The Influence of Specific Physical Health Conditions on Retirement Decisions
ERIC Educational Resources Information Center
Shultz, Kenneth S.; Wang, Mo
2007-01-01
Physical health has consistently been shown to strongly influence the retirement decision-making process. Unfortunately, "physical health" is typically operationalized in global terms. As a result, we know little about the specific aspects of physical health that influence the decision to retire. Therefore, in the present study, data from three…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0115] Regulatory Guide 8.24, Revision 2, Health Physics..., ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication'' was issued with a... specifically with the following aspects of an acceptable occupational health physics program that are closely...
ERIC Educational Resources Information Center
Bevans, Katherine B.; Fitzpatrick, Leslie-Anne; Sanchez, Betty M.; Riley, Anne W.; Forrest, Christopher
2010-01-01
Background: This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical…
NASA Astrophysics Data System (ADS)
Ferguson-Hessler, Monica G. M.; de Jong, Ton
This study aims at giving a systematic description of the cognitive activities involved in teaching physics. Such a description of instruction in physics requires a basis in two models, that is, the cognitive activities involved in learning physics and the knowledge base that is the foundation of expertise in that subject. These models have been provided by earlier research. The model of instruction distinguishes three main categories of instruction process: presenting new information, integrating (i.e., bringing structure into) new knowledge, and connecting elements of new knowledge to prior knowledge. Each of the main categories has been divided into a number of specific instruction processes. Hereby any limited and specific cognitive teacher activity can be described along the two dimensions of process and type of knowledge. The model was validated by application to lectures and problem-solving classes of first year university courses. These were recorded and analyzed as to instruction process and type of knowledge. Results indicate that teachers are indeed involved in the various types of instruction processes defined. The importance of this study lies in the creation of a terminology that makes it possible to discuss instruction in an explicit and specific way.
ERIC Educational Resources Information Center
Hatheway, W. H.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Specifically, this module develops a method for calculating the exchange of heat between an…
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
ERIC Educational Resources Information Center
Franco, Gina M.; Muis, Krista R.; Kendeou, Panayiota; Ranellucci, John; Sampasivam, Lavanya; Wang, Xihui
2012-01-01
The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing when learning about physics concepts through text. Specifically, we manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with…
System and method for deriving a process-based specification
NASA Technical Reports Server (NTRS)
Hinchey, Michael Gerard (Inventor); Rouff, Christopher A. (Inventor); Rash, James Larry (Inventor)
2009-01-01
A system and method for deriving a process-based specification for a system is disclosed. The process-based specification is mathematically inferred from a trace-based specification. The trace-based specification is derived from a non-empty set of traces or natural language scenarios. The process-based specification is mathematically equivalent to the trace-based specification. Code is generated, if applicable, from the process-based specification. A process, or phases of a process, using the features disclosed can be reversed and repeated to allow for an interactive development and modification of legacy systems. The process is applicable to any class of system, including, but not limited to, biological and physical systems, electrical and electro-mechanical systems in addition to software, hardware and hybrid hardware-software systems.
ERIC Educational Resources Information Center
Leung, Anthony C. K.; Hashemi Pour, Banafsheh; Reynolds, Dan; Jerzak, Stanislaw
2017-01-01
A new team learning assessment process was designed and tested in a first-year university physics laboratory class. The assessment process was designed to provide a strong incentive for students to cooperate and feel responsible for each other's learning and fostering a sense of collaboration rather than competition. Specifically, the new…
Structure, processing, and properties of potatoes
NASA Astrophysics Data System (ADS)
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.
1992-06-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
Structure, processing, and properties of potatoes
NASA Technical Reports Server (NTRS)
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.
1992-01-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
Patterns of Clinical Reasoning in Physical Therapist Students.
