Phylogenetic Analysis and Classification of the Fungal bHLH Domain
Sailsbery, Joshua K.; Atchley, William R.; Dean, Ralph A.
2012-01-01
The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1–F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH–containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358
Worldwide phylogenetic relationship of avian poxviruses
Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly
2013-01-01
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.
Worldwide Phylogenetic Relationship of Avian Poxviruses
Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly
2013-01-01
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635
Functional & phylogenetic diversity of copepod communities
NASA Astrophysics Data System (ADS)
Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.
2016-02-01
The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.
Knowles, Lacey L; Klimov, Pavel B
2011-11-01
With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference--species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates--a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.
Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria
Gao, Beile
2012-01-01
Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973
Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka
2013-03-01
Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Ast, Jennifer C; Dunlap, Paul V
2005-10-01
Substantial ambiguity exists regarding the phylogenetic status of facultatively psychrophilic luminous bacteria identified as Photobacterium phosphoreum, a species thought to be widely distributed in the world's oceans and believed to be the specific bioluminescent light-organ symbiont of several deep-sea fishes. Members of the P. phosphoreum species group include luminous and non-luminous strains identified phenotypically from a variety of different habitats as well as phylogenetically defined lineages that appear to be evolutionarily distinct. To resolve this ambiguity and to begin developing a meaningful knowledge of the geographic distributions, habitats and symbiotic relationships of bacteria in the P. phosphoreum species group, we carried out a multilocus, fine-scale phylogenetic analysis based on sequences of the 16S rRNA, gyrB and luxABFE genes of many newly isolated luminous strains from symbiotic and saprophytic habitats, together with previously isolated luminous and non-luminous strains identified as P. phosphoreum from these and other habitats. Parsimony analysis unambiguously resolved three evolutionarily distinct clades, phosphoreum, iliopiscarium and kishitanii. The tight phylogenetic clustering within these clades and the distinct separation between them indicates they are different species, P. phosphoreum, Photobacterium iliopiscarium and the newly recognized 'Photobacterium kishitanii'. Previously reported non-luminous strains, which had been identified phenotypically as P. phosphoreum, resolved unambiguously as P. iliopiscarium, and all examined deep-sea fishes (specimens of families Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae and Acropomatidae) were found to harbour 'P. kishitanii', not P. phosphoreum, in their light organs. This resolution revealed also that 'P. kishitanii' is cosmopolitan in its geographic distribution. Furthermore, the lack of phylogenetic variation within 'P. kishitanii' indicates that this facultatively symbiotic bacterium is not cospeciating with its phylogenetically divergent host fishes. The results of this fine-scale phylogenetic analysis support the emerging view that bacterial species names should designate singular historical entities, i.e. discrete lineages diagnosed by a significant divergence of shared derived nucleotide characters.
A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters
Saier, Milton H.
2000-01-01
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects. PMID:10839820
Nunes, Marcio R.T.; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C.; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P.; Carvalho, Valeria L.; da Silva, Sandro Patroca; Cardoso, Jedson F.; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G.; Widen, Steven G.; Vasconcelos, Pedro F.C.; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B.
2017-01-01
The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. PMID:28193550
Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B
2017-04-01
The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.
Aarestrup, F M
2001-07-01
A total of 41 Staphylococcus intermedius isolates were isolated from skin of healthy members of six phylogenetic groups within the Canoidea (the dog family, skunk subfamily, weasel subfamily, racoon family, red panda and bear family) of different geographical origin and compared by EcoRI ribotyping and cluster analysis. The S. intermedius isolates from the different families and subfamilies clustered together in separate groups, almost completely following the phylogenetic relationship of the animal hosts. These ribotype data indicate host-specificity of different types of S. intermedius and suggest co-evolution between the animal hosts within the Canoidea and S. intermedius.
Stratification of co-evolving genomic groups using ranked phylogenetic profiles
Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A
2009-01-01
Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884
Meereis, Florian; Kaufmann, Michael
2004-10-15
The rapidly increasing number of completely sequenced genomes led to the establishment of the COG-database which, based on sequence homologies, assigns similar proteins from different organisms to clusters of orthologous groups (COGs). There are several bioinformatic studies that made use of this database to determine (hyper)thermophile-specific proteins by searching for COGs containing (almost) exclusively proteins from (hyper)thermophilic genomes. However, public software to perform individually definable group-specific searches is not available. The tool described here exactly fills this gap. The software is accessible at http://www.uni-wh.de/pcogr and is linked to the COG-database. The user can freely define two groups of organisms by selecting for each of the (current) 66 organisms to belong either to groupA, to the reference groupB or to be ignored by the algorithm. Then, for all COGs a specificity index is calculated with respect to the specificity to groupA, i. e. high scoring COGs contain proteins from the most of groupA organisms while proteins from the most organisms assigned to groupB are absent. In addition to ranking all COGs according to the user defined specificity criteria, a graphical visualization shows the distribution of all COGs by displaying their abundance as a function of their specificity indexes. This software allows detecting COGs specific to a predefined group of organisms. All COGs are ranked in the order of their specificity and a graphical visualization allows recognizing (i) the presence and abundance of such COGs and (ii) the phylogenetic relationship between groupA- and groupB-organisms. The software also allows detecting putative protein-protein interactions, novel enzymes involved in only partially known biochemical pathways, and alternate enzymes originated by convergent evolution.
treespace: Statistical exploration of landscapes of phylogenetic trees.
Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline
2017-11-01
The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Roy, Lise; Dowling, Ashley P.G.; Chauve, Claude Marie; Buronfosse, Thierry
2010-01-01
Molecular markers for cladistic analyses may perform differently according to the taxonomic group considered and the historical level under investigation. Here we evaluate the phylogenetic potential of five different markers for resolving evolutionary relationships within the ectoparasitic genus Dermanyssus at the species level, and their ability to address questions about the evolution of specialization. COI provided 9–18% divergence between species (up to 9% within species), 16S rRNA 10–16% (up to 4% within species), ITS1 and 2 2–9% (up to 1% within species) and Tropomyosin intron n 8–20% (up to 6% within species). EF-1α revealed different non-orthologous copies within individuals of Dermanyssus and Ornithonyssus. Tropomyosin intron n was shown containing consistent phylogenetic signal at the specific level within Dermanyssus and represents a promising marker for future prospects in phylogenetics of Acari. Phylogenetic analyses revealed that the generalist condition is apomorphic and D. gallinae might represent a complex of hybridized lineages. The split into hirsutus-group and gallinae-group in Dermanyssus does not seem to be appropriate based upon these results and D. longipes appears to be composed of two different entities. PMID:20480038
Fungal partner shifts during the evolution of mycoheterotrophy in Neottia.
Yagame, Takahiro; Ogura-Tsujita, Yuki; Kinoshita, Akihiko; Iwase, Koji; Yukawa, Tomohisa
2016-09-01
Few previous studies have examined how mycobionts change during the evolution from autotrophy to mycoheterotrophy based on phylogenetic hypotheses. Neottia (Orchidaceae) comprises leafy species that are autotrophic and related leafless mycoheterotrophic species, and the phylogenetic relationships among them have been clarified. Accordingly, Neottia is a suitable taxon for investigating the question above. Here we clarified the diversity of mycobionts in Neottia plants and elucidated changes in the character of symbiotic associations during the evolution of mycoheterotrophy. We sequenced the internal transcribed spacer (ITS) regions of nuclear ribosomal (nr) DNA for mycobionts of Neottia plants. Furthermore, we selected one representative DNA sample from each fungal operational taxonomic unit (OTU) and used it to amplify the large subunit (LSU) nrDNA sequences. Phylogenetic analyses of Sebacinales (basidiomycetes), the dominant mycobiont of Neottia, were conducted and sample-based rarefaction curves generated for the observed mycobiont richness on each OTU. Leafy and leafless species in Neottia were associated with Sebacinales Group B and Sebacinales Group A, respectively. The composition and specificity level of fungal partners varied among Neottia species. Fungal partner composition and specificity level changed with speciation in both leafy and leafless Neottia species. In particular, mycorrhizal associations likely shifted from Sebacinales Group B to Group A during the evolution from autotrophy to mycoheterotrophy. Partner shifts to Sebacinales Group A have also been reported in the evolution of mycoheterotrophy of other plant groups, suggesting that convergence to this fungal group occurs in association with the evolution of mycoheterotrophy. © 2016 Botanical Society of America.
Latitudinal variation in nematode diversity and ecological roles along the Chinese coast.
Wu, Jihua; Chen, Huili; Zhang, Youzheng
2016-11-01
To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Sixteen wetland locations along the Pacific coast of China, from 20°N to 40°N. Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on " c - p " colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species.
Phylogenetic Analysis of Marine Picoplankton Using Tau RNA Sequences.
1991-02-01
Pacific Ocean (Aloha Station). DNA prepared from both populations was analyzed by hybridization using kingdom -specific probes complementary to 16S rRNA...euba:-teria. Few eukaryotes, no archaebacteria detected (at low resolution). "* Fluorescendly labeled phylogenetir group-specific oligon ucleotfides
Póntigo, F; Silva, C; Moraga, M; Flores, S V
2015-12-29
Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.
Dessimoz, Christophe; Boeckmann, Brigitte; Roth, Alexander C J; Gonnet, Gaston H
2006-01-01
Correct orthology assignment is a critical prerequisite of numerous comparative genomics procedures, such as function prediction, construction of phylogenetic species trees and genome rearrangement analysis. We present an algorithm for the detection of non-orthologs that arise by mistake in current orthology classification methods based on genome-specific best hits, such as the COGs database. The algorithm works with pairwise distance estimates, rather than computationally expensive and error-prone tree-building methods. The accuracy of the algorithm is evaluated through verification of the distribution of predicted cases, case-by-case phylogenetic analysis and comparisons with predictions from other projects using independent methods. Our results show that a very significant fraction of the COG groups include non-orthologs: using conservative parameters, the algorithm detects non-orthology in a third of all COG groups. Consequently, sequence analysis sensitive to correct orthology assignments will greatly benefit from these findings.
2011-01-01
Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of them detect non-oral species and phylogenetic groups of importance in a variety of medical conditions and the food industry. PMID:21247450
Montagna, Matteo; Sassera, Davide; Epis, Sara; Bazzocchi, Chiara; Vannini, Claudia; Lo, Nathan; Sacchi, Luciano; Fukatsu, Takema; Petroni, Giulio
2013-01-01
“Candidatus Midichloria mitochondrii” is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus. Bacteria phylogenetically related to “Ca. Midichloria mitochondrii” (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including humans. Despite numerous studies focused on specific members of the MALO group, no comprehensive phylogenetic and statistical analyses have so far been performed on the group as a whole. Here, we present a multidisciplinary investigation based on 16S rRNA gene sequences using both phylogenetic and statistical methods, thereby analyzing MALOs in the overall framework of the Rickettsiales. This study revealed that (i) MALOs form a monophyletic group; (ii) the MALO group is structured into distinct subgroups, verifying current genera as significant evolutionary units and identifying several subclades that could represent novel genera; (iii) the MALO group ranks at the level of described Rickettsiales families, leading to the proposal of the novel family “Candidatus Midichloriaceae.” In addition, based on the phylogenetic trees generated, we present an evolutionary scenario to interpret the distribution and life history transitions of these microorganisms associated with highly divergent eukaryotic hosts: we suggest that aquatic/environmental protista have acted as evolutionary reservoirs for members of this novel family, from which one or more lineages with the capacity of infecting metazoa have evolved. PMID:23503305
Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen
2015-01-01
ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. PMID:26350969
CDAO-Store: Ontology-driven Data Integration for Phylogenetic Analysis
2011-01-01
Background The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Results Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. Conclusions CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore. PMID:21496247
CDAO-store: ontology-driven data integration for phylogenetic analysis.
Chisham, Brandon; Wright, Ben; Le, Trung; Son, Tran Cao; Pontelli, Enrico
2011-04-15
The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.
Platell, Joanne L; Cobbold, Rowland N; Johnson, James R; Trott, Darren J
2010-09-01
To determine the phylogenetic group distribution and prevalence of three major globally disseminated clonal groups [clonal group A (CGA) and O15:K52:H1, associated with phylogenetic group D, and sequence type ST131, associated with phylogenetic group B2] among fluoroquinolone-resistant extra-intestinal Escherichia coli isolates from humans and companion animals in Australia. Clinical extra-intestinal fluoroquinolone-resistant E. coli isolates were obtained from humans (n = 582) and companion animals (n = 125), on Australia's east coast (October 2007-October 2009). Isolates were tested for susceptibility to seven antimicrobial agents, and for phylogenetic group, O type and clonal-group-specific single nucleotide polymorphisms by PCR. The fluoroquinolone-resistant isolates were typically resistant to multiple agents (median of four). Analysis revealed that clonal group ST131 accounted for a large subset of the human isolates (202/585, 35%), but for a much smaller proportion of the companion animal isolates (9/125, 7.2%; P
Huhtamo, Eili; Cook, Shelley; Moureau, Gregory; Uzcátegui, Nathalie Y.; Sironen, Tarja; Kuivanen, Suvi; Putkuri, Niina; Kurkela, Satu; Harbach, Ralph E.; Firth, Andrew E.; Vapalahti, Olli; Gould, Ernest A.; de Lamballerie, Xavier
2014-01-01
Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. PMID:25108382
Kõljalg, Siiri; Truusalu, Kai; Stsepetova, Jelena; Pai, Kristiine; Vainumäe, Inga; Sepp, Epp; Mikelsaar, Marika
2014-05-01
The aim of our study was to characterize the phylogenetic groups of Escherichia coli, antibiotic resistance, and containment of class 1 integrons in the first attack of pyelonephritis and in subsequent recurrences in young children. Altogether, 89 urine E. coli isolates from 41 children with urinary tract infection (UTI) were studied for prevalence and persistence of phylogenetic groups by pulsed-field gel electrophoresis (PFGE), antibacterial resistance by minimal inhibitory concentrations (MIC) and class 1 integrons by PCR. Phylogenetic group B2 was most common (57%), followed by D (20%), A (18%) and B1 (5%). Overall resistance to betalactams was 61%, trimethoprim-sulfamethoxazole 28%, and was not associated with phylogenetic groups. According to PFGE, the same clonal strain persisted in 77% of patients. The persistence was detected most often in phylogenetic group B2 (70%). Phylogenetic group B2 more often contained class 1 integrons than group A. Integron positive strains had higher MIC values of cefuroxime, cefotaxime, and gentamicin. In conclusion, phylogenetic group B2 was the most common cause of the first episode of pyelonephritis, as well as in case of the persistence of the same strain and contained frequently class 1 integrons in childhood recurrent UTI. An overall frequent betalactam resistance was equally distributed among phylogenetic groups. © 2013 APMIS. Published by John Wiley & Sons Ltd.
Ueda, Kenji; Ohno, Michiyo; Yamamoto, Kaori; Nara, Hanae; Mori, Yujiro; Shimada, Masafumi; Hayashi, Masahiko; Oida, Hanako; Terashima, Yuko; Nagata, Mitsuyo; Beppu, Teruhiko
2001-01-01
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment. PMID:11525967
Jing, Fuyuan; Cantu, David C; Tvaruzkova, Jarmila; Chipman, Jay P; Nikolau, Basil J; Yandeau-Nelson, Marna D; Reilly, Peter J
2011-08-10
Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.
2011-01-01
Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316
Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo
2016-06-25
Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.
Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo
2016-01-01
Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344
Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.
2014-01-01
The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov. PMID:25566316
Jensen, Anders; Scholz, Christian F P; Kilian, Mogens
2016-11-01
The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.
Cruaud, Astrid; Genson, Gwenaëlle; Rasplus, Jean-Yves; Pereira, Rodrigo A.S.
2017-01-01
Sycophaginae is a group of non-pollinating fig wasps considered closely related to the fig pollinators (Agaoninae, Tetrapusiinae, and Kradibiinae) in the most recent phylogenetic analyses. They occur in all tropical regions and are associated with Ficus subgenera Urostigma and Sycomorus. There are six described genera of Sycophaginae, and two are native and confined to the Neotropics, namely Idarnes Walker, 1843 and Anidarnes Bouček, 1993. Genus Idarnes is divided into three morphologically distinct groups that were proven to be monophyletic by recent molecular phylogenetic analyses. In this paper we reviewed the Idarnes incertus species-group and provide detailed morphological descriptions and illustrations for the species belonging to this group. Three previously described species were redescribed: I. brasiliensis (Mayr, 1906) comb. nov., I. hansoni Bouček, 1993, and I. incertus (Ashmead, 1900). Seventeen new species are described by Farache and Rasplus: I. amacayacuensis sp. n., I. amazonicus sp. n., I. americanae sp. n., I. badiovertex sp. n., I. brevis sp. n., I. brunneus sp. n., I. comptoni sp. n., I. cremersiae sp. n., I. dimorphicus sp. n., I. flavicrus sp. n., I. flaviventris sp. n., I. gibberosus sp. n., I. gordhi sp. n., I. maximus sp. n., I. nigriventris sp. n., I. pseudoflavus sp. n. and I. ramirezi sp. n. We provided keys for the identification of the species as well as for recognising the different species-groups of Idarnes and a closely related genus (Sycophaga Westwood, 1840). Additionally, phylogenetic relationships among 13 species of the I. incertus species-group were inferred using four molecular markers and discussed in the light of Ficus taxonomy and host specificity. PMID:28168097
Beaufays, Jérôme; Adam, Benoît; Decrem, Yves; Prévôt, Pierre-Paul; Santini, Sébastien; Brasseur, Robert; Brossard, Michel; Lins, Laurence
2008-01-01
Background During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. Methodology/Principal Findings Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivary glands of the Ixodes ricinus hard tick. A computational in-depth structural analysis confirmed that LIRs belong to the lipocalin family. These proteins were called LIR for “Lipocalin from I. ricinus” and numbered from 1 to 14 (LIR1 to LIR14). According to their percentage identity/similarity, LIR proteins may be assigned to 6 distinct phylogenetic groups. The mature proteins have calculated pM and pI varying from 21.8 kDa to 37.2 kDa and from 4.45 to 9.57 respectively. In a western blot analysis, all recombinant LIRs appeared as a series of thin bands at 50–70 kDa, suggesting extensive glycosylation, which was experimentally confirmed by treatment with N-glycosidase F. In addition, the in vivo expression analysis of LIRs in I. ricinus, examined by RT-PCR, showed homogeneous expression profiles for certain phylogenetic groups and relatively heterogeneous profiles for other groups. Finally, we demonstrated that LIR6 codes for a protein that specifically binds leukotriene B4. Conclusions/Significance This work confirms that, regarding their biochemical properties, expression profile, and sequence signature, lipocalins in Ixodes hard tick genus, and more specifically in the Ixodes ricinus species, are segregated into distinct phylogenetic groups suggesting potential distinct function. This was particularly demonstrated by the ability of LIR6 to scavenge leukotriene B4. The other LIRs did not bind any of the ligands tested, such as 5-hydroxytryptamine, ADP, norepinephrine, platelet activating factor, prostaglandins D2 and E2, and finally leukotrienes B4 and C4. PMID:19096708
Hammond, R W
2003-06-01
Isolates of Prunus necrotic ringspot virus (PNRSV) were examined to establish the level of naturally occurring sequence variation in the coat protein (CP) gene and to identify group-specific genome features that may prove valuable for the generation of diagnostic reagents. Phylogenetic analysis of a 452 bp sequence of 68 virus isolates, 20 obtained from the European Union Ilarvirus Ringtest held in October 1998, confirmed the clustering of the isolates into three distinct groups. Although no correlation was found between the sequence and host or geographic origin, there was a general trend for severe isolates to cluster into one group. Group-specific features have been identified for discrimination between virus strains.
Wang, Jiay; Yang, Xianyong; Wang, Yuge; Jing, Zhihong; Meng, Kai; Liu, Jianzhu; Guo, Huijun; Xu, Ruixue; Cheng, Ziqiang
2014-01-01
Theileria annulata, which is part of the Theileria sergenti/Theileria buffeli/Theileria orientalis group, preferentially infects cattle and results in high mortality and morbidity in the Mediterranean, Middle East, and Central Asia. The polypeptide Tams1 is an immunodominant major merozoite piroplasm surface antigen of T. annulata that could be used as a marker for epidemiological studies and phylogenetic analysis. In the present study, a total of 155 Tams1 sequences were investigated for genetic diversity and phylogenetic relationships through phylogenetic analysis. Results showed that the Tams1 sequences were divided into two major groups and that distribution for some isolates also exhibited geographic specificity. As targeting polymorphic genes for parasite detection may result in underestimation of infection, polymerase chain reaction (PCR) assay using two different probes targeting tams-1 genes of these two groups can be more credible. In addition, the direction of the spread of the disease was discovered to be from the Mediterranean or the tropical zone to the Eurasian peninsula, Middle East, Southern Asia, and Africa, particularly for Group 2. A similar occurrence was also found between the Ms1 gene of Theileria lestoquardi and the Tams1 gene of T. annulata, which explains cross-immunogenicity to a certain extent. However, no potential glycosylation site in the Tams1 of T. annulata was found in this study, which illustrated that instead of N-glycosylation, other modifications have more significant effects on the immunogenicity of the Tams1 protein.
Jones, Roger A C; Kehoe, Monica A
2016-07-01
Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.
Kusaba, M; Tsuge, T
1995-10-01
The internal transcribed spacer regions (ITS1 and ITS2) of ribosomal DNA from Alternaria species, including seven fungi known to produce host-specific toxins, were analyzed by polymerase chain reaction-amplification and direct sequencing. Phylogenetic analysis of the sequence data by the Neighbor-joining method showed that the seven toxin-producing fungi belong to a monophyletic group together with A. alternata. In contract, A. dianthi, A. panax, A. dauci, A. bataticola, A. porri, A. sesami and A. solani, species that can be morphologically distinguished from A. alternata, could be clearly separated from A. alternata by phylogenetic of the ITS variation. These results suggest that Alternaria pathogens which produce host-specific toxins are pathogenic variants within a single variable species, A. alternata.
Huhtamo, Eili; Cook, Shelley; Moureau, Gregory; Uzcátegui, Nathalie Y; Sironen, Tarja; Kuivanen, Suvi; Putkuri, Niina; Kurkela, Satu; Harbach, Ralph E; Firth, Andrew E; Vapalahti, Olli; Gould, Ernest A; de Lamballerie, Xavier
2014-09-01
Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Blitvich, Bradley J.; Firth, Andrew E.
2015-01-01
There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups. PMID:25866904
Chaves, Jeane Q; de Paiva, Eislaine P; Rabinovitch, Leon; Vivoni, Adriana M
2017-07-01
The presence of Bacillus cereus in milk is a major concern in the dairy industry. In this study 27 Bacillus cereus sensu lato isolates from pasteurized and ultrahigh-temperature (UHT) milk (24 whole UHT and 4 pasteurized samples) collected at supermarket chains in Rio de Janeiro, Brazil, were evaluated to assess the potential risk for food poisoning. Toxigenic and virulence profiles were defined by gene-specific PCR. Affiliation to phylogenetic groups was assigned by panC sequencing. Microbiological analysis revealed the presence of B. cereus s.l. in eight (33.3%) brands (six brands of UHT and two brands of pasteurized milk). Twenty-seven isolates were recovered (13 B. cereus and 14 Bacillus thuringiensis ). Predominant toxigenic patterns were type I (contains all toxin genes except ces) and type II (does not contain cytK and ces), with seven (25.9%) isolates each. Predominant virulence patterns were type 2 (does not contain hlyII or shp) and type 3 (contains all virulence genes), with five (18.5%) isolates each. All isolates belonged to phylogenetic groups III and IV. Presence of hbl, piplc, and sph was associated with group IV isolates. Our results suggest that B. thuringiensis and B. cereus sensu stricto should be considered potential foodborne pathogens. Because the majority of the milk isolates studied have the potential to cause food poisoning because of the high prevalence of toxin and virulence genes and the specific phylogenetic group affiliations, these milk products can be potentially hazardous for human consumption.
Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Opazo, Juan C.
2013-01-01
The complete sequences of three mitochondrial genomes from the land snail Cornu aspersum were determined. The mitogenome has a length of 14050 bp, and it encodes 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. It also includes nine small intergene spacers, and a large AT-rich intergenic spacer. The intra-specific divergence analysis revealed that COX1 has the lower genetic differentiation, while the most divergent genes were NADH1, NADH3 and NADH4. With the exception of Euhadra herklotsi, the structural comparisons showed the same gene order within the family Helicidae, and nearly identical gene organization to that found in order Pulmonata. Phylogenetic reconstruction recovered Basommatophora as polyphyletic group, whereas Eupulmonata and Pulmonata as paraphyletic groups. Bayesian and Maximum Likelihood analyses showed that C. aspersum is a close relative of Cepaea nemoralis, and with the other Helicidae species form a sister group of Albinaria caerulea, supporting the monophyly of the Stylommatophora clade. PMID:23826260
Phylogenetic perspective and the search for life on earth and elsewhere
NASA Technical Reports Server (NTRS)
Pace, Norman R.
1989-01-01
Any search for microbial life on Mars cannot rely upon cultivation of indigenous organisms. Only a minority of even terrestrial organisms that are observed in mixed, naturally-occurring microbial populations can be cultivated in the laboratory. Consequently, methods are being developed for analyzing the phylogenetic affiliations of the constituents of natural microbial populations without the need for their cultivation. This is more than an exercise in taxonomy, for the extent of phylogenetic relatedness between unknown and known organisms is some measure of the extent of their biochemical commonalities. In one approach, total DNA is isolated from natural microbial populations and 16S rRNA genes are shotgun cloned for rapid sequence determinations and phylogenetic analyses. A second approach employs oligodeoxynucleotide hybridization probes that bind to phylogenetic group-specific sequences in 16S rRNA. Since each actively growing cell contains about 104 ribosomes, the binding of the diagnostic probes to single cells can be visualized by radioactivity or fluorescence. The application of these methods and the use of in situ cultivation techniques is illustrated using submarine hydrothermal vent communities. Recommendations are made regarding planning toward future Mars missions.
Barros-García, David; Froufe, Elsa; Bañón, Rafael; Carlos Arronte, Juan; de Carlos, Alejandro
2018-07-01
The Notacanthiformes is an ancient group of deep-sea ray-finned fishes comprising 27 species in two families; Halosauridae and Notacanthidae. Although many studies have tried to reconstruct the phylogenetic relationships among the major clades of Elopomorpha, little is known about the evolutionary history of notacanthiforms. Molecular and morphological data were used to test previous hypotheses regarding the phylogenetic relationships among notacanthiform taxa, and to unravel the origin and evolution of this group. The molecular analyses of notacanthids showed similar results to those previously obtained employing osteological data, which proposed the existence of the Lipogenyinae (Lipogenys) and Notacanthinae (Notacanthus + Polyacanthonotus) subfamilies. Nevertheless, when the external morphology data is considered Lipogenys is more related to Notacanthus than Polyacanthonotus. The analyses could not fully resolve the inner relationships of the halosaurids. The time-calibrated tree of the order Notacanthiformes shows a long process of diversification spanning from the upper Cretaceous, to 50 million years after the K-Pg extinction, with the gradual emergence of all the modern families and genera of the group. This is the first specific phylogeny of the order Notacanthiformes, combining different analyses and data in order to obtain a wider perspective of the evolution and diversification of this group of fishes. Copyright © 2018 Elsevier Inc. All rights reserved.
One tree to link them all: a phylogenetic dataset for the European tetrapoda.
Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried
2014-08-08
Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.
Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo
2015-01-01
A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.
Bahmani, Zahed; Rastegar-Pouyani, Eskandar; Rastegar-Pouyani, Nasrullah
2017-09-08
The taxonomic status of species included in the genus Heremites in Iran and Iraq is uncertain. Three of these species have been assigned to the genus based on morphology: Heremites auratus transcaucasica, H. vittatus, and H. septemtaeniatus. We examined the phylogenetic relationships and taxonomic status of the Iranian and Iraqi species of Heremites by performing phylogenetic analyses using mitochondrial DNA sequences (cytochrome b and 16S rRNA). Phylogenetic relationships and estimated genetic distances indicated that the Heremites populations of the area (Iran and Iraq) form five distinct clades. Three of these clades are found only in Iran, specifically in: (1) Fars and Hormozgan provinces; (2) Northeastern Khuzestan; and (3) Khorasan and Isfahan provinces. The fourth clade (H. septemtaeniatus) is found in west and Mahshahr in Iran as well as in eastern and northern parts of Iraq. The fifth clade, Heremites vittatus, is found in Iran and Iraq. We also confirm the absence of H. auratus in Iran and Iraq. It also indicated that H. vittatus is sister taxon to the other groups that our analyses estimate the divergence of this clade in the Middle Miocene (15.9 Mya). The clade containing the Fars-Hormozgan and Khuzestan populations diverged at the end of the Miocene (8.5 Mya). The Isfahan and Khorasan populations separated at the Pliocene (4.2 Mya) from the western Iranian group, the group in Mahshahr, Iran and the groups in northern and eastern Iraq.
Ingley, Spencer J; Reina, Ruth G; Bermingham, Eldredge; Johnson, Jerald B
2015-08-01
The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group. Copyright © 2015 Elsevier Inc. All rights reserved.
Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.
2002-01-01
The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182
WANG, ZHANG-YANG; HONG, WEI-LONG; ZHU, ZHE-HUI; CHEN, YUN-HAO; YE, WEN-LE; CHU, GUANG-YU; LI, JIA-LIN; CHEN, BI-CHENG; XIA, PENG
2015-01-01
BK polyomavirus (BKV) is important pathogen for kidney transplant recipients, as it is frequently re-activated, leading to nephropathy. The aim of this study was to investigate the phylogenetic reconstruction and polymorphism of the VP2 gene in BKV isolated from Chinese kidney transplant recipients. Phylogenetic analysis was carried out in the VP2 region from 135 BKV-positive samples and 28 reference strains retrieved from GenBank. The unweighted pair-group method with arithmetic mean (UPGMA) grouped all strains into subtypes, but failed to subdivide strains into subgroups. Among the plasma and urine samples, all plasma (23/23) and 82 urine samples (82/95) were identified to contain subtype I; the other 10 urine samples contained subtype IV. A 86-bp fragment was identified as a highly conserved sequence. Following alignment with 36 published BKV sequences from China, 92 sites of polymorphism were identified, including 11 single nucleotide polymorphisms (SNPs) prevalent in Chinese individuals and 30 SNPs that were specific to the two predominant subtypes I and IV. The limitations of the VP2 gene segment in subgrouping were confirmed by phylogenetic analysis. The conserved sequence and polymorphism identified in this study may be helpful in the detection and genotyping of BKV. PMID:26640547
Split Personality of a Potyvirus: To Specialize or Not to Specialize?
Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.
2014-01-01
Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.
2008-02-01
WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 tomore » 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.« less
Reynaud, Yann; Rastogi, Nalin
2016-12-01
We recently showed that the Mycobacterium tuberculosis sublineage LAM9 could be subdivided as two distinct subpopulations - each reflecting its unique biogeographical structure and evolutionary history. We subsequently attempted to verify if this genetic structuration could be traced in an enlarged global sample. For this purpose, we analyzed global evolutionary relationships of LAM strains in a large dataset (n = 1923 isolates from 35 countries worldwide) with concomitant spoligotyping and MIRU-VNTR data, followed by a deeper analysis of LAM9 sublineage (n = 851 isolates). Based on a combination of phylogenetical analysis and Bayesian statistics, a total of three different clusters, tentatively named LAM9C1, C2 and C3 were described in this dataset. Closer inspection of the phylogenetic tree with concomitant data on origin of isolates with genetic clusterization revealed LAM9C3 being the most tightly knit group exclusively found in the Old World as opposed to LAM9C2 being a loosely-knit group without any phylogeographical specificity; while LAM9C1 appeared with a majority of strains being well-clustered despite some isolates that intermixed with unrelated LAM clusters. Subsequently, we hereby describe a new M. tuberculosis LAM sublineage named LAM9C3 with phylogeographical specificity for the Old World. These findings open new perspectives to study respective migration histories and adaptation to human hosts of specific M. tuberculosis clones during the exploration and conquest of the New World. We therefore plan to reevaluate the nomenclature and evolutionary history of various LAM sublineages using Whole Genome Sequencing (WGS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest
Schreeg, Laura A.; Kress, W. John; Erickson, David L.; Swenson, Nathan G.
2010-01-01
Background Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. Methodology/Principal Findings Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. Conclusions Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends highlighted in this analysis suggest how plant-soil associations may drive plant distributions and diversity at the local-scale. PMID:21060686
Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios; ...
2016-02-29
In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less
NASA Technical Reports Server (NTRS)
Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.
2004-01-01
We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.
Rasmann, Sergio; Agrawal, Anurag A
2011-06-01
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.
Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.
2016-01-01
Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232
A detailed phylogeny for the Methanomicrobiales
NASA Technical Reports Server (NTRS)
Rouviere, P.; Mandelco, L.; Winker, S.; Woese, C. R.
1992-01-01
The small subunit rRNA sequence of twenty archaea, members of the Methanomicrobiales, permits a detailed phylogenetic tree to be inferred for the group. The tree confirms earlier studies, based on far fewer sequences, in showing the group to be divided into two major clusters, temporarily designated the "methanosarcina" group and the "methanogenium" group. The tree also defines phylogenetic relationships within these two groups, which in some cases do not agree with the phylogenetic relationships implied by current taxonomic names--a problem most acute for the genus Methanogenium and its relatives. The present phylogenetic characterization provides the basis for a consistent taxonomic restructuring of this major methanogenic taxon.
Theodore, M Jordan; Anderson, Raydel D; Wang, Xin; Katz, Lee S; Vuong, Jeni T; Bell, Melissa E; Juni, Billie A; Lowther, Sara A; Lynfield, Ruth; MacNeil, Jessica R; Mayer, Leonard W
2012-04-01
PCR detecting the protein D (hpd) and fuculose kinase (fucK) genes showed high sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus. Phylogenetic analysis using the 16S rRNA gene demonstrated two distinct groups for H. influenzae and H. haemolyticus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios
In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less
Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen; Gao, George F; Tan, Wenjie
2015-09-08
The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. The recent outbreak of MERS-CoV in South Korea has attracted global media attention due to the speed of spread and onward transmission. Here, we present the complete genome of the first imported MERS-CoV case in China and demonstrate genetic recombination events between group 3 and group 5 of clade B that may have implications for the transmissibility of MERS-CoV. Copyright © 2015 Wang et al.
Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587
Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.
Ghai, Ria R.; Simons, Noah D.; Chapman, Colin A.; Omeja, Patrick A.; Davies, T. Jonathan; Ting, Nelson; Goldberg, Tony L.
2014-01-01
Background Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. Methods and Findings We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Conclusions and Significance Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health. PMID:25340752
Ghai, Ria R; Simons, Noah D; Chapman, Colin A; Omeja, Patrick A; Davies, T Jonathan; Ting, Nelson; Goldberg, Tony L
2014-10-01
Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.
Futagami, Taiki; Kadooka, Chihiro; Ando, Yoshinori; Okutsu, Kayu; Yoshizaki, Yumiko; Setoguchi, Shinji; Takamine, Kazunori; Kawai, Mikihiko; Tamaki, Hisanori
2017-10-01
Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome-level phylogeny for the strain-level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub-species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake-shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Petersen, Andreas Munk; Halkjær, Sofie Ingdam; Gluud, Lise Lotte
2015-01-01
Increased numbers of Escherichia coli and, furthermore, specific subtypes of E. coli, such as E. coli of the phylogenetic groups B2 and D have been found in the intestine of patients with inflammatory bowel disease (IBD). In this review, we wanted to evaluate the relationship between B2 and D E. coli intestinal colonization and IBD. A systematic review with meta-analyses. We included studies comparing colonization with B2 and D E. coli in IBD patients and in controls. Random-effects and fixed-effect meta-analyses were performed. We included 7 studies on 163 patients with IBD and 89 controls. Among IBD patients, 57 patients had ulcerative colitis (UC) and 95 Crohn's disease (CD). Random-effects meta-analysis showed that IBD patients were more likely to have B2 E. coli intestinal colonization compared with controls (odds ratio [OR]: 2.28; 95% confidence interval [CI]: 1.25-4.16). There was little between-study heterogeneity (I(2) = 0). The result was confirmed in subgroup analyses of patients with UC (OR: 3.58; 95% CI: 1.62-7.90), but not CD (OR: 1.94; 95% CI: 0.98-3.82). Intestinal colonization with phylogenetic group D E. coli was not found to be related to IBD, UC or CD. Our study reveals that intestinal colonization with phylogenetic group B2 E. coli is associated with UC. Due to the design, we are unable to determine if the colonization with B2 E. coli leads to the development of the disease or the disease increases the risk of colonization with B2 E. coli.
Gamboa-Tuz, Samuel D; Pereira-Santana, Alejandro; Zhao, Tao; Schranz, M Eric; Castano, Enrique; Rodriguez-Zapata, Luis C
2018-04-25
The Transmembrane BAX Inhibitor Motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. However, no research has focused on the evolution of this superfamily in plants. We identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. Then, we used orthology and synteny network analyses to further investigate the evolution and expansion of the BI and LFG families in 48 plants from diverse taxa. Plant BI family forms a single monophyletic group; however, monocot BI sequences transposed to another genomic context during evolution. Plant LFG family, which expanded trough whole genome and tandem duplications, is subdivided in LFG I, LFG IIA, and LFG IIB major phylogenetic groups, and retains synteny in angiosperms. Moreover, two orthologous groups (OGs) are shared between bryophytes and seed plants. Other several lineage-specific OGs are present in plants. This work clarifies the phylogenetic classification of the TMBIM superfamily across the three domains of life. Furthermore, it sheds new light on the evolution of the BI and LFG families in plants providing a benchmark for future research. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zheng, Jinshui; Ruan, Lifang; Sun, Ming
2015-01-01
Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli. PMID:26253671
Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo
2015-01-01
A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution. PMID:26657305
Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika
2016-10-01
Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops.
Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika
2016-01-01
Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops. PMID:26894448
Phylogenetic Analysis and Epidemic History of Hepatitis C Virus Genotype 2 in Tunisia, North Africa
Rajhi, Mouna; Ghedira, Kais; Chouikha, Anissa; Djebbi, Ahlem; Cheikh, Imed; Ben Yahia, Ahlem; Sadraoui, Amel; Hammami, Walid; Azouz, Msaddek; Ben Mami, Nabil; Triki, Henda
2016-01-01
HCV genotype 2 (HCV-2) has a worldwide distribution with prevalence rates that vary from country to country. High genetic diversity and long-term endemicity were suggested in West African countries. A global dispersal of HCV-2 would have occurred during the 20th century, especially in European countries. In Tunisia, genotype 2 was the second prevalent genotype after genotype 1 and most isolates belong to subtypes 2c and 2k. In this study, phylogenetic analyses based on the NS5B genomic sequences of 113 Tunisian HCV isolates from subtypes 2c and 2k were carried out. A Bayesian coalescent-based framework was used to estimate the origin and the spread of these subtypes circulating in Tunisia. Phylogenetic analyses of HCV-2c sequences suggest the absence of country-specific or time-specific variants. In contrast, the phylogenetic grouping of HCV-2k sequences shows the existence of two major genetic clusters that may represent two distinct circulating variants. Coalescent analysis indicated a most recent common ancestor (tMRCA) of Tunisian HCV-2c around 1886 (1869–1902) before the introduction of HCV-2k in 1901 (1867–1931). Our findings suggest that the introduction of HCV-2c in Tunisia is possibly a result of population movements between Tunisia and European population following the French colonization. PMID:27100294
Phylogenetic Analysis and Epidemic History of Hepatitis C Virus Genotype 2 in Tunisia, North Africa.
Rajhi, Mouna; Ghedira, Kais; Chouikha, Anissa; Djebbi, Ahlem; Cheikh, Imed; Ben Yahia, Ahlem; Sadraoui, Amel; Hammami, Walid; Azouz, Msaddek; Ben Mami, Nabil; Triki, Henda
2016-01-01
HCV genotype 2 (HCV-2) has a worldwide distribution with prevalence rates that vary from country to country. High genetic diversity and long-term endemicity were suggested in West African countries. A global dispersal of HCV-2 would have occurred during the 20th century, especially in European countries. In Tunisia, genotype 2 was the second prevalent genotype after genotype 1 and most isolates belong to subtypes 2c and 2k. In this study, phylogenetic analyses based on the NS5B genomic sequences of 113 Tunisian HCV isolates from subtypes 2c and 2k were carried out. A Bayesian coalescent-based framework was used to estimate the origin and the spread of these subtypes circulating in Tunisia. Phylogenetic analyses of HCV-2c sequences suggest the absence of country-specific or time-specific variants. In contrast, the phylogenetic grouping of HCV-2k sequences shows the existence of two major genetic clusters that may represent two distinct circulating variants. Coalescent analysis indicated a most recent common ancestor (tMRCA) of Tunisian HCV-2c around 1886 (1869-1902) before the introduction of HCV-2k in 1901 (1867-1931). Our findings suggest that the introduction of HCV-2c in Tunisia is possibly a result of population movements between Tunisia and European population following the French colonization.
Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.
2007-01-01
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538
Anderson, Raydel D.; Wang, Xin; Katz, Lee S.; Vuong, Jeni T.; Bell, Melissa E.; Juni, Billie A.; Lowther, Sara A.; Lynfield, Ruth; MacNeil, Jessica R.; Mayer, Leonard W.
2012-01-01
PCR detecting the protein D (hpd) and fuculose kinase (fucK) genes showed high sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus. Phylogenetic analysis using the 16S rRNA gene demonstrated two distinct groups for H. influenzae and H. haemolyticus. PMID:22301020
Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki
2009-01-15
The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.
