on induction of the photosynthetic response in pumpkin. It was shown that a burning of the cotyledon induced VP propagation into true leaves of pumpkin seedlings inducing a decrease in the photosynthetic CO2 assimilation and an increase in non-photochemical quenching of fluorescence, whereas respiration was activated insignificantly. The photosynthetic response magnitude depended linearly on the VP amplitude. The intracellular and extracellular concentrations of protons were analyzed using pH-sensitive fluorescent probes, and the VP generation was shown to be accompanied by apoplast alkalization (0.4 pH unit) and cytoplasm acidification (0.3 pH unit). The influence of changes in the incubation medium pH on the non-photochemical quenching of fluorescence of isolated chloroplasts was also investigated. It was found that acidification of the medium stimulated the non-photochemical quenching, and the magnitude of this increase depended on the decrease in pH. Our results confirm the contribution of changes in intracellular and extracellular pH to induction of the photosynthetic response caused by VP. Possible mechanisms of the influence of pH changes on photosynthesis are discussed.

  8. Results of external quality-assurance program for the National Atmospheric Deposition Program and National Trends Network during 1985

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1988-01-01

    External quality assurance monitoring of the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN) was performed by the U.S. Geological Survey during 1985. The monitoring consisted of three primary programs: (1) an intersite comparison program designed to assess the precision and accuracy of onsite pH and specific conductance measurements made by NADP and NTN site operators; (2) a blind audit sample program designed to assess the effect of routine field handling on the precision and bias of NADP and NTN wet deposition data; and (3) an interlaboratory comparison program designed to compare analytical data from the laboratory processing NADP and NTN samples with data produced by other laboratories routinely analyzing wet deposition samples and to provide estimates of individual laboratory precision. An average of 94% of the site operators participated in the four voluntary intersite comparisons during 1985. A larger percentage of participating site operators met the accuracy goal for specific conductance measurements (average, 87%) than for pH measurements (average, 67%). Overall precision was dependent on the actual specific conductance of the test solution and independent of the pH of the test solution. Data for the blind audit sample program indicated slight positive biases resulting from routine field handling for all analytes except specific conductance. These biases were not large enough to be significant for most data users. Data for the blind audit sample program also indicated that decreases in hydrogen ion concentration were accompanied by decreases in specific conductance. Precision estimates derived from the blind audit sample program indicate that the major source of uncertainty in wet deposition data is the routine field handling that each wet deposition sample receives. Results of the interlaboratory comparison program were similar to results of previous years ' evaluations, indicating that the participating laboratories produced comparable data when they analyzed identical wet deposition samples, and that the laboratory processing NADP and NTN samples achieved the best analyte precision of the participating laboratories. (Author 's abstract)

  9. Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells.

    PubMed

    Zhai, Yihui; Bloch, Jacek; Hömme, Meike; Schaefer, Julia; Hackert, Thilo; Philippin, Bärbel; Schwenger, Vedat; Schaefer, Franz; Schmitt, Claus P

    2012-07-01

    Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209  ± 80 and 197  ±  60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.

  10. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles

    PubMed Central

    Kim, Dorothy M.; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J.

    2016-01-01

    The process of ion channel gating—opening and closing—involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  11. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  12. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum.

    PubMed

    Yang, Xuepeng; Tu, Maobing; Xie, Rui; Adhikari, Sushil; Tong, Zhaohui

    2013-01-07

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h-1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production.

  13. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus.