Gilliland, Sarah; Wainwright, Susan Flannery
2017-05-01
Clinical reasoning is a complex, nonlinear problem-solving process that is influenced by models of practice. The development of physical therapists' clinical reasoning abilities is a crucial yet underresearched aspect of entry-level (professional) physical therapist education. The purpose of this qualitative study was to examine the types of clinical reasoning strategies physical therapist students engage in during a patient encounter. A qualitative descriptive case study design involving within and across case analysis was used. Eight second-year, professional physical therapist students from 2 different programs completed an evaluation and initial intervention for a standardized patient followed by a retrospective think-aloud interview to explicate their reasoning processes. Participants' clinical reasoning strategies were examined using a 2-stage qualitative method of thematic analysis. Participants demonstrated consistent signs of development of physical therapy-specific reasoning processes, yet varied in their approach to the case and use of reflection. Participants who gave greater attention to patient education and empowerment also demonstrated greater use of reflection-in-action during the patient encounter. One negative case illustrates the variability in the rate at which students may develop these abilities. Participants demonstrated development toward physical therapist--specific clinical reasoning, yet demonstrated qualitatively different approaches to the patient encounter. Multiple factors, including the use of reflection-in-action, may enable students to develop greater flexibility in their reasoning processes. © 2017 American Physical Therapy Association
Loprinzi, Paul D; Cardinal, Bradley J
2013-01-01
The degree to which breast cancer survivors use behavioral processes of change has not been investigated. Additionally, the relationship between behavioral processes and other theory-based mediators of adult physical activity behavior has not been extensively studied among breast cancer survivors. The objectives of this study were to: (1) determine the extent to which breast cancer survivors use behavioral processes associated with physical activity behavior change, and (2) examine the inter-relationships between behavioral processes, self-efficacy, and physical activity behavior among breast cancer survivors. Sixty-nine breast cancer survivors completed surveys examining behavioral processes and exercise-specific self-efficacy. Six months later they completed a self-report physical activity questionnaire. Findings showed the majority of breast cancer survivors did not use approximately half of the behavioral processes on a regular basis, and self-efficacy completely mediated the relationship between behavioral processes and physical activity. Health care professionals may help enhance self-efficacy and ultimately increase physical activity behavior in breast cancer survivors by teaching behavior skills such as enlisting social support.
The Physiology of Exercise and the Process of Aging.
ERIC Educational Resources Information Center
Mravetz, Patricia
A physical fitness plan is considered desirable for young people, young adults, and especially older adults. This program for secondary level students focuses on the physiology of exercise and the process of aging, and stresses the need for physical fitness. Specific objectives include the following: (1) to let students become evaluators of their…
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
75 FR 13599 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Guide, DG-8040, ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication... it deal specifically with the following aspects of an acceptable occupational health physics program that are closely related to surveys: (1) The number and qualification of the health physics staff, (2...
Sokolowski, H Moriah; Fias, Wim; Bosah Ononye, Chuka; Ansari, Daniel
2017-10-01
It is currently debated whether numbers are processed using a number-specific system or a general magnitude processing system, also used for non-numerical magnitudes such as physical size, duration, or luminance. Activation likelihood estimation (ALE) was used to conduct the first quantitative meta-analysis of 93 empirical neuroimaging papers examining neural activation during numerical and non-numerical magnitude processing. Foci were compiled to generate probabilistic maps of activation for non-numerical magnitudes (e.g. physical size), symbolic numerical magnitudes (e.g. Arabic digits), and nonsymbolic numerical magnitudes (e.g. dot arrays). Conjunction analyses revealed overlapping activation for symbolic, nonsymbolic and non-numerical magnitudes in frontal and parietal lobes. Contrast analyses revealed specific activation in the left superior parietal lobule for symbolic numerical magnitudes. In contrast, small regions in the bilateral precuneus were specifically activated for nonsymbolic numerical magnitudes. No regions in the parietal lobes were activated for non-numerical magnitudes that were not also activated for numerical magnitudes. Therefore, numbers are processed using both a generalized magnitude system and format specific number regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Time-lapse videos for physics education: specific examples
NASA Astrophysics Data System (ADS)
Vollmer, Michael; Möllmann, Klaus-Peter
2018-05-01
There are many physics experiments with long time scales such that they are usually neither shown in the physics class room nor in student labs. However, they can be easily recorded with time-lapse cameras and the respective time-lapse videos allow qualitative and/or quantitative analysis of the underlying physics. Here, we present some examples from thermal physics (melting, evaporation, cooling) as well as diffusion processes
Applying Cluster Analysis to Physics Education Research Data
ERIC Educational Resources Information Center
Springuel, R. Padraic
2010-01-01
One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major…
Process for the physical segregation of minerals
Yingling, Jon C.; Ganguli, Rajive
2004-01-06
With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.
Conceptual size in developmental dyscalculia and dyslexia.