Balasubramaniam, Krishna N; Beisner, Brianne A; Berman, Carol M; De Marco, Arianna; Duboscq, Julie; Koirala, Sabina; Majolo, Bonaventura; MacIntosh, Andrew J; McFarland, Richard; Molesti, Sandra; Ogawa, Hideshi; Petit, Odile; Schino, Gabriele; Sosa, Sebastian; Sueur, Cédric; Thierry, Bernard; de Waal, Frans B M; McCowan, Brenda
2018-01-01
Among nonhuman primates, the evolutionary underpinnings of variation in social structure remain debated, with both ancestral relationships and adaptation to current conditions hypothesized to play determining roles. Here we assess whether interspecific variation in higher-order aspects of female macaque (genus: Macaca) dominance and grooming social structure show phylogenetic signals, that is, greater similarity among more closely-related species. We use a social network approach to describe higher-order characteristics of social structure, based on both direct interactions and secondary pathways that connect group members. We also ask whether network traits covary with each other, with species-typical social style grades, and/or with sociodemographic characteristics, specifically group size, sex-ratio, and current living condition (captive vs. free-living). We assembled 34-38 datasets of female-female dyadic aggression and allogrooming among captive and free-living macaques representing 10 species. We calculated dominance (transitivity, certainty), and grooming (centrality coefficient, Newman's modularity, clustering coefficient) network traits as aspects of social structure. Computations of K statistics and randomization tests on multiple phylogenies revealed moderate-strong phylogenetic signals in dominance traits, but moderate-weak signals in grooming traits. GLMMs showed that grooming traits did not covary with dominance traits and/or social style grade. Rather, modularity and clustering coefficient, but not centrality coefficient, were strongly predicted by group size and current living condition. Specifically, larger groups showed more modular networks with sparsely-connected clusters than smaller groups. Further, this effect was independent of variation in living condition, and/or sampling effort. In summary, our results reveal that female dominance networks were more phylogenetically conserved across macaque species than grooming networks, which were more labile to sociodemographic factors. Such findings narrow down the processes that influence interspecific variation in two core aspects of macaque social structure. Future directions should include using phylogeographic approaches, and addressing challenges in examining the effects of socioecological factors on primate social structure. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.
1985-01-01
The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.
A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.
Takahashi, Tetsumi; Moreno, Edmundo
2015-12-01
The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.
Genomic Comparative Study of Bovine Mastitis Escherichia coli.
Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre
2016-01-01
Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.
Genomic Comparative Study of Bovine Mastitis Escherichia coli
Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre
2016-01-01
Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117
New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria.
Feng, Jin-Mei; Xiong, Jie; Zhang, Jin-Yong; Yang, Ya-Lin; Yao, Bin; Zhou, Zhi-Gang; Miao, Wei
2014-12-01
Myxozoa, a diverse group of morphologically simplified endoparasites, are well known fish parasites causing substantial economic losses in aquaculture. Despite active research, the phylogenetic position of Myxozoa remains ambiguous. After obtaining the genome and transcriptome data of the myxozoan Thelohanellus kitauei, we examined the phylogenetic position of Myxozoa from three different perspectives. First, phylogenomic analyses with the newly sequenced genomic data strongly supported the monophyly of Myxozoa and that Myxozoa is sister to Medusozoa within Cnidaria. Second, we detected two homologs to cnidarian-specific minicollagens in the T. kitauei genome with molecular characteristics similar to cnidarian-specific minicollagens, suggesting that the minicollagen homologs in T. kitauei may have functions similar to those in Cnidaria and that Myxozoa is Cnidaria. Additionally, phylogenetic analyses revealed that the minicollagens in myxozoans and medusozoans have a common ancestor. Third, we detected 11 of the 19 proto-mesodermalgenes in the T. kitauei genome, which were also present in the cnidarian Hydra magnipapillata, indicating Myxozoa is within Cnidaria. Thus, our results robustly support Myxozoa as a derived cnidarian taxon with an affinity to Medusozoa, helping to understand the diversity of the morphology, development and life cycle of Cnidaria and its evolution. Copyright © 2014 Elsevier Inc. All rights reserved.
Nielsen, Daniel W; Klimavicz, James S; Cavender, Tia; Wannemuehler, Yvonne; Barbieri, Nicolle L; Nolan, Lisa K; Logue, Catherine M
2018-01-01
Extraintestinal pathogenic Escherichia coli (ExPEC) include avian pathogenic E. coli (APEC), neonatal meningitis E. coli (NMEC), and uropathogenic E. coli (UPEC) and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types - M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064) and NMEC (84.4%, p = 0.0093) isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB ( p = 0.0204). Additionally, E. coli phylogenetic assignment using Clermont's original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 ( p = 0.0291, p = 0.0024). Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.
Analysis of septins across kingdoms reveals orthology and new motifs.
Pan, Fangfang; Malmberg, Russell L; Momany, Michelle
2007-07-01
Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9) and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7) contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p) and Group 4 (which includes S. cerevisiae Cdc12p) contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE) contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.
Hasanpour, Mojtaba; Najafi, Akram
2017-06-01
Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.
Dojka, Michael A.; Hugenholtz, Philip; Haack, Sheridan K.; Pace, Norman R.
1998-01-01
A culture-independent molecular phylogenetic approach was used to survey constituents of microbial communities associated with an aquifer contaminated with hydrocarbons (mainly jet fuel) and chlorinated solvents undergoing intrinsic bioremediation. Samples were obtained from three redox zones: methanogenic, methanogenic-sulfate reducing, and iron or sulfate reducing. Small-subunit rRNA genes were amplified directly from aquifer material DNA by PCR with universally conserved or Bacteria- or Archaea-specific primers and were cloned. A total of 812 clones were screened by restriction fragment length polymorphisms (RFLP), approximately 50% of which were unique. All RFLP types that occurred more than once in the libraries, as well as many of the unique types, were sequenced. A total of 104 (94 bacterial and 10 archaeal) sequence types were determined. Of the 94 bacterial sequence types, 10 have no phylogenetic association with known taxonomic divisions and are phylogenetically grouped in six novel division level groups (candidate divisions WS1 to WS6); 21 belong to four recently described candidate divisions with no cultivated representatives (OP5, OP8, OP10, and OP11); and 63 are phylogenetically associated with 10 well-recognized divisions. The physiology of two particularly abundant sequence types obtained from the methanogenic zone could be inferred from their phylogenetic association with groups of microorganisms with a consistent phenotype. One of these sequence types is associated with the genus Syntrophus; Syntrophus spp. produce energy from the anaerobic oxidation of organic acids, with the production of acetate and hydrogen. The organism represented by the other sequence type is closely related to Methanosaeta spp., which are known to be capable of energy generation only through aceticlastic methanogenesis. We hypothesize, therefore, that the terminal step of hydrocarbon degradation in the methanogenic zone of the aquifer is aceticlastic methanogenesis and that the microorganisms represented by these two sequence types occur in syntrophic association. PMID:9758812
Dojka, M.A.; Hugenholtz, P.; Haack, S.K.; Pace, N.R.
1998-01-01
A culture-independent molecular phylogenetic approach was used to survey constituents of microbial communities associated with an aquifer contaminated with hydrocarbons (mainly jet fuel) and chlorinated solvents undergoing intrinsic bioremediation. Samples were obtained from three redox zones: methanogenic, methanogenic-sulfate reducing, and iron or sulfate reducing. Small-subunit rRNA genes were amplified directly from aquifer material DNA by PCR with universally conserved or Bacteria- or Archaea-specific primers and were cloned. A total of 812 clones were screened by restriction fragment length polymorphisms (RFLP), approximately 50% of which were unique. All RFLP types that occurred more than once in the libraries, as well as many of the unique types, were sequenced. A total of 104 (94 bacterial and 10 archaeal) sequence types were determined. Of the 94 bacterial sequence types, 10 have no phylogenetic association with known taxonomic divisions and are phylogenetically grouped in six novel division level groups (candidate divisions WS1 to WS6); 21 belong to four recently described candidate divisions with no cultivated representatives (OPS, OP8, OP10, and OP11); and 63 are phylogenetically associated with 10 well-recognized divisions. The physiology of two particularly abundant sequence types obtained from the methanogenic zone could be inferred from their phylogenetic association with groups of microorganisms with a consistent phenotype. One of these sequence types is associated with the genus Syntrophus; Syntrophus spp. produce energy from the anaerobic oxidation of organic acids, with the production of acetate and hydrogen. The organism represented by the other sequence type is closely related to Methanosaeta spp., which are known to be capable of energy generation only through aceticlastic methanogenesis. We hypothesize, therefore, that the terminal step of hydrocarbon degradation in the methanogenic zone of the aquifer is aceticlastic methanogenesis and that the microorganisms represented by these two sequence types occur in syntrophic association.
Molecular signatures for the phylum Synergistetes and some of its subclades.
Bhandari, Vaibhav; Gupta, Radhey S
2012-11-01
Species belonging to the phylum Synergistetes are poorly characterized. Though the known species display Gram-negative characteristics and the ability to ferment amino acids, no single characteristic is known which can define this group. For eight Synergistetes species, complete genome sequences or draft genomes have become available. We have used these genomes to construct detailed phylogenetic trees for the Synergistetes species and carried out comprehensive analysis to identify molecular markers consisting of conserved signature indels (CSIs) in protein sequences that are specific for either all Synergistetes or some of their sub-groups. We report here identification of 32 CSIs in widely distributed proteins such as RpoB, RpoC, UvrD, GyrA, PolA, PolC, MraW, NadD, PyrE, RpsA, RpsH, FtsA, RadA, etc., including a large >300 aa insert within the RpoC protein, that are present in various Synergistetes species, but except for isolated bacteria, these CSIs are not found in the protein homologues from any other organisms. These CSIs provide novel molecular markers that distinguish the species of the phylum Synergistetes from all other bacteria. The large numbers of other CSIs discovered in this work provide valuable information that supports and consolidates evolutionary relationships amongst the sequenced Synergistetes species. Of these CSIs, seven are specifically present in Jonquetella, Pyramidobacter and Dethiosulfovibrio species indicating a cladal relationship among them, which is also strongly supported by phylogenetic trees. A further 15 CSIs that are only present in Jonquetella and Pyramidobacter indicate a close association between these two species. Additionally, a previously described phylogenetic relationship between the Aminomonas and Thermanaerovibrio species was also supported by 9 CSIs. The strong relationships indicated by the indel analysis provide incentives for the grouping of species from these clades into higher taxonomic groups such as families or orders. The identified molecular markers, due to their specificity for Synergistetes and presence in highly conserved regions of important proteins suggest novel targets for evolutionary, genetic and biochemical studies on these bacteria as well as for the identification of additional species belonging to this phylum in different environments.
Guo, Yong; Qiu, Li-Juan
2013-01-01
The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.
Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.
Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong
2016-01-01
Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.
de Melo, Maíra Espíndola Silva; Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; da Silveira, Vera Magalhães; de Souza Lopes, Ana Catarina
2011-05-01
The objectives of this study were to determine the distribution of phylogenetic groups among Klebsiella pneumoniae isolates from Recife, Brazil and to assess the relationship between the groups and the isolation sites and resistance profile. Ninety four isolates of K. pneumoniae from hospital or community infections and from normal microbiota were analyzed by gyrA PCR-RFLP, antibiotic susceptibility, and adonitol fermentation. The results revealed the distinction of three phylogenetic groups, as it has also been reported in Europe, showing that these clusters are highly conserved within K. pneumoniae. Group KpI was dominantly represented by hospital and community isolates while groups KpII and KpIII displayed mainly normal microbiota isolates. The resistance to third generation cephalosporins, aztreonam, imipenem, amoxicillin/clavulanic acid, and streptomycin was only observed in KpI. The percentage of resistance was higher in KpI, followed by KpII and KpIII. The differences in the distribution of K. pneumoniae phylogenetic groups observed in this study suggest distinctive clinical and epidemiological characteristics among the three groups, which is important to understand the epidemiology of infections caused by this organism. This is the first study in Brazil on K. pneumoniae isolates from normal microbiota and community infections regarding the distribution of phylogenetic groups based on the gyrA gene.
Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M
2016-12-30
For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.
White, A. P.; Sibley, K. A.; Sibley, C. D.; Wasmuth, J. D.; Schaefer, R.; Surette, M. G.; Edge, T. A.; Neumann, N. F.
2011-01-01
Establishing the risk of human infection is one of the goals of public health. For bacterial pathogens, the virulence and zoonotic potential can often be related to their host source. Escherichia coli bacteria are common contaminants of water associated with human recreation and consumption, and many strains are pathogenic. In this study, we analyzed three promoter-containing intergenic regions from 284 diverse E. coli isolates in an attempt to identify molecular signatures associated with specific host types. Promoter sequences controlling production of curli fimbriae, flagella, and nutrient import yielded a phylogenetic tree with isolates clustered by established phylogenetic grouping (A, B1, B2, and D) but not by host source. Virulence genes were more prevalent in groups B2 and D isolates and in human isolates. Group B1 isolates, primarily from nonhuman sources, were the most genetically similar, indicating that they lacked molecular adaptations to specific host environments and were likely host generalists. Conversely, B2 isolates, primarily from human sources, displayed greater genetic distances and were more likely to be host adapted. In agreement with these hypotheses, prevalence of σS activity and the rdar morphotype, phenotypes associated with environmental survival, were significantly higher in B1 isolates than in B2 isolates. Based on our findings, we speculate that E. coli host specificity is not defined by genome-wide sequence changes but, rather, by the presence or absence of specific genes and associated promoter elements. Furthermore, the requirements for colonization of the human gastrointestinal tract may lead to E. coli lifestyle changes along with selection for increased virulence. PMID:21908635
BORBA, EDUARDO L.; SHEPHERD, GEORGE J.; BERG, CÁSSIO VAN DEN; SEMIR, JOÃO
2002-01-01
Morphometric analyses of vegetative and floral characters were conducted in 21 populations of five Pleurothallis (Orchidaceae) species occurring in Brazilian ‘campo rupestre’ vegetation. A phylogenetic analysis of this species group was also carried out using nuclear ribosomal DNA internal transcribed spacers (ITS1 and ITS2). Results of the ordination and cluster analyses agree with species’ delimitation revealed by taxonomic and allozyme studies. The groups formed in ordination analysis correspond to the pollinator groups determined in a previous pollination study. Relationships among the species in the cluster analysis using only vegetative characters are similar to those found in a previous allozyme study, but those indicated by cluster analysis using only floral characters differ. These results support the hypothesis that floral similarities are due to convergence driven by similar pollination mechanisms, and therefore floral traits may not be good indicators of phylogenetic relationships in this group. The results of the phylogenetic analysis support this conclusion to some extent. There is no correlation between genetic (allozyme) and morphological variability in the populations nor in the way this variability is distributed among conspecific populations. We describe a new subspecies of Pleurothallis ochreata based on differences in vegetative and chemical characters as well as geographic distribution. Absence of differentiation in floral characters, attraction of the same pollinator species, interfertility and genetic similarity support the argument for subspecific rather than specific status. PMID:12197519
Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region.
Smart, C D; Schneider, B; Blomquist, C L; Guerra, L J; Harrison, N A; Ahrens, U; Lorenz, K H; Seemüller, E; Kirkpatrick, B C
1996-01-01
In order to develop a diagnostic tool to identify phytoplasmas and classify them according to their phylogenetic group, we took advantage of the sequence diversity of the 16S-23S intergenic spacer regions (SRs) of phytoplasmas. Ten PCR primers were developed from the SR sequences and were shown to amplify in a group-specific fashion. For some groups of phytoplasmas, such as elm yellows, ash yellows, and pear decline, the SR primer was paired with a specific primer from within the 16S rRNA gene. Each of these primer pairs was specific for a specific phytoplasma group, and they did not produce PCR products of the correct size from any other phytoplasma group. One primer was designed to anneal within the conserved tRNA(Ile) and, when paired with a universal primer, amplified all phytoplasmas tested. None of the primers produced PCR amplification products of the correct size from healthy plant DNA. These primers can serve as effective tools for identifying particular phytoplasmas in field samples. PMID:8702291
Fuerst, J A; Gwilliam, H G; Lindsay, M; Lichanska, A; Belcher, C; Vickers, J E; Hugenholtz, P
1997-01-01
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. PMID:8979353
Requeno, José Ignacio; Colom, José Manuel
2014-12-01
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Requeno, José Ignacio; Colom, José Manuel
2014-10-23
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Mondragón-Palomino, Mariana; Trontin, Charlotte
2011-01-01
Background and Aims The TCP family is an ancient group of plant developmental transcription factors that regulate cell division in vegetative and reproductive structures and are essential in the establishment of flower zygomorphy. In-depth research on eudicot TCPs has documented their evolutionary and developmental role. This has not happened to the same extent in monocots, although zygomorphy has been critical for the diversification of Orchidaceae and Poaceae, the largest families of this group. Investigating the evolution and function of TCP-like genes in a wider group of monocots requires a detailed phylogenetic analysis of all available sequence information and a system that facilitates comparing genetic and functional information. Methods The phylogenetic relationships of TCP-like genes in monocots were investigated by analysing sequences from the genomes of Zea mays, Brachypodium distachyon, Oryza sativa and Sorghum bicolor, as well as EST data from several other monocot species. Key Results All available monocot TCP-like sequences are associated in 20 major groups with an average identity ≥64 % and most correspond to well-supported clades of the phylogeny. Their sequence motifs and relationships of orthology were documented and it was found that 67 % of the TCP-like genes of Sorghum, Oryza, Zea and Brachypodium are in microsyntenic regions. This analysis suggests that two rounds of whole genome duplication drove the expansion of TCP-like genes in these species. Conclusions A system of classification is proposed where putative or recognized monocot TCP-like genes are assigned to a specific clade of PCF-, CIN- or CYC/tb1-like genes. Specific biases in sequence data of this family that must be tackled when studying its molecular evolution and phylogeny are documented. Finally, the significant retention of duplicated TCP genes from Zea mays is considered in the context of balanced gene drive. PMID:21444336
Hepatozoon and Theileria species detected in ticks collected from mammals and snakes in Thailand.
Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee
2015-04-01
We report the detection of Hepatozoon and Theileria in 103 ticks from mammals and snakes in Thailand. By using a genus-specific 18S rRNA PCR, Hepatozoon and Theileria spp. were detected in 8% and 18%, respectively, of ticks (n=79) removed from mammals. Of the ticks removed from snakes (n=24), 96% were infected with Hepatozoon spp., but none were infected with Theileria. Phylogenetic analysis revealed that Hepatozoon spp. detected from Dermacentor astrosignatus and Dermacentor auratus ticks from Wild boar (Sus scrofa) formed a phylogenetic group with many isolates of Hepatozoon felis that were distantly related to a species group containing Hepatozoon canis and Hepatozoon americanum. In contrast, a phylogenetic analysis of the Hepatozoon sequences of snake ticks revealed that Hepatozoon spp. from Amblyomma varanense from King cobra (Ophiophagus hannah) and Amblyomma helvolum ticks from Indochinese rat snake (Ptyas korros), and Asiatic water snake (Xenochrophis piscator) are grouped with Hepatozoon spp. recently isolated from Monocellate cobras, Reticulated pythons and Burmese pythons, all of Thai origin, and with Hepatozoon sp. 774c that has been detected from a tick species obtained from Argus monitors in Australia. A phylogenetic analysis demonstrated that Theileria spp. from Rhipicephalus (Boophilus) microplus, Haemaphysalis obesa, and Haemaphysalis lagrangei ticks from Sambar deer (Cervus unicolor) cluster with the Theileria cervi isolates WU11 and 239, and Theileria sp. Iwate 141. We report for the first time a Hepatozoon species that shares genetic similarity with Hepatozoon felis found in Dermacentor astrosignatus and Dermacentor auratus ticks collected from Wild boars in Thailand. In addition, we found the presence of a Theileria cervi-like sp. which suggests the potential role of Haemaphysalis lagrangei as a Theileria vector in Thailand. Copyright © 2015 Elsevier GmbH. All rights reserved.
Mora, Azucena; López, Cecilia; Dabhi, Ghizlane; Blanco, Miguel; Blanco, Jesús E; Alonso, María Pilar; Herrera, Alexandra; Mamani, Rosalía; Bonacorsi, Stéphane; Moulin-Schouleur, Maryvonne; Blanco, Jorge
2009-07-07
Extraintestinal pathogenic Escherichia coli (ExPEC) strains of serotype O1:K1:H7/NM are frequently implicated in neonatal meningitis, urinary tract infections and septicemia in humans. They are also commonly isolated from colibacillosis in poultry. Studies to determine the similarities of ExPEC from different origins have indicated that avian strains potentially have zoonotic properties. A total of 59 ExPEC O1:K1:H7/NM isolates (21 from avian colibacillosis, 15 from human meningitis, and 23 from human urinary tract infection and septicemia) originated from four countries were characterized by phylogenetic PCR grouping, Multilocus Sequence Typing (MLST), Pulsed Field Gel Electrophoresis (PFGE) and genotyping based on several genes known for their association with ExPEC or avian pathogenic Escherichia coli (APEC) virulence.APEC and human ExPEC isolates differed significantly in their assignments to phylogenetic groups, being phylogroup B2 more prevalent among APEC than among human ExPEC (95% vs. 53%, P = 0.001), whereas phylogroup D was almost exclusively associated with human ExPEC (47% vs. 5%, P = 0.0000). Seven virulence genes showed significant differences, being fimAvMT78 and sat genes linked to human isolates, while papGII, tsh, iron, cvaC and iss were significantly associated to APEC. By MLST, 39 of 40 ExPEC belonging to phylogroup B2, and 17 of 19 belonging to phylogroup D exhibited the Sequence Types (STs) ST95 and ST59, respectively. Additionally, two novel STs (ST1013 and ST1006) were established. Considering strains sharing the same ST, phylogenetic group, virulence genotype and PFGE cluster to belong to the same subclone, five subclones were detected; one of those grouped six strains of human and animal origin from two countries. Present results reveal that the clonal group B2 O1:K1:H7/NM ST95, detected in strains of animal and human origin, recovered from different dates and geographic sources, provides evidence that some APEC isolates may act as potential pathogens for humans and, consequently, poultry as a foodborne source, suggesting no host specificity for this type of isolates. A novel and important finding has been the detection of the clonal group D O1:K1:H7/NM ST59 almost exclusively in humans, carrying pathogenic genes linked to the phylogenetic group D. This finding would suggest D O1:K1:H7/NM ST59 as a host specific pathotype for humans.
Tracing the trilobite tree from the root to the tips: a model marriage of fossils and phylogeny.
Lieberman, Bruce S; Karim, Talia S
2010-01-01
Trilobites are a highly diverse group of extinct arthropods that persisted for nearly 300 million years. During that time, there was a profusion of morphological form, and they occupied a plethora of marine habitats. Their diversity, relative abundance, and complex morphology make them excellent candidates for phylogenetic analysis, and partly as a consequence they have been the subject of many cladistic studies. Although phylogenetic knowledge is certainly incomplete, our understanding of evolutionary patterns within the group has dramatically increased over the last 30 years. Moreover, trilobites have formed an important component of various studies of macroevolutionary processes. Here, we summarize the phylogenetic breadth of knowledge on the Trilobita, and present various hypotheses about phylogenetic patterns within the group, from the highest to the lowest taxonomic levels. Key topics we consider include the question of trilobite monophyly, the phylogenetic position of trilobites vis à vis extant arthropod groups, and inter- and intra-ordinal relationships. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Kouvelis, Vassili N; Sialakouma, Aphrodite; Typas, Milton A
2008-07-01
The recent revision of Verticillium sect. Prostrata led to the introduction of the genus Lecanicillium, which comprises the majority of the entomopathogenic strains. Sixty-five strains previously classified as Verticillium lecanii or Verticillium sp. from different geographical regions and hosts were examined and their phylogenetic relationships were determined using sequences from three mitochondrial (mt) genes [the small rRNA subunit (rns), the NADH dehydrogenase subunits 1 (nad1) and 3 (nad3)] and the ITS region. In general, single gene phylogenetic trees differentiated and placed the strains examined in well-supported (by BS analysis) groups of L. lecanii, L. longisporum, L. muscarium, and L. nodulosum, although in some cases a few uncertainties still remained. nad1 was the most informative single gene in phylogenetic analyses and was also found to contain group I introns with putative open reading frames (ORFs) encoding for GIY-YIG endonucleases. The combined use of mt gene sequences resolved taxonomic uncertainties arisen from ITS analysis and, alone or in combination with ITS sequences, helped in placing uncharacterised Verticillium lecanii and Verticillium sp. firmly into Lecanicillium species. Combined gene data from all the mt genes and all the mt genes and the ITS region together, were very similar. Furthermore, a relaxed correlation with host specificity -- at least for Homoptera -- was indicated for the rns and the combined mt gene sequences. Thus, the usefulness of mt gene sequences as a convenient molecular tool in phylogenetic studies of entomopathogenic fungi was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.; Sugiman-Marangos, S; Junop, M
2009-01-01
The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.
2009-01-01
Background Shigella flexneri is one of the causative agents of shigellosis, a major cause of childhood mortality in developing countries. Multilocus variable-number tandem repeat (VNTR) analysis (MLVA) is a prominent subtyping method to resolve closely related bacterial isolates for investigation of disease outbreaks and provide information for establishing phylogenetic patterns among isolates. The present study aimed to develop an MLVA method for S. flexneri and the VNTR loci identified were tested on 242 S. flexneri isolates to evaluate their variability in various serotypes. The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE) to compare the discriminatory power and to evaluate the usefulness of MLVA as a tool for phylogenetic analysis of S. flexneri. Results Thirty-six VNTR loci were identified by exploring the repeat sequence loci in genomic sequences of Shigella species and by testing the loci on nine isolates of different subserotypes. The VNTR loci in different serotype groups differed greatly in their variability. The discriminatory power of an MLVA assay based on four most variable VNTR loci was higher, though not significantly, than PFGE for the total isolates, a panel of 2a isolates, which were relatively diverse, and a panel of 4a/Y isolates, which were closely-related. Phylogenetic groupings based on PFGE patterns and MLVA profiles were considerably concordant. The genetic relationships among the isolates were correlated with serotypes. The phylogenetic trees constructed using PFGE patterns and MLVA profiles presented two distinct clusters for the isolates of serotype 3 and one distinct cluster for each of the serotype groups, 1a/1b/NT, 2a/2b/X/NT, 4a/Y, and 6. Isolates that had different serotypes but had closer genetic relatedness than those with the same serotype were observed between serotype Y and subserotype 4a, serotype X and subserotype 2b, subserotype 1a and 1b, and subserotype 3a and 3b. Conclusions The 36 VNTR loci identified exhibited considerably different degrees of variability among S. flexneri serotype groups. VNTR locus could be highly variable in a serotype but invariable in others. MLVA assay based on four highly variable loci could display a comparable resolving power to PFGE in discriminating isolates. MLVA is also a prominent molecular tool for phylogenetic analysis of S. flexneri; the resulting data are beneficial to establish clear clonal patterns among different serotype groups and to discern clonal groups among isolates within the same serotype. As highly variable VNTR loci could be serotype-specific, a common MLVA protocol that consists of only a small set of loci, for example four to eight loci, and that provides high resolving power to all S. flexneri serotypes may not be obtainable. PMID:20042119
Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes.
Erisman, Brad E; Petersen, Christopher W; Hastings, Philip A; Warner, Robert R
2013-10-01
Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation. Examinations of several families of fishes with adequate data on phylogeny, patterns of sex allocation, mating systems, and with some form of hermaphroditism reveal that the evolution and expression of protogyny and other forms of sex allocation show little evidence of phylogenetic inertia within specific lineages but rather are associated with particular mating systems in accordance with prevalent theories about sex allocation. Transformations from protogyny to gonochorism in groupers (Epinephelidae), seabasses (Serranidae), and wrasses and parrotfishes (Labridae) are associated with equivalent transformations in the structure of mating groups from spawning of pairs to group spawning and related increases in sperm competition. Similarly, patterns of protandry, androdioecy, simultaneous hermaphroditism, and bidirectional sex change in other lineages (Aulopiformes, Gobiidae, and Pomacentridae) match well with particular mating systems in accordance with sex-allocation theory. Unlike other animals and plants, we did not find evidence that transitions between hermaphroditism and gonochorism required functional intermediates. Two instances in which our general conclusions might not hold include the expression of protandry in the Sparidae and the distribution of simultaneous hermaphroditism. In the Sparidae, the association of hypothesized mating systems and patterns of sex allocation were not always consistent with the size-advantage model (SAM), in that certain protandric sparids show evidence of intense sperm competition that should favor the expression of gonochorism. In the other case, simultaneous hermaphroditism does not occur in some groups of monogamous fishes, which are similar in ecology to the hermaphroditic serranines, suggesting that this form of sex allocation may be more limited by phylogenetic inertia. Overall, this work strongly supports sexual lability within teleost fishes and confirms evolutionary theories of sex allocation in this group of vertebrates.
Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio
2018-06-07
Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Najafi, Akram; Hasanpour, Mojtaba; Askary, Azam; Aziemzadeh, Masoud; Hashemi, Najmeh
2018-05-01
The present study was aimed at investigating the relationship between the new Clermont's phylogenetic groups, virulence factors, and pathogenicity island markers (PAIs) among uropathogenic Escherichia coli (UPEC) in Iran. This cross-sectional study was carried out on 140 UPEC isolates collected from patients with urinary tract infections in Bushehr, Iran. All isolates were subjected to phylogenetic typing using a new quadruplex-PCR method. The presence of PAI markers and virulence factors in UPEC strains was evaluated by multiplex PCR. The most predominant virulence gene was fimH (85%), followed by iucC (61.4%), papC (38.6%), hlyA (22.1%), cnf-1 (18.6%), afa (10.7%), papG and neuC (each 9.3%), ibeA (3.6%), and sfa/foc (0.7%). The most common phylogenetic group was related to B2 (39.3%), and the least common to A (0.7%). The most prevalent PAI marker was PAI IV536 (77.14%), while markers for PAI III536 (13.57%), PAI IIJ96 (12.86%), and PAI II536 (12.14%) were the least frequent among the UPEC strains. Meanwhile, the PAI IJ96 marker was not detected. There was a significant association between the phylogenetic group B2 and all the studied virulence genes and PAI markers. To our knowledge, this is the first study to compare the relationship between new phylogenetic groups, virulence genes and PAI markers in UPEC strains in Iran. The phylogenetic group B2 was predominantly represented among the studied virulence genes and PAI markers, indicating the preference of particular strains to carry virulence genes.
Moreno, Eva; Prats, Guillem; Planells, Irene; Planes, Ana M; Pérez, Teresa; Andreu, Antonia
2006-10-01
Escherichia coli isolates from the non-pathogenic phylogenetic groups A and B1 rarely cause extraintestinal infections. The aim of this study was to analyze 37 E. coli isolates pertaining to phylogenetic groups A and B1 and compare them with 37 E. coli isolates from group B2 and 31 from group D, which caused the same infections. Among 105 E. coli isolated from the urine of patients with cystitis and pyelonephritis and from the blood of patients with urinary-source and other-source bacteriemia, the E. coli phylogenetic groups, 15 virulence-associated genes, 7 O-antigens and fluoroquinolone resistance were analyzed. E. coli from groups A and B1 showed fewer virulence determinants (median 3.5) than E. coli from group B2 (8.6, P < 0.01) or D (5.3, P < .001); however, a subgroup containing 3 isolates from group A and 5 from B1 harbored 5 or more factors. E. coli from groups A/B1 were associated with resistance to fluoroquinolones (74%, P < .001), whereas E. coli from group B2 were associated with susceptibility to this antibiotic (76%, P = .003). E. coli from groups A/B1 were isolated significantly more frequently in patients with pyelonephritis or sepsis and local or general factors favoring infection, association not observed in patients with cystitis. Even though most of the E. coli isolates from phylogenetic groups A and B1 presented a low virulence potential, they were able to cause extraintestinal infections, particularly in compromised patients.
Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†
Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.
2001-01-01
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476
Re-emergence of rabies in the Guangxi province of Southern China.
Tang, Hai-Bo; Pan, Yan; Wei, Xian-Kai; Lu, Zhuan-Ling; Lu, Wu; Yang, Jian; He, Xiao-Xia; Xie, Lin-Juan; Zeng, Lan; Zheng, Lie-Feng; Xiong, Yi; Minamoto, Nobuyuki; Luo, Ting Rong
2014-10-01
Human rabies cases in the Guangxi province of China decreased from 839 in 1982 to 24 in 1995, but subsequently underwent a sharp increase, and has since maintained a high level. 3,040 brain samples from normal dogs and cats were collected from 14 districts of Guangxi and assessed by RT-PCR. The brain samples showed an average rabies virus (RV) positivity rate of 3.26%, but reached 4.71% for the period Apr 2002 to Dec 2003. A total of 30 isolates were obtained from normal dogs and 28 isolates from rabid animals by the mouse inoculation test (MIT). Six representative group I and II RV isolates showed an LD50 of 10-5.35/ml to 10-6.19/ml. The reactivity of monoclonal antibodies (MAbs) to group I and II RV isolates from the Guangxi major epidemic showed that eight anti-G MAbs showed strong reactivity with isolates of group I and II with titers of ≥10,000; however, the MAbs 9-6, 13-3 and 12-14 showed lower reactivity. Phylogenetic analysis based on the G gene demonstrated that the Guangxi RV isolates have similar topologies with strong bootstrap values and are closely bonded. Alignment of deduced amino acids revealed that the mature G protein has four substitutions A96S, L132F, N436S, and A447I specific to group I, and 13 substitutions T90M, Y168C, S204G, T249I, P253S, S289T, V332I, Q382H, V427I, L474P, R463K Q486H, and T487N specific to group II, coinciding with the phylogenetic analysis of the isolates. Re-emergence of human rabies has mainly occurred in rural areas of Guangxi since 1996. The human rabies incidence rate increased is related with RV positive rate of normal dogs. The Guangxi isolates tested showed a similar pathogenicity and antigenicity. The results of phylogenetic analysis coincide with that of alignment of deduced amino acids.
Lee, J H; Subhadra, B; Son, Y-J; Kim, D H; Park, H S; Kim, J M; Koo, S H; Oh, M H; Kim, H-J; Choi, C H
2016-01-01
Urinary tract infections (UTIs) are one of the most common diseases by which humans seek medical help and are caused mainly by uropathogenic Escherichia coli (UPEC). Studying the virulence and antibiotic resistance of UPEC with respect to various phylogenetic groups is of utmost importance in developing new therapeutic agents. Thus, in this study, we analysed the virulence factors, antibiotic resistance and phylogenetic groups among various UPEC isolates from children with UTIs. The phylogenetic analysis revealed that majority of the strains responsible for UTIs belonged to the phylogenetic groups B2 and D. Of the 58 E. coli isolates, 79·31% belonged to group B2, 15·51% to group D, 3·44% to group A and 1·72% to B1. Simultaneously, the number of virulence factors and antibiotic resistance exhibited were also significantly high in groups B2 and D compared to other groups. Among the isolates, 44·8% were multidrug resistant and of that 73% belonged to the phylogenetic group B2, indicating the compatibility of antibiotic resistance and certain strains carrying virulence factor genes. The antibiotic resistance profiling of UPEC strains elucidates that the antimicrobial agents such as chloramphenicol, cefoxitin, cefepime, ceftazidime might still be used in the therapy for treating UTIs. As the antibiotic resistance pattern of uropathogenic Escherichia coli varies depending on different geographical regions, the antibiotic resistance pattern from this study will help the physicians to effectively administer antibiotic therapy for urinary tract infections. In addition, the frequency of virulence factors and antibiotic resistance genes among various phylogenic groups could be effectively used to draw new targets for uropathogenic Escherichia coli antibiotic-independent therapies. The study emphasizes need of public awareness on multidrug resistance and for more prudent use of antimicrobials. © 2015 The Society for Applied Microbiology.
Melnyk, Ryan A; Coates, John D
2015-10-26
Perchlorate is a widely distributed anion that is toxic to humans, but serves as a valuable electron acceptor for several lineages of bacteria. The ability to utilize perchlorate is conferred by a horizontally transferred piece of DNA called the perchlorate reduction genomic island (PRI). We compared genomes of perchlorate reducers using phylogenomics, SNP mapping, and differences in genomic architecture to interrogate the evolutionary history of perchlorate respiration. Here we report on the PRI of 13 genomes of perchlorate-reducing bacteria from four different classes of Phylum Proteobacteria (the Alpha-, Beta-, Gamma- and Epsilonproteobacteria). Among the different phylogenetic classes, the island varies considerably in genetic content as well as in its putative mechanism and location of integration. However, the islands of the densely sampled genera Azospira and Magnetospirillum have striking nucleotide identity despite divergent genomes, implying horizontal transfer and positive selection within narrow phylogenetic taxa. We also assess the phylogenetic origin of accessory genes in the various incarnations of the island, which can be traced to chromosomal paralogs from phylogenetically similar organisms. These observations suggest a complex phylogenetic history where the island is rarely transferred at the class level but undergoes frequent and continuous transfer within narrow phylogenetic groups. This restricted transfer is seen directly by the independent integration of near-identical islands within a genus and indirectly due to the acquisition of lineage-specific accessory genes. The genomic reversibility of perchlorate reduction may present a unique equilibrium for a metabolism that confers a competitive advantage only in the presence of an electron acceptor, which although widely distributed, is generally present at low concentrations in nature.
Caira, J N; Jensen, K
2001-07-01
There is general consensus that the living elasmobranchs comprise a monophyletic taxon. There is evidence that, among tetraphyllidean tapeworms, the approximately 201 hooked species (Onchobothriidae) may also comprise a monophyletic group. Determinations of host specificity are contingent upon correct specific identifications. Since 1960, over 200 new elasmobranch species and over 100 new onchobothriid species have been described. Some confidence can be placed in host and parasite identifications of recent studies, but specific identifications provided in older literature in many cases are suspect. There is some consensus among published works on the phylogenetic relationships among elasmobranchs. Phylogenetic relationships among onchobothriids remain largely unresolved. Elasmobranchs have been poorly sampled for onchobothriids; records exist for approximately 20% of the 911 species and approximately 44% of the 170 elasmobranch genera. Onchobothriids are remarkably host specific, exhibiting essentially oioxenous specificity for their definitive hosts. Multiple onchobothriid species commonly parasitise the same host species; in some cases these are congeners, in other cases these are members of two different onchobothriid genera. There is substantial incongruence between available host and parasite phylogenies. For example, Acanthobothrium is by far the most ubiquitous onchobothriid genus, parasitising almost all orders of elasmobranchs known to host onchobothriids, yet, there is no evidence of major clades of Acanthobothrium corresponding to postulated major subgroupings of elasmobranchs (e.g. Galea and Squalea or sharks and rays). Potamotrygonocestus appears to be among the most basal onchobothriid groups, yet it parasitises one of the most derived elasmobranch groups (the freshwater stingray genus Potamotrygon). It appears that congeners parasitising the same host species are not necessarily each other's closest relatives. At this point the preliminary and limited available data suggest that, at least in this system, strict host specificity is not necessarily indicative of strict co-evolution. This study was extremely limited by the lack of available robust phylogenies for onchobothriids and elasmobranchs.
Phylogeny of flowering plants by the chloroplast genome sequences: in search of a "lucky gene".
Logacheva, M D; Penin, A A; Samigullin, T H; Vallejo-Roman, C M; Antonov, A S
2007-12-01
One of the most complicated remaining problems of molecular-phylogenetic analysis is choosing an appropriate genome region. In an ideal case, such a region should have two specific properties: (i) results of analysis using this region should be similar to the results of multigene analysis using the maximal number of regions; (ii) this region should be arranged compactly and be significantly shorter than the multigene set. The second condition is necessary to facilitate sequencing and extension of taxons under analysis, the number of which is also crucial for molecular phylogenetic analysis. Such regions have been revealed for some groups of animals and have been designated as "lucky genes". We have carried out a computational experiment on analysis of 41 complete chloroplast genomes of flowering plants aimed at searching for a "lucky gene" for reconstruction of their phylogeny. It is shown that the phylogenetic tree inferred from a combination of translated nucleotide sequences of genes encoding subunits of plastid RNA polymerase is closest to the tree constructed using all protein coding sites of the chloroplast genome. The only node for which a contradiction is observed is unstable according to the different type analyses. For all the other genes or their combinations, the coincidence is significantly worse. The RNA polymerase genes are compactly arranged in the genome and are fourfold shorter than the total length of protein coding genes used for phylogenetic analysis. The combination of all necessary features makes this group of genes main candidates for the role of "lucky gene" in studying phylogeny of flowering plants.
Polypteridae (Actinopterygii: Cladistia) and DANA-SINEs insertions.
Morescalchi, Maria Alessandra; Barucca, Marco; Stingo, Vincenzo; Capriglione, Teresa
2010-06-01
SINE sequences are interspersed throughout virtually all eukaryotic genomes and greatly outnumber the other repetitive elements. These sequences are of increasing interest for phylogenetic studies because of their diagnostic power for establishing common ancestry among taxa, once properly characterized. We identified and characterized a peculiar family of composite tRNA-derived short interspersed SINEs, DANA-SINEs, associated with mutational activities in Danio rerio, in a group of species belonging to one of the most basal bony fish families, the Polypteridae, in order to investigate their own inner specific phylogenetic relationships. DANA sequences were identified, sequenced and then localized, by means of fluorescent in situ hybridization (FISH), in six Polypteridae species (Polypterus delhezi, P. ornatipinnis, P. palmas, P. buettikoferi P. senegalus and Erpetoichthys calabaricus) After cloning, the sequences obtained were aligned for phylogenetic analysis, comparing them with three Dipnoan lungfish species (Protopterus annectens, P. aethiopicus, Lepidosiren paradoxa), and Lethenteron reissneri (Petromyzontidae)was used as outgroup. The obtained overlapping MP, ML and NJ tree clustered together the species belonging to the two taxonomically different Osteichthyans groups: the Polypteridae, by one side, and the Protopteridae by the other, with the monotypic genus Erpetoichthys more distantly related to the Polypterus genus comprising three distinct groups: P. palmas and P. buettikoferi, P. delhezi and P. ornatipinnis and P. senegalus. In situ hybridization with DANA probes marked along the whole chromosome arms in the metaphases of all the Polypteridae species examined. Copyright © 2010 Elsevier B.V. All rights reserved.
Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D
2018-08-01
Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.
A phylogeny of robber flies (Diptera: Asilidae) at the subfamilial level: molecular evidence.
Bybee, Seth M; Taylor, Sean D; Riley Nelson, C; Whiting, Michael F
2004-03-01
We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.
Phylogenetic classification of bony fishes.
Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo
2017-07-06
Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
Chouari, Rakia; Le Paslier, Denis; Daegelen, Patrick; Dauga, Catherine; Weissenbach, Jean; Sghir, Abdelghani
2010-08-01
A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anoxic activated sludge from a municipal wastewater treatment plant. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by polymerase chain reaction using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 132 and 249 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was done using the ARB software package. Phylogenetic groups affiliated with the Archaea belong to Euryarchaeota (93.8% of the operational taxonomic units [OTUs]) and Crenarchaeota (6.2% of the OTUs). Within the bacterial library, 84.8% of the OTUs represent novel putative phylotypes never described before and affiliated with ten divisions. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 60.4% of the OTUs, followed by Bacteroidetes (22.1%) and gram-positives (6.1%). Interestingly, we detected a novel Proteobacteria monophyletic group distinct from the five known subclasses, which we named New Lineage of Proteobacteria (NLP) lineage, and it is composed of eight clones representing 4.6% of the Proteobacteria. A new 16S rRNA-targeted hybridization probe was designed and fluorescent in situ hybridization analyses shows representatives of NLP as cocci-shaped microorganisms. The Chloroflexi, Acidobacterium, and Nitrospira phyla and TM7 candidate division are each represented by ≤3% of clone sequences. A comprehensive set of eight 16S and 23S rRNA-targeted oligonucleotide probes was used to quantify these major groups by dot blot hybridization within 12 samples. The Proteobacteria accounted for 82.5 ± 4.9%, representing the most abundant phyla. The Bacteroidetes and Planctomycetales groups accounted for 4.9 ± 1.3% and 4 ± 1.7%, respectively. Firmicutes and Actinobacteria together accounted for only 1.9 ± 0.5%. The set of probes covers 93.4 ± 14% of the total bacterial population rRNA within the anoxic basin.
Effects of rooting via out-groups on in-group topology in phylogeny.
Ackerman, Margareta; Brown, Daniel G; Loker, David
2014-01-01
Users of phylogenetic methods require rooted trees, because the direction of time depends on the placement of the root. While phylogenetic trees are typically rooted by using an out-group, this mechanism is inappropriate when the addition of an out-group changes the in-group topology. We perform a formal analysis of phylogenetic algorithms under the inclusion of distant out-groups. It turns out that linkage-based algorithms (including UPGMA) and a class of bisecting methods do not modify the topology of the in-group when an out-group is included. By contrast, the popular neighbour joining algorithm fails this property in a strong sense: every data set can have its structure destroyed by some arbitrarily distant outlier. Furthermore, including multiple outliers can lead to an arbitrary topology on the in-group. The standard rooting approach that uses out-groups may be fundamentally unsuited for neighbour joining.
Phylogenomic analysis of Apoidea sheds new light on the sister group of bees.
Sann, Manuela; Niehuis, Oliver; Peters, Ralph S; Mayer, Christoph; Kozlov, Alexey; Podsiadlowski, Lars; Bank, Sarah; Meusemann, Karen; Misof, Bernhard; Bleidorn, Christoph; Ohl, Michael
2018-05-18
Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families. Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family "Crabronidae", which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees. By combining transcriptomic sequences with those obtained via target DNA enrichment, we were able to include an unprecedented large number of apoid wasps in a phylogenetic study for tracing the phylogenetic origin of bees. Our results confirm the polyphyletic nature of the former wasp family Crabonidae, which we here suggest splitting into eight families. Of these, the family Ammoplanidae possibly represents the extant sister lineage of bees. Species of Ammoplanidae are known to hunt thrips, of which some aggregate on flowers and feed on pollen. The specific biology of Ammoplanidae as predators indicates how the transition from a predatory to pollen-collecting life style could have taken place in the evolution of bees. This insight plus the finding that (eu)social societies evolved exclusively in a single subordinated lineage of apoid wasps provides new perspectives for future comparative studies.
Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups
Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong
2016-01-01
Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677
Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis
Blackwood, Christopher B.; Oaks, Adam; Buyer, Jeffrey S.
2005-01-01
Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy. PMID:16204538
NASA Astrophysics Data System (ADS)
Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean
2018-05-01
Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.
Phylogenetic community structure: temporal variation in fish assemblage
Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia
2014-01-01
Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256
McNellis, Brandon; Howard, Ava R
2015-01-01
Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use. PMID:26380686
Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D
2015-02-01
The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.
Karl, Robert; Koch, Marcus A.
2013-01-01
Background and Aims Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene. Methods Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time. Key Results A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world. Conclusions Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups. PMID:23904444
The Hidden Diversity of Zanclea Associated with Scleractinians Revealed by Molecular Data
Montano, Simone; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Puce, Stefania; Galli, Paolo
2015-01-01
Scleractinian reef corals have recently been acknowledged as the most numerous host group found in association with hydroids belonging to the Zanclea genus. However, knowledge of the molecular phylogenetic relationships among Zanclea species associated with scleractinians is just beginning. This study, using the nuclear 28S rDNA region and the fast-evolving mitochondrial 16S rRNA and COI genes, provides the most comprehensive phylogenetic reconstruction of the genus Zanclea with a particular focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a combined mitochondrial 16S and COI phylogenetic tree revealed a multitude of hidden molecular lineages within this group (Clades I, II, III, V, VI, VII, and VIII), suggesting the existence of both host-generalist and genus-specific lineages of Zanclea associated with scleractinians. In addition to Z. gallii living in association with the genus Acropora, we discovered four well-supported lineages (Clades I, II, III, and VII), each one forming a strict association with a single scleractinian genus, including sequences of Zanclea associated with Montipora from two geographically separated areas (Maldives and Taiwan). Two host-generalist Zanclea lineages were also observed, and one of them was formed by Zanclea specimens symbiotic with seven scleractinian genera (Clade VIII). We also found that the COI gene allows the recognition of separated hidden lineages in agreement with the commonly recommended mitochondrial 16S as a DNA barcoding gene for Hydrozoa and shows reasonable potential for phylogenetic and evolutionary analyses in the genus Zanclea. Finally, as no DNA sequences are available for the majority of the nominal Zanclea species known, we note that they will be necessary to elucidate the diversity of the Zanclea-scleractinian association. PMID:26207903
Tse, Herman; Chen, Jonathan H.K.; Tang, Ying; Lau, Susanna K.P.; Woo, Patrick C.Y.
2014-01-01
Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the “sanguinis group.” As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the “mitis group.” On the basis of the findings, we propose a novel group, named “sinensis group,” to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. PMID:25331233
Teng, Jade L L; Huang, Yi; Tse, Herman; Chen, Jonathan H K; Tang, Ying; Lau, Susanna K P; Woo, Patrick C Y
2014-10-20
Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the "sanguinis group." As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the "mitis group." On the basis of the findings, we propose a novel group, named "sinensis group," to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Phylogenomic Analyses Support Traditional Relationships within Cnidaria
Zapata, Felipe; Goetz, Freya E.; Smith, Stephen A.; Howison, Mark; Siebert, Stefan; Church, Samuel H.; Sanders, Steven M.; Ames, Cheryl Lewis; McFadden, Catherine S.; France, Scott C.; Daly, Marymegan; Collins, Allen G.; Haddock, Steven H. D.; Dunn, Casey W.; Cartwright, Paulyn
2015-01-01
Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations. PMID:26465609
Phylogenomic Analyses Support Traditional Relationships within Cnidaria.
Zapata, Felipe; Goetz, Freya E; Smith, Stephen A; Howison, Mark; Siebert, Stefan; Church, Samuel H; Sanders, Steven M; Ames, Cheryl Lewis; McFadden, Catherine S; France, Scott C; Daly, Marymegan; Collins, Allen G; Haddock, Steven H D; Dunn, Casey W; Cartwright, Paulyn
2015-01-01
Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.
Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina
2013-02-01
Cronobacter sakazakii and its phylogenetically closest species are considered to be an opportunistic pathogens associated with food-borne disease in neonates and infants. Neither phenotypic nor genotypic (16S ribosomal DNA sequence analysis) techniques can provide sufficient resolutions for accurately and rapidly identification of these species. The objective of this study was to develop species-specific PCR based on the gyrB gene sequence for direct species identification of the C. sakazakii and Cronobacter dublinensis within the C. sakazakii group. Two pair of species-specific primers were designed and used to specifically identify C. sakazakii and C. dublinensis, but none of the other C. sakazakii group strains. Our data indicate that the novel species-specific primers could be used to rapidly and accurately identify the species of C. sakazakii and C. dublinensis from C. sakazakii group by the PCR based assays. Copyright © 2012 Elsevier Ltd. All rights reserved.
Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin
2015-03-01
The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific micropollutants. This work is an important step towards developing tools to predict biotransformation rates in WWTPs based on taxonomic composition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva
NASA Astrophysics Data System (ADS)
Bustamam, A.; Fitria, I.; Umam, K.
2017-07-01
Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.
Sharifiyazdi, Hassan; Nazifi, Saeed; Shirzad Aski, Hesamaddin; Shayegh, Hossein
2014-09-01
Hemoplasmas are the trivial name for a group of erythrocyte-parasitizing bacteria of the genus Mycoplasma. This study is the first report of hemoplasma infection in Small Indian Mongoose (Herpestes Javanicus) based on molecular analysis of 16S rDNA. Whole blood samples were collected by sterile methods, from 14 live captured mongooses, in the south of Iran. Candidatus Mycoplasma turicensis (CMt)-like hemoplasma was detected in blood samples from one animal tested. BLAST search and phylogenetic analysis of partial 16S rDNA sequence (933bp) of the hemoplasma from Small Indian mongoose (KJ530704) revealed only 96-97% identity to the previously described CMt followed by 95% and 91% similarity with Mycoplasma coccoides and Mycoplasma haemomuris, respectively. Accordingly, the Iranian mongoose CMt isolate showed a high intra-specific genetic variation compared to all previously reported CMt strains in GenBank. Further molecular studies using multiple phylogenetic markers are required to characterize the exact species of Mongoose-derived hemoplasma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, R F; Cao, W W; Cerniglia, C E
1996-01-01
In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).
Biochemistry of fish stomach chitinase.
Ikeda, Mana; Kakizaki, Hiromi; Matsumiya, Masahiro
2017-11-01
Fish are reported to exhibit chitinase activity in the stomach. Analyses of fish stomach chitinases have shown that these enzymes have the physiological function of degrading chitinous substances ingested as diets. Osteichthyes, a group that includes most of the fishes, have several chitinases in their stomachs. From a phylogenetic analysis of the chitinases of vertebrates, these particular molecules were classified into a fish-specific group and have different substrate specificities, suggesting that they can degrade ingested chitinous substances efficiently. On the other hand, it has been suggested that coelacanth (Sarcopterygii) and shark (Chondrichthyes) have a single chitinase enzyme in their stomachs, which shows multiple functions. This review focuses on recent research on the biochemistry of fish stomach chitinases. Copyright © 2017 Elsevier B.V. All rights reserved.
Taming the BEAST—A Community Teaching Material Resource for BEAST 2
Barido-Sottani, Joëlle; Bošková, Veronika; Plessis, Louis Du; Kühnert, Denise; Magnus, Carsten; Mitov, Venelin; Müller, Nicola F.; PečErska, Jūlija; Rasmussen, David A.; Zhang, Chi; Drummond, Alexei J.; Heath, Tracy A.; Pybus, Oliver G.; Vaughan, Timothy G.; Stadler, Tanja
2018-01-01
Abstract Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of the models and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here, we introduce the “Taming the Beast” (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2. PMID:28673048
Taming the BEAST-A Community Teaching Material Resource for BEAST 2.
Barido-Sottani, Joëlle; Bošková, Veronika; Plessis, Louis Du; Kühnert, Denise; Magnus, Carsten; Mitov, Venelin; Müller, Nicola F; PecErska, Julija; Rasmussen, David A; Zhang, Chi; Drummond, Alexei J; Heath, Tracy A; Pybus, Oliver G; Vaughan, Timothy G; Stadler, Tanja
2018-01-01
Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of the models and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here, we introduce the "Taming the Beast" (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Zooanthroponotic transmission of rotavirus in Haryana State of Northern India.
Choudhary, P; Minakshi, P; Ranjan, K; Basanti, B
Rotaviruses are the major cause of severe gastroenteritis and mortality in young children and animals. Due to segmented nature of dsRNA genome and wide host range, vast genetic and antigenic diversity exists amongst different isolates of rotaviruses. A total of 230 fecal ovine and caprine samples collected from organized farms and villages in Haryana were screened for rotavirus detection. Samples were screened by latex agglutination test and RNA-PAGE followed by RT-PCR and nucleic acid sequencing. The latex agglutination test showed 25 newborn lamb and 4 kid fecal samples positive for rotavirus. However, RNA-PAGE showed only 9 lamb fecal samples positive for rotavirus. All the samples were subjected to RT-PCR employing vp4 and vp7 gene specific primers of group A rotavirus of ovine, bovine and human origin. Only two samples from lamb (Sheep18/Hisar/2013 and Sheep22/Hisar/2013) showed vp4 and vp7 gene specific amplification with human group A rotavirus (GAR) specific primer. However, they did not show any amplification with ovine and bovine rotavirus specific primers. The nucleotide as well as deduced amino acid sequence analysis of vp4 gene of these isolates showed >98/97% and vp7 gene >95/94% nt/aa identity with human GAR from different regions of the world. Based on nucleotide similarity search, Sheep18/Hisar/2013 and Sheep22/Hisar/2013 isolates were genotyped as G1P[8] and G1P[4]. Phylogenetic analysis also confirmed that these isolates were clustered closely with human rotaviruses from different regions of the world. Earlier, higher prevalence of human rotaviruses was reported from the sample collecting area. The amplification of ovine samples with human rotavirus gene specific primers, sequence identity and phylogenetic analysis strongly suggests the zoonotic transmission of human GAR to sheep.
Carmo, Andreia Moreira Dos Santos; Suzuki, Rodrigo Buzinaro; Cabral, Aline Diniz; Costa, Renata Torres da; Massari, Gabriela Pena; Riquena, Michele Marcondes; Fracasso, Helio Augusto Alves; Eterovic, Andre; Marcili, Arlei; Sperança, Márcia Aparecida
2017-05-01
Dengue virus, represented by four distinct, genetically diverse serotypes, is the etiologic agent of asymptomatic to severe hemorrhagic diseases. The spatiotemporal dynamics of dengue serotypes and its association to specific diseases vary among the different regions worldwide. By 2007, and in São Paulo State, Brazil, dengue-case concentration in urban centers had changed to increased incidence in small- and medium-sized towns, the case of Marília. The aim of this article was to distinguish dengue serotypes circulating during the 2007 Marília outbreak and define their association to demographic and hematological patient profiles, as well as the phylogenetic relationships among the different viruses. PCR amplicons corresponding to the junction of capsid and dengue pre-membrane encoding genes, obtained from dengue serologically positive patients, were sequenced. Hematological and demographic data of patients with different Dengue serotypes were evaluated by univariate and bivariate statistics. Dengue PCR sequences were used in phylogenetic relationships analyzed for maximum parsimony. Molecular typing confirmed co-circulation of the dengue serotypes 1 (DENV1) and 3 (DENV3), which presented divergent correlation patterns with regard to hematological descriptors. The increase in atypical lymphocytes, a likely indication of virus load, could be significantly associated to a decrease in leukocyte counts in the DENV3 group and platelet in the DENV1. Phylogenetic reconstitution revealed the introduction of DENV1 from northern Brazil and local divergence of DENV3 by either microevolution or viral introduction from other geographical regions or both. Dengue dynamics showed regional molecular-epidemiologic specificity, which has important implications for introduction of vaccines, disease management, and transmission control. Copyright © 2017 Elsevier B.V. All rights reserved.
Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.
Regis, Koy W; Meik, Jesse M
2017-01-01
The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.
Homoplastic microinversions and the avian tree of life
2011-01-01
Background Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies. PMID:21612607
Ochoa, Sara A; Cruz-Córdova, Ariadnna; Luna-Pineda, Victor M; Reyes-Grajeda, Juan P; Cázares-Domínguez, Vicenta; Escalona, Gerardo; Sepúlveda-González, Ma Eugenia; López-Montiel, Fernanda; Arellano-Galindo, José; López-Martínez, Briceida; Parra-Ortega, Israel; Giono-Cerezo, Silvia; Hernández-Castro, Rigoberto; de la Rosa-Zamboni, Daniela; Xicohtencatl-Cortes, Juan
2016-01-01
In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes ( ecpA, fimH, csgA , and papG II), an iron uptake gene ( chuA ), and a toxin gene ( hlyA ). In addition, a moderate frequency (40-70%) of other genes ( iutD, tosA , and bcs A) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papG II, iutD , and chuA . A moderate frequency (40-70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes ( aad A1, aad B, aac C, ant 1, dfr A1, dfr A17, and aad A4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR-UPEC strains. In conclusion, phylogenetic groups including virulence genes are widely associated with two integron classes (1 and 2) in MDR- and XDR-UPEC strains.
Genome analysis of E. coli isolated from Crohn's disease patients.
Rakitina, Daria V; Manolov, Alexander I; Kanygina, Alexandra V; Garushyants, Sofya K; Baikova, Julia P; Alexeev, Dmitry G; Ladygina, Valentina G; Kostryukova, Elena S; Larin, Andrei K; Semashko, Tatiana A; Karpova, Irina Y; Babenko, Vladislav V; Ismagilova, Ruzilya K; Malanin, Sergei Y; Gelfand, Mikhail S; Ilina, Elena N; Gorodnichev, Roman B; Lisitsyna, Eugenia S; Aleshkin, Gennady I; Scherbakov, Petr L; Khalif, Igor L; Shapina, Marina V; Maev, Igor V; Andreev, Dmitry N; Govorun, Vadim M
2017-07-19
Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.
Mishra, Apurva; Pandey, Ramesh K; Manickam, Natesan
2015-01-01
Rapid phylogenetic and functional gene (gtfB) identification of S. mutans from the dental plaque derived from children. Dental plaque collected from fifteen patients of age group 7-12 underwent centrifugation followed by genomic DNA extraction for S. mutans. Genomic DNA was processed with S. mutans specific primers in suitable PCR condtions for phylogenetic and functional gene (gtfB) identification. The yield and results were confirmed by agarose gel electrophoresis. 1% agarose gel electrophoresis depicts the positive PCR amplification at 1,485 bp when compared with standard 1 kbp indicating the presence of S. mutans in the test sample. Another PCR reaction was set using gtfB primers specific for S. mutans for functional gene identification. 1.2% agarose gel electrophoresis was done and a positive amplication was observed at 192 bp when compared to 100 bp standards. With the advancement in molecular biology techniques, PCR based identification and quantification of the bacterial load can be done within hours using species-specific primers and DNA probes. Thus, this technique may reduce the laboratory time spend in conventional culture methods, reduces the possibility of colony identification errors and is more sensitive to culture techniques.
NASA Astrophysics Data System (ADS)
Ward, N.; Page, S.; Heidelberg, J.; Eisen, J. A.; Fraser, C. M.
2002-12-01
The composition of microbial communities associated with deep-sea hydrothermal vent animals is of interest because of the key role of bacterial symbionts in driving the chemosynthetic food chain of the vent system, and also because bacterial biofilms attached to animal exterior surfaces may play a part in settlement of larval forms. Sequence analysis of 16S ribosomal RNA (rRNA) genes from such communities provides a snapshot of community structure, as this gene is present in all Bacteria and Archaea, and a useful phylogenetic marker for both cultivated microbial species, and uncultivated species such as many of those found in the deep-sea environment. Specimens of giant tube worms (Riftia pachyptila), mussels (Bathymodiolus thermophilus), and clams (Calyptogena magnifica) were collected during the 2002 R/V Atlantis research cruises to the East Pacific Rise (9N) and Galápagos Rift. Microbial biofilms attached to the exterior surfaces of individual animals were sampled, as were tissues known to harbor chemosynthetic bacterial endosymbionts. Genomic DNA was extracted from the samples using a commercially available kit, and 16S rRNA genes amplified from the mixed bacterial communities using the polymerase chain reaction (PCR) and oligonucleotide primers targeting conserved terminal regions of the 16S rRNA gene. The PCR products obtained were cloned into a plasmid vector and the recombinant plasmids transformed into cells of Escherichia coli. Individual cloned 16S rRNA genes were sequenced at the 5' end of the gene (the most phylogenetically informative region in most taxa) and the sequence data compared to publicly available gene sequence databases, to allow a preliminary assignment of clones to taxonomic groups within the Bacteria and Archaea, and to determine the overall composition and phylogenetic diversity of the animal-associated microbial communities. Analysis of Riftia pachyptila exterior biofilm samples revealed the presence of members of the delta and epsilon proteobacteria, low GC Gram positive bacteria (firmicutes), spirochetes, CFB (Cytophaga-Flavobacterium-Bacteroides) group, green nonsulfur bacteria, acidobacteria, verrucomicrobia, and planctomycetes. The presence of the latter three taxonomic groups is of special interest, as they represent phylogenetically distinct groups within the Bacteria for which specific ecological functions have not yet been identified, but which have been found to be widely distributed and often numerically significant in diverse terrestrial and aquatic habitats. Although further sequencing is required to demonstrate the presence of a Riftia-associated microbial population distinct from that of the surrounding seawater, results available from three Riftia individuals from the East Pacific Rise suggest this to be the case. Analysis of microbial communities associated with the gill tissue of the mussel Bathymodiolus thermophilus shows a population dominated by gamma-Proteobacterial chemoautotrophic symbionts, although lower frequency novel phylotypes have been detected. Representatives of specific taxonomic groups have been selected for sequencing of the complete 16S rRNA gene, and the sequences used to reconstruct phylogenetic trees to more accurately determine the evolutionary relationships between the novel sequences, and available sequences for both cultured and non-cultured bacteria.
Ota, Yuko; Yamanaka, Takashi; Murata, Hitoshi; Neda, Hitoshi; Ohta, Akira; Kawai, Masataka; Yamada, Akiyoshi; Konno, Miki; Tanaka, Chihiro
2012-01-01
Tricholoma matsutake (S. Ito & S. Imai) Singer and its allied species are referred to as matsutake worldwide and are the most economically important edible mushrooms in Japan. They are widely distributed in the northern hemisphere and established an ectomycorrhizal relationship with conifer and broadleaf trees. To clarify relationships among T. matsutake and its allies, and to delimit phylogenetic species, we analyzed multilocus datasets (ITS, megB1, tef, gpd) with samples that were correctly identified based on morphological characteristics. Phylogenetic analyses clearly identified four major groups: matsutake, T. bakamatsutake, T. fulvocastaneum and T. caligatum; the latter three species were outside the matsutake group. The haplotype analyses and median-joining haplotype network analyses showed that the matsutake group included four closely related but clearly distinct taxa (T. matsutake, T. anatolicum, Tricholoma sp. from Mexico and T. magnivelare) from different geographical regions; these were considered to be distinct phylogenetic species.
Hydrogenases and H(+)-reduction in primary energy conservation.
Vignais, Paulette M
2008-01-01
Hydrogenases are metalloenzymes subdivided into two classes that contain iron-sulfur clusters and catalyze the reversible oxidation of hydrogen gas (H(2)[Symbol: see text]left arrow over right arrow[Symbol: see text]2H(+)[Symbol: see text]+[Symbol: see text]2e(-)). Two metal atoms are present at their active center: either a Ni and an Fe atom in the [NiFe]hydrogenases, or two Fe atoms in the [FeFe]hydrogenases. They are phylogenetically distinct classes of proteins. The catalytic core of [NiFe]hydrogenases is a heterodimeric protein associated with additional subunits in many of these enzymes. The catalytic core of [FeFe]hydrogenases is a domain of about 350 residues that accommodates the active site (H cluster). Many [FeFe]hydrogenases are monomeric but possess additional domains that contain redox centers, mostly Fe-S clusters. A third class of hydrogenase, characterized by a specific iron-containing cofactor and by the absence of Fe-S cluster, is found in some methanogenic archaea; this Hmd hydrogenase has catalytic properties different from those of [NiFe]- and [FeFe]hydrogenases. The [NiFe]hydrogenases can be subdivided into four subgroups: (1) the H(2) uptake [NiFe]hydrogenases (group 1); (2) the cyanobacterial uptake hydrogenases and the cytoplasmic H(2) sensors (group 2); (3) the bidirectional cytoplasmic hydrogenases able to bind soluble cofactors (group 3); and (4) the membrane-associated, energy-converting, H(2) evolving hydrogenases (group 4). Unlike the [NiFe]hydrogenases, the [FeFe]hydrogenases form a homogeneous group and are primarily involved in H(2) evolution. This review recapitulates the classification of hydrogenases based on phylogenetic analysis and the correlation with hydrogenase function of the different phylogenetic groupings, discusses the possible role of the [FeFe]hydrogenases in the genesis of the eukaryotic cell, and emphasizes the structural and functional relationships of hydrogenase subunits with those of complex I of the respiratory electron transport chain.
Moyle, R.G.; Chesser, R.T.; Brumfield, R.T.; Tello, J.G.; Marchese, D.J.; Cracraft, J.
2009-01-01
The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods. ?? 2009 The Willi Hennig Society.
Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics
van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW
2006-01-01
Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620
Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo
2016-12-01
Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.
2012-01-01
Background Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis). Results One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved. Conclusion Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to mid Miocene. PMID:23228209
2013-01-01
Background One of the most widely accepted ecomorphological relationships in vertebrates is the negative correlation between intestinal length and proportion of animal prey in diet. While many fish groups exhibit this general pattern, other clades demonstrate minimal, and in some cases contrasting, associations between diet and intestinal length. Moreover, this relationship and its evolutionary derivation have received little attention from a phylogenetic perspective. This study documents the phylogenetic development of intestinal length variability, and resultant correlation with dietary habits, within a molecular phylogeny of 28 species of terapontid fishes. The Terapontidae (grunters), an ancestrally euryhaline-marine group, is the most trophically diverse of Australia’s freshwater fish families, with widespread shifts away from animal-prey-dominated diets occurring since their invasion of fresh waters. Results Description of ontogenetic development of intestinal complexity of terapontid fishes, in combination with ancestral character state reconstruction, demonstrated that complex intestinal looping (convolution) has evolved independently on multiple occasions within the family. This modification of ontogenetic development drives much of the associated interspecific variability in intestinal length evident in terapontids. Phylogenetically informed comparative analyses (phylogenetic independent contrasts) showed that the interspecific differences in intestinal length resulting from these ontogenetic developmental mechanisms explained ~65% of the variability in the proportion of animal material in terapontid diets. Conclusions The ontogenetic development of intestinal complexity appears to represent an important functional innovation underlying the extensive trophic differentiation seen in Australia’s freshwater terapontids, specifically facilitating the pronounced shifts away from carnivorous (including invertebrates and vertebrates) diets evident across the family. The capacity to modify intestinal morphology and physiology may also be an important facilitator of trophic diversification during other phyletic radiations. PMID:23441994
On the information content of discrete phylogenetic characters.
Bordewich, Magnus; Deutschmann, Ina Maria; Fischer, Mareike; Kasbohm, Elisa; Semple, Charles; Steel, Mike
2017-12-16
Phylogenetic inference aims to reconstruct the evolutionary relationships of different species based on genetic (or other) data. Discrete characters are a particular type of data, which contain information on how the species should be grouped together. However, it has long been known that some characters contain more information than others. For instance, a character that assigns the same state to each species groups all of them together and so provides no insight into the relationships of the species considered. At the other extreme, a character that assigns a different state to each species also conveys no phylogenetic signal. In this manuscript, we study a natural combinatorial measure of the information content of an individual character and analyse properties of characters that provide the maximum phylogenetic information, particularly, the number of states such a character uses and how the different states have to be distributed among the species or taxa of the phylogenetic tree.
Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past
Eveleigh, Robert J.M.; Meehan, Conor J.; Archibald, John M.; Beiko, Robert G.
2013-01-01
Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages. PMID:24281050
Fausser, Jean-Luc; Prosper, Prosper; Donati, Giuseppe; Ramanamanjato, Jean-Baptiste; Rumpler, Yves
2002-01-01
Background Phylogenetic relationships of the genus Hapalemur remains controversial, particularly within the Hapalemur griseus species group. In order to obtain more information on the taxonomic status within this genus, and particularly in the cytogenetic distinct subspecies group of Hapalemur griseus, 357 bp sequence of cytochrome b and 438 bp of 12S mitochondrial DNAs were analyzed on a sample of animals captured in areas extending from the north to the south-east of Madagascar. This sample covers all cytogenetically defined types recognized of the genus Hapalemur. Results Phylogenetic trees and distances analyses demonstrate a first emergence of Hapalemur simus followed by H. aureus which is the sister clade of the H. griseus subspecies. Hapalemur griseus is composed of 4 subspecies separated into two clades. The first contains H. g. griseus, H. g. alaotrensis and H. g. occidentalis. The second consists of H. g. meridionalis. A new chromosomal polymorphic variant from the region of Ranomafana, H. griseus ssp, has been analysed and was found in both clades. Conclusions Our results support the raising of H. g. meridionalis to the specific rank H. meridionalis, while neither cytogenetic nor molecular evidences support the raising of H. g. alaotrensis to a species rank despite its morphological characteristics. The new cytotype H. g. ssp which has been previously characterized by cytogenetic studies contains animals clustering either with the group of Hapalemur griseus griseus or with that of Hapalemur meridionalis. This suggests the existence of an ancestral polymorphism or an introgression of mitochondrial DNA between subspecies. PMID:11914128
Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past.
Eveleigh, Robert J M; Meehan, Conor J; Archibald, John M; Beiko, Robert G
2013-01-01
Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages.
Zautner, Andreas Erich; Masanta, Wycliffe Omurwa; Tareen, Abdul Malik; Weig, Michael; Lugert, Raimond; Groß, Uwe; Bader, Oliver
2013-11-07
Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7(m+c). The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7(m+c)(+) and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.
Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S
2009-01-01
Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other, but the precise branching order within the Gymnodinium sensu stricto clade remains unresolved. We regard the ocelloid as the best synapomorphy for warnowiids and infer that the most recent common ancestor of polykrikoids and warnowiids possessed both nematocysts and photosynthetic plastids that were subsequently lost during the early evolution of warnowiids. Our summary of species and genus concepts in warnowiids demonstrate that the systematics of this poorly understood group is highly problematic and a comprehensive revision is needed. PMID:19467154
Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S
2009-05-25
Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other, but the precise branching order within the Gymnodinium sensu stricto clade remains unresolved. We regard the ocelloid as the best synapomorphy for warnowiids and infer that the most recent common ancestor of polykrikoids and warnowiids possessed both nematocysts and photosynthetic plastids that were subsequently lost during the early evolution of warnowiids. Our summary of species and genus concepts in warnowiids demonstrate that the systematics of this poorly understood group is highly problematic and a comprehensive revision is needed.
Developmental Stage of Parasites Influences the Structure of Fish-Parasite Networks
Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis
2013-01-01
Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries. PMID:24124506
Developmental stage of parasites influences the structure of fish-parasite networks.
Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis
2013-01-01
Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries.
Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)
Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun
2016-01-01
Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352
Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk
2013-01-01
WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197
Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat
The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but this needs to be experimentally characterized with ecologically relevant phenotype properties. This study justifies the need to sequence multiple isolates, especially from P. fluorescens group in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants.« less
Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates
Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; ...
2016-01-01
The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but this needs to be experimentally characterized with ecologically relevant phenotype properties. This study justifies the need to sequence multiple isolates, especially from P. fluorescens group in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants.« less
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.
Detection and Phylogenetic Analysis of Group 1 Coronaviruses in South American Bats
Foster, Jerome E.; Zhu, Hua Chen; Zhang, Jin Xia; Smith, Gavin J.D.; Thompson, Nadin; Auguste, Albert J.; Ramkissoon, Vernie; Adesiyun, Abiodun A.; Guan, Yi
2008-01-01
Bat coronaviruses (Bt-CoVs) are thought to be the precursors of severe acute respiratory syndrome coronavirus. We detected Bt-CoVs in 2 bat species from Trinidad. Phylogenetic analysis of the RNA-dependent RNA polymerase gene and helicase confirmed them as group 1 coronaviruses. PMID:19046513
Phylogenetics of the phlebotomine sand fly group Verrucarum (Diptera: Psychodidae: Lutzomyia).
Cohnstaedt, Lee W; Beati, Lorenza; Caceres, Abraham G; Ferro, Cristina; Munstermann, Leonard E
2011-06-01
Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity--the Lutzomyia longiflocosa-Lutzomyia sauroida pair and the Lutzomyia quasitownsendi-Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution.
Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia)
Cohnstaedt, Lee W.; Beati, Lorenza; Caceres, Abraham G.; Ferro, Cristina; Munstermann, Leonard E.
2011-01-01
Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity—the Lutzomyia longiflocosa–Lutzomyia sauroida pair and the Lutzomyia quasitownsendi–Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution. PMID:21633028
New highly divergent Plum pox virus isolates infecting sour cherry in Russia.
Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Zakubanskiy, Alexander; Osipov, Gennady
2017-02-01
Unusual Plum pox virus (PPV) isolates (named Tat isolates) were discovered on sour cherry (Prunus cerasus) in Russia. They failed to be recognized by RT-PCR using commonly employed primers specific to the strains C or CR (the only ones that proved able to infect sour cherry) as well as to the strains M and W. Some of them can be detected by RT-PCR using the PPV-D-specific primers P1/PD or by TAS-ELISA with the PPV-C-specific monoclonal antibody AC. Phylogenetic analysis of the 3'-terminal genomic region assigned the Tat isolates into the cluster of cherry-adapted strains. However, they grouped separately from the C and CR strains and from each other as well. The sequence divergence of the Tat isolates is comparable to the differences between the known PPV strains. They may represent new group(s) of cherry-adapted isolates which do not seem to belong to any known strain of the virus. Copyright © 2016. Published by Elsevier Inc.
Jeon, Sun Jeong; Nguyen, Thi Thuong Thuong; Lee, Hyang Burm
2015-09-01
A seed-borne fungus, Curvularia sp. EML-KWD01, was isolated from an indigenous wheat seed by standard blotter method. This fungus was characterized based on the morphological characteristics and molecular phylogenetic analysis. Phylogenetic status of the fungus was determined using sequences of three loci: rDNA internal transcribed spacer, large ribosomal subunit, and glyceraldehyde 3-phosphate dehydrogenase gene. Multi loci sequencing analysis revealed that this fungus was Curvularia spicifera within Curvularia group 2 of family Pleosporaceae.
Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.
Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing
2017-05-01
Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.
Klassen, Jonathan L.
2010-01-01
Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification. PMID:20582313
Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal
Pant, Ganesh R.; Lavenir, Rachel; Wong, Frank Y. K.; Certoma, Andrea; Larrous, Florence; Bhatta, Dwij R.; Bourhy, Hervé
2013-01-01
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal. PMID:24278494
Ladunga, I
1992-04-01
The markedly nonuniform, even systematic distribution of sequences in the protein "universe" has been analyzed by methods of protein taxonomy. Mapping of the natural hierarchical system of proteins has revealed some dense cores, i.e., well-defined clusterings of proteins that seem to be natural structural groupings, possibly seeds for a future protein taxonomy. The aim was not to force proteins into more or less man-made categories by discriminant analysis, but to find structurally similar groups, possibly of common evolutionary origin. Single-valued distance measures between pairs of superfamilies from the Protein Identification Resource were defined by two chi 2-like methods on tripeptide frequencies and the variable-length subsequence identity method derived from dot-matrix comparisons. Distance matrices were processed by several methods of cluster analysis to detect phylogenetic continuum between highly divergent proteins. Only well-defined clusters characterized by relatively unique structural, intracellular environmental, organismal, and functional attribute states were selected as major protein groups, including subsets of viral and Escherichia coli proteins, hormones, inhibitors, plant, ribosomal, serum and structural proteins, amino acid synthases, and clusters dominated by certain oxidoreductases and apolar and DNA-associated enzymes. The limited repertoire of functional patterns due to small genome size, the high rate of recombination, specific features of the bacterial membranes, or of the virus cycle canalize certain proteins of viruses and Gram-negative bacteria, respectively, to organismal groups.
Methods for determining the genetic affinity of microorganisms and viruses
NASA Technical Reports Server (NTRS)
Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)
2012-01-01
Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.
Kim, Jiyeon; Kern, Elizabeth; Kim, Taeho; Sim, Mikang; Kim, Jaebum; Kim, Yuseob; Park, Chungoo; Nadler, Steven A; Park, Joong-Ki
2017-02-01
Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships. Copyright © 2016 Elsevier Inc. All rights reserved.
Prychitko, T M; Moore, W S
1997-10-01
Estimating phylogenies from DNA sequence data has become the major methodology of molecular phylogenetics. To date, molecular phylogenetics of the vertebrates has been very dependent on mtDNA, but studies involving mtDNA are limited because the several genes comprising the mt-genome are inherited as a single linkage group. The only apparent solution to this problem is to sequence additional genes, each representing a distinct linkage group, so that the resultant gene trees provide independent estimates of the species tree. There exists the need to find novel gene sequences which contain enough phylogenetic information to resolve relationships between closely related species. A possible source is the nuclear-encoded introns, because they evolve more rapidly than exons. We designed primers to amplify and sequence the 7 intron from the beta-fibrinogen gene for a recently evolved group, the woodpeckers. We sequenced the entire intron for 10 specimens representing five species. Nucleotide substitutions are randomly distributed along the length of the intron, suggesting selective neutrality. A preliminary analysis indicates that the phylogenetic signal in the intron is as strong as that in the mitochondrial encoded cytochrome b (cyt b) gene. The topology of the beta-fibrinogen tree is identical to that of the cyt b tree. This analysis demonstrates the ability of the 7 intron of beta-fibrinogen to provide well resolved, independent gene trees for recently evolved groups and establishes it as a source of sequences to be used in other phylogenetic studies. Copyright 1997 Academic Press
Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R
2001-10-01
The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.
Novel insect-specific flavivirus isolated from northern Europe
Huhtamo, Eili; Moureau, Gregory; Cook, Shelley; Julkunen, Ora; Putkuri, Niina; Kurkela, Satu; Uzcátegui, Nathalie Y.; Harbach, Ralph E.; Gould, Ernest A.; Vapalahti, Olli; de Lamballerie, Xavier
2012-01-01
Mosquitoes collected in Finland were screened for flaviviral RNA leading to the discovery and isolation of a novel flavivirus designated Hanko virus (HANKV). Virus characterization, including phylogenetic analysis of the complete coding sequence, confirmed HANKV as a member of the “insect-specific” flavivirus (ISF) group. HANKV is the first member of this group isolated from northern Europe, and therefore the first northern European ISF for which the complete coding sequence has been determined. HANKV was not transcribed as DNA in mosquito cell culture, which appears atypical for an ISF. HANKV shared highest sequence homology with the partial NS5 sequence available for the recently discovered Spanish Ochlerotatus flavivirus (SOcFV). Retrospective analysis of mitochondrial sequences from the virus-positive mosquito pool suggested an Ochlerotatus mosquito species as the most likely host for HANKV. HANKV and SOcFV may therefore represent a novel group of Ochlerotatus-hosted insect-specific flaviviruses in Europe and further afield. PMID:22999256
NASA Technical Reports Server (NTRS)
Buchanan, B. B.
1991-01-01
Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.
Martinez, Alexander A; Castillo, Juan; Sanchez, Mirla C; Zaldivar, Yamitzel; Mendoza, Yaxelis; Tribaldos, Maribel; Acosta, Pablo; Smith, Rebecca E; Pascale, Juan Miguel
2012-12-15
Aseptic meningitis outbreaks are commonly caused by viral pathogens with enterovirus a common etiological agent. Between May and June of 2008, an outbreak of 173 cases of aseptic meningitis occurred in the Chiriqui Province of Panama. Molecular techniques were used to identify the etiological agent. Cerebrospinal fluid (CSF) samples from 75 patients were received at the Gorgas Memorial Institute for Health Studies. RNA extraction and one-step RT-PCR were performed on each sample to determine the presence of enterovirus. Thirty-four samples which were positive for enterovirus were subject to group-specific PCR, sequencing, and phylogenetic analysis to identify the etiological agent of the outbreak. The CSF of 58 subjects was found positive for the enterovirus family using RT-PCR. Thirty-four samples were found to belong to the enterovirus B group. Phylogenetic analysis of four successfully sequenced samples revealed echovirus 30 as the etiological agent. Echovirus 30 is reported as the likely cause of an outbreak of aseptic meningitis in Panama, the first since the 1980s.