    PubMed

    Romkina, Anastasia Y; Kiriukhin, Michael Y

    2017-01-01

    The isocitrate dehydrogenase (MfIDH) with unique double coenzyme specificity from Methylobacillus flagellatus was purified and characterized, and its gene was cloned and overexpressed in E. coli as a fused protein. This enzyme is homodimeric,-with a subunit molecular mass of 45 kDa and a specific activity of 182 U mg -1 with NAD+ and 63 U mg -1 with NADP+. The MfIDH activity was dependent on divalent cations and Mn2+ enhanced the activity the most effectively. MfIDH exhibited a cofactor-dependent pH-activity profile. The optimum pH values were 8.5 (NAD+) and 6.0 (NADP+).The Km values for NAD+ and NADP+ were 113 μM and 184 μM respectively, while the Km values for DL-isocitrate were 9.0 μM (NAD+), 8.0 μM (NADP+). The MfIDH specificity (kcat/Km) was only 5-times higher for NAD+ than for NADP+. The purified MfIDH displayed maximal activity at 60°C. Heat-inactivation studies showed that the MfIDH was remarkably thermostable, retaining full activity at 50°C and losting ca. 50% of its activity after one hour of incubation at 75°C. The enzyme was insensitive to the presence of intermediate metabolites, with the exception of 2 mM ATP, which caused 50% inhibition of NADP+-linked activity. The indispensability of the N6 amino group of NAD(P)+ in its binding to MfIDH was demonstrated. MfIDH showed high sequence similarity with bacterial NAD(P)+-dependent type I isocitrate dehydrogenases (IDHs) rather than with eukaryotic NAD+-dependent IDHs. The unique double coenzyme specificity of MfIDH potentially resulted from the Lys340, Ile341 and Ala347 residues in the coenzyme-binding site of the enzyme. The discovery of a type I IDH with double coenzyme specificity elucidates the evolution of this subfamily IDHs and may provide fundamental information for engineering enzymes with desired properties.

  14. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiick, D.M.; Phillips, R.S.

    1988-09-20

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects (DV = 3.5 and D(V/Ktyr) = 2.5) are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to themore » correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine.« less

  15. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less

  16. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    PubMed

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. pH-Dependent Solubility and Dissolution Behavior of Carvedilol--Case Example of a Weakly Basic BCS Class II Drug.

    PubMed

    Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman

    2016-04-01

    The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.

  18. A mathematical model of the influence of salivary urea on the pH of fasted dental plaque and on the changes occurring during a cariogenic challenge.

    PubMed

    Dibdin, G H; Dawes, C

    1998-01-01

    Urea diffusing from saliva into dental plaque is converted to ammonia and carbon dioxide by bacterial ureases. The influence of normal salivary urea levels on the pH of fasted plaque and on the depth and duration of a Stephan curve is uncertain. A numerical model which simulates a cariogenic challenge (a 10% sucrose rinse alone or one followed by use of chewing-gum with or without sugar) was modified to include salivary urea levels from 0 to 30 mmol/l. It incorporated: site-dependent exchange between bulk saliva and plaque surfaces via a salivary film; sugar and urea diffusion into plaque; pH-dependent rates of acid formation and urea breakdown; diffusion and dissociation of end-products and other buffers (acetate, lactate, phosphate, ammonia and carbonate); diffusion of protons and other ions; equilibration with fixed and mobile buffers; and charge-coupling between ionic flows. The Km (2.12 mmol/l) and Vmax (0.11 micromol urea/min/mg dry weight) values for urease activity and the pH dependence of Vmax were taken from the literature. From the results, it is predicted that urea concentrations normally present in saliva (3-5 mmol/l) will increase the pH at the base of a 0.5-mm-thick fasted plaque by up to 1 pH unit, and raise the pH minimum after a sucrose rinse or sugar-containing chewing-gum by at least half a pH unit. The results suggest that plaque cariogenicity may be inversely related to salivary urea concentrations, not only when the latter are elevated because of disease, but even when they are in the normal range.

  19. Mechanistic characterization of the HDV genomic ribozyme: a mutant of the C41 motif provides insight into the positioning and thermodynamic linkage of metal ions and protons.

    PubMed

    Nakano, Shu-ichi; Bevilacqua, Philip C

    2007-03-20

    Binding of two Mg2+ and two H+ ions influences the self-cleavage activity of the genomic HDV ribozyme. The positioning of these four ligands and their thermodynamic linkage are not fully resolved. Protonated C41 engages in a base triple, whereas protonated C75 has been implicated as an acid-base catalyst in bond cleavage. Prior studies led to the identification of one structural inner-sphere ion and one catalytic outer-sphere ion. In the present study, the contributions of the C41 base triple to the metal ion- and pH-dependence of the reaction are examined. Experiments were conducted on a CG to UA double mutant (DM), which changes the base triple to one involving an unprotonated C41. Below pH 6, the DM has a steeper dependence on pH than the wild-type (WT), consistent with a single protonation misfolding the core; this conclusion is also supported by thermal denaturation studies. Between pH 6 and 8, the WT and DM display nearly identical catalytic metal ion and H+ binding profiles. In contrast, over the same pH range, the WT and DM have distinct structural ion binding profiles; for the WT, binding is favored at lower pH, whereas the DM shows no pH dependence. These data localize the structural ion to the vicinity of the C41 motif. An overall model is presented that accommodates binding affinity, coupling, and positioning of the two metal ions and the two protons within the ribozyme. The data suggest that a protonated base triple allows the WT ribozyme to maintain appreciable activity at acidic pH, which could play an important role in the life cycle of the virus.