Gliksman, Yarden; Henik, Avishai
2018-02-01
People suffering from developmental dyscalculia (DD) are known to have impairment in numerical abilities and have been found to have weaker processing of countable magnitudes. However, not much research was done on their abilities to process noncountable magnitudes. An example of noncountable magnitude is conceptual size (e.g., mouse is small and elephant is big). Recently, we found that adults process conceptual size automatically. The current study examined automatic processing of conceptual size in students with DD and developmental dyslexia. Conceptual and physical sizes were manipulated orthogonally to create congruent (e.g., a physically small apple compared to a physically large violin) and incongruent (e.g., a physically large apple compared to a physically small violin) conditions. Participants were presented with 2 objects and had to choose the larger one. Each trial began with an instruction to respond to the physical or to the conceptual dimension. Control and the dyslexic groups presented automatic processing of both conceptual and physical sizes. The dyscalculic group presented automatic processing of physical size but not automaticity of processing conceptual size. Our results fit with previous findings of weaker magnitude representation in those with DD, specifically regarding noncountable magnitudes, and support theories of a shared neurocognitive substrate for different types of magnitudes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less
Schendan, Haune E; Kutas, Malra
2007-08-01
Transfer appropriate processing (TAP) accounts propose that memory is a function of the degree to which the same neural processes transfer appropriately from the study experience to the memory test. However, in prior research, study and test stimuli were often similar physically. In two experiments, event-related brain potentials (ERPs) were recorded to fragmented objects during an indirect memory test to isolate transfer of a specific perceptual process from overlap of physical features between experiences. An occipitotemporoparietal P2(00) at 200 msec showed implicit memory effects only when similar perceptual grouping processes of good continuation were repeatedly engaged-despite physical feature differences--as TAP accounts hypothesize. This result provides direct neurophysiological evidence for the critical role of process transfer across experiences for memory.
Liapis, Ioannis; Papayianni, Ioanna
2015-01-01
Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.
Training Administrators in Anasynthesis
ERIC Educational Resources Information Center
Silvern, Leonard C.
1971-01-01
The author discusses the application of physical and mathematical systems to non-physical social systems; specifically education and cinema, the process of analysis, synthesis, modeling and simulation. The author describes the course he has developed to instruct students in anasynthesis. (Author/RR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi; Molnar, Peter
1988-01-01
Intracontinental deformation occurrence and the processes and physical parameters that control the rates and styles of deformation were examined. Studies addressing specific mechanical aspects of deformation were reviewed and the studies of deformation and of the structure of specific areas were studied considering the strength of the material and the gravitational effect.
Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan
2011-01-01
Comparisons of word and picture processing using Event-Related Potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical differences. Native Mandarin Chinese speakers viewed pictures (line drawings) and Chinese characters (Experiment 1), native English speakers viewed pictures and English words (Experiment 2), and naïve Chinese readers (native English speakers) viewed pictures and Chinese characters (Experiment 3) in a semantic categorization task. The varying pattern of differences in the ERPs elicited by pictures and words across the three experiments provided evidence for i) script-specific processing arising between 150–200 ms post-stimulus onset, ii) domain-specific but script-independent processing arising between 200–300 ms post-stimulus onset, and iii) processing that depended on stimulus meaningfulness in the N400 time window. The results are interpreted in terms of differences in the way visual features are mapped onto higher-level representations for pictures and words in alphabetic and logographic writing systems. PMID:21439991
Physical Uncertainty Bounds (PUB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, Diane Elizabeth; Preston, Dean L.
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less
NASA Astrophysics Data System (ADS)
Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.
2018-05-01
Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.
Campos Andrade, Cláudia; Lima, Maria Luísa; Pereira, Cícero Roberto; Fornara, Ferdinando; Bonaiuto, Marino
2013-05-01
This study analyses the processes through which the physical environment of health care settings impacts on patients' well-being. Specifically, we investigate the mediating role of perceptions of the physical and social environments, and if this process is moderated by patients' status, that is, if the objective physical environment impacts inpatients' and outpatients' satisfaction by different social-psychological processes. Patients (N=206) evaluated the physical and social environments of the care unit where they were receiving treatment, and its objective physical conditions were independently evaluated by two architects. Results showed that the objective environmental quality affects satisfaction through perceptions of environmental quality, and that patients' status moderates this relationship. For inpatients, it is the perception of quality of the social environment that mediates the relationship between objective environmental quality and satisfaction, whereas for outpatients it is the perception of quality of the physical environment. This moderated mediation is discussed in terms of differences on patients' experiences of health care environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
1990-01-01
expert systems, "intelligent" computer-aided instruction , symbolic learning . These aspects will be discussed, focusing on the specific problems the...VLSI chips) according to preliminary specifications. Finally ES are also used in computer-aided instruction (CAI) due to their ability of... instructions to process controllers), academic teaching (for mathematics , physics, foreign language, etc.). Domains of application The different
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
NASA Astrophysics Data System (ADS)
Ragi, K. B.; Patel, R.