Ali, Akhtar; Ali, Ijaz
2015-01-01
Dengue virus serotype 2 (DENV-2) isolates have been implicated in deadly outbreaks of dengue fever (DF) and dengue hemorrhagic fever (DHF) in several regions of the world. Phylogenetic analysis of DENV-2 isolates collected from particular countries has been performed using partial or individual genes but only a few studies have examined complete whole-genome sequences collected worldwide. Herein, 50 complete genome sequences of DENV-2 isolates, reported over the past 70 years from 19 different countries, were downloaded from GenBank. Phylogenetic analysis was conducted and evolutionary distances of the 50 DENV-2 isolates were determined using maximum likelihood (ML) trees or Bayesian phylogenetic analysis created from complete genome nucleotide (nt) and amino acid (aa) sequences or individual gene sequences. The results showed that all DENV-2 isolates fell into seven main groups containing five previously defined genotypes. A Cosmopolitan genotype showed further division into three groups (C-I, C-II, and C-III) with the C-I group containing two subgroups (C-IA and C-IB). Comparison of the aa sequences showed specific mutations among the various groups of DENV-2 isolates. A maximum number of aa mutations was observed in the NS5 gene, followed by the NS2A, NS3 and NS1 genes, while the smallest number of aa substitutions was recorded in the capsid gene, followed by the PrM/M, NS4A, and NS4B genes. Maximum evolutionary distances were found in the NS2A gene, followed by the NS4A and NS4B genes. Based on these results, we propose that genotyping of DENV-2 isolates in future studies should be performed on entire genome sequences in order to gain a complete understanding of the evolution of various isolates reported from different geographical locations around the world. PMID:26414178
First Report of Prevalence of CTX-M-15-Producing Escherichia coli O25b/ST131 from Iran.
Namaei, Mohammad Hasan; Yousefi, Masoud; Ziaee, Masoud; Salehabadi, Alireza; Ghannadkafi, Malaknaz; Amini, Elham; Askari, Parvin
2017-10-01
The emergence of Escherichia coli sequence type 131 (ST131) as a multidrug-resistant and virulent pathogen represents a major challenge to public health globally. Recently, the O25b/ST131 E. coli producing CTX-M-15 with high virulence potential has been reported worldwide, but has received little attention in Iran. This study is the first in Iran to specifically determine the spread of the O25b/ST131 clone producing CTX-M-15 among E. coli isolates belonging to the B2 phylogenetic group. ST131 clone in phylogenetic group B2 was detected based on PCR detection of ST131-specific single-nucleotide polymorphisms in mdh and gyrB. O25b/ST131 E. coli clone was confirmed utilizing O25b/ST131 clone allele-specific PCR for the pabB gene. All group B2 E. coli isolates were characterized based on antibiotic susceptibility, extended-spectrum β-lactamase (ESBL) enzymes, and virulence traits. Our results demonstrated that 38 out of the 154 B2 group isolates (24.7%) were identified as belonging to the ST131 clone. Furthermore, of these, 28 isolates (73.6%) were detected as O25b/ST131 clone. Antibiotic resistance of ST131 E. coli isolates to ciprofloxacin, gentamicin, cefotaxime, and aztreonam was significantly higher than non-ST131 isolates. Almost all of the O25b/ST131 isolates with the ability for ESBL production were reported as CTX-M-15 producing (95.5%). Our results showed that the most prevalent virulence trait in ST131 clone was ompT (94.7%). This study is the first to report the prevalence of the CTX-M-15-producing O25b/ST131 E. coli in Iran. Our findings reinforce the surveillance of dissemination of ST131 E. coli clone as a major drug-resistant pathogen and an important new public health threat.
Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary
2018-06-15
The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular evolution of the ependymin protein family: a necessary update.
Suárez-Castillo, Edna C; García-Arrarás, José E
2007-02-15
Ependymin (Epd), the predominant protein in the cerebrospinal fluid of teleost fishes, was originally associated with neuroplasticity and regeneration. Ependymin-related proteins (Epdrs) have been identified in other vertebrates, including amphibians and mammals. Recently, we reported the identification and characterization of an Epdr in echinoderms, showing that there are ependymin family members in non-vertebrate deuterostomes. We have now explored multiple databases to find Epdrs in different metazoan species. Using these sequences we have performed genome mapping, molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship among ependymin proteins. Our results demonstrate that ependymin genes are also present in protostomes. In addition, as a result of the putative fish-specific genome duplication event and posterior divergence, the ependymin family can be divided into four groups according to their amino acid composition and branching pattern in the gene tree: 1) a brain-specific group of ependymin sequences that is unique to teleost fishes and encompasses the originally described ependymin; 2) a group expressed in non-brain tissue in fishes; 3) a group expressed in several tissues that appears to be deuterostome-specific, and 4) a group found in invertebrate deuterostomes and protostomes, with a broad pattern of expression and that probably represents the evolutionary origin of the ependymins. Using codon-substitution models to statistically assess the selective pressures acting over the ependymin protein family, we found evidence of episodic positive Darwinian selection and relaxed selective constraints in each one of the postduplication branches of the gene tree. However, purifying selection (with among-site variability) appears to be the main influence on the evolution of each subgroup within the family. Functional divergence among the ependymin paralog groups is well supported and several amino acid positions are predicted to be critical for this divergence. Ependymin proteins are present in vertebrates, invertebrate deuterostomes, and protostomes. Overall, our analyses suggest that the ependymin protein family is a suitable target to experimentally test subfunctionalization in gene copies that originated after gene or genome duplication events.
Molecular evolution of the ependymin protein family: a necessary update
Suárez-Castillo, Edna C; García-Arrarás, José E
2007-01-01
Background Ependymin (Epd), the predominant protein in the cerebrospinal fluid of teleost fishes, was originally associated with neuroplasticity and regeneration. Ependymin-related proteins (Epdrs) have been identified in other vertebrates, including amphibians and mammals. Recently, we reported the identification and characterization of an Epdr in echinoderms, showing that there are ependymin family members in non-vertebrate deuterostomes. We have now explored multiple databases to find Epdrs in different metazoan species. Using these sequences we have performed genome mapping, molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship among ependymin proteins. Results Our results demonstrate that ependymin genes are also present in protostomes. In addition, as a result of the putative fish-specific genome duplication event and posterior divergence, the ependymin family can be divided into four groups according to their amino acid composition and branching pattern in the gene tree: 1) a brain-specific group of ependymin sequences that is unique to teleost fishes and encompasses the originally described ependymin; 2) a group expressed in non-brain tissue in fishes; 3) a group expressed in several tissues that appears to be deuterostome-specific, and 4) a group found in invertebrate deuterostomes and protostomes, with a broad pattern of expression and that probably represents the evolutionary origin of the ependymins. Using codon-substitution models to statistically assess the selective pressures acting over the ependymin protein family, we found evidence of episodic positive Darwinian selection and relaxed selective constraints in each one of the postduplication branches of the gene tree. However, purifying selection (with among-site variability) appears to be the main influence on the evolution of each subgroup within the family. Functional divergence among the ependymin paralog groups is well supported and several amino acid positions are predicted to be critical for this divergence. Conclusion Ependymin proteins are present in vertebrates, invertebrate deuterostomes, and protostomes. Overall, our analyses suggest that the ependymin protein family is a suitable target to experimentally test subfunctionalization in gene copies that originated after gene or genome duplication events. PMID:17302986
Dual phylogenetic origins of Nigerian lions (Panthera leo).
Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt
2014-07-01
Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa.
Dual phylogenetic origins of Nigerian lions (Panthera leo)
Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt
2014-01-01
Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa. PMID:25077018
Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle
2017-01-01
DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301
Phylogeny, host-parasite relationship and zoogeography
1999-01-01
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036
2013-01-01
Background Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses. Results The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes. Conclusions We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also observe that the number of telocentric chromosomes is useful to distinguish among valid species in some cases, although it is unchanged in species that are not necessarily closely related phylogenetically. Therefore, inferences based on this chromosomal character must be made with caution; a proper evolutionary analysis of the karyotypic variation in Dendropsophus depends on further characterization of the telocentric chromosomes found in this group. PMID:23822759
2013-01-01
Background Babesia parasites, mainly Babesia bovis and B. bigemina, are tick-borne hemoparasites inducing bovine babesiosis in cattle globally. The clinical signs of the disease include, among others, anemia, fever and hemoglobinuria. Babesiosis is known to occur in tropical and subtropical regions of the world. In this study, we aim to provide information about the occurrence and phylogenetic relationship of B. bigemina and B. bovis species in cattle from different locations in nine provinces of South Africa. A total of 430 blood samples were randomly collected from apparently healthy cattle. These samples were genetically tested for Babesia parasitic infections using nested PCR assays with species-specific primers. Results Nested PCR assays with Group I primer sets revealed that the overall prevalence of B. bigemina and B. bovis in all bovine samples tested was 64.7% (95% CI = 60.0-69.0) and 35.1% (95% CI = 30.6-39.8), respectively. Only 117/430 (27.2%) animals had a mixed infection. The highest prevalence of 87.5% (95% CI = 77.2-93.5) for B. bigemina was recorded in the Free State province collection sites (Ficksburg, Philippolis and Botshabelo), while North West collection sites had the highest number of animals infected with B. bovis (65.5%; 95% CI = 52.7-76.4). Phylograms were inferred based on B. bigemina-specific gp45 and B. bovis-specific rap-1 nucleotide sequences obtained with Group II nested PCR primers. Phylogenetic analysis of gp45 sequences revealed significant differences in the genotypes of B. bigemina isolates investigated, including those of strains published in GenBank. On the other hand, a phylogeny based on B. bovis rap-1 sequences indicated a similar trend of clustering among the sequences of B. bovis isolates investigated in this study. Conclusion This study demonstrates the occurrence of Babesia parasites in cattle from different provinces of South Africa. It was also noted that the situation of Babesia parasitic infection in cattle from certain areas within the surveyed provinces had either reached endemic stability or was progressing towards stability. PMID:23927555
Mtshali, Moses Sibusiso; Mtshali, Phillip Senzo
2013-08-08
Babesia parasites, mainly Babesia bovis and B. bigemina, are tick-borne hemoparasites inducing bovine babesiosis in cattle globally. The clinical signs of the disease include, among others, anemia, fever and hemoglobinuria. Babesiosis is known to occur in tropical and subtropical regions of the world. In this study, we aim to provide information about the occurrence and phylogenetic relationship of B. bigemina and B. bovis species in cattle from different locations in nine provinces of South Africa. A total of 430 blood samples were randomly collected from apparently healthy cattle. These samples were genetically tested for Babesia parasitic infections using nested PCR assays with species-specific primers. Nested PCR assays with Group I primer sets revealed that the overall prevalence of B. bigemina and B. bovis in all bovine samples tested was 64.7% (95% CI = 60.0-69.0) and 35.1% (95% CI = 30.6-39.8), respectively. Only 117/430 (27.2%) animals had a mixed infection. The highest prevalence of 87.5% (95% CI = 77.2-93.5) for B. bigemina was recorded in the Free State province collection sites (Ficksburg, Philippolis and Botshabelo), while North West collection sites had the highest number of animals infected with B. bovis (65.5%; 95% CI = 52.7-76.4). Phylograms were inferred based on B. bigemina-specific gp45 and B. bovis-specific rap-1 nucleotide sequences obtained with Group II nested PCR primers. Phylogenetic analysis of gp45 sequences revealed significant differences in the genotypes of B. bigemina isolates investigated, including those of strains published in GenBank. On the other hand, a phylogeny based on B. bovis rap-1 sequences indicated a similar trend of clustering among the sequences of B. bovis isolates investigated in this study. This study demonstrates the occurrence of Babesia parasites in cattle from different provinces of South Africa. It was also noted that the situation of Babesia parasitic infection in cattle from certain areas within the surveyed provinces had either reached endemic stability or was progressing towards stability.
Ashen, Jon B.; Goff, Lynda J.
2000-01-01
The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801
West Nile encephalitis outbreak in Kerala, India, 2011.
Anukumar, B; Sapkal, Gajanan N; Tandale, Babasheb V; Balasubramanian, R; Gangale, Daya
2014-09-01
An outbreak of acute encephalitis syndrome (AES) was reported in Kerala in India in May 2011. The outbreak features were unusual in terms of seasonality, geographical distribution, age group, and clinical manifestations in comparison to the epidemiological features of Japanese Encephalitis. To detect the etiology of the acute encephalitis syndrome outbreak. Investigation of outbreak was undertaken by collection of brief clinical history and epidemiological details along with the specimens for viral diagnosis. The serum/CSF samples (patients=208) received from the sentinel hospitals were subjected to IgM capture ELISA and RT-PCR specific for Japanese encephalitis (JE) virus and West Nile virus (WNV). The JE/WN IgM positive samples were further tested by serum neutralization assay for the presence of JE and WNV specific neutralizing antibody. Most of the affected patients were aged above 15 years. No spatial clustering of the disease was noticed. Cases were observed in premonsoon and early monsoon season and in JE non-endemic area of Kerala. A total of 47 patient samples were positive for in-house JE IgM capture ELISA and WNV IgM capture ELISA. Serum neutralization assay result revealed that 32 of 42 (76.19%) sera were positive for WNV neutralization antibodies. WNV was isolated from a clinical specimen. Phylogenetic analysis of WNV envelope gene revealed 99% homology with Russian Lineage 1 WNV. West Nile virus (WNV) etiology was confirmed by virus isolation and detection of virus specific antibody from clinical specimen. Phylogenetic analysis grouped the current strain in lineage I West Nile virus. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhang, Zhengdong; Willson, Richard C.; Fox, George E.
2002-01-01
MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.
Oral Region Homologies in Paleozoic Crinoids and Other Plesiomorphic Pentaradial Echinoderms
Kammer, Thomas W.; Sumrall, Colin D.; Zamora, Samuel; Ausich, William I.; Deline, Bradley
2013-01-01
The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for exploring branching order among stem groups on the echinoderm tree of life. PMID:24244284
Mirante, Maria Clara; Mendes, Cristina; Mayer, Carlos; Vaz Nery, Susana; Brito, Miguel
2017-01-01
Background Rotavirus group A (RVA) is considered the leading cause of pediatric diarrhea, responsible for the high burden of diarrheal diseases in sub-Saharan Africa. Despite recent studies, the existent data are scarce for some African countries like Angola, a country with one of the highest RVA-related death estimates. The aim of this study was to determine the RVA detection rate and circulating genotypes in children less than five years of age with acute gastroenteritis attended at the Bengo General Hospital in Caxito, Bengo province, Angola, before vaccine introduction. Methods Between September 2012 and December 2013, 342 fecal specimens were collected from children enrolled. Positive samples for RVA by immunochromatographic rapid test were G and P-typed by hemi-nested type-specific multiplex PCR, and subgrouped for the VP6 gene. VP4 and VP7 genes from a subset of samples were sequenced for phylogenetic analysis. Results During the study period, a high RVA detection rate was registered (25.1%, 86/342). The age group most affected by RVA infection includes children under 6 months of age (p<0.01). Vomiting was highly associated with RVA infection (72.1%; p<0.001). From the 86 RVA-positive samples, 72 (83.7%) were genotyped. The most prevalent genotype was G1P[8] (34/72; 47.2%), followed by the uncommon G1P[6] (21/72; 29.2%), and G2P[4] (9/72; 12.5%). Only two G-types were found: G1 (60/72; 83.3%) and G2 (11/72; 15.3%). Among the P-genotypes, P[8] was the most prevalent (34/72; 47.2%), followed by P[6] (22/72; 30.6%) and P[4] (9/72; 12.5%). In the phylogenetic trees, the identified G and P-types clustered tightly together and with reference sequences in specific monophyletic groups, with highly significant bootstrap values (≥92%). Conclusion This pre-vaccination study revealed, for the first time for Bengo province (Angola), the RVA genotype profile, including phylogenetic relationships, and a high RVA detection rate, supporting the immediate introduction of a RVA vaccine in the national immunization programme. PMID:28422995
Gasparinho, Carolina; Piedade, João; Mirante, Maria Clara; Mendes, Cristina; Mayer, Carlos; Vaz Nery, Susana; Brito, Miguel; Istrate, Claudia
2017-01-01
Rotavirus group A (RVA) is considered the leading cause of pediatric diarrhea, responsible for the high burden of diarrheal diseases in sub-Saharan Africa. Despite recent studies, the existent data are scarce for some African countries like Angola, a country with one of the highest RVA-related death estimates. The aim of this study was to determine the RVA detection rate and circulating genotypes in children less than five years of age with acute gastroenteritis attended at the Bengo General Hospital in Caxito, Bengo province, Angola, before vaccine introduction. Between September 2012 and December 2013, 342 fecal specimens were collected from children enrolled. Positive samples for RVA by immunochromatographic rapid test were G and P-typed by hemi-nested type-specific multiplex PCR, and subgrouped for the VP6 gene. VP4 and VP7 genes from a subset of samples were sequenced for phylogenetic analysis. During the study period, a high RVA detection rate was registered (25.1%, 86/342). The age group most affected by RVA infection includes children under 6 months of age (p<0.01). Vomiting was highly associated with RVA infection (72.1%; p<0.001). From the 86 RVA-positive samples, 72 (83.7%) were genotyped. The most prevalent genotype was G1P[8] (34/72; 47.2%), followed by the uncommon G1P[6] (21/72; 29.2%), and G2P[4] (9/72; 12.5%). Only two G-types were found: G1 (60/72; 83.3%) and G2 (11/72; 15.3%). Among the P-genotypes, P[8] was the most prevalent (34/72; 47.2%), followed by P[6] (22/72; 30.6%) and P[4] (9/72; 12.5%). In the phylogenetic trees, the identified G and P-types clustered tightly together and with reference sequences in specific monophyletic groups, with highly significant bootstrap values (≥92%). This pre-vaccination study revealed, for the first time for Bengo province (Angola), the RVA genotype profile, including phylogenetic relationships, and a high RVA detection rate, supporting the immediate introduction of a RVA vaccine in the national immunization programme.
Molecular phylogenetic study in genus Hydra.
Kawaida, Hitomi; Shimizu, Hiroshi; Fujisawa, Toshitaka; Tachida, Hidenori; Kobayakawa, Yoshitaka
2010-11-15
Among 8000-9000 species of Cnidaria, only several dozens of species of Hydrozoa have been found in the fresh water. Hydra is such a fresh water polyp and has been used as a good material for research in developmental biology, regeneration and pattern formation. Although the genus Hydra has only a few ten species, its distribution is cosmopolitan. The phylogenetic relationship between hydra species is fascinating from the aspect of evolutionary biology and biogeography. However, only a few molecular phylogenetic studies have been reported on hydra. Therefore, we conducted a molecular phylogenetic study of the genus Hydra based on mitochondrial and nuclear nucleotide sequences using a hydra collection that has been kept in the National Institute of Genetics (NIG) of Japan. The results support the idea that four species groups comprise the genus Hydra. Within the viridissima group (green hydra) and braueri group, genetic distances between strains were relatively large. In contrast, genetic distances between strains among the vulgaris and oligactis groups were small irrespective of their geographic distribution. The vulgaris group strains were classified at least (as far as our investigated samples) into three sub-groups, vulgaris sub-group, carnea sub-group, and H. sp. (K5 and K6) sub-group. All of the vulgaris sub-group and H. sp. (K5 and K6) sub-group strains were collected in Eurasia. The carnea sub-group strains in NIG collection were all collected in North America. A few newly collected samples in Japan, however, suggested belonging to the carnea sub-group according to the molecular phylogenic analysis. This suggests a trans-Pacific distribution of the carnea sub-group hydra. Copyright © 2010 Elsevier B.V. All rights reserved.
Pagaling, Eulyn; Gatica, Joao; Yang, Kun; Cytryn, Eddie; Yan, Tao
2016-09-01
The aim of this study was to determine the phylogenetic diversity of ceftriaxone resistance and the presence of known extended-spectrum β-lactamase (ESBL) genes in culturable soil resistomes. Libraries of soil bacterial isolates resistant to ceftriaxone were established from six physicochemically diverse soils collected in Hawaii (USA) and Israel. The phylogenetic affiliation, ceftriaxone and multidrug resistance levels, and presence of known ESBL genes of the isolates were determined. The soil bacterial isolates were phylogenetically grouped with the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Ceftriaxone minimum inhibitory concentrations (MICs) largely followed the phylogeny structure and higher levels of ceftriaxone resistance corresponded to higher multidrug resistance. Three distinct blaTEM variants were detected in soil bacterial isolates belonging to nine different genera. In conclusion, the culturable soil resistomes for ceftriaxone exhibited high phylogenetic diversity and multidrug resistance. blaTEM was the only known ESBL detected in the soil resistomes, and its distribution in different phylogenetic groups suggests its ubiquitous presence and/or possible horizontal gene transfer within the soil microbiomes. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction
NASA Technical Reports Server (NTRS)
Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.
1989-01-01
Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.
Microbial communities of three sympatric Australian stingless bee species.
Leonhardt, Sara D; Kaltenpoth, Martin
2014-01-01
Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing--among other taxa--host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4-5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.
Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities
Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo
2012-01-01
Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm. PMID:23300853
Phylogenetic diversity and biodiversity indices on phylogenetic networks.
Wicke, Kristina; Fischer, Mareike
2018-04-01
In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.
Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection
Scheutz, Flemming; Andersen, Rebecca L.; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S.; Krogfelt, Karen A.; Nataro, James P.; Johnson, James R.
2012-01-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC “stacked brick” adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation. PMID:22972830
Enteroaggregative Escherichia coli O78:H10, the cause of an outbreak of urinary tract infection.
Olesen, Bente; Scheutz, Flemming; Andersen, Rebecca L; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S; Krogfelt, Karen A; Nataro, James P; Johnson, James R
2012-11-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC "stacked brick" adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation.
The chordate proteome history database.
Levasseur, Anthony; Paganini, Julien; Dainat, Jacques; Thompson, Julie D; Poch, Olivier; Pontarotti, Pierre; Gouret, Philippe
2012-01-01
The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each individual domain. Novel approaches were developed to identify orthologs/paralogs, and predict gene duplication/gain/loss events and the occurrence of new protein architectures (domain gains, losses and shuffling). These important genetic events were localized on the phylogenetic trees and on the genomic sequence. Secondly, the phylogenetic trees were enhanced by the creation of phylogroups, whereby groups of orthologous sequences created using OrthoMCL were corrected based on the phylogenetic trees; gene family size and gene gain/loss in a given lineage could be deduced from the phylogroups. For each ortholog group obtained from the phylogenetic or the phylogroup analysis, functional information and expression data can be retrieved. Database searches can be performed easily using biological objects: protein identifier, keyword or domain, but can also be based on events, eg, domain exchange events can be retrieved. To our knowledge, this is the first database that links group clustering, phylogeny and automatic functional searches along with the detection of important events occurring during genome evolution, such as the appearance of a new domain architecture.
2010-01-01
Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers. PMID:20937141
Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans.
Torres, Carolina; Barrios, Melina Elizabeth; Cammarata, Robertina Viviana; Victoria, Matías; Fernandez-Cassi, Xavier; Bofill-Mas, Silvia; Colina, Rodney; Blanco Fernández, María Dolores; Mbayed, Viviana Andrea
2018-04-20
New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10 -8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America. Copyright © 2018 Elsevier Inc. All rights reserved.
Dornburg, Alex; Friedman, Matt; Near, Thomas J
2015-08-01
Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods. Copyright © 2015 Elsevier Inc. All rights reserved.
Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota.
Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile
2016-01-01
Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.
Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota
Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile
2016-01-01
Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota. PMID:26140533
Longnecker, K.; Sherr, B. F.; Sherr, E. B.
2005-01-01
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea. PMID:16332746
Longnecker, K; Sherr, B F; Sherr, E B
2005-12-01
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.
Liu, Shi-Huo; Li, Hong-Fei; Yang, Yang; Yang, Rui-Lin; Yang, Wen-Jia; Jiang, Hong-Bo; Dou, Wei; Smagghe, Guy; Wang, Jin-Jun
2018-05-01
Chitinases (Chts) and chitin deacetylases (CDAs) are important enzymes required for chitin metabolism in insects. In this study, 12 Cht-related genes (including seven Cht genes and five imaginal disc growth factor genes) and 6 CDA genes (encoding seven proteins) were identified in Bactrocera dorsalis using genome-wide searching and transcript profiling. Based on the conserved sequences and phylogenetic relationships, 12 Cht-related proteins were clustered into eight groups (group I-V and VII-IX). Further domain architecture analysis showed that all contained at least one chitinase catalytic domain, however, only four (BdCht5, BdCht7, BdCht8 and BdCht10) possessed chitin-binding domains. The subsequent phylogenetic analysis revealed that seven CDAs were clustered into five groups (group I-V), and all had one chitin deacetylase catalytic domain. However, only six exhibited chitin-binding domains. Finally, the development- and tissue-specific expression profiling showed that transcript levels of the 12 Cht-related genes and 6 CDA genes varied considerably among eggs, larvae, pupae and adults, as well as among different tissues of larvae and adults. Our findings illustrate the structural differences and expression patterns of Cht and CDA genes in B. dorsalis, and provide important information for the development of new pest control strategies based on these vital enzymes. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettengill, Emily A.; Pettengill, James B.; Binet, Rachel
As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogenymore » are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.« less
Pettengill, Emily A.; Pettengill, James B.; Binet, Rachel
2016-01-19
As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogenymore » are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.« less
Identification of the chitinase genes from the diamondback moth, Plutella xylostella.
Liao, Z H; Kuo, T C; Kao, C H; Chou, T M; Kao, Y H; Huang, R N
2016-12-01
Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.
Nikaido, Masato; Rooney, Alejandro P.; Okada, Norihiro
1999-01-01
Insertion analysis of short and long interspersed elements is a powerful method for phylogenetic inference. In a previous study of short interspersed element data, it was found that cetaceans, hippopotamuses, and ruminants form a monophyletic group. To further resolve the relationships among these taxa, we now have isolated and characterized 10 additional loci. A phylogenetic analysis of these data was able to resolve relationships among the major cetartiodactyl groups, thereby shedding light on the origin of whales. The results indicated (i) that cetaceans are deeply nested within Artiodactyla, (ii) that cetaceans and hippopotamuses form a monophyletic group, (iii) that pigs and peccaries form a monophyletic group to the exclusion of hippopotamuses, (iv) that chevrotains diverged first among ruminants, and (v) that camels diverged first among cetartiodactyls. These findings lead us to conclude that cetaceans evolved from an immediate artiodactyl, not mesonychian, ancestor. PMID:10468596
Pan-genome and phylogeny of Bacillus cereus sensu lato.
Bazinet, Adam L
2017-08-02
Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.
Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.
2017-02-01
Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.
Open Reading Frame Phylogenetic Analysis on the Cloud
2013-01-01
Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843
Mercadeo Virus: A Novel Mosquito-Specific Flavivirus from Panama
Carrera, Jean-Paul; Guzman, Hilda; Beltrán, Davis; Díaz, Yamilka; López-Vergès, Sandra; Torres-Cosme, Rolando; Popov, Vsevolod; Widen, Steven G.; Wood, Thomas G.; Weaver, Scott C.; Cáceres-Carrera, Lorenzo; Vasilakis, Nikos; Tesh, Robert B.
2015-01-01
Viruses in the genus Flavivirus (family Flaviviridae) include many arthropod-borne viruses of public health and veterinary importance. However, during the past two decades an explosion of novel insect-specific flaviviruses (ISFs), some closely related to vertebrate pathogens, have been discovered. Although many flavivirus pathogens of vertebrates have been isolated from naturally infected mosquitoes in Panama, ISFs have not previously been reported from the country. This report describes the isolation and characterization of a novel ISF, tentatively named Mercadeo virus (MECDV), obtained from Culex spp. mosquitoes collected in Panama. Two MECDV isolates were sequenced and cluster phylogenetically with cell-fusing agent virus (CFAV) and Nakiwogo virus (NAKV) to form a distinct lineage within the insect-specific group of flaviviruses. PMID:26304915
The Independent Evolution Method Is Not a Viable Phylogenetic Comparative Method
2015-01-01
Phylogenetic comparative methods (PCMs) use data on species traits and phylogenetic relationships to shed light on evolutionary questions. Recently, Smaers and Vinicius suggested a new PCM, Independent Evolution (IE), which purportedly employs a novel model of evolution based on Felsenstein’s Adaptive Peak Model. The authors found that IE improves upon previous PCMs by producing more accurate estimates of ancestral states, as well as separate estimates of evolutionary rates for each branch of a phylogenetic tree. Here, we document substantial theoretical and computational issues with IE. When data are simulated under a simple Brownian motion model of evolution, IE produces severely biased estimates of ancestral states and changes along individual branches. We show that these branch-specific changes are essentially ancestor-descendant or “directional” contrasts, and draw parallels between IE and previous PCMs such as “minimum evolution”. Additionally, while comparisons of branch-specific changes between variables have been interpreted as reflecting the relative strength of selection on those traits, we demonstrate through simulations that regressing IE estimated branch-specific changes against one another gives a biased estimate of the scaling relationship between these variables, and provides no advantages or insights beyond established PCMs such as phylogenetically independent contrasts. In light of our findings, we discuss the results of previous papers that employed IE. We conclude that Independent Evolution is not a viable PCM, and should not be used in comparative analyses. PMID:26683838
Belmar, Lucy; Molina, Verónica; Ulloa, Osvaldo
2011-11-01
We assessed the abundance and molecular phylogeny of archaeoplankton in the oxygen minimum zone (OMZ) of the eastern tropical South Pacific, using specific-probe hybridization and phylogenetic analysis of the SSU-rRNA gene. Euryarchaea from Marine Group-II (MG-II) were most abundant in the surface oxic layer, representing 4.0±2.0% of the total picoplankton, while crenarchaea from Group I.1a (G-I.1a) peaked at the oxyclines, with a relative abundance of 8.1±4.3% (upper oxycline). In most of the stations, the abundance of both the groups decreased at the core of the OMZ, where a secondary maximum in cell density is commonly observed. The majority of the phylotypes affiliated with one of three groups: MG-II, euryarchaeal Marine Group-III (MG-III) and G-I.1a (75.9%, 12.8% and 10.3%, respectively). While MG-II phylotypes were found throughout the water column and G-I.1a ones were predominantly found within the oxyclines, MG-III phylotypes came almost exclusively from the OMZ core. Higher archaeal richness was found within the OMZ, with some of the exclusive lineages grouping with sequences from the deep ocean and hydrothermal vents. Moreover, G-I.1a sequences from the OMZ grouped into a different subcluster from the aerobic ammonium-oxidizer Nitrosopumilus maritimus. Thus, the community structure of archaeoplankton in OMZs is rich and distinct, with G-I.1a members particularly prominent at the oxyclines. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Itoh, Masumi; Nacher, Jose C; Kuma, Kei-ichi; Goto, Susumu; Kanehisa, Minoru
2007-01-01
In higher multicellular eukaryotes, complex protein domain combinations contribute to various cellular functions such as regulation of intercellular or intracellular signaling and interactions. To elucidate the characteristics and evolutionary mechanisms that underlie such domain combinations, it is essential to examine the different types of domains and their combinations among different groups of eukaryotes. We observed a large number of group-specific domain combinations in animals, especially in vertebrates. Examples include animal-specific combinations in tyrosine phosphorylation systems and vertebrate-specific combinations in complement and coagulation cascades. These systems apparently underwent extensive evolution in the ancestors of these groups. In extant animals, especially in vertebrates, animal-specific domains have greater connectivity than do other domains on average, and contribute to the varying number of combinations in each animal subgroup. In other groups, the connectivities of older domains were greater on average. To observe the global behavior of domain combinations during evolution, we traced the changes in domain combinations among animals and fungi in a network analysis. Our results indicate that there is a correlation between the differences in domain combinations among different phylogenetic groups and different global behaviors. Rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no such trends were observed in other clades of eukaryotes. We therefore suggest that the strategy for achieving complex multicellular systems in animals differs from that of other eukaryotes.
A Consistent Phylogenetic Backbone for the Fungi
Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt
2012-01-01
The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356
Søchting, Ulrik; Lutzoni, François
2003-11-01
A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results.
Shin, Junha; Lee, Insuk
2015-01-01
Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co-inheritance analysis within the domains of life will greatly potentiate the use of the expected onslaught of sequenced genomes in the study of molecular pathways in higher eukaryotes. PMID:26394049
Yu, Junhyeok; Lim, Jeong-A; Kwak, Su-Jin; Park, Jong-Hyun; Chang, Hyun-Joo
2018-05-01
Vibrio parahaemolyticus, a foodborne pathogen, has become resistant to antibiotics. Therefore, alternative bio-control agents such bacteriophage are urgently needed for its control. Six novel bacteriophages specific to V. parahaemolyticus (vB_VpaP_KF1~2, vB_VpaS_KF3~6) were characterized at the molecular level in this study. Genomic similarity analysis revealed that these six bacteriophages could be divided into two groups with different genomic features, phylogenetic grouping, and morphologies. Two groups of bacteriophages had their own genes with different mechanisms for infection, assembly, and metabolism. Our results could be used as a future reference to study phage genomics or apply phages in future bio-control studies.
Chalmet, Kristen; Staelens, Delfien; Blot, Stijn; Dinakis, Sylvie; Pelgrom, Jolanda; Plum, Jean; Vogelaers, Dirk; Vandekerckhove, Linos; Verhofstede, Chris
2010-09-07
The number of HIV-1 infected individuals in the Western world continues to rise. More in-depth understanding of regional HIV-1 epidemics is necessary for the optimal design and adequate use of future prevention strategies. The use of a combination of phylogenetic analysis of HIV sequences, with data on patients' demographics, infection route, clinical information and laboratory results, will allow a better characterization of individuals responsible for local transmission. Baseline HIV-1 pol sequences, obtained through routine drug-resistance testing, from 506 patients, newly diagnosed between 2001 and 2009, were used to construct phylogenetic trees and identify transmission-clusters. Patients' demographics, laboratory and clinical data, were retrieved anonymously. Statistical analysis was performed to identify subtype-specific and transmission-cluster-specific characteristics. Multivariate analysis showed significant differences between the 59.7% of individuals with subtype B infection and the 40.3% non-B infected individuals, with regard to route of transmission, origin, infection with Chlamydia (p = 0.01) and infection with Hepatitis C virus (p = 0.017). More and larger transmission-clusters were identified among the subtype B infections (p < 0.001). Overall, in multivariate analysis, clustering was significantly associated with Caucasian origin, infection through homosexual contact and younger age (all p < 0.001). Bivariate analysis additionally showed a correlation between clustering and syphilis (p < 0.001), higher CD4 counts (p = 0.002), Chlamydia infection (p = 0.013) and primary HIV (p = 0.017). Combination of phylogenetics with demographic information, laboratory and clinical data, revealed that HIV-1 subtype B infected Caucasian men-who-have-sex-with-men with high prevalence of sexually transmitted diseases, account for the majority of local HIV-transmissions. This finding elucidates observed epidemiological trends through molecular analysis, and justifies sustained focus in prevention on this high risk group.
Jaglarz, Mariusz K; Kubrakiewicz, Janusz; Bilinski, Szczepan M
2014-07-01
Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poff, N.; Vieira, N. K.; Simmons, M. P.; Olden, J. D.; Kondratieff, B. C.; Finn, D. S.
2005-05-01
The use of species traits as indicators of environmental disturbance is being considered for biomonitoring programs globally. As such, methods to select relevant and informative traits for inclusion in biometrics need to be developed. In this research, we identified 20 traits of aquatic insects within six trait groups: morphology, mobility, life-history strategy, thermal tolerance, feeding guild and ecology (e.g., habitat preference). We constructed phylogenetic trees for 1) all lotic insect species of North America and 2) all Ephemeroptera, Plecoptera and Trichoptera species based on morphology- and molecular-based analyses and classifications. We then measured variability (i.e., plasticity) of the 20 traits and six trait groups across the two phylogenetic trees. Traits with higher degrees of plasticity indicated traits that were less phylogenetically constrained, and were considered informative for biomonitoring purposes. Thermal tolerance, rheophily, body size at maturity and feeding guild showed the highest plasticity across both phylogenetic trees. Two mobility traits, occurrence in drift and adult dispersal distance, showed moderate plasticity. By contrast, adult exiting ability, degree of attachment, adult lifespan and body shape showed low variability and were thus less informative. Plastic species traits that are less phylogenetically constrained may be most useful in detecting community change along environmental gradients.
Anchored phylogenomics illuminates the skipper butterfly tree of life.
Toussaint, Emmanuel F A; Breinholt, Jesse W; Earl, Chandra; Warren, Andrew D; Brower, Andrew V Z; Yago, Masaya; Dexter, Kelly M; Espeland, Marianne; Pierce, Naomi E; Lohman, David J; Kawahara, Akito Y
2018-06-19
Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.
Navidinia, Masoumeh; Peerayeh, Shahin Najar; Fallah, Fatemeh; Bakhshi, Bita; Sajadinia, Raheleh Sadat
2014-01-01
The aim of this study was to investigate the phylogenetic background and to assess hlyD (involved in the secretion of haemolysin A) and intI1 (encoding a class 1 integrase) in Escherichia coli isolates derived from urinary and fecal specimens. A total of 200 E. coli isolates was collected from patients presenting with urinary tract infection (UTI) during September 2009 to September 2010 and screened for hlyD and intI1 genes by polymerase chain reaction (PCR). Phylogenetic analysis showed that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D) and that uropathogenic E. coli (UPEC) isolates mainly belong to groups B2 (54%) and D (34%) whereas group A (44%) and D (26%) are predominant among commensal E. coli isolates. In this study, hlyD was present in 26% of UPEC and 2% of commensal E. coli isolates. However, hemolytic activity was detected for 42% of UPEC and 6% of commensal E. coli isolates (p < 0.05). intI1 gene was more frequently expressed in UPEC (24%) in comparison with commensal E. coli isolates (12%). Resistance to aztreonam, co-trimoxazole and cefpodoxime were frequently found among UPEC isolates whereas commensal E. coli isolates were commonly resistant to co-trimoxazole, nalidixic acid and cefotaxime. Concluding, a considerable difference between UPEC and commensal E. coli isolates was observed regarding their phylogenetic groups, presence of class 1 integron and hlyD gene, hemolysin activity and resistance pattern. The detection of class 1 integrons and hlyD gene was higher among UPEC compared with commensal E. coli isolates. These findings may contribute for a better understanding of the factors involved in the pathogenesis of UPEC.
Phylogenetic comparative methods on phylogenetic networks with reticulations.
Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile
2018-04-25
The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.
Belzung, Catherine; Philippot, Pierre
2007-01-01
A phylogenetic approach to anxiety is proposed. The different facets of human anxiety and their presence at different levels of the phylum are examined. All organisms, including unicellular such as protozoan, can display a specific reaction to danger. The mechanisms enabling the appraisal of harmful stimuli are fully present in insects. In higher invertebrates, fear is associated with a specific physiological response. In mammals, anxiety is accompanied by specific cognitive responses. The expression of emotions diversifies in higher vertebrates, only primates displaying facial expressions. Finally, autonoetic consciousness, a feature essential for human anxiety, appears only in great apes. This evolutive feature parallels the progress in the complexity of the logistic systems supporting it (e.g., the vegetative and central nervous systems). The ability to assess one's coping potential, the diversification of the anxiety responses, and autonoetic consciousness seem relevant markers in a phylogenetic perspective. PMID:17641735
Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M
2005-07-01
Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.
Phylogenetic relationships among Maloideae species
USDA-ARS?s Scientific Manuscript database
The Maloideae is a highly diverse sub-family of the Rosaceae containing several agronomically important species (Malus sp. and Pyrus sp.) and their wild relatives. Previous phylogenetic work within the group has revealed extensive intergeneric hybridization and polyploidization. In order to develop...
Phylogenetic Evidence for the Existence of Multiple Strains of Rickettsia parkeri in the New World.
Nieri-Bastos, Fernanda A; Marcili, Arlei; De Sousa, Rita; Paddock, Christopher D; Labruna, Marcelo B
2018-04-15
The bacterium Rickettsia parkeri has been reported to infect ticks of the " Amblyomma maculatum species complex" in the New World, where it causes spotted fever illness in humans. In South America, three additional rickettsial strains, namely, Atlantic rainforest, NOD, and Parvitarsum, have been isolated from the ticks Amblyomma ovale , Amblyomma nodosum , and Amblyomma parvitarsum , respectively. These three strains are phylogenetically closely related to R. parkeri , Rickettsia africae , and Rickettsia sibirica Herein, we performed a robust phylogenetic analysis encompassing 5 genes ( gltA , ompA , virB4 , dnaA , and dnaK ) and 3 intergenic spacers ( mppE-pur , rrl-rrf -ITS, and rpmE -tRNA fMet ) from 41 rickettsial isolates, including different isolates of R. parkeri , R. africae , R. sibirica , Rickettsia conorii , and strains Atlantic rainforest, NOD, and Parvitarsum. In our phylogenetic analyses, all New World isolates grouped in a major clade distinct from the Old World Rickettsia species ( R. conorii , R. sibirica , and R. africae ). This New World clade was subdivided into the following 4 clades: the R. parkeri sensu stricto clade, comprising the type strain Maculatum 20 and all other isolates of R. parkeri from North and South America, associated with ticks of the A. maculatum species complex; the strain NOD clade, comprising two South American isolates from A. nodosum ticks; the Parvitarsum clade, comprising two South American isolates from A. parvitarsum ticks; and the strain Atlantic rainforest clade, comprising six South American isolates from the A. ovale species complex ( A. ovale or Amblyomma aureolatum ). Under such evidences, we propose that strains Atlantic rainforest, NOD, and Parvitarsum are South American strains of R. parkeri IMPORTANCE Since the description of Rickettsia parkeri infecting ticks of the " Amblyomma maculatum species complex" and humans in the New World, three novel phylogenetic close-related rickettsial isolates were reported in South America. Herein, we provide genetic evidence that these novel isolates, namely, strains Atlantic rainforest, NOD, and Parvitarsum, are South American strains of R. parkeri. Interestingly, each of these R. parkeri strains seems to be primarily associated with a tick species group, namely, R. parkeri sensu stricto with the " Amblyomma maculatum species group," R. parkeri strain NOD with Amblyomma nodosum , R. parkeri strain Parvitarsum with Amblyomma parvitarsum , and R. parkeri strain Atlantic rainforest with the " Amblyomma ovale species group." Such rickettsial strain-tick species specificity suggests a coevolution of each tick-strain association. Finally, because R. parkeri sensu stricto and R. parkeri strain Atlantic rainforest are human pathogens, the potential of R. parkeri strains NOD and Parvitarsum to be human pathogens cannot be discarded. Copyright © 2018 American Society for Microbiology.