  20. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  1. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes.

    PubMed

    Seal, Manas; Dey, Somdatta Ghosh

    2018-01-02

    Type 2 diabetes mellitus (T2Dm) is characterized by reduced β cell mass and amyloid deposits of human islet amyloid polypeptide (hIAPP) or amylin, a 37 amino acid containing peptide around pancreatic β cells. The interaction of copper (Cu) with amylin and its mutants has been studied in detail using absorption, circular dichroism, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. Cu binds amylin in a 1:1 ratio, and the binding domain lies within the first 19 amino acid residues of the peptide. Depending on the pH of the medium, Cu-amylin shows the formation of five pH-dependent components (component IV at pH 4.0, component III at pH 5.0, component II at pH 6.0, component I at pH 8.0, and another higher pH component above pH 9.0). The terminal amine, His18, and amidates are established as key residues in the peptide that coordinate the Cu center. The physiologically relevant components I and II can generate H 2 O 2 , which can possibly account for the enhanced toxicity of amylin in the presence of Cu, causing damage of the β cells of the pancreas via oxidative stress.

  2. Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm

    PubMed Central

    Lane, Ackley; Campanati, Camilla; Dupont, Sam; Thiyagarajan, Vengatesen

    2015-01-01

    The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals such as gender. Males and females differ in reproductive investment and egg producing females may have less energy available for OA stress responses. By crossing eggs and sperm from the calcareous tubeworm Hydroides elegans (Haswell, 1883) raised in ambient (8.1) and low (7.8) pH environments, we observed that paternal and maternal low pH experience had opposite and additive effects on offspring. For example, when compared to offspring with both parents from ambient pH, growth rates of offspring of fathers or mothers raised in low pH were higher or lower respectively, but there was no difference when both parents were from low pH. Gender differences may result in different selection pressures for each gender. This may result in overestimates of species tolerance and missed opportunities of potentially insightful comparisons between individuals of the same species. PMID:26039184

  3. Effect of pH on skin permeation enhancement of acidic drugs by l-menthol-ethanol system.

    PubMed

    Katayama, K; Matsui, R; Hatanaka, T; Koizumi, T

    2001-09-11

    The effect of pH on the skin permeation enhancement of three acidic drugs by the l-menthol-ethanol system was investigated. The total flux of acidic drugs from the system remarkably varied over the pH range 3.0-8.0, and the permeation enhancement factor depended on the system pH and drug. A skin permeation model, which consists of two permeant (unionized and ionized) species, two system (oily and aqueous) phases, and two permeation (lipid and pore) pathways, was developed. The assumptions were made that only the unionized species can distribute to the oily phase and transport via the lipid pathway. The model explained the relationship between the concentration of drug in the aqueous phase and system pH. The skin permeability data were also described by the model and permeability coefficients corresponding to the physicochemical properties of permeant were calculated for the lipid and pore pathways. The model simulation showed that the permeation of acidic drugs occurred from the aqueous phase and the oily phase acted as a reservoir. Whether the total flux increased with increase of pH was dependent on the lipophilicity of drug. These results suggest that the pH of l-menthol-ethanol system should be given attention to elicit the maximum permeation enhancement.

  4. Non-invasive pH determination adjacent to degradable biomaterials in vivo.

    PubMed

    Bartsch, Ivonne; Willbold, Elmar; Rosenhahn, Bodo; Witte, Frank

    2014-01-01

    An appropriate pH level is an important prerequisite for the physiologal functioning of cells and tissues. Changes in the extracellular pH often lead to specific cellular reactions and an altered metabolism of cells and tissues influences the extracellular pH range. Thus a method to monitor the extracellular pH is a valuable tool to track specific tissue reactions. In this article we describe a method for the determination of the pH range adjacent to degradable biomaterials using wireless in vivo imaging. Using hairless but immunocompetent mice the fluorophor 5-(6)-carboxy SNARF-1 and the in vivo fluorescence and multispectral acquisition and analysis system Maestro it is possible to track shifts in pH in small living animals over a longer period of time. This method is especially suitable for studies which focus on the interaction of degrading biomaterials with their adjacent tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  6. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  7. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes.