2015-12-01
A great deal of studies focused on deforestation scenarios in the tropical rainforests. Though all these efforts are useful in the understanding of its response to climate, the systematic understanding of uncertainties in representation of physical processes related to vegetation through sensitivity studies is imperative antecedently to understand the real role of vegetation in changing the climate. It is understood that the dense vegetation fluxes energy and moisture to the atmosphere. But, how much a specific process/a group of processes in the surface conditions of a specific area helps flux energy, moisture and tracers is unknown due to lack of process sensitivity studies and uncertain due to malfunctioning of processes. In this presentation, we have found a faulty parameterization, through process sensitivity studies, that would abet in energy and moisture fluxes to the atmosphere. The model we have employed is the Common Land Model2014. The area we have chosen is the Congolese rainforest. We have discovered the flaw in the leaf boundary layer resistance (LBLR), through sensitivity studies in the LSMs, especially in the dense forest regions. This LBLR is over-parameterized with constant heat transfer coefficient and characteristic dimension of leaves; and friction velocity. However, it is too scant because of overlooking of significant complex physics of turbulence and canopy roughness boundary layer to function it realistically. Our sensitivity results show the deficiency of this process and we have formulated canopy boundary layer resistance, instead of LBLR, with depending variables such as LAI, roughness length, vegetation temperature using appropriate thermo-fluid dynamical principles. We are running the sensitivity experiments with new formulations for setting the parameter values for the data not available so far. This effort would lead to better physics for the land-use change studies and demand for the retrieval of new parameters from satellite/field experiments such as leaf mass per area and specific heat capacity of vegetation.
Van Damme, Stefaan; Gallace, Alberto; Spence, Charles; Crombez, Geert; Moseley, G Lorimer
2009-02-09
Threatening stimuli are thought to bias spatial attention toward the location from which the threat is presented. Although this effect is well-established in the visual domain, little is known regarding whether tactile attention is similarly affected by threatening pictures. We hypothesised that tactile attention might be more affected by cues implying physical threat to a person's bodily tissues than by cues implying general threat. In the present study, participants made temporal order judgments (TOJs) concerning which of a pair of tactile (or auditory) stimuli, one presented to either hand, at a range of inter-stimulus intervals, had been presented first. A picture (showing physical threat, general threat, or no threat) was presented in front of one or the other hand shortly before the tactile stimuli. The results revealed that tactile attention was biased toward the side on which the picture was presented, and that this effect was significantly larger for physical threat pictures than for general threat or neutral pictures. By contrast, the bias in auditory attention toward the side of the picture was significantly larger for general threat pictures than for physical threat pictures or neutral pictures. These findings therefore demonstrate a modality-specific effect of physically threatening cues on the processing of tactile stimuli, and of generally threatening cues on auditory information processing. These results demonstrate that the processing of tactile information from the body part closest to the threatening stimulus is prioritized over tactile information from elsewhere on the body.
Dijkstra, Jan Kornelis; Berger, Christian
2018-01-01
The present study examined to what extent selection and influence processes for physical aggression and prosociality in friendship networks differed between sex-specific contexts (i.e., all-male, all-female, and mixed-sex classrooms), while controlling for perceived popularity. Whereas selection processes reflect how behaviors shape friendships, influence processes reveal the reversed pattern by indicating how friends affect individual behaviors. Data were derived from a longitudinal sample of early adolescents from Chile. Four all-male classrooms ( n = 150 male adolescents), four all-female classrooms ( n = 190 female adolescents), and eight mixed-sex classrooms ( n = 272 students) were followed one year from grades 5 to 6 ( M age = 13). Analyses were conducted by means of stochastic-actor-based modeling as implemented in RSIENA. Although it was expected that selection and influence effects for physical aggression and prosociality would vary by context, these effects showed remarkably similar trends across all-male, all-female, and mixed-sex classrooms, with physical aggression reducing and with prosociality increasing the number of nominations received as best friend in all-male and particularly all-female classrooms. Further, perceived popularity increased the number of friendship nominations received in all contexts. Influence processes were only found for perceived popularity, but not for physical aggression and prosociality in any of the three contexts. Together, these findings highlight the importance of both behaviors for friendship selection independent of sex-specific contexts, attenuating the implications of these gendered behaviors for peer relations.