Phylogenetic Analysis of Nuclear-Encoded RNA Maturases
Malik, Sunita; Upadhyaya, KC; Khurana, SM Paul
2017-01-01
Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondrial group II introns. matR, nMAT1, nMAT2, nMAT3, and nMAT4 proteins have been shown to be required for efficient splicing of several group II introns in Arabidopsis thaliana. Nuclear maturases (nMATs) are necessary for splicing of mitochondrial genes, leading to normal oxidative phosphorylation. Sequence analysis through phylogenetic tree (including bootstrapping) revealed high homology with maturase sequences of A thaliana and other plants. This study shows the phylogenetic relationship of nMAT proteins between A thaliana and other nonredundant plant species taken from BLASTP analysis. PMID:28607538
Vanhommerig, Joost W; Bezemer, Daniela; Molenkamp, Richard; Van Sighem, Ard I; Smit, Colette; Arends, Joop E; Lauw, Fanny N; Brinkman, Kees; Rijnders, Bart J; Newsum, Astrid M; Bruisten, Sylvia M; Prins, Maria; Van Der Meer, Jan T; Van De Laar, Thijs J; Schinkel, Janke
2017-09-24
MSM are at increased risk for infection with HIV-1 and hepatitis C virus (HCV). Is HIV/HCV coinfection confined to specific HIV transmission networks? A HIV phylogenetic tree was constructed for 5038 HIV-1 subtype B polymerase (pol) sequences obtained from MSM in the AIDS therapy evaluation in the Netherlands cohort. We investigated the existence of HIV clusters with increased HCV prevalence, the HIV phylogenetic density (i.e. the number of potential HIV transmission partners) of HIV/HCV-coinfected MSM compared with HIV-infected MSM without HCV, and the overlap in HIV and HCV phylogenies using HCV nonstructural protein 5B sequences from 183 HIV-infected MSM with acute HCV infection. Five hundred and sixty-three of 5038 (11.2%) HIV-infected MSM tested HCV positive. Phylogenetic analysis revealed 93 large HIV clusters (≥10 MSM), 370 small HIV clusters (2-9 MSM), and 867 singletons with a median HCV prevalence of 11.5, 11.6, and 9.3%, respectively. We identified six large HIV clusters with elevated HCV prevalence (range 23.5-46.2%). Median HIV phylogenetic densities for MSM with HCV (3, interquartile range 1-7) and without HCV (3, interquartile range 1-8) were similar. HCV phylogeny showed 12 MSM-specific HCV clusters (clustersize: 2-39 HCV sequences); 12.7% of HCV infections were part of the same HIV and HCV cluster. We observed few HIV clusters with elevated HCV prevalence, no increase in the HIV phylogenetic density of HIV/HCV-coinfected MSM compared to HIV-infected MSM without HCV, and limited overlap between HIV and HCV phylogenies among HIV/HCV-coinfected MSM. Our data do not support the existence of MSM-specific sexual networks that fuel both the HIV and HCV epidemic.
NASA Astrophysics Data System (ADS)
Apostel, C.; Kuzyakov, Y.; Dippold, M. A.
2016-12-01
Soils are the largest terrestrial C sinks and microorganisms are the most important drivers of organic matter (OM) dynamics in soils: C allocation to ana- or catabolism in microbial cells is the decisive step, whether C gets oxidized to CO2 or whether it is allocated to microbial biomass, which, after cell death can be stabilized in soils. The metabolic parameter describing the ratio between the two fluxes is the carbon use efficiency (CUE), which can be assessed by position-specific labeling followed by metabolic flux modelling. However, to disentangle the single microbial groups' contribution to the bulk soil CUE, a tracing of individual groups metabolism is necessary. We assessed short-term (3 and 10 days) transformations of monosaccharides by adding position-specifically 13C labeled glucose to soil in a field experiment. Incorporation of 13C in the microbial PLFAs enabled us to distinguish individual microbial groups metabolic fluxes and compare their C-utilization efficiency using a quantitative C-flux model. The position-specific pattern in PLFAs revealed two sets of microorganisms: one metabolized glucose mainly by glycolysis and the other mainly by the pentose-phosphate pathway, which results in a higher CUE. Both of those sets included prokaryotic as well as eukaryotic microorganisms. This demonstrates that phylogenetic grouping is not decisive for the metabolic behavior of a microbial group and that the contribution of individual group members to the soil C fluxes cannot be concluded from their phylogeny.
Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling
2012-10-01
To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.
Romanenko, Svetlana A; Volobouev, Vitaly T; Perelman, Polina L; Lebedev, Vladimir S; Serdukova, Natalya A; Trifonov, Vladimir A; Biltueva, Larisa S; Nie, Wenhui; O'Brien, Patricia C M; Bulatova, Nina Sh; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S
2007-01-01
The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.
Botosso, Viviane F; Zanotto, Paolo M de A; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E; Vieira, Sandra E; Stewien, Klaus E; Peret, Teresa C T; Jamal, Leda F; Pardini, Maria I de M C; Pinho, João R R; Massad, Eduardo; Sant'anna, Osvaldo A; Holmes, Eddie C; Durigon, Edison L
2009-01-01
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Genome-wide identification and analysis of the chicken basic helix-loop-helix factors.
Liu, Wu-Yi; Zhao, Chun-Jiang
2010-01-01
Members of the basic helix-loop-helix (bHLH) family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus) genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ''orphans". A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO) enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.
Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K
2016-07-01
Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. © 2016 The Author(s).
Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.
2016-01-01
Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.
Cano, Enio B.; Schuster, Jack C.; Morrone, Juan J.
2018-01-01
Abstract A phylogenetic morphological analysis of the genus Ogyges Kaup, distributed in Nuclear Central America, from Chiapas, Mexico, to northwestern Nicaragua was undertaken. Five species of Proculejus Kaup, distributed north of the Isthmus of Tehuantepec in Mexico, were selected as outgroup. Ogyges was recovered as monophyletic with three species groups: championi, laevissimus, and crassulus. Each species group shows a distinct, generally allopatric distribution. The O. championi species group, with ten species, is distributed in the Maya block, more specifically in the mountainous system north of the Motozintla-Comaltitlán fault in Chiapas, and north of the dry valleys of the Cuilco and Motagua rivers in Guatemala. The two remaining species groups are distributed in the Chortis block. The O. laevissimus species group, including seven species, ranges mostly along the Pacific Volcanic Chain from Guatemala to El Salvador, and from southeastern Honduras to the northwestern area of Nicaragua. The O. crassulus species group, with ten species, is distributed from northeastern Guatemala (Merendón) to northern Honduras. The Isthmus of Tehuantepec in Mexico, the Motagua-Cuilco and Motozintla-Comaltitlán sutures zones in Chiapas and Guatemala, the lowland valleys of Colón and Comalí rivers between Nicaragua and Honduras (or, perhaps, the northern suture of the Siuna Terrane in Nicaragua), the Guayape fault system in Honduras, and the intricate dry valleys of Ulúa-Chamelecón-Olancho in Honduras, are hypothesized to have acted as barriers that affected the geographical distribution of Ogyges, as well as probably other montane organisms. PMID:29674874
Johnson, James R.; O'Bryan, Timothy T.; Kuskowski, Michael; Maslow, Joel N.
2001-01-01
The phylogenetic distributions of multiple putative virulence factors (VFs) and papA (P fimbrial structural subunit) alleles among 182 Escherichia coli blood isolates from patients with diverse-source bacteremia were defined. Phylogenetic correspondence among these strains, the E. coli Reference (ECOR) collection, and other collections of extraintestinal pathogenic E. coli (ExPEC) was assessed. Although among the 182 bacteremia isolates phylogenetic group B2 predominated, exhibited the greatest concentration of individual VFs, and contained the largest number of familiar virulent clones, other phylogenetic groups exhibited greater concentrations of certain VFs than did group B2 and included several additional virulent clones. Certain of the newly detected VF genes, e.g., fyuA (yersiniabactin; 76%) and focG (F1C fimbriae; 25%), were as prevalent or more prevalent than their more familiar traditional counterparts, e.g., iut (aerobactin; 57%) and sfaS (S fimbriae; 14%), thus possibly offering additional useful targets for preventive interventions. Considerable diversity of VF profiles was observed at every level within the phylogenetic tree, including even within individual lineages. This suggested that many different pathways can lead to extraintestinal virulence in E. coli and that the evolution of ExPEC, which involves extensive horizontal transmission of VFs and continuous remodeling of pathogenicity-associated islands, is a highly active, ongoing process. PMID:11500406
Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria
Lonergan, D.J.; Jenter, H.L.; Coates, J.D.; Phillips, E.J.P.; Schmidt, T.M.; Lovley, D.R.
1996-01-01
Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)- reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher- order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch with the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.
Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio
2014-01-01
The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.
Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle
2016-01-01
Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact. PMID:27098088
Pettersson, B; Kodjo, A; Ronaghi, M; Uhlén, M; Tønjum, T
1998-01-01
Thirty-three strains previously classified into 11 species in the bacterial family Moraxellaceae were subjected to phylogenetic analysis based on 16S rRNA sequences. The family Moraxellaceae formed a distinct clade consisting of four phylogenetic groups as judged from branch lengths, bootstrap values and signature nucleotides. Group I contained the classical moraxellae and strains of the coccal moraxellae, previously known as Branhamella, with 16S rRNA similarity of > or = 95%. A further division of group I into five tentative clusters is discussed. Group II consisted of two strains representing Moraxella atlantae and Moraxella osloensis. These strains were only distantly related to each other (93.4%) and also to the other members of the Moraxellaceae (< or = 93%). Therefore, reasons for reclassification of these species into separate and new genera are discussed. Group III harboured strains of the genus Psychrobacter and strain 752/52 of [Moraxella] phenylpyruvica. This strain of [M.] phenylpyruvica formed an early branch from the group III line of descent. Interestingly, a distant relationship was found between Psychrobacter phenylpyruvicus strain ATCC 23333T (formerly classified as [M.] phenylpyruvica) and [M.] phenylpyruvica strain 752/52, exhibiting less than 96% nucleotide similarity between their 16S rRNA sequences. The establishment of a new genus for [M.] phenylpyruvica strain 752/52 is therefore suggested. Group IV contained only two strains of the genus Acinetobacter. Strategies for the development of diagnostic probes and distinctive sequences for 16S rRNA-based species-specific assays within group I are suggested. Although these findings add to the classificatory placements within the Moraxellaceae, analysis of a more comprehensive selection of strains is still needed to obtain a complete classification system within this family.
Peng, Duo; Gu, Xi; Xue, Liang-Jiao; Leebens-Mack, James H.; Tsai, Chung-Jui
2014-01-01
Sucrose transporters (SUTs) are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB), and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2) that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms. PMID:25429293
Meglécz, Emese; Nève, Gabriel; Biffin, Ed; Gardner, Michael G.
2012-01-01
Microsatellites are ubiquitous in Eukaryotic genomes. A more complete understanding of their origin and spread can be gained from a comparison of their distribution within a phylogenetic context. Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groups has been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta) to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species. It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages. PMID:22815847
García-Navas, Vicente; Westerman, Michael
2018-05-28
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
González-Durán, Gustavo A; Targino, Mariane; Rada, Marco; Grant, Taran
2017-03-13
We evaluate the monophyly and phylogenetic relationships of the Pristimantis leptolophus species group and describe its external morphology, osteology, and some myological characteristics. We also compare the P. leptolophus species group to other related species groups. The P. leptolophus group is not monophyletic due to the inclusion of P. acatallelus, formerly believed to be part of the P. devillei group. The revised P. leptolophus group is composed of nine named species and six unnamed species. Based on our results, we recognize a new species group, the P. boulengeri species group, composed of eight species, many of which were previously assigned to the P. lacrimosus species group.
Nielsen, Jeppe Lund; Nguyen, Hien; Meyer, Rikke Louise; Nielsen, Per Halkjær
2012-07-01
Microbiology in wastewater treatment has mainly been focused on problem-causing filamentous bacteria or bacteria directly involved in nitrogen and phosphorus removal, and to a lesser degree on flanking groups, such as hydrolysing and fermenting bacteria. However, these groups constitute important suppliers of readily degradable substrates for the overall processes in the plant. This study aimed to identify glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant (WWTP), and to determine their abundance in similar WWTPs. Glucose-fermenting micro-organisms were identified by an in situ approach using RNA-based stable isotope probing. Activated sludge was incubated anaerobically with (13)C(6)-labelled glucose, and (13)C-enriched rRNA was subsequently reverse-transcribed and used to construct a 16S rRNA gene clone library. Phylogenetic analysis of the library revealed the presence of two major phylogenetic groups of gram-positive bacteria affiliating with the genera Tetrasphaera, Propionicimonas (Actinobacteria), and Lactococcus and Streptococcus (Firmicutes). Specific oligonucleotide probes were designed for fluorescence in situ hybridization (FISH) to specifically target the glucose-fermenting bacteria identified in this study. The combination of FISH with microautoradiography confirmed that Tetrasphaera, Propionicimonas and Streptococcus were the dominant glucose fermenters. The probe-defined fermenters were quantified in 10 full-scale EBPR plants and averaged 39 % of the total biovolume. Tetrasphaera and Propionicimonas were the most abundant glucose fermenters (average 33 and 4 %, respectively), while Streptococcus and Lactococcus were present only in some WWTPs (average 1 and 0.4 %, respectively). Thus the population of actively metabolizing glucose fermenters seems to occupy a relatively large component of the total biovolume.
Zhao, Lixiang; Gao, Song; Huan, Haixia; Xu, Xiaojing; Zhu, Xiaoping; Yang, Weixia; Gao, Qingqing; Liu, Xiufan
2009-05-01
Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) establish infections in extraintestinal habitats of different hosts. As the diversity, epidemiological sources and evolutionary origins of extraintestinal pathogenic E. coli (ExPEC) are so far only partially defined, in the present study,100 APEC isolates and 202 UPEC isolates were compared by their content of virulence genes and phylogenetic groups. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. In a chicken challenge model, both UPEC U17 and APEC E058 had similar LD(50), demonstrating that UPEC U17 had the potential to cause significant disease in poultry. To gain further information about the similarities between UPEC and APEC, the in vivo expression of 152 specific genes of UPEC U17 and APEC E058 in both a murine urinary tract infection (UTI) model and a chicken challenge model was compared with that of these strains grown statically to exponential phase in rich medium. It was found that in the same model (murine UTI or chicken challenge), various genes of UPEC U17 and APEC E058 showed a similar tendency of expression. Several iron-related genes were upregulated in the UTI model and/or chicken challenge model, indicating that iron acquisition is important for E. coli to survive in blood or the urinary tract. Based on these results, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. Further, this study compared the transcriptional profile of virulence genes among APEC and UPEC in vivo.
Puozaa, Doris K.; Dakora, Felix D.
2017-01-01
Flavonoids secreted by legumes play a major role as signal molecules for attracting compatible rhizobia. The aim of this study was to assess and understand the diversity of microsymbionts nodulating Bambara groundnut (Vigna subterranea L. Verdc.) landraces of different seedcoat colours using restriction fragment length polymorphism and phylogenetic analysis. Seedcoat pigmentation of landraces had effect on the diversity of microsymbionts of Bambara groundnut. Even when planted together in one hole, nodulating bradyrhizobia clustered differently. For example, 16S rDNA-RFLP typing of rhizobial samples TUTVSBLM.I, TUTVSCRM.I and TUTVSRDM.I originating respectively from Black, Cream and Red landraces that were co-planted in the same hole at Manga in the Sudano-sahelian savanna, as well as TUTVSCRK.I and TUTVSRDK.I respectively from Cream and Red landraces co-planted at Kpalisogu in the Guinea savanna, revealed different 16S rDNA- RFLP types. Phylogenetic analysis of 16S rDNA, glnII, recA and atpD sequences showed that Vigna subterranea was nodulated specifically by a diverse group of Bradyrhizobium species (e.g. Bradyrhizobium vignae, and a novel group of Bradyrhizobium spp.) in soils from Ghana and South Africa. The recA gene phylogeny showed incongruency with the other housekeeping genes, indicating the possibility of lateral gene transfer and/or recombination events. The grouping of isolates according to symbiotic gene (nifH and nodD) phylogenies revealed inter- and intra-specific symbiotic plasmid transfer and different evolutionary history. The results also showed that a cropping history and physico-chemical environment of soils increased bradyrhizobial diversity in Ghana and South Africa. PMID:28945783
Algal MIPs, high diversity and conserved motifs.
Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban
2011-04-21
Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
Mosquito, Susan; Pons, Maria J.; Riveros, Maribel; Ochoa, Theresa J.
2015-01-01
Conventionally, in Escherichia coli, phylogenetic groups A and B1 are associated with commensal strains while B2 and D are associated with extraintestinal strains. The aim of this study was to evaluate diarrheagenic (DEC) and commensal E. coli phylogeny and its association with antibiotic resistance and clinical characteristics of the diarrheal episode. Phylogenetic groups and antibiotic resistance of 369 E. coli strains (commensal strains and DEC from children with or without diarrhea) isolated from Peruvian children <1 year of age were determined by a Clermont triplex PCR and Kirby-Bauer method, respectively. The distribution of the 369 E. coli strains among the 4 phylogenetic groups was A (40%), D (31%), B1 (21%), and B2 (8%). DEC-control strains were more associated with group A while DEC-diarrhea strains were more associated with group D (P < 0.05). There was a tendency (P = 0.06) for higher proportion of persistent diarrhea (≥14 days) among severe groups (B2 and D) in comparison with nonsevere groups (A and B1). Strains belonging to group D presented significantly higher percentages of multidrug resistance than the rest of the groups (P > 0.01). In summary, DEC-diarrhea strains were more associated with group D than strains from healthy controls. PMID:25811044
Takamiya, Tomoko; Wongsawad, Pheravut; Sathapattayanon, Apirada; Tajima, Natsuko; Suzuki, Shunichiro; Kitamura, Saki; Shioda, Nao; Handa, Takashi; Kitanaka, Susumu; Iijima, Hiroshi; Yukawa, Tomohisa
2014-01-01
It is always difficult to construct coherent classification systems for plant lineages having diverse morphological characters. The genus Dendrobium, one of the largest genera in the Orchidaceae, includes ∼1100 species, and enormous morphological diversification has hindered the establishment of consistent classification systems covering all major groups of this genus. Given the particular importance of species in Dendrobium section Dendrobium and allied groups as floriculture and crude drug genetic resources, there is an urgent need to establish a stable classification system. To clarify phylogenetic relationships in Dendrobium section Dendrobium and allied groups, we analysed the macromolecular characters of the group. Phylogenetic analyses of 210 taxa of Dendrobium were conducted on DNA sequences of internal transcribed spacer (ITS) regions of 18S–26S nuclear ribosomal DNA and the maturase-coding gene (matK) located in an intron of the plastid gene trnK using maximum parsimony and Bayesian methods. The parsimony and Bayesian analyses revealed 13 distinct clades in the group comprising section Dendrobium and its allied groups. Results also showed paraphyly or polyphyly of sections Amblyanthus, Aporum, Breviflores, Calcarifera, Crumenata, Dendrobium, Densiflora, Distichophyllae, Dolichocentrum, Holochrysa, Oxyglossum and Pedilonum. On the other hand, the monophyly of section Stachyobium was well supported. It was found that many of the morphological characters that have been believed to reflect phylogenetic relationships are, in fact, the result of convergence. As such, many of the sections that have been recognized up to this point were found to not be monophyletic, so recircumscription of sections is required. PMID:25107672
[Ultrastructure of granulocytes of bony fishes (orders Salmoniformes, Cypriniformes, Perciformes)].
Flerova, E A; Balabanova, L V
2013-01-01
Analysis of data on utrastructure of granulocytes of freshwater and marine bony fish of orders Salmoniformes, Cypriniformes, and Perciformes showed that in all studied species there were revealed two types of granulocytes - neutrophils and eosinophils. The exception was the bluefish Pomatomus saltatrix L. whose pronephros hemopoietic tissue was found to contain one type of the granulocytic line - neutrophils. The identification parameters of granular leukocytes are specific granules filling the cytoplasm. The main form of specific granules in neutrophils of bony fish of various phylogenetic groups is an elongated granule with different distribution of fibrils or a granule that has crystalloid formed from fibrils. The main form of eosinophil granules - large, electron-dense, homogenous.
Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.
Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M
2012-02-01
The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).
Wolf, Y I; Aravind, L; Grishin, N V; Koonin, E V
1999-08-01
Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the beta-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies-shared derived characters, such as extra domains or inserts-for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary "standard model" whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.
Contentious relationships in phylogenomic studies can be driven by a handful of genes
Shen, Xing-Xing; Hittinger, Chris Todd; Rokas, Antonis
2017-01-01
Phylogenomic studies have resolved countless branches of the tree of life (ToL), but remain strongly contradictory on certain, contentious relationships. Here, we employ a maximum likelihood framework to quantify the distribution of phylogenetic signal among genes and sites for 17 contentious branches and 6 well-established control branches in plant, animal, and fungal phylogenomic data matrices. We find that resolution in some of these 17 branches rests on a single gene or a few sites, and that removal of a single gene in concatenation analyses or a single site from every gene in coalescence-based analyses diminishes support and can alter the inferred topology. These results suggest that tiny subsets of very large data matrices drive the resolution of specific internodes, providing a dissection of the distribution of support and observed incongruence in phylogenomic analyses. We submit that quantifying the distribution of phylogenetic signal in phylogenomic data is essential for evaluating whether branches, especially contentious ones, are truly resolved. Finally, we offer one detailed example of such an evaluation for the controversy regarding the earliest-branching metazoan phylum, where examination of the distributions of gene-wise and site-wise phylogenetic signal across 8 data matrices consistently supports ctenophores as sister group to all other metazoans. PMID:28812701
Brooks, T M; Cuttelod, A; Faith, D P; Garcia-Moreno, J; Langhammer, P; Pérez-Espona, S
2015-02-19
'Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326-337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for 'threatened species' to consider 'threatened taxa' and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites.
Tokajian, Sima T; Hashwa, Fuad A; Hancock, Ian C; Zalloua, Pierre A
2005-04-01
Determination of a heterotrophic plate count (HPC) for drinking-water samples alone is not enough to assess possible health hazards associated with sudden changes in the bacterial count. Speciation is very crucial to determine whether the population includes pathogens and (or) opportunistic pathogens. Most of the isolates recovered from drinking water samples could not be allocated to a specific phylogenetic branch based on the use of conventional diagnostic methods. The present study had to use phylogenetic analysis, which was simplified by determining and using the first 500-bp sequence of the 16S rDNA, to successfully identify the type and species of bacteria found in the samples. Gram-positive bacteria alpha-, beta-, and gamma-Proteobacteria were found to be the major groups representing the heterotrophic bacteria in drinking water. The study also revealed that the presence of sphingomonads in drinking water supplies may be much more common than has been reported so far and thus further studies are merited. The intermittent mode of supply, mainly characterized by water stagnation and flow interruption associated possibly with biofilm detachment, raised the possibility that the studied bacterial populations in such systems represented organisms coming from 2 different niches, the biofilm and the water column.
Brooks, T. M.; Cuttelod, A.; Faith, D. P.; Garcia-Moreno, J.; Langhammer, P.; Pérez-Espona, S.
2015-01-01
‘Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites. PMID:25561678
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas
2012-09-22
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B.; Zimmermann, Niklaus E.; Salamin, Nicolas
2012-01-01
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs. PMID:22719034
Lifestyles in transition: evolution and natural history of the genus Lactobacillus.
Duar, Rebbeca M; Lin, Xiaoxi B; Zheng, Jinshui; Martino, Maria Elena; Grenier, Théodore; Pérez-Muñoz, María Elisa; Leulier, François; Gänzle, Michael; Walter, Jens
2017-08-01
Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna
2013-06-01
Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.
Parental Acceptance-Rejection Theory and the Phylogenetic Model.
ERIC Educational Resources Information Center
Rohner, Ronald P.
Guided by specific theoretical and methodological points of view--the phylogenetic perspective and the universalistic approach respectively--this paper reports on a worldwide study of the antecedents and effects of parental acceptance and rejection. Parental acceptance-rejection theory postulates that rejected children throughout our species share…
Phylodiversity to inform conservation policy: An Australian example.
Laity, Tania; Laffan, Shawn W; González-Orozco, Carlos E; Faith, Daniel P; Rosauer, Dan F; Byrne, Margaret; Miller, Joseph T; Crayn, Darren; Costion, Craig; Moritz, Craig C; Newport, Karl
2015-11-15
Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Roger, Andrew J; Hug, Laura A
2006-01-01
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes. PMID:16754613
Microbial Communities of Three Sympatric Australian Stingless Bee Species
Leonhardt, Sara D.; Kaltenpoth, Martin
2014-01-01
Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. PMID:25148082
The evolution of function within the Nudix homology clan
Srouji, John R.; Xu, Anting; Park, Annsea; Kirsch, Jack F.
2017-01-01
ABSTRACT The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch‐specific adenine glycosylases (A/G‐specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally‐based annotations. We manually constructed a structure‐guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 “select” Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775–811. © 2016 Wiley Periodicals, Inc. PMID:27936487
Touzard, Eve; Reinaud, Pierrette; Dubois, Olivier; Guyader-Joly, Catherine; Humblot, Patrice; Ponsart, Claire; Charpigny, Gilles
2013-10-01
Pregnancy-associated glycoproteins (PAGs) constitute a multigenic family of aspartic proteinases expressed in the trophoblast of the ruminant placenta. In Bos taurus, this family comprises 21 members segregated into ancient and modern phylogenetic groups. Ancient PAGs have been reported to be synthesized throughout the trophoblastic cell layer whereas modern PAGs are produced by binucleate cells of cotyledons. The aim of this study was to investigate modern and ancient PAGs during gestation in cotyledonary and intercotyledonary tissues. To obtain convincing and innovative results despite the high sequence identity shared between PAGs, we designed specific tools such as amplification primers and antibodies. Using real-time RT-PCR, we described the transcript expression of 16 bovine PAGs. Overall, PAGs are characterized by an increase in their expression during gestation. However, we demonstrated a segregation of modern PAGs in cotyledons and of ancient PAGs in the intercotyledonary chorion, except for the ancient PAG2 expressed in cotyledons. By raising specific antibodies against the modern PAG1 and ancient PAG11 and PAG2, we established the expression kinetics of the proteins using western blotting. Immunohistochemistry showed that PAGs were produced by specific cellular populations: PAG1 by binucleate cells in the whole trophoblastic layer, PAG11 was localized in binucleate cells of the intercotyledonary trophoblast and the chorionic plate of the cotyledon, while PAG2 was produced in mononucleate cells of the internal villi of the cotyledon. These results revealed a highly specific regulation of PAG expression and cell localization as a function of their phylogenetic status, suggesting distinct biological functions within placental tissues.
He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu
2008-03-01
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.
Extensive diversity and evolution of hepadnaviruses in bats in China.
Nie, Fang-Yuan; Lin, Xian-Dan; Hao, Zong-Yu; Chen, Xiao-Nan; Wang, Zhao-Xiao; Wang, Miao-Ruo; Wu, Jun; Wang, Hong-Wei; Zhao, Guoqiang; Ma, Runlin Z; Holmes, Edward C; Zhang, Yong-Zhen
2018-01-15
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Copyright © 2017. Published by Elsevier Inc.
Brugerolle, Guy; Bricheux, Geneviève; Philippe, Hervé; Coffea, Gérard
2002-03-01
Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellar apparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.
Chen, Jianqing; Yin, Hao; Gu, Jinping; Li, Leiting; Liu, Zhe; Jiang, Xueting; Zhou, Hongsheng; Wei, Shuwei; Zhang, Shaoling; Wu, Juyou
2015-01-01
The cyclic nucleotide-gated channel (CNGC) family is involved in the uptake of various cations, such as Ca(2+), to regulate plant growth and respond to biotic and abiotic stresses. However, there is far less information about this family in woody plants such as pear. Here, we provided a genome-wide identification and analysis of the CNGC gene family in pear. Phylogenetic analysis showed that the 21 pear CNGC genes could be divided into five groups (I, II, III, IVA and IVB). The majority of gene duplications in pear appeared to have been caused by segmental duplication and occurred 32.94-39.14 million years ago. Evolutionary analysis showed that positive selection had driven the evolution of pear CNGCs. Motif analyses showed that Group I CNGCs generally contained 26 motifs, which was the greatest number of motifs in all CNGC groups. Among these, eight motifs were shared by each group, suggesting that these domains play a conservative role in CNGC activity. Tissue-specific expression analysis indicated that functional diversification of the duplicated CNGC genes was a major feature of long-term evolution. Our results also suggested that the P-S6 and PBC & hinge domains had co-evolved during the evolution. These results provide valuable information to increase our understanding of the function, evolution and expression analyses of the CNGC gene family in higher plants. Copyright © 2014 Elsevier Inc. All rights reserved.
Osthoff, G; Hugo, A; Madende, M; Deacon, F; Nel, P J
2017-02-01
The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%). Copyright © 2016 Elsevier Inc. All rights reserved.
Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand
2009-12-29
Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.
Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group.
Busquets, Antonio; Gomila, Margarita; Beiki, Farid; Mulet, Magdalena; Rahimian, Heshmat; García-Valdés, Elena; Lalucat, Jorge
2017-07-01
In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102 T , FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102 T =CECT 9164 T =CCUG 69273 T ) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza
2017-06-01
The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.
Morgand, Marjolaine; Vimont, Sophie; Bleibtreu, Alexandre; Boyd, Anders; Thien, Hoang Vu; Zahar, Jean-Ralph; Denamur, Erick; Arlet, Guillaume
2014-11-01
Infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli are an important cause of morbidity and mortality, especially in children. We compared 58 epidemiologically unrelated ESBL-producing E. coli strains that caused infections. They were isolated between 2008 and 2012 in two Parisian pediatric hospitals and grouped according to their origin into either community-acquired (CA) (n=37) or nosocomially acquired (NA) (n=21) strains. Molecular characteristics of the ESBLs, phylogenetic traits of the strains including their belonging to clone O25b-ST131, prevalence of associated virulence genes, growth capacities in different media, metabolic phenotype and biofilm formation abilities were studied. ESBL type, associated resistance and distribution of phylogenetic groups were similar in the CA and NA groups. More than 60% of the B2 phylogroup strains in both groups belonged to the ST131 clone. Interestingly, CA strains possessed more genes encoding virulence factors and the distribution of these genes differed significantly between the two groups: fyuA, hlyC, papC and papGII were more frequent in the CA group, whereas iroN was more frequent in the NA group. CA strains also showed enhanced growth capacities in Luria Bertani rich medium. They tended to produce more biofilm but the difference was not significant. This study confirms the wide spread of clone ST131 among infected children, regardless of whether their infections were community- or nosocomially acquired. It highlights genotypic and phenotypic differences according to the origin of the strains that could indicate adaptability of these multi-resistant bacteria to specific environmental and host factors. Copyright © 2014 Elsevier GmbH. All rights reserved.
Romero, Pedro E; Pfenninger, Markus; Kano, Yasunori; Klussmann-Kolb, Annette
2016-04-01
Gastropods of the family Ellobiidae are an interesting group in which to study transitions from intertidal to terrestrial realms. However, the phylogenetic relationships within this family still lack resolution. We present a phylogenetic hypothesis of the Ellobiidae based on Bayesian and maximum likelihood phylograms. We used nuclear (18S, 28S, H3) and mitochondrial (16S, 12S, COI) data, increasing the numbers of markers and data, and making this the most comprehensive phylogenetic study of the family to date. Our results support phylogenetic hypotheses derived from morphological data, and provide a supported framework to evaluate the internal relationships within Ellobiidae. The resulting phylogenetic trees support the previous hypothesis that the Ellobiidae are monophyletic only if the Trimusculinae (Otina, Smeagol and Trimusculus) are considered part of this family. In addition, we found that the Carychiinae, Ellobiinae and Pythiinae are reciprocally monophyletic and closely related, with the Carychiinae as sister group to Ellobiinae. Relationships within Melampodinae and Pedipedinae and their phylogenetic positions remain unresolved. Land invasion by the Ellobiidae occurred independently in Carychiinae and Pythia during different geological times (Mesozoic and Cenozoic, respectively). Diversification in the family does not appear to be related to past climate and biotic changes, neither the Cretaceous-Paleogene boundary nor the lowering of the sea level in the Oligocene. Copyright © 2015 Elsevier Inc. All rights reserved.
Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo
2015-01-01
Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics. PMID:26074662
Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo
2015-04-01
Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics.
Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.
Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco
2005-07-01
Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).
Host specificity and phylogenetic relationships of chicken and turkey parvoviruses
USDA-ARS?s Scientific Manuscript database
Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...
Host specificity in parasitic plants—perspectives from mistletoes
Okubamichael, Desale Y.; Griffiths, Megan E.; Ward, David
2016-01-01
Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe–host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal–plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. PMID:27658817
Molecular phylogenetics of mastodon and Tyrannosaurus rex.
Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M
2008-04-25
We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.
The phylogenetic relationships of known mosquito (Diptera: Culicidae) mitogenomes.
Chu, Hongliang; Li, Chunxiao; Guo, Xiaoxia; Zhang, Hengduan; Luo, Peng; Wu, Zhonghua; Wang, Gang; Zhao, Tongyan
2018-01-01
The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.
The COG database: a tool for genome-scale analysis of protein functions and evolution
Tatusov, Roman L.; Galperin, Michael Y.; Natale, Darren A.; Koonin, Eugene V.
2000-01-01
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes. PMID:10592175
Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes?
Klaczko, Julia; Sherratt, Emma; Setz, Eleonore Z. F.
2016-01-01
Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes. PMID:26886549
Naked Stony Corals: Skeleton Loss in Scleractinia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, Monica; Collins, Allen G.; Takaoka, Tori L.
2005-12-01
Hexacorallia includes the Scleractinia, or stony corals, characterized by having an external calcareous skeleton made of aragonite, and the Corallimorpharia, or mushroom corals, that lack such a skeleton. Although each group has traditionally been considered monophyletic, some molecular phylogenetic analyses have challenged this, suggesting that skeletal features are evolutionarily plastic, and reviving notions that the scleractinian skeleton may be ephemeral and that the group itself may be polyphyletic. Nevertheless, the most comprehensive phylogenetic study of Hexacorallia supported scleractinian monophyly (REF), and so this remains controversial. In order to resolve this contentious issue, we sequenced the complete mitochondrial genome sequences ofmore » nine scleractinians and four corallimorpharians and performed phylogenetic analysis that also included three outgroups (an octocoral and two sea anemones). Our data provide the first strong evidence that Scleractinia is paraphyletic and that the Corallimorpharia is derived from within the group, from which we conclude that skeletal loss has occurred in the latter group secondarily. It is possible that a driving force in such skeletal loss could be the high levels of CO{sub 2} in the ocean during the mid-Cretaceous, which would have impacted aragonite solubility. We estimate from molecular divergence measures that the Corallimorpharia arose in the mid-Cretaceous, approximately 87 million years ago (Ma), supporting this view. These data also permit us to date the origin of Scleractinia to 265 Ma, narrowing the gap between the group's phylogenetic origin and its earliest fossil record.« less
Iwamoto, Susumu; Tokumasu, Seiji; Suyama, Yoshihisa; Kakishima, Makoto
2005-01-01
We investigated intraspecific diversity and genetic structures of a saprotrophic fungus--Thysanophora penicillioides--based on sequences of nuclear ribosomal internal transcribed spacer (ITS) in 15 discontinuous Abies mariesii forests of Japan. In such a well-defined morphological species, numerous unexpected ITS variations were revealed: 12 ITS sequence types detected in 254 isolates collected from 15 local populations were classified into five ITS sequence groups. Maximally, four ITS groups consisted of seven ITS types coexisting in one population. However, group 1 was dominant with approximately 65%; in particular, one haplotype, 1a, was most dominant with approximately 60% in respective populations. Therefore, few differences were recognized in genetic structure among local populations, implying that the gene flow of each lineage of the fungus occurs among local populations without geographic limitations. However, minor haplotypes in some ITS groups were found only in restricted areas, suggesting that they might expand steadily from their places of origin to neighboring A. mariesii forests. Aggregating sequence data of seven European strains and four North American strains from various substrates to those of Japanese strains, 18 ITS sequence types and 28 variable sites were recognized. They were clustered into nine lineages by phylogenetic analyses of the beta-tubulin and combined ITS and beta-tubulin datasets. According to phylogenetic species recognition by the concordance of genealogies, respective lineages correspond to phylogenetic species. Plural phylogenetic species coexist in a local population in an A. mariesii forest in Japan.
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
Aris-Brosou, Stéphane; Xia, Xuhua
2008-01-01
The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574
Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences
Garnica, Sigisfredo; Weiß, Michael; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz
2009-01-01
Background Section Calochroi is one of the most species-rich lineages in the genus Cortinarius (Agaricales, Basidiomycota) and is widely distributed across boreo-nemoral areas, with some extensions into meridional zones. Previous phylogenetic studies of Calochroi (incl. section Fulvi) have been geographically restricted; therefore, phylogenetic and biogeographic relationships within this lineage at a global scale have been largely unknown. In this study, we obtained DNA sequences from a nearly complete taxon sampling of known species from Europe, Central America and North America. We inferred intra- and interspecific phylogenetic relationships as well as major morphological evolutionary trends within section Calochroi based on 576 ITS sequences, 230 ITS + 5.8S + D1/D2 sequences, and a combined dataset of ITS + 5.8S + D1/D2 and RPB1 sequences of a representative subsampling of 58 species. Results More than 100 species were identified by integrating DNA sequences with morphological, macrochemical and ecological data. Cortinarius section Calochroi was consistently resolved with high branch support into at least seven major lineages: Calochroi, Caroviolacei, Dibaphi, Elegantiores, Napi, Pseudoglaucopodes and Splendentes; whereas Rufoolivacei and Sulfurini appeared polyphyletic. A close relationship between Dibaphi, Elegantiores, Napi and Splendentes was consistently supported. Combinations of specific morphological, pigmentation and molecular characters appear useful in circumscribing clades. Conclusion Our analyses demonstrate that Calochroi is an exclusively northern hemispheric lineage, where species follow their host trees throughout their natural ranges within and across continents. Results of this study contribute substantially to defining European species in this group and will help to either identify or to name new species occurring across the northern hemisphere. Major groupings are in partial agreement with earlier morphology-based and molecular phylogenetic hypotheses, but some relationships were unexpected, based on external morphology. In such cases, their true affinities appear to have been obscured by the repeated appearance of similar features among distantly related species. Therefore, further taxonomic studies are needed to evaluate the consistency of species concepts and interpretations of morphological features in a more global context. Reconstruction of ancestral states yielded two major evolutionary trends within section Calochroi: (1) the development of bright pigments evolved independently multiple times, and (2) the evolution of abruptly marginate to flattened stipe bulbs represents an autapomorphy of the Calochroi clade. PMID:19121213
2013-01-01
Background Many insects are chemically defended against predatory vertebrates and invertebrates. Nevertheless, our understanding of the evolution and diversity of insect defenses remains limited, since most studies have focused on visual signaling of defenses against birds, thereby implicitly underestimating the impact of insectivorous insects. In the larvae of sawflies in the family Tenthredinidae (Hymenoptera), which feed on various plants and show diverse lifestyles, two distinct defensive strategies are found: easy bleeding of deterrent hemolymph, and emission of volatiles by ventral glands. Here, we used phylogenetic information to identify phylogenetic correlations among various ecological and defensive traits in order to estimate the relative importance of avian versus invertebrate predation. Results The mapping of 12 ecological and defensive traits on phylogenetic trees inferred from DNA sequences reveals the discrete distribution of easy bleeding that occurs, among others, in the genus Athalia and the tribe Phymatocerini. By contrast, occurrence of ventral glands is restricted to the monophyletic subfamily Nematinae, which are never easy bleeders. Both strategies are especially effective towards insectivorous insects such as ants, while only Nematinae species are frequently brightly colored and truly gregarious. Among ten tests of phylogenetic correlation between traits, only a few are significant. None of these involves morphological traits enhancing visual signals, but easy bleeding is associated with the absence of defensive body movements and with toxins occurring in the host plant. Easy bleeding functions through a combination of attributes, which is corroborated by an independent contrasts test indicating a statistically significant negative correlation between species-level integument mechanical resistance and hemolymph feeding deterrence against ants. Conclusions Our analyses evidence a repeated occurrence of easy bleeding, and no phylogenetic correlation including specific visual signals is significant. We conclude that the evolution of chemically-based defenses in tenthredinids may have been driven by invertebrate as much as by avian predation. The clear-cut visual signaling often encountered in the Nematinae would be linked to differential trends of habitat use by prey and predators. Further studies on (prey) insect groups should include visual signals and other traits, as well as several groups of natural enemies, to better interpret their relative significance and to refine our understanding of insect chemical defenses. PMID:24041372
Salih, Barik A; Bolek, Bora Kazim; Yildiz, Mehmet Taha; Arikan, Soykan
2013-11-18
The cagA gene is one of the important virulence factors of Helicobacter pylori. The diversity of cagA 5' conserved region is thought to reflect the phylogenetic relationships between different H. pylori isolates and their association with peptic ulceration. Significant geographical differences among isolates have been reported. The aim of this study is to compare Turkish H. pylori isolates with isolates from different geographical locations and to correlate the association with peptic ulceration. Total of 52 isolates of which 19 were Turkish and 33 from other geographic locations were studied. Gastric antral biopsies collected from 19 Turkish patients (Gastritis = 12, ulcer = 7) were used to amplify the cagA 5' region by PCR then followed by DNA sequencing. The phylogenetic tree displayed 3 groups: A) a mix of 2 sub-groups "Asian" and "African/Anatolian/Asian/European", B) "Anatolian/European" and C) "American-Indian". Turkish H. pylori isolates clustered in the mixed sub-group A were mostly from gastritis patients while those clustered in group B were from peptic ulcer patients. A phylogenetic tree constructed for our Turkish isolates detected distinctive features among those from gastritis and ulcer patients. We have found that 2/3 of the gastritis isolates were clustered alone while 1/3 was clustered together with the ulcer isolates. Several amino acids were found to be shared between the later groups but not with the first group of gastritis. This study provided an additional insight into the profile of our cagA gene which implies a relationship in geographic locations of the isolates.