    PubMed Central

    Johansen, L; Bryn, K; Stormer, F C

    1975-01-01

    Aerobacter (Enterobacter) aerogenes wild type and three mutants deficient in the formation of acetoin and 2,3-butanediol were grown in a glucose minimal medium. Culture densities, pH, and diacetyl, acetoin, and 2,3-butanediol levels were recorded. The pH in wild-type cultures dropped from 7.0 to 5.8, remained constant while acetoin and 2,3-butanediol were formed, and increased to pH 6.5 after exhaustion of the carbon source. More 2,3-butanediol than acetoin was formed initially, but after glucose exhaustion reoxidation to acetoin occurred. The three mutants differed from the wild type in yielding acid cultures (pH below 4.5). The wild type and one of the mutants were grown exponentially under aerobic and anaerobic conditions with the pH fixed at 7.0, 5.8, and 5.0, respectively. Growth rates decreased with decreasing pH values. Aerobically, this effect was weak, and the two strains were affected to the same degree. Under anaerobic conditions, the growth rates were markedly inhibited at a low pH, and the mutant was slightly more affected than the wild type. Levels of alcohol dehydrogenase were low under all conditions, indicating that the enzyme plays no role during exponential growth. The levels of diacetyl (acetoin) reductase, lactate dehydrogenase, and phosphotransacetylase were independent of the pH during aerobic growth of the two strains. Under anaerobic conditions, the formation of diacetyl (acetoin) reductase was pH dependent, with much higher levels of the enzyme at pH 5.0 than at pH 7.0. Lactate dehydrogenase and phosphotransacetylase revealed the same pattern of pH-dependent formation in the mutant, but not in the wild type. PMID:239921

  8. Unfolding Kinetics of the Human Telomere i-Motif Under a 10 pN Force Imposed by the α-Hemolysin Nanopore Identify Transient Folded-State Lifetimes at Physiological pH.

    PubMed

    Ding, Yun; Fleming, Aaron M; He, Lidong; Burrows, Cynthia J

    2015-07-22

    Cytosine (C)-rich DNA can adopt i-motif folds under acidic conditions, with the human telomere i-motif providing a well-studied example. The dimensions of this i-motif are appropriate for capture in the nanocavity of the α-hemolysin (α-HL) protein pore under an electrophoretic force. Interrogation of the current vs time (i-t) traces when the i-motif interacts with α-HL identified characteristic signals that were pH dependent. These features were evaluated from pH 5.0 to 7.2, a region surrounding the transition pH of the i-motif (6.1). When the i-motif without polynucleotide tails was studied at pH 5.0, the folded structure entered the nanocavity of α-HL from either the top or bottom face to yield characteristic current patterns. Addition of a 5' 25-mer poly-2'-deoxyadensosine tail allowed capture of the i-motif from the unfolded terminus, and this was used to analyze the pH dependency of unfolding. At pH values below the transition point, only folded strands were observed, and when the pH was increased above the transition pH, the number of folded events decreased, while the unfolded events increased. At pH 6.8 and 7.2 4% and 2% of the strands were still folded, respectively. The lifetimes for the folded states at pH 6.8 and 7.2 were 21 and 9 ms, respectively, at 160 mV electrophoretic force. These lifetimes are sufficiently long to affect enzymes operating on DNA. Furthermore, these transient lifetimes are readily obtained using the α-HL nanopore, a feature that is not easily achievable by other methods.

  9. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  10. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2016-11-01

    The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer-Specific Amino Group Recognition.