Hayashimoto, Nobuhito; Ueno, Masami; Tkakura, Akira; Itoh, Toshio
2007-06-01
Phylogenetic analysis based on 16S rRNA sequences with sequence data of some bacterial species of Pasteurellaceae related to rodents deposited in GenBank was performed along with biochemical characterization for the 20 strains of V-factor dependent members of Pasteurellaceae derived from laboratory rats to obtain basic information and to investigate the taxonomic positions. The results of biochemical tests for all strains were identical except for three tests, the ornithine decarboxylase test, and fermentation tests of D(+) mannose and D(+) xylose. The biochemical properties of 8 of 20 strains that showed negative results for the fermentation test of D(+) xylose agreed with those of Haemophilus parainfluenzae complex. By phylogenetic analysis, the strains were divided into two clusters that agreed with the results of the fermentation test of xylose (group I: negative reaction for xylose, group II: positive reaction for xylose). The clusters were independent of other bacterial species of Pasteurellaceae tested. The sequences of the strains in group I showed 99.7-99.8% similarity and the strains in group II showed 99.3-99.7% similarity. None of the strains in group I had a close relation with Haemophilus parainfluenzae by phylogenetic analysis, although they showed the same biochemical properties. In conclusion, the strains had characteristic biochemical properties and formed two independent groups within the "rodent cluster" of Pasteurellaceae that differed in the results of the fermentation test of xylose. Therefore, they seemed to be hitherto undescribed taxa in Pasteurellaceae.
Singer, David; Kosakyan, Anush; Seppey, Christophe V W; Pillonel, Amandine; Fernández, Leonardo D; Fontaneto, Diego; Mitchell, Edward A D; Lara, Enrique
2018-04-01
The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists. © 2018 by the Ecological Society of America.
NASA Technical Reports Server (NTRS)
Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.
2003-01-01
The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.
Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.
2003-01-01
The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at −9°C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 × 107 cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at −2°C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years. PMID:12676695
Erwin, Patrick M; Olson, Julie B; Thacker, Robert W
2011-01-01
Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.
Predicting rates of interspecific interaction from phylogenetic trees.
Nuismer, Scott L; Harmon, Luke J
2015-01-01
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.
Lee, Dong-Hun
2017-01-01
To determine the genetic and epidemiological relationship of infectious bronchitis virus (IBV) isolates from commercial poultry to attenuated live IBV vaccines we conducted a phylogenetic network analysis on the full-length S1 sequence for Arkansas (Ark), Massachusetts (Mass) and Delmarva/1639 (DMV/1639) type viruses isolated in 2015 from clinical cases by 3 different diagnostic laboratories. Phylogenetic network analysis of Ark isolates showed two predominant groups linked by 2 mutations, consistent with subpopulations found in commercial vaccines for this IBV type. In addition, a number of satellite groups surrounding the two predominant populations were observed for the Ark type virus, which is likely due to mutations associated with the nature of this vaccine to persist in flocks. The phylogenetic network analysis of Mass-type viruses shows two groupings corresponding to different manufacturers vaccine sequences. No satellite groups were observed for Mass-type viruses, which is consistent with no persistence of this vaccine type in the field. At the time of collection, no vaccine was being used for the DMV/1639 type viruses and phylogenetic network analysis showed a dispersed network suggesting no clear change in genetic distribution. Selection pressure analysis showed that the DMV/1639 and Mass-type strains were evolving under negative selection, whereas the Ark type viruses had evolved under positive selection. This data supports the hypothesis that live attenuated vaccine usage does play a role in the genetic profile of similar IB viruses in the field and phylogenetic network analysis can be used to identify vaccine and vaccine origin isolates, which is important for our understanding of the role live vaccines play in the evolutionary trajectory of those viruses. PMID:28472110
Hepatitis a virus genotypes and strains from an endemic area of Europe, Bulgaria 2012-2014.
Bruni, Roberto; Taffon, Stefania; Equestre, Michele; Cella, Eleonora; Lo Presti, Alessandra; Costantino, Angela; Chionne, Paola; Madonna, Elisabetta; Golkocheva-Markova, Elitsa; Bankova, Diljana; Ciccozzi, Massimo; Teoharov, Pavel; Ciccaglione, Anna Rita
2017-07-14
Hepatitis A virus (HAV) infection is endemic in Eastern European and Balkan region countries. In 2012, Bulgaria showed the highest rate (67.13 cases per 100,000) in Europe. Nevertheless, HAV genotypes and strains circulating in this country have never been described. The present study reports the molecular characterization of HAV from 105 patients from Bulgaria. Anti-HAV IgM positive serum samples collected in 2012-2014 from different towns and villages in Bulgaria were analysed by nested RT-PCR, sequencing of the VP1/2A region and phylogenetic analysis; the results were analysed together with patient and geographical data. Phylogenetic analysis revealed two main sequence groups corresponding to the IA (78/105, 74%) and IB (27/105, 26%) sub-genotypes. In the IA group, a major and a minor cluster were observed (62 and 16 sequences, respectively). Most sequences from the major cluster (44/62, 71%) belonged to either of two strains, termed "strain 1" and "strain 2", differing only for a single specific nucleotide; the remaining sequences (18/62, 29%) showed few (1 to 4) nucleotide variations respect to strain 1 and 2. Strain 2 is identical to the strain previously responsible for an outbreak in the Czech Republic in 2008 and a large multi-country European outbreak caused by contaminated mixed frozen berries in 2013. Most sequences of the IA minor cluster and the IB group were detected in large/medium centers (LMCs). Overall, sequences from the IA major cluster were more frequent in small centers (SCs), but strain 1 and strain 2 showed an opposite relative frequency in SCs and LMCs (strain 1 more frequent in SCs, strain 2 in LMCs). Genotype IA predominated in Bulgaria in 2012-2014 and phylogenetic analysis identified a major cluster of highly related or identical IA sequences, representing 59% of the analysed cases; these isolates were mostly detected in SCs, in which HAV shows higher endemicity than in LMCs. The distribution of viral sequences suggests the existence of some differences between the transmission routes in SCs and LMCs. Molecular characterization of an increased number of isolates from Bulgaria, regularly collected over time, will be useful to explore specific transmission routes and plan appropriate preventing measures.
On the quirks of maximum parsimony and likelihood on phylogenetic networks.
Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles
2017-03-21
Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.
Vasutová, Martina; Antonín, Vladimír; Urban, Alexander
2008-10-01
The sections Pennatae and Spadiceae were chosen to test the agreement of current infrageneric classifications of Psathyrella (Psathyrellaceae, Agaricales) with molecular phylogenetic data and to evaluate the systematic significance of relevant morphological characters. The ITS and partial LSU regions of nu-rDNA from 53 specimens representing 34 species of Psathyrella were sequenced and analysed with parsimony-based and model-based phylogenetic methods. According to our analyses, the sections Pennatae and Spadiceae are polyphyletic and distributed across the family Psathyrellaceae, which is divided into at least five major groups. The first one comprises most of the included Psathyrella species and, probably, the whole genus Coprinellus. The second group is made up of Psathyrella gossypina and P. delineata. The third clade consists of the genus Coprinopsis and includes Psathyrella aff. huronensis and P. marcescibilis. The fourth clade is composed of two sister groups, the subgenus Homophron and the genus Lacrymaria, and the fifth group represents the genus Parasola including Psathyrella conopilus. These results are in agreement with neither the current circumscription of the two subgenera, Psathyra and Psathyrella, nor with the pre-sent disposition of the Psathyrellaceae. Taxonomically important morphological characters in the genus Psathyrella show a high degree of homoplasy. Although these characters are useful for species delimitation, and in some cases for the circumscription of sections, they appear insufficient for a phylogenetically correct generic concept.
Student Interpretations of Phylogenetic Trees in an Introductory Biology Course
Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489
Miyake, Sou; Ngugi, David K.; Stingl, Ulrich
2016-01-01
Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments reflected by inferred differences in the host diets. Overall, our analysis identified a large phylogenetic diversity of Epulopiscium (up to 10% sequence divergence of 16S rRNA genes), which lets us hypothesize that there are multiple species that are spread across guts of different host species. PMID:27014209
Smith, Stephen A; Moore, Michael J; Brown, Joseph W; Yang, Ya
2015-08-05
The use of transcriptomic and genomic datasets for phylogenetic reconstruction has become increasingly common as researchers attempt to resolve recalcitrant nodes with increasing amounts of data. The large size and complexity of these datasets introduce significant phylogenetic noise and conflict into subsequent analyses. The sources of conflict may include hybridization, incomplete lineage sorting, or horizontal gene transfer, and may vary across the phylogeny. For phylogenetic analysis, this noise and conflict has been accommodated in one of several ways: by binning gene regions into subsets to isolate consistent phylogenetic signal; by using gene-tree methods for reconstruction, where conflict is presumed to be explained by incomplete lineage sorting (ILS); or through concatenation, where noise is presumed to be the dominant source of conflict. The results provided herein emphasize that analysis of individual homologous gene regions can greatly improve our understanding of the underlying conflict within these datasets. Here we examined two published transcriptomic datasets, the angiosperm group Caryophyllales and the aculeate Hymenoptera, for the presence of conflict, concordance, and gene duplications in individual homologs across the phylogeny. We found significant conflict throughout the phylogeny in both datasets and in particular along the backbone. While some nodes in each phylogeny showed patterns of conflict similar to what might be expected with ILS alone, the backbone nodes also exhibited low levels of phylogenetic signal. In addition, certain nodes, especially in the Caryophyllales, had highly elevated levels of strongly supported conflict that cannot be explained by ILS alone. This study demonstrates that phylogenetic signal is highly variable in phylogenomic data sampled across related species and poses challenges when conducting species tree analyses on large genomic and transcriptomic datasets. Further insight into the conflict and processes underlying these complex datasets is necessary to improve and develop adequate models for sequence analysis and downstream applications. To aid this effort, we developed the open source software phyparts ( https://bitbucket.org/blackrim/phyparts ), which calculates unique, conflicting, and concordant bipartitions, maps gene duplications, and outputs summary statistics such as internode certainy (ICA) scores and node-specific counts of gene duplications.
Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook
2017-01-01
Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.
Galmés, J; Kapralov, M V; Copolovici, L O; Hermida-Carrera, C; Niinemets, Ü
2015-02-01
Temperature response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalytic properties directly determines the CO2 assimilation capacity of photosynthetic organisms as well as their survival in environments with different thermal conditions. Despite unquestionable importance of Rubisco, the comprehensive analysis summarizing temperature responses of Rubisco traits across lineages of carbon-fixing organisms is lacking. Here, we present a review of the temperature responses of Rubisco carboxylase specific activity (c(cat)(c)) within and across domains of life. In particular, we consider the variability of temperature responses, and their ecological, physiological, and evolutionary controls. We observed over two-fold differences in the energy of activation (ΔH(a)) among different groups of photosynthetic organisms, and found significant differences between C3 plants from cool habitats, C3 plants from warm habitats and C4 plants. According to phylogenetically independent contrast analysis, ΔH(a) was not related to the species optimum growth temperature (T growth), but was positively correlated with Rubisco specificity factor (S(c/o)) across all organisms. However, when only land plants were analyzed, ΔH(a) was positively correlated with both T(growth) and S(c/o), indicating different trends for these traits in plants versus unicellular aquatic organisms, such as algae and bacteria. The optimum temperature (T(opt)) for k(cat)(c) correlated with S(c/o) for land plants and for all organisms pooled, but the effect of T growth on T(opt) was driven by species phylogeny. The overall phylogenetic signal was significant for all analyzed parameters, stressing the importance of considering the evolutionary framework and accounting for shared ancestry when deciphering relationships between Rubisco kinetic parameters. We argue that these findings have important implications for improving global photosynthesis models.
Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers
2009-01-01
Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils. PMID:20003362
Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.
Abernathy, Emily; Chen, Min-hsin; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen; Zheng, Qi; Bellini, William; Icenogle, Joseph
2013-01-25
Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.
Rothfels, Carl J; Larsson, Anders; Kuo, Li-Yaung; Korall, Petra; Chiou, Wen-Liang; Pryer, Kathleen M
2012-05-01
Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.
2011-01-01
Background We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. Results Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived period (per) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal. Conclusions CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species. PMID:21699713
Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths
Barbe, Valérie; Baeriswyl, Simon; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane; Bouchier, Christiane; Bouvet, Odile; Calteau, Alexandra; Chiapello, Hélène; Clermont, Olivier; Cruveiller, Stéphane; Danchin, Antoine; Diard, Médéric; Dossat, Carole; Karoui, Meriem El; Frapy, Eric; Garry, Louis; Ghigo, Jean Marc; Gilles, Anne Marie; Johnson, James; Le Bouguénec, Chantal; Lescat, Mathilde; Mangenot, Sophie; Martinez-Jéhanne, Vanessa; Matic, Ivan; Nassif, Xavier; Oztas, Sophie; Petit, Marie Agnès; Pichon, Christophe; Rouy, Zoé; Ruf, Claude Saint; Schneider, Dominique; Tourret, Jérôme; Vacherie, Benoit; Vallenet, David; Médigue, Claudine; Rocha, Eduardo P. C.; Denamur, Erick
2009-01-01
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome. PMID:19165319
Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae)
Pedraza-Lara, Carlos; Doadrio, Ignacio; Breinholt, Jesse W.; Crandall, Keith A.
2012-01-01
The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in freshwater organisms can be promoted through diverse vicariant factors. PMID:23155379
Molecular phylogenetics of porcini mushrooms (Boletus section Boletus).
Dentinger, Bryn T M; Ammirati, Joseph F; Both, Ernst E; Desjardin, Dennis E; Halling, Roy E; Henkel, Terry W; Moreau, Pierre-Arthur; Nagasawa, Eiji; Soytong, Kasem; Taylor, Andy F; Watling, Roy; Moncalvo, Jean-Marc; McLaughlin, David J
2010-12-01
Porcini (Boletus section Boletus: Boletaceae: Boletineae: Boletales) are a conspicuous group of wild, edible mushrooms characterized by fleshy fruiting bodies with a poroid hymenophore that is "stuffed" with white hyphae when young. Their reported distribution is with ectomycorrhizal plants throughout the Northern Hemisphere. Little progress has been made on the systematics of this group using modern molecular phylogenetic tools because sampling has been limited primarily to European species and the genes employed were insufficient to resolve the phylogeny. We examined the evolutionary history of porcini by using a global geographic sampling of most known species, new discoveries from little explored areas, and multiple genes. We used 78 sequences from the fast-evolving nuclear internal transcribed spacers and are able to recognize 18 reciprocally monophyletic species. To address whether or not porcini form a monophyletic group, we compiled a broadly sampled dataset of 41 taxa, including other members of the Boletineae, and used separate and combined phylogenetic analysis of sequences from the nuclear large subunit ribosomal DNA, the largest subunit of RNA polymerase II, and the mitochondrial ATPase subunit six gene. Contrary to previous studies, our separate and combined phylogenetic analyses support the monophyly of porcini. We also report the discovery of two taxa that expand the known distribution of porcini to Australia and Thailand and have ancient phylogenetic connections to the rest of the group. A relaxed molecular clock analysis with these new taxa dates the origin of porcini to between 42 and 54 million years ago, coinciding with the initial diversification of angiosperms, during the Eocene epoch when the climate was warm and humid. These results reveal an unexpected diversity, distribution, and ancient origin of a group of commercially valuable mushrooms that may provide an economic incentive for conservation and support the hypothesis of a tropical origin of the ectomycorrhizal symbiosis. Copyright © 2010 Elsevier Inc. All rights reserved.
Ni, Xuejiao; Qi, Xing'e; Gu, Yanling; Zheng, Xiaoji; Dong, Juan; Ni, Yongqing; Cheng, Guodong
2014-11-04
The purpose of this study is to characterize the community composition and phylogenetic analysis of cyanobacteria from supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains, China. We amplified 16S rRNA genes from the extracted cryoconite DNA by PCR with 2 pairs of cyanobacteria-specific primers. Amplificon was used to construct 16S rRNA genes clone library. The estimation of species richness, diversity indices, and rarefaction curve of the 16S rRNA genes library were determined based on representative phylotypes (OTUs). Analysis of 16S rRNA gene sequences allowed grouping of 101 clones into 12 phylotypes (OTUs) using a cut-off of 97% identity. The phylogenetic analysis revealed that most of sequences affiliated to the order Oscillatoriales and Chroococcales except that three were unclassified. The clone library was dominated by representatives of the order Oscillatoriales (81% of the total clones), and the most abundant organisms within this order were in the genus Phormidium (68 clones) including clones grouping into four phylotypes. The only clone of Chroococcales was closely related to the genus Chamaesiphon with 97% similarity. In addition, comparison of soil chemical properties between different habitats indicated that supraglacial cryoconite supported significantly higher the content of available phosphorus and potassium, nitrate nitrogen and organic matter compared with the forefield of the Glacier No. 1. The diversity index of cyanobacteria were relatively high in supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains. The community structure was dominated by members of the genus Phormidium. This study may enrich our knowledge on biogeochemical processes and ecological distribution of cyanobacterial populations in glacial ecosystem.
Durán, David; Rey, L; Sánchez-Cañizares, C; Navarro, A; Imperial, J; Ruiz-Argueso, T
2013-03-01
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host. Copyright © 2012 Elsevier GmbH. All rights reserved.
Ludeña, Bertha; Chabrillange, Nathalie; Aberlenc-Bertossi, Frédérique; Adam, Hélène; Tregear, James W.; Pintaud, Jean-Christophe
2011-01-01
Background and Aims Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics. Methods New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated. Key Results The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics. Conclusions AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies. PMID:21828068
Mansion, Guilhem; Parolly, Gerald; Crowl, Andrew A.; Mavrodiev, Evgeny; Cellinese, Nico; Oganesian, Marine; Fraunhofer, Katharina; Kamari, Georgia; Phitos, Dimitrios; Haberle, Rosemarie; Akaydin, Galip; Ikinci, Nursel; Raus, Thomas; Borsch, Thomas
2012-01-01
Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades. PMID:23209646
An Estimation of Erinaceidae Phylogeny: A Combined Analysis Approach
Yamaguchi, Nobuyuki; Ai, Huai-Sen; Wang, Ying-Xiang; Zhang, Ya-Ping; Jiang, Xue-Long
2012-01-01
Background Erinaceidae is a family of small mammals that include the spiny hedgehogs (Erinaceinae) and the silky-furred moonrats and gymnures (Galericinae). These animals are widely distributed across Eurasia and Africa, from the tundra to the tropics and the deserts to damp forests. The importance of these animals lies in the fact that they are the oldest known living placental mammals, which are well represented in the fossil record, a rarity fact given their size and vulnerability to destruction during fossilization. Although the Family has been well studied, their phylogenetic relationships remain controversial. To test previous phylogenetic hypotheses, we combined molecular and morphological data sets, including representatives of all the genera. Methodology and Principal Findings We included in the analyses 3,218 bp mitochondrial genes, one hundred and thirty-five morphological characters, twenty-two extant erinaceid taxa, and five outgroup taxa. Phylogenetic relationships were reconstructed using both partitioned and combined data sets. As in previous analyses, our results strongly support the monophyly of both subfamilies (Galericinae and Erinaceinae), the Hylomys group (to include Neotetracus and Neohylomys), and a sister-relationship of Atelerix and Erinaceus. As well, we verified that the extremely long branch lengths within the Galericinae are consistent with their fossil records. Not surprisingly, we found significant incongruence between the phylogenetic signals of the genes and the morphological characters, specifically in the case of Hylomys parvus, Mesechinus, and relationships between Hemiechinus and Paraechinus. Conclusions Although we discovered new clues to understanding the evolutionary relationships within the Erinaceidae, our results nonetheless, strongly suggest that more robust analyses employing more complete taxon sampling (to include fossils) and multiple unlinked genes would greatly enhance our understanding of the Erinaceidae. Until then, we have left the nomenclature of the taxa unchanged; hence it does not yet precisely reflect their phylogenetic relationships or the depth of their genetic diversity. PMID:22745729
Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria
2008-01-01
Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa. PMID:18471296
Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria.
Evans, Nathaniel M; Lindner, Alberto; Raikova, Ekaterina V; Collins, Allen G; Cartwright, Paulyn
2008-05-09
Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.
Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.
Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.
Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees
Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958
Gordon, Jennifer L; Sibley, L David
2005-01-01
Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility. PMID:16343347
Phylogenetic system and zoogeography of the Plecoptera.
Zwick, P
2000-01-01
Information about the phylogenetic relationships of Plecoptera is summarized. The few characters supporting monophyly of the order are outlined. Several characters of possible significance for the search for the closest relatives of the stoneflies are discussed, but the sister-group of the order remains unknown. Numerous characters supporting the presently recognized phylogenetic system of Plecoptera are presented, alternative classifications are discussed, and suggestions for future studies are made. Notes on zoogeography are appended. The order as such is old (Permian fossils), but phylogenetic relationships and global distribution patterns suggest that evolution of the extant suborders started with the breakup of Pangaea. There is evidence of extensive recent speciation in all parts of the world.
Genomic Repeat Abundances Contain Phylogenetic Signal
Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.
2015-01-01
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464
[Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].
Petrov, N B; Vladychenskaia, N S
2005-01-01
Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.
Jirků-Pomajbíková, Kateřina; Čepička, Ivan; Kalousová, Barbora; Jirků, Milan; Stewart, Fiona; Levecke, Bruno; Modrý, David; Piel, Alex K; Petrželková, Klára J
2016-05-01
To address the molecular diversity and occurrence of pathogenic species of the genus Entamoeba spp. in wild non-human primates (NHP) we conducted molecular-phylogenetic analyses on Entamoeba from wild chimpanzees living in the Issa Valley, Tanzania. We compared the sensitivity of molecular [using a genus-specific polymerase chain reaction (PCR)] and coproscopic detection (merthiolate-iodine-formaldehyde concentration) of Entamoeba spp. We identified Entamoeba spp. in 72 chimpanzee fecal samples (79%) subjected to species-specific PCRs for six Entamoeba species/groups (Entamoeba histolytica, Entamoeba nuttalli, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli and Entamoeba polecki ST2). We recorded three Entamoeba species: E. coli (47%), E. dispar (16%), Entamoeba hartmanni (51%). Coproscopically, we could only distinguish the cysts of complex E. histolytica/dispar/moshkovskii/nuttalli and E. coli. Molecular prevalence of entamoebas was higher than the prevalence based on the coproscopic examination. Our molecular phylogenies showed that sequences of E. dispar and E. coli from Issa chimpanzees are closely related to sequences from humans and other NHP from GenBank. The results showed that wild chimpanzees harbour Entamoeba species similar to those occurring in humans; however, no pathogenic species were detected. Molecular-phylogenetic methods are critical to improve diagnostics of entamoebas in wild NHP and for determining an accurate prevalence of Entamoeba species.
Phylogenetic Analysis of Rubella Viruses Identified in Uganda, 2003–2012
Namuwulya, Prossy; Abernathy, Emily; Bukenya, Henry; Bwogi, Josephine; Tushabe, Phionah; Birungi, Molly; Seguya, Ronald; Kabaliisa, Theopista; Alibu, Vincent P.; Kayondo, Jonathan K.; Rivailler, Pierre; Icenogle, Joseph; Bakamutumaho, Barnabas
2014-01-01
Molecular data on rubella viruses are limited in Uganda despite the importance of congenital rubella syndrome (CRS). Routine rubella vaccination, while not administered currently in Uganda, is expected to begin by 2015. The World Health Organization recommends that countries without rubella vaccination programs assess the burden of rubella and CRS before starting a routine vaccination program. Uganda is already involved in integrated case-based surveillance, including laboratory testing to confirm measles and rubella, but molecular epidemiologic aspects of rubella circulation have so far not been documented in Uganda. Twenty throat swab or oral fluid samples collected from 12 districts during routine rash and fever surveillance between 2003 and 2012 were identified as rubella virus RNA positive and PCR products encompassing the region used for genotyping were sequenced. Phylogenetic analysis of the 20 sequences identified 19 genotype 1G viruses and 1 genotype 1E virus. Genotype-specific trees showed that the Uganda viruses belonged to specific clusters for both genotypes 1G and 1E and grouped with similar sequences from neighboring countries. Genotype 1G was predominant in Uganda. More epidemiological and molecular epidemiological data are required to determine if genotype 1E is also endemic in Uganda. The information obtained in this study will assist the immunization program in monitoring changes in circulating genotypes. PMID:24700073
Phylogenetic analysis of rubella viruses identified in Uganda, 2003-2012.
Namuwulya, Prossy; Abernathy, Emily; Bukenya, Henry; Bwogi, Josephine; Tushabe, Phionah; Birungi, Molly; Seguya, Ronald; Kabaliisa, Theopista; Alibu, Vincent P; Kayondo, Jonathan K; Rivailler, Pierre; Icenogle, Joseph; Bakamutumaho, Barnabas
2014-12-01
Molecular data on rubella viruses are limited in Uganda despite the importance of congenital rubella syndrome (CRS). Routine rubella vaccination, while not administered currently in Uganda, is expected to begin by 2015. The World Health Organization recommends that countries without rubella vaccination programs assess the burden of rubella and CRS before starting a routine vaccination program. Uganda is already involved in integrated case-based surveillance, including laboratory testing to confirm measles and rubella, but molecular epidemiologic aspects of rubella circulation have so far not been documented in Uganda. Twenty throat swab or oral fluid samples collected from 12 districts during routine rash and fever surveillance between 2003 and 2012 were identified as rubella virus RNA positive and PCR products encompassing the region used for genotyping were sequenced. Phylogenetic analysis of the 20 sequences identified 19 genotype 1G viruses and 1 genotype 1E virus. Genotype-specific trees showed that the Uganda viruses belonged to specific clusters for both genotypes 1G and 1E and grouped with similar sequences from neighboring countries. Genotype 1G was predominant in Uganda. More epidemiological and molecular epidemiological data are required to determine if genotype 1E is also endemic in Uganda. The information obtained in this study will assist the immunization program in monitoring changes in circulating genotypes. © 2014 Wiley Periodicals, Inc.
Phylogenetic analysis of H9N2 avian influenza viruses in Afghanistan (2016-2017).
Hosseini, Hossein; Ghalyanchilangeroudi, Arash; Fallah Mehrabadi, Mohammad Hossein; Sediqian, Mohammad Saeed; Shayeganmehr, Arzhang; Ghafouri, Seyed Ali; Maghsoudloo, Hossein; Abdollahi, Hamed; Farahani, Reza Kh
2017-10-01
Avian influenza A virus (AIV) subtype H9N2 is the most prevalent subtype found in terrestrial poultry throughout Eurasia and has been isolated from poultry outbreaks worldwide. Tracheal tissue specimens from 100 commercial broiler flocks in Afghanistan were collected between 2016 and 2017. After real-time RT-PCR, AI-positive samples were further characterized. A part of the HA gene was amplified using RT-PCR and sequenced. The results of real-time RT-PCR showed that 40 percent of the flocks were AI positive. Phylogenetic studies showed that these H9N2 AIVs grouped within the Eurasian-lineage G1 AIVs and had a correlation with H9N2 AIV circulating in the poultry population of the neighboring countries over the past decade. Analysis of the amino acid sequence of HA revealed that the detected H9N2 viruses possessed molecular profiles suggestive of low pathogenicity and specificity for the avian-like SAα2,3 receptor, demonstrating their specificity for and adaptation to domestic poultry. The results of the current study provide great insights into H9N2 viruses circulating in Afghanistan's poultry industry and demonstrate the necessity of planning an applied policy aimed at controlling and managing H9N2 infection in Afghan poultry.
Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M
2015-01-01
Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.
2016-01-01
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089
A new fast method for inferring multiple consensus trees using k-medoids.
Tahiri, Nadia; Willems, Matthieu; Makarenkov, Vladimir
2018-04-05
Gene trees carry important information about specific evolutionary patterns which characterize the evolution of the corresponding gene families. However, a reliable species consensus tree cannot be inferred from a multiple sequence alignment of a single gene family or from the concatenation of alignments corresponding to gene families having different evolutionary histories. These evolutionary histories can be quite different due to horizontal transfer events or to ancient gene duplications which cause the emergence of paralogs within a genome. Many methods have been proposed to infer a single consensus tree from a collection of gene trees. Still, the application of these tree merging methods can lead to the loss of specific evolutionary patterns which characterize some gene families or some groups of gene families. Thus, the problem of inferring multiple consensus trees from a given set of gene trees becomes relevant. We describe a new fast method for inferring multiple consensus trees from a given set of phylogenetic trees (i.e. additive trees or X-trees) defined on the same set of species (i.e. objects or taxa). The traditional consensus approach yields a single consensus tree. We use the popular k-medoids partitioning algorithm to divide a given set of trees into several clusters of trees. We propose novel versions of the well-known Silhouette and Caliński-Harabasz cluster validity indices that are adapted for tree clustering with k-medoids. The efficiency of the new method was assessed using both synthetic and real data, such as a well-known phylogenetic dataset consisting of 47 gene trees inferred for 14 archaeal organisms. The method described here allows inference of multiple consensus trees from a given set of gene trees. It can be used to identify groups of gene trees having similar intragroup and different intergroup evolutionary histories. The main advantage of our method is that it is much faster than the existing tree clustering approaches, while providing similar or better clustering results in most cases. This makes it particularly well suited for the analysis of large genomic and phylogenetic datasets.
Molecular Detection of Ehrlichia canis in Dogs in Malaysia
Nazari, Mojgan; Lim, Sue Yee; Watanabe, Mahira; Sharma, Reuben S. K.; Cheng, Nadzariah A. B. Y.; Watanabe, Malaika
2013-01-01
An epidemiological study of Ehrlichia canis infection in dogs in Peninsular Malaysia was carried out using molecular detection techniques. A total of 500 canine blood samples were collected from veterinary clinics and dog shelters. Molecular screening by polymerase chain reaction (PCR) was performed using genus-specific primers followed by PCR using E. canis species-specific primers. Ten out of 500 dogs were positive for E. canis. A phylogenetic analysis of the E. canis Malaysia strain showed that it was grouped tightly with other E. canis strains from different geographic regions. The present study revealed for the first time, the presence of genetically confirmed E. canis with a prevalence rate of 2.0% in naturally infected dogs in Malaysia. PMID:23301114
Reece, Kimberly S; Scott, Gail P; Dang, Cécile; Dungan, Christopher F
2017-09-01
A monoclonal Perkinsus chesapeaki isolate was established from 1 of 10 infected Australian Anadara trapezia cockles. Morphological features were similar to those of described P. chesapeaki isolates, and also included a unique vermiform schizont cell-type. Perkinsus olseni-specific PCR primers amplified DNAs from all 10 cockles. Perkinsus chesapeaki-specific primers also amplified DNAs from 4/10 cockles, including DNA from the isolate source cockle. Three different sets of DNA sequences from the monoclonal isolate grouped with the homologous, previously deposited, P. chesapeaki sequences in phylogenetic analyses. In situ hybridization assays detected both P. chesapeaki and P. olseni cells in histological sections from the source cockle for monoclonal isolate ATCC PRA-425. Copyright © 2017 Elsevier Inc. All rights reserved.
Dool, Serena E; Puechmaille, Sebastien J; Foley, Nicole M; Allegrini, Benjamin; Bastian, Anna; Mutumi, Gregory L; Maluleke, Tinyiko G; Odendaal, Lizelle J; Teeling, Emma C; Jacobs, David S
2016-04-01
Despite many studies illustrating the perils of utilising mitochondrial DNA in phylogenetic studies, it remains one of the most widely used genetic markers for this purpose. Over the last decade, nuclear introns have been proposed as alternative markers for phylogenetic reconstruction. However, the resolution capabilities of mtDNA and nuclear introns have rarely been quantified and compared. In the current study we generated a novel ∼5kb dataset comprising six nuclear introns and a mtDNA fragment. We assessed the relative resolution capabilities of the six intronic fragments with respect to each other, when used in various combinations together, and when compared to the traditionally used mtDNA. We focused on a major clade in the horseshoe bat family (Afro-Palaearctic clade; Rhinolophidae) as our case study. This old, widely distributed and speciose group contains a high level of conserved morphology. This morphological stasis renders the reconstruction of the phylogeny of this group with traditional morphological characters complex. We sampled multiple individuals per species to represent their geographic distributions as best as possible (122 individuals, 24 species, 68 localities). We reconstructed the species phylogeny using several complementary methods (partitioned Maximum Likelihood and Bayesian and Bayesian multispecies-coalescent) and made inferences based on consensus across these methods. We computed pairwise comparisons based on Robinson-Foulds tree distance metric between all Bayesian topologies generated (27,000) for every gene(s) and visualised the tree space using multidimensional scaling (MDS) plots. Using our supported species phylogeny we estimated the ancestral state of key traits of interest within this group, e.g. echolocation peak frequency which has been implicated in speciation. Our results revealed many potential cryptic species within this group, even in taxa where this was not suspected a priori and also found evidence for mtDNA introgression. We demonstrated that by using just two introns one can recover a better supported species tree than when using the mtDNA alone, despite the shorter overall length of the combined introns. Additionally, when combining any single intron with mtDNA, we showed that the result is highly similar to the mtDNA gene tree and far from the true species tree and therefore this approach should be avoided. We caution against the indiscriminate use of mtDNA in phylogenetic studies and advocate for pilot studies to select nuclear introns. The selection of marker type and number is a crucial step that is best based on critical examination of preliminary or previously published data. Based on our findings and previous publications, we recommend the following markers to recover phylogenetic relationships between recently diverged taxa (<20 My) in bats and other mammals: ACOX2, COPS7A, BGN, ROGDI and STAT5A. Copyright © 2016 Elsevier Inc. All rights reserved.
Cloning of a growth hormone from a primitive bony fish and its phylogenetic relationships.
Rubin, D A; Dores, R M
1994-07-01
Growth hormone (GH), prolactin, and their relatives constitute a multigene family which is considered to have evolved from a common ancestor. The structural and functional domains of GH appear to be highly conserved among vertebrates. In order to investigate the phylogenetic relationships among GHs in the Actinopterygii and Sarcopterygii, we have cloned and sequenced GH from the pituitary of the primitive bony fish, Amia calva. Bony fishes (teleosts) and Amia (Halecomorphi) are purported sister-groups within the Neoptergii, hence studies on this perspective group of fish can provide insights into the evolution of GH. The deduced amino acid (aa) sequence from A. calva GH (amGH) cDNA revealed that the mature GH consists of 190 residues. Phylogenetic comparisons with GH aa sequences from blue shark, sturgeon, four teleosts (eel, carp, porgy, flounder), and two sarcopterygians (African lungfish and bullfrog) indicated, in the most parsimonious cladogram, that amGH clusters as the sister-group to the teleosts, that sturgeon is the sister-group to the Neopterygii, and that the African lungfish and bullfrog are in the same clade.
Phylogeny and evolutionary history of Old World suboscine birds (Aves: Eurylaimides)
Moyle, R.G.; Chesser, R.T.; Prum, R.O.; Schikler, P.; Cracraft, J.
2006-01-01
Molecular and morphological data were used to derive a phylogenetic hypothesis for the Eurylaimides, an Old World bird group now known to be distributed pantropically, and to investigate the evolution and biogeography of the group. Phylogenetic results indicated that the Eurylaimides consist of two monophyletic groups, the pittas (Pittidae) and the broadbills (Eurylaimidae sensu lato), and that the broadbills consist of two highly divergent clades, one containing the sister genera Smithornis and Calyptomena, the other containing Pseudocalyptomena graueri, Sapayoa aenigma, the asity genera Philepitta and Neodrepanis, and five Asian genera. Our results indicate that over a ~10 million year time span in the early Tertiary, the Eurylaimides came to inhabit widely disjunct tropical regions and evolved disparate morphology, diet, and breeding behavior. Biogeographically, although a southern origin for the lineage is likely, time estimates for major lineage splitting do not correspond to Gondwanan vicariance events, and the biogeographic history of the crown clade is better explained by Laurasian climatic and geological processes. In particular, the timing and phylogenetic pattern suggest a likely Laurasian origin for the sole New World representative of the group, Sapayoa aenigma.
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-01-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231
Zanetti, Andernice; Ferreira, Robson C; Serrano, Myrna G; Takata, Carmen S A; Campaner, Marta; Attias, Marcia; de Souza, Wanderley; Teixeira, Marta M G; Camargo, Erney P
2016-10-01
The genus Phytomonas includes trypanosomatids transmitted to the fruits, latex, and phloem of vascular plants by hemipterans. We inferred the phylogenetic relationships of plant and insect isolates assigned to the previously defined genetic groups A-F and H of Phytomonas, particularly those from groups A, C and E comprising flagellates of Solanaceae fruits. Phylogenetic analyses using glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) and Small Subunit rRNA (SSU rRNA) genes strongly supported the monophyly of the genus Phytomonas and its division into seven main infrageneric phylogenetic lineages (Phy clades). Isolates from fruit or latex do not constitute monophyletic assemblages but disperse through more than one lineages. In this study, fruit flagellates were distributed in three clades: PhyA, formed by isolates from Solanaceae and phytophagous hemipterans; PhyC comprising flagellates from four plant families; and PhyE, which contains 15 fruit isolates from seven species of Solanaceae. The flagellates of PhyE are described as Phytomonas dolleti n. sp. according to their positioning in phylogenetic trees, complemented by data about their life cycle, and developmental and morphological characteristics in cultures, fruits of Solanum spp., and salivary glands of the vector, the phytophagous hemipteran Arvelius albopunctatus (Pentatomidae). Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-12-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.
Li, Tong; Gao, Jian-jun; Lu, Jin-ming; Ji, Xing-lai; Chen, Hong-wei
2013-01-01
The phylogenetic relationship among 27 East Asian species of the Stegana genus group was reconstructed using DNA sequences of mitochondrial (COI and ND2) and nuclear (28S) genes. The results lent support to the current generic/subgeneric taxonomic classification in the genus group with the exceptions of the paraphyly of the genus Parastegana and the subgenus Oxyphortica in the genus Stegana. The ancestral areas and divergence times in the genus group were reconstructed/estimated, and accordingly, the biogeographical history of this important clade was discussed. It was proposed that, the evolution of the plant family Fagaceae, especially Quercus, may have played a certain role in facilitating the diversification of the Stegana genus group. Copyright © 2012 Elsevier Inc. All rights reserved.
Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.
2011-01-01
The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275
Plastome data reveal multiple geographic origins of Quercus Group Ilex
Grimm, Guido W.; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas
2016-01-01
Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages. PMID:27123376
Mitochondrial D-loop sequence of domesticated waterfowl in Central Java: goose and muscovy duck
NASA Astrophysics Data System (ADS)
Susanti, R.; Iswari, R. S.
2018-03-01
This study aims to determine the genetic characterization of domesticated waterfowl (goose and Muscovy duck) in Central Java based on a D-loop mtDNA gene. The D-loop gene was amplified using PCR technique by specific primer and sequenced using dideoxy termination method. Multiple alignments of D-loop gene obtained were 710 nucleotides at position 74 to 783 at the 5’ end (for goose) and 712 nucleotides at position 48 to 759 at the 5’ end (for Muscovy duck). The results of the polymorphism analysis on D-loop sequences of muscovy duck produced 3 haplotypes. In the D-loop gene of goose does not show polymorphism, with substitution at G117A. Phylogenetic trees reconstructions of goose and Muscovy duck, which was collected during this research compared with another species from Anser, Chairina and Anas was generated 2 forms of clusters. The first group consists of all kind of Muscovy duck together with Chairina moschata and Anas, while the second group consists of all geese and Anser cygnoides the other. The determination of Muscovy duck and geese identity can be distinguished from the genetic marker information. Based on the phylogenetic analysis, it can be concluded that the Muscovy duck is closely related to Chairina moschata, while geese is closely related to Anser cygnoides.
Benmechernene, Zineb; Fernández-No, Inmaculada; Quintela-Baluja, Marcos; Kihal, Mebrouk; Calo-Mata, Pilar; Barros-Velázquez, Jorge
2014-01-01
Information on the microbiology of camel milk is very limited. In this work, the genetic characterization and proteomic identification of 13 putative producing bacteriocin Leuconostoc strains exhibiting antilisterial activity and isolated from camel milk were performed. DNA sequencing of the 13 selected strains revealed high homology among the 16S rRNA genes for all strains. In addition, 99% homology with Leuconostoc mesenteroides was observed when these sequences were analysed by the BLAST tool against other sequences from reference strains deposited in the Genbank. Furthermore, the isolates were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDITOF MS) which allowed for the identification of 2 mass peaks 6242 m/z and 5118 m/z that resulted to be specific to the species L. mesenteroides. Remarkably, the phyloproteomic tree provided more intraspecific information of L. mesenteroides than phylogenetic analysis. Accordingly, phyloproteomic analysis grouped L. mesenteroides strains into different subbranches, while all L. mesenteroides isolates were grouped in the same branch according to phylogenetic analysis. This study represents, to our knowledge, the first report on the use of MALDI-TOF MS on the identification of LAB isolated from camel milk. PMID:24809059
Botosso, Viviane F.; Zanotto, Paolo M. de A.; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E.; Vieira, Sandra E.; Stewien, Klaus E.; Peret, Teresa C. T.; Jamal, Leda F.; Pardini, Maria I. de M. C.; Pinho, João R. R.; Massad, Eduardo; Sant'Anna, Osvaldo A.; Holmes, Eddie C.; Durigon, Edison L.
2009-01-01
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites. PMID:19119418
Brain organization and specialization in deep-sea chondrichthyans.
Yopak, Kara E; Montgomery, John C
2008-01-01
Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed. The cerebellar-like structures, which receive projections from the electroreceptive and lateral line organs, were also examined as a discrete part of the medulla. Although the species examined spanned three major chondrichthyan groupings (Squalomorphii, Galeomorphii, Holocephali), brain size and the relative development of the major brain areas did not track phylogenetic groupings. Rather, a hierarchical cluster analysis performed on the deep-sea sharks and holocephalans shows that these species all share the common characteristics of a relatively reduced telencephalon and smooth cerebellar corpus, as well as extreme relative enlargement of the medulla, specifically the cerebellar-like lobes. Although this study was not a functional analysis, it provides evidence that brain variation in deep-sea chondichthyans shows adaptive patterns in addition to underlying phylogenetic patterns, and that particular brain patterns might be interpreted as 'cerebrotypes'. (c) 2008 S. Karger AG, Basel
Pereira, Filipe; Duarte-Pereira, Sara; Silva, Raquel M.; da Costa, Luís Teixeira; Pereira-Castro, Isabel
2016-01-01
The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease. PMID:27929068
Pan, Ting Shuang; Nie, Pin
2013-07-01
Acanthocephalans are a small group of obligate endoparasites. They and rotifers are recently placed in a group called Syndermata. However, phylogenetic relationships within classes of acanthocephalans, and between them and rotifers, have not been well resolved, possibly due to the lack of molecular data suitable for such analysis. In this study, the mitochondrial (mt) genome was sequenced from Pallisentis celatus (Van Cleave, 1928), an acanthocephalan in the class Eoacanthocephala, an intestinal parasite of rice-field eel, Monopterus albus (Zuiew, 1793), in China. The complete mt genome sequence of P. celatus is 13 855 bp long, containing 36 genes including 12 protein-coding genes, 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs) as reported for other acanthocephalan species. All genes are encoded on the same strand and in the same direction. Phylogenetic analysis indicated that acanthocephalans are closely related with a clade containing bdelloids, which then correlates with the clade containing monogononts. The class Eoacanthocephala, containing P. celatus and Paratenuisentis ambiguus (Van Cleave, 1921) was closely related to the Palaeacanthocephala. It is thus indicated that acanthocephalans may be just clustered among groups of rotifers. However, the resolving of phylogenetic relationship among all classes of acanthocephalans and between them and rotifers may require further sampling and more molecular data.
Effectiveness of protected areas for vertebrates based on taxonomic and phylogenetic diversity.
Quan, Qing; Che, Xianli; Wu, Yongjie; Wu, Yuchun; Zhang, Qiang; Zhang, Min; Zou, Fasheng
2018-04-01
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1-43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity. © 2017 Society for Conservation Biology.
How does cognition evolve? Phylogenetic comparative psychology
Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria
2014-01-01
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850
A Phylogenetic Perspective on Biogeographical Divergence of the Flora in Yunnan, Southwestern China.
Liu, Shuiyin; Zhu, Hua; Yang, Jie
2017-02-21
In recent years, an increasing number of studies incorporated biogeography with phylogenetic analyses to reveal the origin and evolutionary history of specific floras. In this study, we constructed the mega-phylogeny of the floras of three representative regions across Yunnan, southwestern China. We analyzed the phylogenetic structure and beta diversity based on the presence/absence of species (genus or family) data to investigate the phylogenetic patterns of regional floras. We found conspicuous divergence at the genus and species level in the pattern of phylogenetic structures, which most likely related to historical biogeography. The flora of southern Yunnan was shaped by the strike-slip extrusion of Indochina and the regional climatic stability, while the flora of northwestern Yunnan was shaped by the uplift of the Himalaya-Tibetan Plateau and the oscillations of the glacial-interglacial periods. The flora of central Yunnan had nearly equal proportions of the northern and southern floras that may be derived from a common Tertiary tropical or subtropical flora. Geological events fit well with the floristic and phylogenetic patterns across Yunnan. This study highlighted the importance of linking phylogenetic analyses to biogeographic interpretations to improve our understanding of the origin, evolution and divergence of regional floras.
Vidal-Martínez, Victor M.
2017-01-01
The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1–2) and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments. PMID:29250471
Martínez-Aquino, Andrés; Vidal-Martínez, Victor M; Aguirre-Macedo, M Leopoldina
2017-01-01
The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum ( A. cf. americanum and A. burminis ) and paraphyly of the Acanthostominae . These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.
How does cognition evolve? Phylogenetic comparative psychology.
MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria
2012-03-01
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.
Ampe, F; ben Omar, N; Guyot, J P
1999-07-01
Nine phylogenetic oligonucleotide probes were used to describe at the genus level the microbial community responsible for the spontaneous fermentation of maize, leading to the production of Mexican pozol. Ribosomal RNAs of specific groups and genera, in particular, lactic acid bacteria, were quantified using a culture-independent approach. In the early stage of the fermentation, Lactococcus and Leuconostoc appeared to be the dominant genera. A contrario, these represented minor genera at the end of the fermentation when Lactobacillus dominated the process. In addition, eukaryotes seemed to play a significant role throughout the fermentation and enterobacteria could be detected by this method.
Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences.
Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi
2015-01-01
Loricifera is an enigmatic metazoan phylum; its morphology appeared to place it with Priapulida and Kinorhyncha in the group Scalidophora which, along with Nematoida (Nematoda and Nematomorpha), comprised the group Cycloneuralia. Scarce molecular data have suggested an alternative phylogenetic hypothesis, that the phylum Loricifera is a sister taxon to Nematomorpha, although the actual phylogenetic position of the phylum remains unclear. Ecdysozoan phylogeny was reconstructed through maximum-likelihood (ML) and Bayesian inference (BI) analyses of nuclear 18S and 28S rRNA gene sequences from 60 species representing all eight ecdysozoan phyla, and including a newly collected loriciferan species. Ecdysozoa comprised two clades with high support values in both the ML and BI trees. One consisted of Priapulida and Kinorhyncha, and the other of Loricifera, Nematoida, and Panarthropoda (Tardigrada, Onychophora, and Arthropoda). The relationships between Loricifera, Nematoida, and Panarthropoda were not well resolved. Loricifera appears to be closely related to Nematoida and Panarthropoda, rather than grouping with Priapulida and Kinorhyncha, as had been suggested by previous studies. Thus, both Scalidophora and Cycloneuralia are a polyphyletic or paraphyletic groups. In addition, Loricifera and Nematomorpha did not emerge as sister groups.
Pompilio, Arianna; Crocetta, Valentina; Savini, Vincenzo; Petrelli, Dezemona; Di Nicola, Marta; Bucco, Silvia; Amoroso, Luigi; Bonomini, Mario; Di Bonaventura, Giovanni
2018-01-01
The present work set out to search for a virulence repertoire distinctive for Escherichia coli causing primitive acute pyelonephritis (APN). To this end, the virulence potential of 18 E. coli APN strains was genotypically and phenotypically assessed, comparatively with 19 strains causing recurrent cystitis (RC), and 16 clinically not significant (control, CO) strains. Most of the strains belong to phylogenetic group B1 (69.8%; p<0.01), and APN strains showed unique features, which are the presence of phylogroup A, and the absence of phylogroup B2 and non-typeable strains. Overall, the most dominant virulence factor genes (VFGs) were ecpA and fyuA (92.4 and 86.7%, respectively; p<0.05), and the mean number of VFGs was significantly higher in uropathogenic strains. Particularly, papAH and malX were exclusive for uropathogenic strains. APN and RC strains showed a significantly higher prevalence of fyuA, usp, and malX than of CO strains. Compared to RC strains, APN ones showed a higher prevalence of iha, but a lower prevalence of iroN, cnf1, and kpsMT-II. Hierarchical cluster analysis showed a higher proportion of two gene clusters (malX and usp, and fyuA and ecpA) were detected in the APN and RC groups than in CO, whereas iutA and iha clusters were detected more frequently in APN strains. The motility level did not differ among the study-groups and phylogroups considered, although a higher proportion of swarming strains was observed in APN strains. Antibiotic-resistance rates were generally low except for ampicillin (37.7%), and were not associated with specific study- or phylogenetic groups. APN and RC strains produced more biofilm than CO strains. In APN strains, iha was associated with higher biofilm biomass formation, whereas iroN and KpSMT-K1 were associated with a lower amount of biofilm biomass. Further work is needed to grasp the virulence and fitness mechanisms adopted by E. coli causing APN, and hence develop new therapeutic and prophylactic approaches.
2013-01-01
Background The cagA gene is one of the important virulence factors of Helicobacter pylori. The diversity of cagA 5′ conserved region is thought to reflect the phylogenetic relationships between different H. pylori isolates and their association with peptic ulceration. Significant geographical differences among isolates have been reported. The aim of this study is to compare Turkish H. pylori isolates with isolates from different geographical locations and to correlate the association with peptic ulceration. Methods Total of 52 isolates of which 19 were Turkish and 33 from other geographic locations were studied. Gastric antral biopsies collected from 19 Turkish patients (Gastritis = 12, ulcer = 7) were used to amplify the cagA 5′ region by PCR then followed by DNA sequencing. Results The phylogenetic tree displayed 3 groups: A) a mix of 2 sub-groups “Asian” and “African/Anatolian/Asian/European”, B) “Anatolian/European” and C) “American-Indian”. Turkish H. pylori isolates clustered in the mixed sub-group A were mostly from gastritis patients while those clustered in group B were from peptic ulcer patients. A phylogenetic tree constructed for our Turkish isolates detected distinctive features among those from gastritis and ulcer patients. We have found that 2/3 of the gastritis isolates were clustered alone while 1/3 was clustered together with the ulcer isolates. Several amino acids were found to be shared between the later groups but not with the first group of gastritis. Conclusions This study provided an additional insight into the profile of our cagA gene which implies a relationship in geographic locations of the isolates. PMID:24245965
Phylogeny of the Asian spiny frog tribe Paini (Family Dicroglossidae) sensu Dubois.
Che, Jing; Hu, Jian-sheng; Zhou, Wei-wei; Murphy, Robert W; Papenfuss, Theodore J; Chen, Ming-yong; Rao, Ding-qi; Li, Pi-peng; Zhang, Ya-ping
2009-01-01
The anuran tribe Paini, family Dicroglossidae, is known in this group only from Asia. The phylogenetic relationships and often the taxonomic recognition of species are controversial. In order to stabilize the classification, we used approximately 2100 bp of nuclear (rhodopsin, tyrosinase) and mitochondrial (12S, 16S rRNA) DNA sequence data to infer the phylogenetic relationships of these frogs. Phylogenetic trees reconstructed using Bayesian inference and maximum parsimony methods supported a monophyletic tribe Paini. Two distinct groups (I,II) were recovered with the mtDNA alone and the total concatenated data (mtDNA+nuDNA). The recognition of two genera, Quasipaa and Nanorana, was supported. Group I, Quasipaa, is widespread east of the Hengduan Mountain Ranges and consists of taxa from relatively low elevations in southern China, Vietnam and Laos. Group II, Nanorana, contains a mix of species occurring from high to low elevation predominantly in the Qinghai-Tibetan Plateau and Hengduan Mountain Ranges. The occurrence of frogs at high elevations appears to be a derived ecological condition. The composition of some major species groups based on morphological characteristics strongly conflicts with the molecular analysis. Some possible cryptic species are indicated by the molecular analyses. The incorporation of genetic data from type localities helped to resolve some of the taxonomic problems, although further combined analyses of morphological data from type specimens are required. The two nuDNA gene segments proved to be very informative for resolving higher phylogenetic relationships and more nuclear data should be explored to be more confident in the relationships.
Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping
2015-07-01
In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phylogenetic relationships of Shiga toxin-producing Escherichia coli isolated from Peruvian children
Contreras, C. A.; Ruiz, J.; Lacher, D. W.; Rivera, F. P.; Saenz, Y.; Chea-Woo, E.; Zavaleta, N.; Gil, A. I.; Lanata, C. F.; Huicho, L.; Maves, R. C.; Torres, C.; DebRoy, C.; Cleary, T. G.
2011-01-01
The aim of this study was to determine the prevalence, virulence factors (stx, eae, ehxA and astA) and phylogenetic relationships [PFGE and multilocus sequence typing (MLST)] of Shiga toxin-producing Escherichia coli (STEC) strains isolated from four previous cohort studies in 2212 Peruvian children aged <36 months. STEC prevalence was 0.4 % (14/3219) in diarrhoeal and 0.6 % (15/2695) in control samples. None of the infected children developed haemolytic uraemic syndrome (HUS) or other complications of STEC. stx1 was present in 83 % of strains, stx2 in 17 %, eae in 72 %, ehxA in 59 % and astA in 14 %. The most common serotype was O26 : H11 (14 %) and the most common seropathotype was B (45 %). The strains belonged mainly to phylogenetic group B1 (52 %). The distinct combinations of alleles across the seven MLST loci were used to define 13 sequence types among 19 STEC strains. PFGE typing of 20 STEC strains resulted in 19 pulsed-field patterns. Comparison of the patterns revealed 11 clusters (I–XI), each usually including strains belonging to different serotypes; one exception was cluster VI, which gathered exclusively seven strains of seropathotype B, clonal group enterohaemorrhagic E. coli (EHEC) 2 and phylogenetic group B1. In summary, STEC prevalence was low in Peruvian children with diarrhoea in the community setting. The strains were phylogenetically diverse and associated with mild infections. However, additional studies are needed in children with bloody diarrhoea and HUS. PMID:21292859
MÜller, Rodrigo Temp; Langer, Max Cardoso; Dias-da-Silva, SÉrgio
2018-03-07
Despite representing a key-taxon in dinosauromorph phylogeny, Lagerpertidae is one of the most obscure and enigmatic branches from the stem that leads to the dinosaurs. Recent new findings have greatly increased our knowledge about lagerpetids, but no phylogenetic analysis has so far included all known members of this group. Here, we present the most inclusive phylogenetic study so far conducted for Lagerpetidae. Phylogenetic analyses were performed based on three independent data matrixes. In two of them, Lagerpeton chanarensis Romer, 1971 is the sister taxon to all other known Lagerpetidae, whereas Ixalerpeton polesinensis Cabreira et al., 2016 is in a sister group relationship with a clade that includes PVSJ 883 and Dromomeron. Conversely, the other analysis supports an alternative topology, where I. polesinensis is the sister taxon to either L. chanarensis or all other Lagerpetidae. Although coeval and geographically close, I. polesinensis and PVSJ 883 do not form a clade exclusive of other lagerpetids. As previously suggested D. gigas Martínez, Apaldetti, Correa Abelín, 2016 is the sister taxon of D. romeri Irmis et al., 2007. The phylogenetic analyses also indicate that the earliest lagerpetids are restricted to southwestern Pangea, whereas later forms spread across the entire western portion of the supercontinent. Finally, quantification of the codified characters of our analysis reveals that Lagerpetidae is one of the poorest known among the Triassic dinosauromorph groups in terms of their anatomy, so that new discoveries of more complete specimens are awaited to establish a more robust phylogeny.
MGUPGMA: A Fast UPGMA Algorithm With Multiple Graphics Processing Units Using NCCL
Hua, Guan-Jie; Hung, Che-Lun; Lin, Chun-Yuan; Wu, Fu-Che; Chan, Yu-Wei; Tang, Chuan Yi
2017-01-01
A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa. These methods have the computational performance issue. Although several new methods with high-performance hardware and frameworks have been proposed, the issue still exists. In this work, a novel parallel Unweighted Pair Group Method with Arithmetic Mean approach on multiple Graphics Processing Units is proposed to construct a phylogenetic tree from extremely large set of sequences. The experimental results present that the proposed approach on a DGX-1 server with 8 NVIDIA P100 graphic cards achieves approximately 3-fold to 7-fold speedup over the implementation of Unweighted Pair Group Method with Arithmetic Mean on a modern CPU and a single GPU, respectively. PMID:29051701
MGUPGMA: A Fast UPGMA Algorithm With Multiple Graphics Processing Units Using NCCL.
Hua, Guan-Jie; Hung, Che-Lun; Lin, Chun-Yuan; Wu, Fu-Che; Chan, Yu-Wei; Tang, Chuan Yi
2017-01-01
A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa. These methods have the computational performance issue. Although several new methods with high-performance hardware and frameworks have been proposed, the issue still exists. In this work, a novel parallel Unweighted Pair Group Method with Arithmetic Mean approach on multiple Graphics Processing Units is proposed to construct a phylogenetic tree from extremely large set of sequences. The experimental results present that the proposed approach on a DGX-1 server with 8 NVIDIA P100 graphic cards achieves approximately 3-fold to 7-fold speedup over the implementation of Unweighted Pair Group Method with Arithmetic Mean on a modern CPU and a single GPU, respectively.
Takahashi, K; Nishida, M; Yuma, M; Okada, N
2001-01-01
Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis.
Standorf, Kali; Cortés-Hinojosa, Galaxia; Venn-Watson, Stephanie; Rivera, Rebecca; Archer, Linda L; Wellehan, James F X
2018-01-01
: Adenoviruses are nonenveloped, double-stranded DNA viruses, known to infect members of all tetrapod classes, with a similarity between phylogenies of hosts and viruses observed. We characterized bottlenose dolphin adenovirus 2 (BdAdV-2) found in a bottlenose dolphin ( Tursiops truncatus) with enteritis. Virions were seen by negative staining electron microscopy of feces. Initial sequences obtained using conserved PCR primers were expanded using primer walking techniques, and the complete coding sequence was obtained. Phylogenetic analyses were consistent with coevolution of this virus and its bottlenose dolphin host, placing BdAdV-2 into a monophyletic group with other mastadenoviruses of Cetartiodactyla. When considering the low guanine/cytosine (G/C) content of BdAdV-2 with the phylogenetic data, this virus may represent a host-jumping event from another member of Cetartiodactyla. Analysis of partial polymerase indicated that bottlenose dolphin adenovirus 1, previously identified in Spain, and BdAdV-2 are sister taxa with harbor porpoise adenovirus 1, forming a cetacean clade. Bottlenose dolphin adenovirus 2 includes a highly divergent fiber gene. Two genes homologous to the dUTPase superfamily are also present which could play a role in enabling viral replication in nondividing cells. We used sequence data to develop a probe hybridization quantitative PCR assay specific to BdAdV-2 with a limit of detection of 10 copies.
Variance Component Selection With Applications to Microbiome Taxonomic Data.
Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J
2018-01-01
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.
The Evolutionary Origin of a Terrestrial Flora.
Delwiche, Charles Francis; Cooper, Endymion Dante
2015-10-05
Life on Earth as we know it would not be possible without the evolution of plants, and without the transition of plants to live on land. Land plants (also known as embryophytes) are a monophyletic lineage embedded within the green algae. Green algae as a whole are among the oldest eukaryotic lineages documented in the fossil record, and are well over a billion years old, while land plants are about 450-500 million years old. Much of green algal diversification took place before the origin of land plants, and the land plants are unambiguously members of a strictly freshwater lineage, the charophyte green algae. Contrary to single-gene and morphological analyses, genome-scale phylogenetic analyses indicate the sister taxon of land plants to be the Zygnematophyceae, a group of mostly unbranched filamentous or single-celled organisms. Indeed, several charophyte green algae have historically been used as model systems for certain problems, but often without a recognition of the specific phylogenetic relationships among land plants and (other) charophyte green algae. Insight into the phylogenetic and genomic properties of charophyte green algae opens up new opportunities to study key properties of land plants in closely related model. This review will outline the transition from single-celled algae to modern-day land plants, and will highlight the bright promise studying the charophyte green algae holds for better understanding plant evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong
2011-04-15
A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.
Steele, Sarah E.; López-Fernández, Hernán
2014-01-01
Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale. PMID:25180970
Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis
Trucco, María Inés; Buratti, Claudio César
2017-01-01
Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic study using cytochrome c oxidase I (COI) gene sequences taken from the Barcode of Life (FISH-BOL) database. Thus, 76 sequences of S. japonicus, S. colias, S. australasicus and S. scombrus from different regions were used; including 3 from Sarda sarda as outgroup. Among S. japonicus selected sequences are those corresponding to the Argentine mackerels collected in 2007. Phylogenetic trees were obtained by neighbor joining and maximum likelihood methods and a network of haplotypes was reconstructed to analyze the relationship between species. The results showed the clear differentiation of S. australasicus, S. scombrus and S. japonicus from the Pacific while S. japonicus from Argentina was included in the S. colias group, with genetic differences corresponding to conspecific populations (0.1%). Four of the five Argentine specimens shared the same haplotype with S. colias, and none were shared with S. japonicus from the Pacific. These results suggest that the current specific name of Argentine mackerel S. japonicus should be changed to S. colias, in agreement with several genetic studies carried out with species of the genus Scomber. PMID:29071283
Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis
2015-01-01
Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases. PMID:26226014
Bulgarella, Mariana; Heimpel, George E
2015-09-01
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.
Zelck, Ulrike E; Bialek, Ralf; Weiss, Michael
2011-04-01
We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed.
P-type ATPase superfamily: evidence for critical roles for kingdom evolution.
Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio
2003-04-01
The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.
Zhang, Peng
2012-01-01
Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083
USDA-ARS?s Scientific Manuscript database
Technical Abstract Here we present a dated phylogenetic tree of the neotropical palm genus Attalea (Arecaceae). We used six orthologs from the nuclear WRKY gene family across 98 accessions to address relationships among species and biogeographic hypotheses. Here we found that the formerly recognized...
Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R
2014-01-01
Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.
Dutra Vieira, Thainá; Pegoraro de Macedo, Marcia Raquel; Fedatto Bernardon, Fabiana; Müller, Gertrud
2017-10-01
The nematode Diplotriaena bargusinica is a bird air sac parasite, and its taxonomy is based mainly on morphological and morphometric characteristics. Increasing knowledge of genetic information variability has spurred the use of DNA markers in conjunction with morphological data for inferring phylogenetic relationships in different taxa. Considering the potential of molecular biology in taxonomy, this study presents the morphological and molecular characterization of D. bargusinica, and establishes the phylogenetic position of the nematode in Spirurina. Twenty partial sequences of the 18S region of D. bargusinica rDNA were generated. Phylogenetic trees were obtained through the Maximum Likelihood and Bayesian Inference methods where both had similar topology. The group Diplotriaenoidea is monophyletic and the topologies generated corroborate the phylogenetic studies based on traditional and previously performed molecular taxonomy. This study is the first to generate molecular data associated with the morphology of the species. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular taxonomy and phylogenetic position of lactic acid bacteria.
Stackebrandt, E; Teuber, M
1988-03-01
Lactic acid bacteria, important in food technology, are Gram-positive organisms exhibiting a DNA G + C content of less than 50 mol%. Phylogenetically they are members of the Clostridium-Bacillus subdivision of Gram-positive eubacteria. Lactobacillus and streptococci together with related facultatively anaerobic taxa evolved as individual lines of descent about 1.5-2 billion years ago when the earth passed from an anaerobic to an aerobic environment. In contrast to the traditional, morphology-based classification, the genus Lactobacillus is intermixed with strains of Pediococcus and Leuconostoc. Similarly, the physiology-based clustering of lactobacilli into Thermo-, Strepto- and Betabacterium does not agree with their phylogenetic relationships. On the other hand, the phenotypically defined genus Streptococcus is not a phylogenetic coherent genus but its members fall into at least 3 moderately related genera, i.e. Streptococcus, Lactococcus and Enterococcus. The genus Bifidobacterium, frequently grouped with the lactobacilli, is the most ancient group of the second, the Actinomycetes subdivision of the Gram-positive eubacteria. In addition, propionibacteria, microbacteria and brevibacteria belong to this subdivision but the latter organisms appear as offshoots of non-lactic acid bacteria.
Costa-Rezende, D H; Robledo, G L; Góes-Neto, A; Reck, M A; Crespo, E; Drechsler-Santos, E R
2017-12-01
Ganodermataceae is a remarkable group of polypore fungi, mainly characterized by particular double-walled basidiospores with a coloured endosporium ornamented with columns or crests, and a hyaline smooth exosporium. In order to establish an integrative morphological and molecular phylogenetic approach to clarify relationship of Neotropical Amauroderma s.lat. within the Ganodermataceae family, morphological analyses, including scanning electron microscopy, as well as a molecular phylogenetic approach based on one (ITS) and four loci (ITS-5.8S, LSU, TEF-1α and RPB1 ), were carried out. Ultrastructural analyses raised up a new character for Ganodermataceae systematics, i.e . , the presence of perforation in the exosporium with holes that are connected with hollow columns of the endosporium. This character is considered as a synapomorphy in Foraminispora , a new genus proposed here to accommodate Porothelium rugosum (≡ Amauroderma sprucei ). Furtadoa is proposed to accommodate species with monomitic context: F. biseptata, F. brasiliensis and F. corneri . Molecular phylogenetic analyses confirm that both genera grouped as strongly supported distinct lineages out of the Amauroderma s.str. clade.
Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong
2013-01-01
Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling-through this, DNA barcoding will greatly benefit the current fields of its application.
Vickerman, M M; Brossard, K A; Funk, D B; Jesionowski, A M; Gill, S R
2007-01-01
Phylogenetic analysis of bacterial and archaeal 16S rRNA was used to examine polymicrobial communities within infected root canals of 20 symptomatic and 14 asymptomatic patients. Nucleotide sequences from approximately 750 clones amplified from each patient group with universal bacterial primers were matched to the Ribosomal Database Project II database. Phylotypes from 37 genera representing Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were identified. Results were compared to those obtained with species-specific primers designed to detect Prevotella intermedia, Porphyromonas gingivalis, Porphyromonas endodontalis, Peptostreptococcus micros, Enterococcus sp., Streptococcus sp., Fusobacterium nucleatum, Tannerella forsythensis and Treponema denticola. Since members of the domain Archaea have been implicated in the severity of periodontal disease, and a recent report confirms that archaea are present in endodontic infections, 16S archaeal primers were also used to detect which patients carried these prokaryotes, to determine if their presence correlated with severity of the clinical symptoms. A Methanobrevibacter oralis-like species was detected in one asymptomatic and one symptomatic patient. DNA from root canals of these two patients was further analysed using species-specific primers to determine bacterial cohabitants. Trep. denticola was detected in the asymptomatic but not the symptomatic patient. Conversely, Porph. endodontalis was found in the symptomatic but not the asymptomatic patient. All other species except enterococci were detected with the species-specific primers in both patients. These results confirm the presence of archaea in root canals and provide additional insights into the polymicrobial communities in endodontic infections associated with clinical symptoms.
Rabbits and men: relating their ages.
Dutta, Sulagna; Sengupta, Pallav
2018-04-19
Rabbit, a member of the Lagomorpha order, is the closest phylogenetic relative to humans, next to primates. It possesses greater acceptability as a laboratory mammal than primates in terms of husbandry, breeding ease, cost effectiveness, and legal ethical conveniences. Moreover, as a laboratory animal, the rabbit also owns its advantages over mice or rats, in terms of phylogenetic resemblance to human, size, blood volume, responsiveness, and other congruences enabling them to better imitate human physiological characteristics in biomedical research. A specific research aspires to effectuate its outcome on a particular human age group, for which it is pivotal to select a laboratory rabbit of exact age, which will correlate with that specific age of a human, which is currently based on mere approximation. This article is the first ever scientific venture, focused to swap this approximation of laboratory rabbit age with accuracy by relating it with that of humans analyzing different phases of life individually. Considering the diminutive lifespan of rabbits compared to humans, the correlation of their age with respect to the entire lifespan, which we found out to be 45.625 days compared to one human year, is not enough. Thereby, like our previous articles that formulated concise relation of age of laboratory rats and mice with human age, in this article also, we aim to aid biomedical research specificity in the selection of laboratory model age, separately correlating different life phases of humans with that of rabbits, the second mostly used mammal in 2016 in the United States.
Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia
2012-11-16
The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.
2012-01-01
Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176
Jones, Aaron A.; Bennett, Philip C.
2017-01-01
This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754
Wan, Yizhen; Schwaninger, Heidi R; Baldo, Angela M; Labate, Joanne A; Zhong, Gan-Yuan; Simon, Charles J
2013-07-05
Grapes are one of the most economically important fruit crops. There are about 60 species in the genus Vitis. The phylogenetic relationships among these species are of keen interest for the conservation and use of this germplasm. We selected 309 accessions from 48 Vitis species,varieties, and outgroups, examined ~11 kb (~3.4 Mb total) of aligned nuclear DNA sequences from 27 unlinked genes in a phylogenetic context, and estimated divergence times based on fossil calibrations. Vitis formed a strongly supported clade. There was substantial support for species and less for the higher-level groupings (series). As estimated from extant taxa, the crown age of Vitis was 28 Ma and the divergence of subgenera (Vitis and Muscadinia) occurred at ~18 Ma. Higher clades in subgenus Vitis diverged 16 - 5 Ma with overlapping confidence intervals, and ongoing divergence formed extant species at 12 - 1.3 Ma. Several species had species-specific SNPs. NeighborNet analysis showed extensive reticulation at the core of subgenus Vitis representing the deeper nodes, with extensive reticulation radiating outward. Fitch Parsimony identified North America as the origin of the most recent common ancestor of extant Vitis species. Phylogenetic patterns suggested origination of the genus in North America, fragmentation of an ancestral range during the Miocene, formation of extant species in the late Miocene-Pleistocene, and differentiation of species in the context of Pliocene-Quaternary tectonic and climatic change. Nuclear SNPs effectively resolved relationships at and below the species level in grapes and rectified several misclassifications of accessions in the repositories. Our results challenge current higher-level classifications, reveal the abundance of genetic diversity in the genus that is potentially available for crop improvement, and provide a valuable resource for species delineation, germplasm conservation and use.
Tsuchida, Sayaka; Kitahara, Maki; Nguema, Pierre Philippe Mbehang; Norimitsu, Saeko; Fujita, Shiho; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari
2014-12-01
Four strains of Gram-staining-positive, anaerobic rods were isolated from the faeces of western lowland gorillas (Gorilla gorilla gorilla). Three strains, KZ01(T), KZ02 and KZ03, were isolated at the Kyoto City Zoo, Japan, and one strain, GG02, was isolated in the Moukalaba-Doudou National Park, Gabon. These strains were investigated taxonomically. These strains belonged to the Lactobacillus reuteri phylogenetic group according to phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic characteristics. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains KZ01(T), KZ02, KZ03 and GG02 formed a single monophyletic cluster and had a distinct line of descent. Based on sequence similarity of the 16S rRNA gene, Lactobacillus fermentum JCM 1173(T) (96.6 %) was the closest neighbour to these novel strains, although it was clear that these strains belonged to a different species. Partial pheS sequences also supported these relationships. DNA-DNA relatedness between strain KZ01(T) and L. fermentum JCM 1173(T) was less than 22 % and the DNA G+C content of strain KZ01(T) was 50.7 mol%. The cell-wall peptidoglycan type was A4β (l-Orn-d-Asp) and the major fatty acids were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Therefore, based on phylogenetic, phenotypic and physiological evidence, these strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus gorillae sp. nov. is proposed. The type strain is KZ01(T) ( = JCM 19575(T) = DSM 28356(T)). © 2014 IUMS.
The origin and evolution of tRNA inferred from phylogenetic analysis of structure.
Sun, Feng-Jie; Caetano-Anollés, Gustavo
2008-01-01
The evolutionary history of the two structural and functional domains of tRNA is controversial but harbors the secrets of early translation and the genetic code. To explore the origin and evolution of tRNA, we reconstructed phylogenetic trees directly from molecular structure. Forty-two structural characters describing the geometry of 571 tRNAs and three statistical parameters describing thermodynamic and mechanical features of molecules quantitatively were used to derive phylogenetic trees of molecules and molecular substructures. Trees of molecules failed to group tRNA according to amino acid specificity and did not reveal the tripartite nature of life, probably due to loss of phylogenetic signal or because tRNA diversification predated organismal diversification. Trees of substructures derived from both structural and statistical characters support the origin of tRNA in the acceptor arm and the hypothesis that the top half domain composed of acceptor and pseudouridine (TPsiC) arms is more ancient than the bottom half domain composed of dihydrouridine (DHU) and anticodon arms. This constitutes the cornerstone of the genomic tag hypothesis that postulates tRNAs were ancient telomeres in the RNA world. The trees of substructures suggest a model for the evolution of the major functional and structural components of tRNA. In this model, short RNA hairpins with stems homologous to the acceptor arm of present day tRNAs were extended with regions homologous to TPsiC and anticodon arms. The DHU arm was then incorporated into the resulting three-stemmed structure to form a proto-cloverleaf structure. The variable region was the last structural addition to the molecular repertoire of evolving tRNA substructures.
Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l.
Marinho, Rafaela C; Mendes-Rodrigues, Clesnan; Balao, Francisco; Ortiz, Pedro L; Yamagishi-Costa, Júlia; Bonetti, Ana M; Oliveira, Paulo E
2014-09-01
• Whole genome duplication (WGD) and specific polyploidy events marked turning points for angiosperm genome structure and evolution. Therefore, cytogenetic studies of polyploidy-prone groups such as the tropical Malvaceae and plant formations such as as the Brazilian Cerrado have gained further importance. We present new chromosome counts for Cerrado Bombacoideae and revised chromosome numbers for the Malvaceae s.l., compare these between subfamilies, and relate them to phylogenetic signal.• We studied the chromosome number of Eriotheca candolleana, E. gracilipes, E. pubescens, Pachira glabra, Pseudobombax longiflorum, and P. tomentosum. We also compared Eriotheca species ploidy levels using flow cytometry. We compiled chromosome numbers for 557 species of Malvaceae s.l., including 37 Bombacoideae species. We included this information in a phylogenetic reconstruction based on chloroplast matK-trnK DNA to evaluate chromosome evolution of the Malvaceae s.l. and the Bombacoideae in particular.• The Cerrado Bombacoideae presented consistently high chromosome numbers. Numbers for Eriotheca species were among the highest and varied among populations. Flow cytometry analyses showed similar 1Cx DNA for all cytotypes and indicated neopolyploidy. Chromosome numbers differed between subfamilies, with the lowest numbers in the Malvoideae and Byttnerioideae and the highest in Tilioideae. Chromosome numbers had significant phylogenetic signal for Bombacoideae but not for Malvoideae or Malvaceae s.l.• Clearly distinct chromosome numbers allied to monophyly provide some support for a circumscription of the Bombacoideae and distinction within the Malvaceae. The phylogenetic signal for chromosome number supports the idea of an ancient WGD and further neopolyploidy events as important evolutionary trends for the Bombacoideae. © 2014 Botanical Society of America, Inc.
Karasev, Alexander V.; Hu, Xiaojun; Brown, Celeste J.; Kerlan, Camille; Nikolaeva, Olga V.; Crosslin, James M.; Gray, Stewart M.
2011-01-01
The ordinary strain of Potato virus Y (PVY), PVYO, causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVYO was recently reported, PVYO-O5, which is spreading in the United States and is distinguished from other PVYO isolates serologically (i.e., reacting to the otherwise PVYN-specific monoclonal antibody 1F5). To characterize this new PVYO-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVYO and PVYO-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVYO isolates were sequenced, including 31 from the previously defined PVYO-O5 group, and subjected to whole-genome analysis. PVYO-O5 isolates formed a separate lineage within the PVYO genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVYO sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVYO genomes was conducted. The analysis revealed that PVYN:O and PVYN-Wi recombinants acquired their PVYO segments from two separate PVYO lineages, whereas the PVYNTN recombinant acquired its PVYO segment from the same lineage as PVYN:O. These data suggest that PVYN:O and PVYN-Wi recombinants originated from two separate recombination events involving two different PVYO parental genomes, whereas the PVYNTN recombinants likely originated from the PVYN:O genome via additional recombination events. PMID:21675922
Archaebacterial phylogeny: perspectives on the urkingdoms
NASA Technical Reports Server (NTRS)
Woese, C. R.; Olsen, G. J.
1986-01-01
Comparisons of complete 16S ribosomal RNA sequences have been used to confirm, refine and extend earlier concepts of archaebacterial phylogeny. The archaebacteria fall naturally into two major branches or divisions, I--the sulfur-dependent thermophilic archaebacteria, and II--the methanogenic archaebacteria and their relatives. Division I comprises a relatively closely related and phenotypically homogeneous collection of thermophilic sulfur-dependent species--encompassing the genera Sulfolobus, Thermoproteus, Pyrodictium and Desulfurococcus. The organisms of Division II, however, form a less compact grouping phylogenetically, and are also more diverse in phenotype. All three of the (major) methanogen groups are found in Division II, as are the extreme halophiles and two types of thermoacidophiles, Thermoplasma acidophilum and Thermococcus celer. This last species branches sufficiently deeply in the Division II line that it might be considered to represent a separate, third Division. However, both the extreme halophiles and Tp. acidophilum branch within the cluster of methanogens. The extreme halophiles are specifically related to the Methanomicrobiales, to the exclusion of both the Methanococcales and the Methanobacteriales. Tp. acidophilum is peripherally related to the halophile-Methanomicrobiales group. By 16S rRNA sequence measure the archaebacteria constitute a phylogenetically coherent grouping (clade), which excludes both the eubacteria and the eukaryotes--a conclusion that is supported by other sequence evidence as well. Alternative proposals for archaebacterial phylogeny, not based upon sequence evidence, are discussed and evaluated. In particular, proposals to rename (reclassify) various subgroups of the archaebacteria as new kingdoms are found wanting, for both their lack of proper experimental support and the taxonomic confusion they introduce.
Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium
Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka
2012-01-01
ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567
Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri
2012-01-01
Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.
Methodology capture: discriminating between the "best" and the rest of community practice
Eales, James M; Pinney, John W; Stevens, Robert D; Robertson, David L
2008-01-01
Background The methodologies we use both enable and help define our research. However, as experimental complexity has increased the choice of appropriate methodologies has become an increasingly difficult task. This makes it difficult to keep track of available bioinformatics software, let alone the most suitable protocols in a specific research area. To remedy this we present an approach for capturing methodology from literature in order to identify and, thus, define best practice within a field. Results Our approach is to implement data extraction techniques on the full-text of scientific articles to obtain the set of experimental protocols used by an entire scientific discipline, molecular phylogenetics. Our methodology for identifying methodologies could in principle be applied to any scientific discipline, whether or not computer-based. We find a number of issues related to the nature of best practice, as opposed to community practice. We find that there is much heterogeneity in the use of molecular phylogenetic methods and software, some of which is related to poor specification of protocols. We also find that phylogenetic practice exhibits field-specific tendencies that have increased through time, despite the generic nature of the available software. We used the practice of highly published and widely collaborative researchers ("expert" researchers) to analyse the influence of authority on community practice. We find expert authors exhibit patterns of practice common to their field and therefore act as useful field-specific practice indicators. Conclusion We have identified a structured community of phylogenetic researchers performing analyses that are customary in their own local community and significantly different from those in other areas. Best practice information can help to bridge such subtle differences by increasing communication of protocols to a wider audience. We propose that the practice of expert authors from the field of evolutionary biology is the closest to contemporary best practice in phylogenetic experimental design. Capturing best practice is, however, a complex task and should also acknowledge the differences between fields such as the specific context of the analysis. PMID:18761740
Hashemizadeh, Zahra; Kalantar-Neyestanaki, Davood; Mansouri, Shahla
2017-09-01
Variety of virulence factors are involved in the pathogenicity of Escherichia coli, the common cause of the urinary tract infections (UTIs). The aim of this study was to determine some virulence factors involved in the pathogenicity and the phylogenetic grouping of E. coli from UTIs compared with the E. coli isolates from gut microbiota (fecal flora). The isolates were tested for biofilm formation, haemagglutination, cell surface hydrophobicity (CSH), hemolysin production, phylogenetic grouping and the distribution of 6 known virulence genes. Isolates from UTIs showed a significantly higher prevalence of haemagglutination and hemolysin production compared with fecal flora (P ≤ 0.05), while biofilm formation and cell surface hydrophobicity (CSH) were not significantly different among the groups. Prevalence of virulence genes fimH, kpsMT ll, iutA, sat, hlyA, and cnf1 among all isolates were: 94.5%, 66.95%, 67.8%, 39%, 23.07% and 21.08%, respectively. The genes for hlyA, cnf1, kpsMT ll were found to be higher in UTI isolates compared to fecal flora (P ≤ 0.05). The frequency of the isolates in the phylogenetic groups B2, D, A and B1 were 36.7%, 31.3%, 16.2% and 15.6%, respectively. All the virulence genes except fimH were found to be significantly higher in the isolates of groups B2 and D. The results suggests that certain factors are necessary for the host colonization and infection and they are common in both virulent and non-virulent strains, and that the strains in the groups A and B1 having the lower virulence factors must acquire these factors when the condition is in favor of their dissemination to the urinary tract. In contrast the isolates in the groups B2 and D appeared to be potentially virulent. Copyright © 2017. Published by Elsevier Ltd.