    PubMed

    Cho, Ik Sung; Ooya, Tooru

    2018-05-24

    Dendrimer-based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer-based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH-dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique L-arginine-responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and L-arginine. These polyglycerol dendrimer-based supramolecular characteristics allow multimodal application in smart biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Prediction of Surface and pH-Specific Binding of Peptides to Metal and Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Lin, Tzu-Jen; Emami, Fateme Sadat; Ramezani-Dakhel, Hadi; Naik, Rajesh; Knecht, Marc; Perry, Carole C.; Huang, Yu

    2015-03-01

    The mechanism of specific peptide adsorption onto metallic and oxidic nanostructures has been elucidated in atomic resolution using novel force fields and surface models in comparison to measurements. As an example, variations in peptide adsorption on Pd and Pt nanoparticles depending on shape, size, and location of peptides on specific bounding facets are explained. Accurate computational predictions of reaction rates in C-C coupling reactions using particle models derived from HE-XRD and PDF data illustrate the utility of computational methods for the rational design of new catalysts. On oxidic nanoparticles such as silica and apatites, it is revealed how changes in pH lead to similarity scores of attracted peptides lower than 20%, supported by appropriate model surfaces and data from adsorption isotherms. The results demonstrate how new computational methods can support the design of nanoparticle carriers for drug release and the understanding of calcification mechanisms in the human body.

  13. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ca2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy.

    PubMed

    Jessica, Sabourin; Angèle, Boet; Catherine, Rucker-Martin; Mélanie, Lambert; Ana-Maria, Gomez; Jean-Pierre, Benitah; Frédéric, Perros; Marc, Humbert; Fabrice, Antigny

    2018-05-01

    Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca 2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca 2+ remodeling. After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca 2+ ] i transients and increased sarcoplasmic reticulum (SR) Ca 2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser 16 -phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca 2+ -ATPase) pump abundance. Moreover, after PH induction, Ca 2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca 2+ -release-activated Ca 2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca 2+ ] i transients amplitude, the SR Ca 2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. These new findings demonstrate RV-specific cellular Ca 2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca 2+ current participates in this Ca 2+ remodeling in RVH secondary to PH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The spectral properties of (-)-epigallocatechin 3-O-gallate (EGCG) fluorescence in different solvents: dependence on solvent polarity.

    PubMed

    Snitsarev, Vladislav; Young, Michael N; Miller, Ross M S; Rotella, David P

    2013-01-01

    (-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  16. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition

    PubMed Central

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-01-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration. PMID:25482284

  17. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    PubMed

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Understanding the evolution of luminescent gold quantum clusters in protein templates.

    PubMed

    Chaudhari, Kamalesh; Xavier, Paulrajpillai Lourdu; Pradeep, Thalappil

    2011-11-22

    We show that the time-dependent biomineralization of Au(3+) by native lactoferrin (NLf) and bovine serum albumin (BSA) resulting in near-infrared (NIR) luminescent gold quantum clusters (QCs) occurs through a protein-bound Au(1+) intermediate and subsequent emergence of free protein. The evolution was probed by diverse tools, principally, using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The importance of alkaline pH in the formation of clusters was probed. At neutral pH, a Au(1+)-protein complex was formed (starting from Au(3+)) with the binding of 13-14 gold atoms per protein. When the pH was increased above 12, these bound gold ions were further reduced to Au(0) and nucleation and growth of cluster commenced, which was corroborated by the beginning of emission; at this point, the number of gold atoms per protein was ~25, suggesting the formation of Au(25). During the cluster evolution, at certain time intervals, for specific molar ratios of gold and protein, occurrence of free protein was noticed in the mass spectra, suggesting a mixture of products and gold ion redistribution. By providing gold ions at specific time of the reaction, monodispersed clusters with enhanced luminescence could be obtained, and the available quantity of free protein could be utilized efficiently. Monodispersed clusters would be useful in obtaining single crystals of protein-protected noble metal quantum clusters where homogeneity of the system is of primary concern. © 2011 American Chemical Society

  19. Cytochrome c conformations resolved by the photon counting histogram: Watching the alkaline transition with single-molecule sensitivity

    PubMed Central

    Perroud, Thomas D.; Bokoch, Michael P.; Zare, Richard N.

    2005-01-01

    We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0–9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5–10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry. PMID:16314563

  20. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-02-01

    In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl-, SO42-, NO3- and HCO3-) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO3-, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface sbnd OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its separation convenience and highly adsorption capacity compared to other adsorbents.

Top