Gupta, Radhey S; Naushad, Sohail; Baker, Sheridan
2015-03-01
The Halobacteria constitute one of the largest groups within the Archaea. The hierarchical relationship among members of this large class, which comprises a single order and a single family, has proven difficult to determine based upon 16S rRNA gene trees and morphological and physiological characteristics. This work reports detailed phylogenetic and comparative genomic studies on >100 halobacterial (haloarchaeal) genomes containing representatives from 30 genera to investigate their evolutionary relationships. In phylogenetic trees reconstructed on the basis of 32 conserved proteins, using both neighbour-joining and maximum-likelihood methods, two major clades (clades A and B) encompassing nearly two-thirds of the sequenced haloarchaeal species were strongly supported. Clades grouping the same species/genera were also supported by the 16S rRNA gene trees and trees for several individual highly conserved proteins (RpoC, EF-Tu, UvrD, GyrA, EF-2/EF-G). In parallel, our comparative analyses of protein sequences from haloarchaeal genomes have identified numerous discrete molecular markers in the form of conserved signature indels (CSI) in protein sequences and conserved signature proteins (CSPs) that are found uniquely in specific groups of haloarchaea. Thirteen CSIs in proteins involved in diverse functions and 68 CSPs that are uniquely present in all or most genome-sequenced haloarchaea provide novel molecular means for distinguishing members of the class Halobacteria from all other prokaryotes. The members of clade A are distinguished from all other haloarchaea by the unique shared presence of two CSIs in the ribose operon protein and small GTP-binding protein and eight CSPs that are found specifically in members of this clade. Likewise, four CSIs in different proteins and five other CSPs are present uniquely in members of clade B and distinguish them from all other haloarchaea. Based upon their specific clustering in phylogenetic trees for different gene/protein sequences and the unique shared presence of large numbers of molecular signatures, members of clades A and B are indicated to be distinct from all other haloarchaea because of their uniquely shared evolutionary histories. Based upon these results, it is proposed that clades A and B be recognized as two new orders, Natrialbales ord. nov. and Haloferacales ord. nov., within the class Halobacteria, containing the novel families Natrialbaceae fam. nov. and Haloferacaceae fam. nov. Other members of the class Halobacteria that are not members of these two orders will remain part of the emended order Halobacteriales in an emended family Halobacteriaceae. © 2015 IUMS.
Wang, Ting-Ting; Si, Feng-Ling; He, Zheng-Bo; Chen, Bin
2018-01-15
Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent IR), especially for Divergent IR are more variable, have a simpler gene structure (intron loss phenomenon) and larger ω values, and lack specific functional sites. These IR genes have no other domains except for Antenna IRs that only have the Lig_Chan domain. This study provides a comprehensive information framework for iGluR genes in An. sinensis, and generated the classification of iGluRs by feature and bioinformatics analyses. The work lays the foundation for further functional study of these genes.
Host specificity in parasitic plants-perspectives from mistletoes.
Okubamichael, Desale Y; Griffiths, Megan E; Ward, David
2016-01-01
Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Phylogenetic Group Determination of Escherichia coli Isolated from Animals Samples
Morcatti Coura, Fernanda; Diniz, Soraia de Araújo; Silva, Marcos Xavier; Mussi, Jamili Maria Suhet; Barbosa, Silvia Minharro; Lage, Andrey Pereira; Heinemann, Marcos Bryan
2015-01-01
This study analyzes the occurrence and distribution of phylogenetic groups of 391 strains of Escherichia coli isolated from poultry, cattle, and water buffalo. The frequency of the phylogroups was A = 19%, B1 = 57%, B2 = 2.3%, C = 4.6%, D = 2.8%, E = 11%, and F = 3.3%. Phylogroups A (P < 0.001) and F (P = 0.018) were associated with E. coli strains isolated from poultry, phylogroups B1 (P < 0.001) and E (P = 0.002) were associated with E. coli isolated from cattle, and phylogroups B2 (P = 0.003) and D (P = 0.017) were associated with E. coli isolated from water buffalo. This report demonstrated that some phylogroups are associated with the host analyzed and the results provide knowledge of the phylogenetic composition of E. coli from domestic animals. PMID:26421310
Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent
2016-10-10
The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic HSP70 and an evolutionary model of the distinct forms amongst the Arthropoda phylum. The observed differences between HSP70 groups will probably have to be linked to distinct interactions with co-chaperones or other co-factors. Copyright © 2016 Elsevier B.V. All rights reserved.
de Souza da-Silva, Ana Paula; de Sousa, Viviane Santos; Martins, Natacha; da Silva Dias, Rubens Clayton; Bonelli, Raquel Regina; Riley, Lee W; Moreira, Beatriz Meurer
2017-05-01
Escherichia coli clones ST131, ST69, ST95, and ST73 are frequent causes of urinary tract infections (UTI) and bloodstream infections. Specific clones and virulence profiles of E. coli causing UTI in men has been rarely described. The aim of this study was to characterize patient and clonal characteristics of community-acquired UTI caused by E. coli in men (n=12) and women (n=127) in Rio de Janeiro, Brazil, complementing a previous work. We characterized isolates in phylogenetic groups, ERIC2-PCR and PFGE types, MLST, genome similarity and virulence gene-profiles. UTI from men were more frequently caused by phylogenetic group B2 isolates (83% versus 42%, respectively, P = 0.01), a group with significantly higher virulence scores compared with women. ST73 was the predominant clone in men (50%) and the second most frequent in women (12%), with the highest virulence score (mean and median=9) among other clones. ST73 gnomes formed at least six clusters. E. coli from men carried significantly higher numbers of virulence genes, such as sfa/focDE (67% versus 27%), hlyA (58% versus 24%), cnf 1 (58% versus 16%), fyuA (100% versus 82%) and MalX (92% versus 44%), compared with isolates from women. These data suggest the predominance and spread of ST73 isolates likely relates to an abundance of virulence determinants. Copyright © 2017 Elsevier Inc. All rights reserved.
Pelvic form and locomotor adaptation in strepsirrhine primates.
Lewton, Kristi L
2015-01-01
The pelvic girdle is a complex structure with a critical role in locomotion, but efforts to model the mechanical effects of locomotion on its shape remain difficult. Traditional approaches to understanding form and function include univariate adaptive hypothesis-testing derived from mechanical models. Geometric morphometric (GM) methods can yield novel insight into overall three-dimensional shape similarities and differences across groups, although the utility of GM in assessing functional differences has been questioned. This study evaluates the contributions of both univariate and GM approaches to unraveling the trait-function associations between pelvic form and locomotion. Three-dimensional landmarks were collected on a phylogenetically-broad sample of 180 pelves from nine primate taxa. Euclidean interlandmark distances were calculated to facilitate testing of biomechanical hypotheses, and a principal components (PC) analysis was performed on Procrustes coordinates to examine overall shape differences. Both linear dimensions and PC scores were subjected to phylogenetic ANOVA. Many of the null hypotheses relating linear dimensions to locomotor loading were not rejected. Although both analytical approaches suggest that ilium width and robusticity differ among locomotor groups, the GM analysis also suggests that ischiopubic shape differentiates groups. Although GM provides additional quantitative results beyond the univariate analyses, this study highlights the need for new GM methods to more specifically address functional shape differences among species. Until these methods are developed, it would be prudent to accompany tests of directional biomechanical hypotheses with current GM methods for a more nuanced understanding of shape and function. © 2014 Wiley Periodicals, Inc.
Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min
2012-11-01
Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.
Arandia-Gorostidi, Nestor; Huete-Stauffer, Tamara Megan; Alonso-Sáez, Laura; G Morán, Xosé Anxelu
2017-11-01
Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Zelck, Ulrike E.; Bialek, Ralf; Weiß, Michael
2011-01-01
We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed. PMID:21248085
Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K
2015-07-01
Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Maia, João P; Harris, D James; Carranza, Salvador; Goméz-Díaz, Elena
2016-11-01
Understanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, known Lankesterella species and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host-parasite compatibility between these lineages. For Pristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.
NASA Astrophysics Data System (ADS)
Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.
2009-09-01
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.
Variability of Actinobacteria, a minor component of rumen microflora.
Suľák, M; Sikorová, L; Jankuvová, J; Javorský, P; Pristaš, P
2012-07-01
Actinobacteria (Actinomycetes) are a significant and interesting group of gram-positive bacteria. They are regular, though infrequent, members of the microbial life in the rumen and represent up to 3 % of total rumen bacteria; there is considerable lack of information about ecology and biology of rumen actinobacteria. During the characterization of variability of rumen treponemas using non-cultivation approach, we also noted the variability of rumen actinobacteria. By using Treponema-specific primers a specific 16S rRNA gene library was prepared from cow and sheep rumen total DNA. About 10 % of recombinant clones contained actinobacteria-like sequences. Phylogenetic analyses of 11 clones obtained showed the high variability of actinobacteria in the ruminant digestive system. While some sequences are nearly identical to known sequences of actinobacteria, we detected completely new clusters of actinobacteria-like sequences, representing probably new, as yet undiscovered, group of rumen Actinobacteria. Further research will be necessary for understanding their nature and functions in the rumen.
2010-01-01
Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. Conclusions Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods. PMID:20537196
Wei, Shu-jun; Shi, Min; Sharkey, Michael J; van Achterberg, Cornelis; Chen, Xue-xin
2010-06-11
Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes
Gonçalves, Luiz Ricardo; Favacho, Alexsandra Rodrigues de Mendonça; Roque, André Luiz Rodrigues; Mendes, Natalia Serra; Fidelis Junior, Otávio Luiz; Benevenute, Jyan Lucas; Herrera, Heitor Miraglia; D'Andrea, Paulo Sérgio; de Lemos, Elba Regina Sampaio; Machado, Rosangela Zacarias
2016-01-01
ABSTRACT Bartonella spp. comprise an ecologically successful group of microorganisms that infect erythrocytes and have adapted to different hosts, which include a wide range of mammals, besides humans. Rodents are reservoirs of about two-thirds of Bartonella spp. described to date; and some of them have been implicated as causative agents of human diseases. In our study, we performed molecular and phylogenetic analyses of Bartonella spp. infecting wild rodents from five different Brazilian biomes. In order to characterize the genetic diversity of Bartonella spp., we performed a robust analysis based on three target genes, followed by sequencing, Bayesian inference, and maximum likelihood analysis. Bartonella spp. were detected in 25.6% (117/457) of rodent spleen samples analyzed, and this occurrence varied among different biomes. The diversity analysis of gltA sequences showed the presence of 15 different haplotypes. Analysis of the phylogenetic relationship of gltA sequences performed by Bayesian inference and maximum likelihood showed that the Bartonella species detected in rodents from Brazil was closely related to the phylogenetic group A detected in other cricetid rodents from North America, probably constituting only one species. Last, the Bartonella species genogroup identified in the present study formed a monophyletic group that included Bartonella samples from seven different rodent species distributed in three distinct biomes. In conclusion, our study showed that the occurrence of Bartonella bacteria in rodents is much more frequent and widespread than previously recognized. IMPORTANCE In the present study, we reported the occurrence of Bartonella spp. in some sites in Brazil. The identification and understanding of the distribution of this important group of bacteria may allow the Brazilian authorities to recognize potential regions with the risk of transmission of these pathogens among wild and domestic animals and humans. In addition, our study accessed important gaps in the biology of this group of bacteria in Brazil, such as its low host specificity, high genetic diversity, and relationship with other Bartonella spp. detected in rodents trapped in America. Considering the diversity of newly discovered Bartonella species and the great ecological plasticity of these bacteria, new studies with the aim of revealing the biological aspects unknown until now are needed and must be performed around the world. In this context, the impact of Bartonella spp. associated with rodents in human health should be assessed in future studies. PMID:27736785
Tamar, Karin; Carranza, Salvador; Sindaco, Roberto; Moravec, Jiří; Trape, Jean-François; Meiri, Shai
2016-10-01
Acanthodactylus lizards are among the most diverse and widespread diurnal reptiles in the arid regions spanning from North Africa across to western India. Acanthodactylus constitutes the most species-rich genus in the family Lacertidae, with over 40 recognized species inhabiting a wide variety of dry habitats. The genus has seldom undergone taxonomic revisions, and although there are a number of described species and species-groups, their boundaries, as well as their interspecific relationships, remain largely unresolved. We constructed a multilocus phylogeny, combining data from two mitochondrial (12S, cytb) and three nuclear (MC1R, ACM4, c-mos) markers for 302 individuals belonging to 36 known species, providing the first large-scale time-calibrated molecular phylogeny of the genus. We evaluated phylogenetic relationships between and within species-groups, and assessed Acanthodactylus biogeography across its known range. Acanthodactylus cladogenesis is estimated to have originated in Africa due to vicariance and dispersal events from the Oligocene onwards. Radiation started with the separation into three clades: the Western and scutellatus clades largely distributed in North Africa, and the Eastern clade occurring mostly in south-west Asia. Most Acanthodactylus species diverged during the Miocene, possibly as a result of regional geological instability and climatic changes. We support most of the current taxonomic classifications and phylogenetic relationships, and provide genetic validity for most species. We reveal a new distinct blanfordii species-group, suggest new phylogenetic positions (A. hardyi, A. masirae), and synonymize several species and subspecies (A. lineomaculatus, A. boskianus khattensis and A. b. nigeriensis) with their phylogenetically closely-related species. We recommend a thorough systematic revision of taxa, such as A. guineensis, A. grandis, A. dumerilii, A. senegalensis and the pardalis and erythrurus species-groups, which exhibit high levels of intraspecific variability, and clear evidence of phylogenetic complexity. Copyright © 2016 Elsevier Inc. All rights reserved.
Rindi, Fabio; Lam, Daryl W; López-Bautista, Juan M
2009-08-01
Subaerial green microalgae represent a polyphyletic complex of organisms, whose genetic diversity is much higher than their simple morphologies suggest. The order Trentepohliales is the only species-rich group of subaerial algae belonging to the class Ulvophyceae and represents an ideal model taxon to investigate evolutionary patterns of these organisms. We studied phylogenetic relationships in two common genera of Trentepohliales (Trentepohlia and Printzina) by separate and combined analyses of the rbcL and 18S rRNA genes. Trentepohlia and Printzina were not resolved as monophyletic groups. Three main clades were recovered in all analyses, but none corresponded to any trentepohlialean genus as defined based on morphological grounds. The rbcL and 18S rRNA datasets provided congruent phylogenetic signals and similar topologies were recovered in single-gene analyses. Analyses performed on the combined 2-gene dataset inferred generally higher nodal support. The results clarified several taxonomic problems and showed that the evolution of these algae has been characterized by considerable morphological convergence. Trentepohlia abietina and T. flava were shown to be separate species from T. aurea; Printzina lagenifera, T. arborum and T. umbrina were resolved as polyphyletic taxa, whose vegetative morphology appears to have evolved independently in separate lineages. Incongruence between phylogenetic relationships and traditional morphological classification was demonstrated, showing that the morphological characters commonly used in the taxonomy of the Trentepohliales are phylogenetically irrelevant.
Groth, J G
1998-12-01
The complete mitochondrial cytochrome b genes of 53 genera of oscine passerine birds representing the major groups of finches and some allies were compared. Phylogenetic trees resulting from three levels of character partition removal (no data removed, transitions at third positions of codons removed, and all transitions removed [transversion parsimony]) were generally concordant, and all supported several basic statements regarding relationships of finches and finch-like birds, including: (1) larks (Alaudidae) show no close relationship to any finch group; (2) Peucedramus (olive warbler) is phylogenetically far removed from true wood warblers; (3) a clade consisting of fringillids, passerids, motacillids, and emberizids is supported, and this clade is characterized by evolution of a vestigial 10th wing primary; and (4) Hawaiian honeycreepers are derived from within the cardueline finches. Excluding transition substitutions at third positions of codons resulted in phylogenetic trees similar to, but with greater bootstrap nodal support than, trees derived using either all data (equally weighted) or transversion parsimony. Relative to the shortest trees obtained using all data, the topologies obtained after elimination of third-position transitions showed only slight increases in realized treelength and homoplasy. These increases were negligable compared to increases in overall nodal support; therefore, this partition removal scheme may enhance recovery of deep phylogenetic signal in protein-coding DNA datasets. Copyright 1998 Academic Press.
González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B.; Lima, Celia A.; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia
2017-01-01
It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet ‘Everything is everywhere, but, the environment selects’ by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis—in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica. PMID:28632790
González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B; Lima, Celia A; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia; Hernández, Cristián E
2017-01-01
It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.
Increased competition does not lead to increased phylogenetic overdispersion in a native grassland.
Bennett, Jonathan A; Lamb, Eric G; Hall, Jocelyn C; Cardinal-McTeague, Warren M; Cahill, James F
2013-09-01
That competition is stronger among closely related species and leads to phylogenetic overdispersion is a common assumption in community ecology. However, tests of this assumption are rare and field-based experiments lacking. We tested the relationship between competition, the degree of relatedness, and overdispersion among plants experimentally and using a field survey in a native grassland. Relatedness did not affect competition, nor was competition associated with phylogenetic overdispersion. Further, there was only weak evidence for increased overdispersion at spatial scales where plants are likely to compete. These results challenge traditional theory, but are consistent with recent theories regarding the mechanisms of plant competition and its potential effect on phylogenetic structure. We suggest that specific conditions related to the form of competition and trait conservatism must be met for competition to cause phylogenetic overdispersion. Consequently, overdispersion as a result of competition is likely to be rare in natural communities. © 2013 John Wiley & Sons Ltd/CNRS.
Lemoine, Nathan P; Shue, Jessica; Verrico, Brittany; Erickson, David; Kress, W John; Parker, John D
2015-10-01
Considerable debate focuses on whether invasive species establish and become abundant by being functionally and phylogenetically distinct from native species, leading to a host of invasion-specific hypotheses of community assembly. Few studies, however, have quantitatively assessed whether similar patterns of phylogenetic and functional similarity explain local abundance of both native and introduced species, which would suggest similar assembly mechanisms regardless of origin. Using a chronosequence of invaded temperate forest stands, we tested whether the occurrence and abundance of both introduced and native species were predicted by phylogenetic relatedness, functional overlap, and key environmental characteristics including forest age. Environmental filtering against functionally and phylogenetically distinct species strongly dictated the occurrence and abundance of both introduced and native species, with slight modifications of these patterns according to forest age. Thus, once functional and evolutionary novelty were quantified, introduced status provided little information about species' presence or abundance, indicating largely similar sorting mechanisms for both native and introduced species.
Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.
Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela
2014-08-01
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.
Ament-Velásquez, Sandra L; Breedy, Odalisca; Cortés, Jorge; Guzman, Hector M; Wörheide, Gert; Vargas, Sergio
2016-05-01
Octocorals are a diverse and ecologically important group of cnidarians. However, the phylogenetic relationships of many octocoral groups are not well understood and are based mostly on mitochondrial sequence data. In addition, the discovery and description of new gorgonian species displaying unusual or intermediate morphologies and uncertain phylogenetic affinities further complicates the study of octocoral systematics and raises questions about the role played by processes such as plasticity, crypsis, and convergence in the evolution of this group of organisms. Here, we use nuclear (i.e. 28S rDNA) and mitochondrial (mtMutS) markers and a sample of Eastern Pacific gorgonians thought to be remarkable from a morphological point of view to shed light on the morphological diversification among these organisms. Our study reveals the loss of the anastomosed colony morphology in two unrelated lineages of the seafan genus Pacifigorgia and offers strong evidence for the independent evolution of a whip-like morphology in two lineages of Eastern Pacific Leptogorgia. Additionally, our data revealed one instance of mito-nuclear discordance in the genera Leptogorgia and Eugorgia, which may be the results of incomplete lineage sorting or ancient hybridization-introgression events. Our study stresses the importance of comprehensive taxonomic sampling and the use of independent sources of evidence to address the phylogenetic relationships and clarifying the evolution of octocorals. Copyright © 2016 Elsevier Inc. All rights reserved.
Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution
Broughton, Richard E.; Betancur-R., Ricardo; Li, Chenhong; Arratia, Gloria; Ortí, Guillermo
2013-01-01
Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group. PMID:23788273
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages
Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems. PMID:27384441
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.
Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.
Kassian, Alexei
2015-01-01
A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies.
Kassian, Alexei
2015-01-01
A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456
Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan
2015-01-01
Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.
Alignment-free genome tree inference by learning group-specific distance metrics.
Patil, Kaustubh R; McHardy, Alice C
2013-01-01
Understanding the evolutionary relationships between organisms is vital for their in-depth study. Gene-based methods are often used to infer such relationships, which are not without drawbacks. One can now attempt to use genome-scale information, because of the ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or ecological properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance metrics could be learned for most of the 18 groups of organisms tested here. Once a group-specific metric is available, it can be used to estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison between 10 methods--9 alignment-free and 1 alignment-based.
NASA Technical Reports Server (NTRS)
La Duc, Myron T.; Satomi, Masataka; Agata, Norio; Venkateswaran, Kasthuri
2004-01-01
Bacillus anthracis, the causative agent of the human disease anthrax, Bacillus cereus, a food-borne pathogen capable of causing human illness, and Bacillus thuringiensis, a well-characterized insecticidal toxin producer, all cluster together within a very tight clade (B. cereus group) phylogenetically and are indistinguishable from one another via 16S rDNA sequence analysis. As new pathogens are continually emerging, it is imperative to devise a system capable of rapidly and accurately differentiating closely related, yet phenotypically distinct species. Although the gyrB gene has proven useful in discriminating closely related species, its sequence analysis has not yet been validated by DNA:DNA hybridization, the taxonomically accepted "gold standard". We phylogenetically characterized the gyrB sequences of various species and serotypes encompassed in the "B. cereus group," including lab strains and environmental isolates. Results were compared to those obtained from analyses of phenotypic characteristics, 16S rDNA sequence, DNA:DNA hybridization, and virulence factors. The gyrB gene proved more highly differential than 16S, while, at the same time, as analytical as costly and laborious DNA:DNA hybridization techniques in differentiating species within the B. cereus group.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter.
Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; McHugh, Theresa A; Dijkstra, Paul; Koch, Benjamin J; Marks, Jane C; Hungate, Bruce A
2017-08-01
Microorganisms perform most decomposition on Earth, mediating carbon (C) loss from ecosystems, and thereby influencing climate. Yet, how variation in the identity and composition of microbial communities influences ecosystem C balance is far from clear. Using quantitative stable isotope probing of DNA, we show how individual bacterial taxa influence soil C cycling following the addition of labile C (glucose). Specifically, we show that increased decomposition of soil C in response to added glucose (positive priming) occurs as a phylogenetically diverse group of taxa, accounting for a large proportion of the bacterial community, shift toward additional soil C use for growth. Our findings suggest that many microbial taxa exhibit C use plasticity, as most taxa altered their use of glucose and soil organic matter depending upon environmental conditions. In contrast, bacteria that exhibit other responses to glucose (reduced growth or reliance on glucose for additional growth) clustered strongly by phylogeny. These results suggest that positive priming is likely the prototypical response of bacteria to sustained labile C addition, consistent with the widespread occurrence of the positive priming effect in nature.
Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.
Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar
2011-12-01
Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.
16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes.
Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott
2014-08-01
Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships.
16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes1
Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott
2014-01-01
Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships. PMID:25937672
Characterization of a novel orthoreovirus isolated from fruit bat, China.
Hu, Tingsong; Qiu, Wei; He, Biao; Zhang, Yan; Yu, Jing; Liang, Xiu; Zhang, Wendong; Chen, Gang; Zhang, Yingguo; Wang, Yiyin; Zheng, Ying; Feng, Ziliang; Hu, Yonghe; Zhou, Weiguo; Tu, Changchun; Fan, Quanshui; Zhang, Fuqiang
2014-11-30
In recent years novel human respiratory disease agents have been described for Southeast Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with a strong phylogenetic relationship to orthoreoviruses of bat origin. In this report, we isolated a novel Melaka-like reovirus (named "Cangyuan virus") from intestinal content samples of one fruit bat residing in China's Yunnan province. Phylogenetic analysis of the whole Cangyuan virus genome sequences of segments L, M and S demonstrated the genetic diversity of the Cangyuan virus. In contrast to the L and M segments, the phylogenetic trees for the S segments of Cangyuan virus demonstrated a greater degree of heterogeneity. Phylogenetic analysis indicated that the Cangyuan virus was a novel orthoreovirus and substantially different from currently known members of Pteropine orthoreovirus (PRV) species group.
Predicting loss of evolutionary history: Where are we?
Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine
2017-02-01
The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides. © 2015 Cambridge Philosophical Society.
Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L
2017-05-01
The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).
Vélez-Zuazo, Ximena; Agnarsson, Ingi
2011-02-01
Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively little phylogenetic attention. Our results suggest that the genus Echinorhinus is not a squaliform, but rather related to the saw sharks, a hypothesis that might be supported by both groups sharing 'spiny' snouts. In sum, our results offer the most detailed species-level phylogeny of sharks to date and a tool for comparative analyses. Copyright © 2010 Elsevier Inc. All rights reserved.
Deschamps, Philippe; Zivanovic, Yvan; Moreira, David; Rodriguez-Valera, Francisco; López-García, Purificación
2014-06-12
Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Algal MIPs, high diversity and conserved motifs
2011-01-01
Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875
Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group.
Andreani, N A; Martino, M E; Fasolato, L; Carraro, L; Montemurro, F; Mioni, R; Bordin, P; Cardazzo, B
2014-05-01
The Pseudomonas fluorescens group comprises several closely related species that are involved in food contamination and spoilage. Specifically, the interest in P. fluorescens as a spoiler of dairy products increased after the cases of "blue mozzarella" that occurred in Italy in 2010. A Multilocus Sequence Typing (MLST) scheme was developed and applied to characterise 136 isolates (reference strains and food borne isolates) at strain level, to reveal the genetic relationships among them and to disclose any possible genetic clustering of phenotypic markers involved in food spoilage (protease, lipase, lecithinase activities and pigmented or fluorescent molecule production). The production of dark blue diffusible pigment was evaluated on several bacterial culture media and directly on mozzarella cheese. The MLST scheme provided precise genotyping at the strain level, and the population analyses of the concatenated sequences allowed major taxa to be defined. This approach was revealed to be suitable for tracking the strains according to their origin, such as dairy plants or food matrices. The genetic analysis revealed the presence of a connection between the blue pigment production and a specific phylogenetic cluster. The development of the online database specific to the P. fluorescens group (http://pubmlst.org/pfluorescens) will facilitate the application of the scheme and the sharing of the data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reprint of 'Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group'.
Andreani, N A; Martino, M E; Fasolato, L; Carraro, L; Montemurro, F; Mioni, R; Bordin, P; Cardazzo, B
2015-02-01
The Pseudomonas fluorescens group comprises several closely related species that are involved in food contamination and spoilage. Specifically, the interest in P. fluorescens as a spoiler of dairy products increased after the cases of "blue mozzarella" that occurred in Italy in 2010. A Multilocus Sequence Typing (MLST) scheme was developed and applied to characterise 136 isolates (reference strains and food borne isolates) at strain level, to reveal the genetic relationships among them and to disclose any possible genetic clustering of phenotypic markers involved in food spoilage (protease, lipase, lecithinase activities and pigmented or fluorescent molecule production). The production of dark blue diffusible pigment was evaluated on several bacterial culture media and directly on mozzarella cheese. The MLST scheme provided precise genotyping at the strain level, and the population analyses of the concatenated sequences allowed major taxa to be defined. This approach was revealed to be suitable for tracking the strains according to their origin, such as dairy plants or food matrices. The genetic analysis revealed the presence of a connection between the blue pigment production and a specific phylogenetic cluster. The development of the online database specific to the P. fluorescens group (http://pubmlst.org/pfluorescens) will facilitate the application of the scheme and the sharing of the data. Copyright © 2014. Published by Elsevier Ltd.
Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang
2017-12-01
Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.
Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?
Stiller, John W; Huang, Jinling; Ding, Qin; Tian, Jing; Goodwillie, Carol
2009-10-20
How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori interpretations of variable phylogenetic signals contained in complex genome-level data. They argue strongly for explicit testing of the different a priori assumptions inherent in competing evolutionary hypotheses.
Distribution and Features of the Six Classes of Peroxiredoxins
Poole, Leslie B.; Nelson, Kimberly J.
2016-01-01
Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ∼3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape). PMID:26810075
Chen, Danyu; Zou, Wencheng; Xie, Shengze; Kong, Linghan; Chen, Yanpeng; Zhang, Xiuzhong; Li, Jianan; Wang, Hongning; Cheng, Guangyang; Qin, Yue; Mu, Xingyu; Yang, Xin
2018-05-09
Escherichia coli is a major pathogen leading to systemic and enteric illnesses in wild giant pandas ( Ailuropoda melanoleuca). To investigate the characteristics and distribution of E. coli in wild giant pandas across four different nature reserves in Sichuan, Republic of China, we researched serotypes, phylogenetic groups, antimicrobial resistance, and resistance genes of E. coli not previously reported for wild giant pandas. A total of 82 E. coli isolates were identified from 40 fecal samples in August 2016 to May 2017. The most-prevalent serogroups were O15 (4%, 3/82), O28 (2%, 2/82), and O44 (2%, 2/82). Antimicrobial resistance was highest for streptomycin (61%, 50/82) followed by amikacin (30%, 25/82). Among the four nature reserves, the proportion of streptomycin (86%, 12/14) and amikacin (57%, 8/14) was highest in Liziping. The frequencies of resistant genes aph(3')-IIa, ant(3″)-Ia, aac(3)-IIa, aadA1, and StrB were 28%, 23%, 5%, 21%, and 32%, respectively, while none of the strains had the tetracycline gene. In Qianfoshan, the phylogenetic group B2 was the most common, comprising the highest percentage of isolates compared with the other seven phylogenetic groups. Furthermore, many variables such as phylogenetic groups, antimicrobial susceptibility, and resistance genes differed significantly ( P<0.05) among the four nature reserves. In facilitating the safe discharge of captive giant pandas into the wild, as well as to support existing wild populations, the data from this research will prove invaluable to scientists and ecologists in their endeavors.
2011-01-01
Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. Conclusion We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties. PMID:22032248
Suyama, Tetsushi; Tokiwa, Yutaka; Ouichanpagdee, Pornpimol; Kanagawa, Takahiro; Kamagata, Yoichi
1998-01-01
Thirty-nine morphologically different soil bacteria capable of degrading poly(β-hydroxyalkanoate), poly(ɛ-caprolactone), poly(hexamethylene carbonate), or poly(tetramethylene succinate) were isolated. Their phylogenetic positions were determined by 16S ribosomal DNA sequencing, and all of them fell into the classes Firmicutes and Proteobacteria. Determinations of substrate utilization revealed characteristic patterns of substrate specificities. PMID:9835597
Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas
2015-11-10
Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
Carvalho, S; Caldeira, R L; Simpson, A J; Vidigal, T H
2001-01-01
Freshwater snails belonging to the genus Biomphalaria are intermediate hosts of the trematode Schistosoma mansoni in the Neotropical region and Africa. In Brazil, one subspecies and ten species of Biomphalaria have been identified: B. glabrata, B. tenagophila, B. straminea, B. occidentalis, B. peregrina, B. kuhniana, B. schrammi, B. amazonica, B. oligoza, B. intermedia and B.t. guaibensis. However, only the first three species are found naturally infected with S. mansoni. The classical identification of these planorbids is based on comparison of morphological characteristics of the shell and male and female reproductive organs, which is greatly complicated by the extensive intra-specific variation. Several molecular techniques have been used in studies on the identification, genetic structure as well as phylogenetic relationships between these groups of organisms. Using the randomly amplified polymorphic DNAs (RAPD) analysis we demonstrated that B. glabrata exhibits a remarkable degree of intra-specific polymorphism. Thus, the genetics of the snail host may be more important to the epidemiology of schistosomiasis than those of the parasite itself. Using the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) in intra-populational and intra-specific studies we have demonstrated that snails belonging to the B. straminea complex (B. straminea, B. kuhniana and B. intermedia) clearly presented higher heterogeneity. Using the low stringency polymerase chain reaction (LS-PCR) technique we were able to separate B. glabrata from B. tenagophila and B. tenagophila from B. occidentalis. To separate all Brazilian Biomphalaria species we used the restriction fragment length polymorphism (PCR-RFLP) of the internal transcribed spacer region (ITS) of the DNA gene. The method also proved to be efficient for the specific identification of DNA extracted from snail eggs. Recently we have sequenced the ITS2 region for phylogenetic studies of all Biomphalaria snails from Brazil.
Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.
Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael
2012-05-01
In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus-growing termite mutualistic system.
NASA Astrophysics Data System (ADS)
Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate; Damgaard, Christian
2014-01-01
Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were not phylogenetically conserved. Species richness also decreased with increasing levels of nitrogen and glyphosate. Our results suggest that predicting the cumulative effects of agrochemicals is more complex than anticipated due to their distinct selection of traits that may or may not be conserved phylogenetically. Precautionary efforts to mitigate drift of agricultural chemicals into semi-natural habitats are warranted to prevent unforeseeable biodiversity shifts.
Diogo, Rui; Ziermann, Janine M; Linde-Medina, Marta
2015-05-01
The notion of scala naturae dates back to thinkers such as Aristotle, who placed plants below animals and ranked the latter along a graded scale of complexity from 'lower' to 'higher' animals, such as humans. In the last decades, evolutionary biologists have tended to move from one extreme (i.e. the idea of scala naturae or the existence of a general evolutionary trend in complexity from 'lower' to "higher" taxa, with Homo sapiens as the end stage) to the other, opposite, extreme (i.e. to avoid using terms such as 'phylogenetically basal' and 'anatomically plesiomorphic' taxa, which are seen as the undesired vestige of old teleological theories). The latter view tries to avoid any possible connotations with the original anthropocentric idea of a scala naturae crowned by man and, in that sense, it can be regarded as a more politically correct view. In the past years and months there has been renewed interest in these topics, which have been discussed in various papers and monographs that tend to subscribe, in general, to the points defended in the more politically correct view. Importantly, most evolutionary and phylogenetic studies of tetrapods and other vertebrates, and therefore most discussions on the scala naturae and related issues have been based on hard tissue and, more recently, on molecular data. Here we provide the first discussion of these topics based on a comparative myological study of all the major vertebrate clades and of myological cladistic and Bayesian phylogenetic analyses of bony fish and tetrapods, including Primates. We specifically (i) contradict the notions of a scala naturae or evolutionary progressive trends leading to more complexity in 'higher' animals and culminating in Homo sapiens, and (ii) stress that the refutation of these old notions does not necessarily mean that one should not keep using the terms 'phylogenetically basal' and particularly 'anatomically plesiomorphic' to refer to groups such as the urodeles within the Tetrapoda, or the strepsirrhines and lemurs within the Primates, for instance. This review will contribute to improving our understanding of these broad evolutionary issues and of the evolution of the vertebrate Bauplans, and hopefully will stimulate future phylogenetic, evolutionary and developmental studies of these clades. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Doanh, Pham Ngoc; Shinohara, Akio; Horii, Yoichiro; Habe, Shigehisa; Nawa, Yukifumi
2009-04-01
Paragonimus westermani is the most well-known species among the genus Paragonimus. It is widely distributed in Asia with considerable genetic diversity to form P. westermani species complex. While P. westermani distributed in Japan, Korea, China, and Taiwan are genetically homogeneous to form the East Asia group, those found in other geographic areas are heterogeneous and would be divided into several groups. Recent discoveries of P. westermani in India and Sri Lanka highlighted new insights on molecular phylogenetic relationship of geographic isolates of this species complex. Since Vietnam is located at the east end of Southeast Asia, the intermediate position between South and East Asia, it is of interest to see whether P. westermani is distributed in this country. Here, we report that P. westermani metacercariae were found in mountainous crabs, Potamiscus sp., collected in Quangtri province in the central Vietnam. Adult worms were successfully obtained by experimental infection in cats. Molecular phylogenetic analyses revealed that P. westermani of Vietnamese isolates have high similarities with those of East Asia group.
Richard C. Cronn; Randall L. Small; Tamara Hanselkorn; Jonathan F. Wendel
2002-01-01
Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from...
A congruent phylogenomic signal places eukaryotes within the Archaea.
Williams, Tom A; Foster, Peter G; Nye, Tom M W; Cox, Cymon J; Embley, T Martin
2012-12-22
Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook 'three domains' tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.
Kocot, Kevin M; Citarella, Mathew R; Moroz, Leonid L; Halanych, Kenneth M
2013-01-01
Molecular phylogenetics relies on accurate identification of orthologous sequences among the taxa of interest. Most orthology inference programs available for use in phylogenomics rely on small sets of pre-defined orthologs from model organisms or phenetic approaches such as all-versus-all sequence comparisons followed by Markov graph-based clustering. Such approaches have high sensitivity but may erroneously include paralogous sequences. We developed PhyloTreePruner, a software utility that uses a phylogenetic approach to refine orthology inferences made using phenetic methods. PhyloTreePruner checks single-gene trees for evidence of paralogy and generates a new alignment for each group containing only sequences inferred to be orthologs. Importantly, PhyloTreePruner takes into account support values on the tree and avoids unnecessarily deleting sequences in cases where a weakly supported tree topology incorrectly indicates paralogy. A test of PhyloTreePruner on a dataset generated from 11 completely sequenced arthropod genomes identified 2,027 orthologous groups sampled for all taxa. Phylogenetic analysis of the concatenated supermatrix yielded a generally well-supported topology that was consistent with the current understanding of arthropod phylogeny. PhyloTreePruner is freely available from http://sourceforge.net/projects/phylotreepruner/.
Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V
2008-04-01
In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.
Reysenbach, A L; Ehringer, M; Hershberger, K
2000-02-01
The use of molecular phylogenetic approaches in microbial ecology has revolutionized our view of microbial diversity at high temperatures and led to the proposal of a new kingdom within the Archaea, namely, the "Korarchaeota." We report here the occurrence of another member of this archaeal group and a deeply rooted bacterial sequence from a thermal spring in Yellowstone National Park (USA). The DNA of a mixed community growing at 83 degrees C, pH 7.6, was extracted and the small subunit ribosomal RNA gene (16S rDNA) sequences were obtained using the polymerase chain reaction. The products were cloned and five different phylogenetic types ("phylotypes") were identified: four archaeal phylotypes, designated pBA1, pBA2, pBA3, and pBA5, and only one bacterial phylotype, designated pBB. pBA5 is very closely related to the korarchaeotal phylotype, pJP27, from Obsidian Pool in Yellowstone National Park. The pBB phylotype is a lineage within the Aquificales and, based on 16S rRNA sequence, is different enough from the members of the Aquificales to constitute a different genus. In situ hybridization with bacterial-specific and Aquificales-specific fluorescent oligonucleotide probes indicated the bacterial population dominated the community and most likely contributed significantly to biogeochemical cycling within the community.
Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L.
Mahé, Frédéric; Markova, Dragomira; Pasquet, Rémy; Misset, Marie-Thérèse; Aïnouche, Abdelkader
2011-07-01
SymRK is one of the key genes involved in initial steps of legume symbiotic association with fungi (mycorrhization) and nitrogen-fixing bacteria (nodulation). A large portion of the sequence encoding the extracellular domain of SYMRK was obtained for 38 lupine accessions and 2 outgroups in order to characterize this region, to evaluate its phylogenetic utility, and to examine whether its molecular evolutionary pattern is correlated with rhizobial diversity and specificity in Lupinus. The data suggested that, in Lupinus, SymRK is a single copy gene that shows good phylogenetic potential. Accordingly, SymRK provided additional support to previous molecular phylogenies, and shed additional light on relationships within the Old World group of Lupinus, especially among the African species. Similar to results of other studies, analyses of SymRK sequences were unable to resolve placement of the Florida unifoliolate lineage, whose relationship was weakly supported to either the Old or the New World lupines. Our data are consistent with strong purifying selection operating on SymRK in Lupinus, preserving rather than diversifying its function. Thus, although SymRK was demonstrated to be a vital gene in the early stages of the root-bacterial symbiotic associations, no evidence from present analyses indicate that this gene is involved in changes in rhizobial specificity in Lupinus. Copyright © 2011 Elsevier Inc. All rights reserved.
Genome-wide identification of the SWEET gene family in wheat.
Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu
2018-02-05
The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Occurrence of plastid RNA editing in all major lineages of land plants
Freyer, Regina; Kiefer-Meyer, Marie-Christine; Kössel, Hans
1997-01-01
RNA editing changes posttranscriptionally single nucleotides in chloroplast-encoded transcripts. Although much work has been done on mechanistic and functional aspects of plastid editing, little is known about evolutionary aspects of this RNA processing step. To gain a better understanding of the evolution of RNA editing in plastids, we have investigated the editing patterns in ndhB and rbcL transcripts from various species comprising all major groups of land plants. Our results indicate that RNA editing occurs in plastids of bryophytes, fern allies, true ferns, gymnosperms, and angiosperms. Both editing frequencies and editing patterns show a remarkable degree of interspecies variation. Furthermore, we have found that neither plastid editing frequencies nor the editing pattern of a specific transcript correlate with the phylogenetic tree of the plant kingdom. The poor evolutionary conservation of editing sites among closely related species as well as the occurrence of single species-specific editing sites suggest that the differences in the editing patterns and editing frequencies are probably due both to independent loss and to gain of editing sites. In addition, our results indicate that RNA editing is a relatively ancient process that probably predates the evolution of land plants. This supposition is in good agreement with the phylogenetic data obtained for plant mitochondrial RNA editing, thus providing additional evidence for common evolutionary roots of the two plant organellar editing systems. PMID:9177209
Pitaksakulrat, Opal; Webster, Bonnie L; Webster, Joanne P; Laha, Thewarach; Saijuntha, Weerachai; Lamberton, Poppy H L; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N; Sithithaworn, Paiboon
2018-04-19
The liver fluke Opisthorchis viverrini sensu lato causes serious public-health problems in Northeast Thailand and Southeast Asian countries. A hypothesis has been proposed that O. viverrini represents a species complex with varying levels of genetic differentiation in Thailand and Lao PDR. This study aimed to clarify whether O. viverrini populations can be genetically divided into separate taxa. We collected O. viverrini s.l. from eight different locations in Lao PDR and Thailand. The results of nad1, cox1, CF-int6, Pm-int9, ITS2 and 28S rDNA sequence analysis revealed that sub-structuring occurred between the eight populations. We found that O. viverrini s.l. from Sakon Nakhon (SK), Thailand, shows significant genetic differentiation (P < .05) from all other isolates from different localities in Thailand and Lao PDR. This was supported by haplotype and phylogenetic tree analyses in which the SK isolate was separated from all other isolates. This suggests that O. viverrini s.l. from SK is a cryptic species. The data, however, also confirm the association between genetic groups of O. viverrini s.l. and specific wetland systems, and raise important questions regarding the epidemiological significance of these genetic differences. Copyright © 2018 Elsevier B.V. All rights reserved.