Science as Myth in Physical Education.
ERIC Educational Resources Information Center
Kirk, David
Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…
Abstracts, Third Space Processing Symposium, Skylab results
NASA Technical Reports Server (NTRS)
1974-01-01
Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.
Barker, Edward D.; Tremblay, Richard E.; van Lier, Pol A.C.; Vitaro, Frank; Nagin, Daniel S.; Assaad, Jean-Marc; Séguin, Jean R.
2012-01-01
There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. PMID:21046606
Barker, Edward D; Tremblay, Richard E; van Lier, Pol A C; Vitaro, Frank; Nagin, Daniel S; Assaad, Jean-Marc; Séguin, Jean R
2011-01-01
There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. © 2010 Wiley-Liss, Inc.
Separating stages of arithmetic verification: An ERP study with a novel paradigm.
Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes
2015-08-01
In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Croston, Amanda
2013-01-01
Background: This paper examines physical education (PE) teachers' perceptions of talent in PE and sport within the context of English policy, where the process of identifying talent has been formalised and supported through specific resources (YST 2009). English policy has merged educational and sporting targets, which has resulted in a shift in…
Native and Nonnative Processing of Japanese Pitch Accent
ERIC Educational Resources Information Center
Wu, Xianghua; Tu, Jung-Yueh; Wang, Yue
2012-01-01
The theoretical framework of this study is based on the prevalent debate of whether prosodic processing is influenced by higher level linguistic-specific circuits or reflects lower level encoding of physical properties. Using the dichotic listening technique, the study investigates the hemispheric processing of Japanese pitch accent by native…
Korean immigrant women's physical activity experience: a situation-specific theory.
Im, Eun-Ok; Chang, Sun Ju; Nguyen, Giang; Stringer, Lynn; Chee, Wonshik; Chee, Eunice
2015-01-01
To develop successful physical activity promotion programs for midlife immigrant women, especially for Korean immigrant midlife women, concrete theoretical bases are needed. However, virtually no theoretical frameworks and/or theories exist that can explain the influences of immigration transition on the physical activity experience of midlife immigrant women in general or Korean immigrant midlife women in specific. The purpose of this article is to present a situation-specific theory on physical activity experience of Korean immigrant midlife women (SPAKIM) with its development process. An integrative approach was used to develop the theory based on the midlife women's attitudes toward physical activity (MAPA) theory, the transitions theory, a review of the relevant literature, and two studies on midlife women's attitudes toward physical activity. The proposed theory includes nature of transitions, nonmodifiable and modifiable transition conditions, contexts of daily life, patterns of response, and nursing therapeutics as major concepts, and each major concept includes several related subconcepts. Because several concepts of the theory were developed mainly based on the literature review, the major concepts and related subconcepts need to be further developed and evaluated in future studies.
[A series about the value of physical examination].
de Jongh, T O H; Zaat, J O M
2010-01-01
This article is the introduction to a new series in the Nederlands Tijdschrift voor Geneeskunde about the value of physical examination. Associated with this series, on the website (www.ntvg.nl) there are chapters of the new textbook on physical examination and films about carrying out physical examinations. Although physical examination is an essential part of the diagnostic process, often little attention is paid to the correct execution of the examination and there is insufficient knowledge of the value of the findings. The diagnostic process usually involves analysing all the information from the patient's history and a physical examination. However, research has only been done on the value of specific tests and even that is very limited. The most important measure we use for the results of a physical examination is the likelihood ratio, which shows how the likelihood of presence or absence of a disease changes depending on the examination results.
Physics of Alfvén waves and energetic particles in burning plasmas
NASA Astrophysics Data System (ADS)
Chen, Liu; Zonca, Fulvio
2016-01-01
Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.
In-space fabrication of thin-film structures
NASA Technical Reports Server (NTRS)
Lippman, M. E.
1972-01-01
A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.
Wabnitz, Pascal; Martens, Ulla; Neuner, Frank
2016-01-01
Social anxiety disorder (SAD) is associated with heightened sensitivity to threat cues, typically represented by emotional facial expressions. To examine if this bias can be transferred to a general hypersensitivity or whether it is specific to disorder relevant cues, we investigated electrophysiological correlates of emotional word processing (alpha activity and event-related potentials) in 20 healthy participants and 20 participants with SAD. The experimental task was a silent reading of neutral, positive, physically threatening and socially threatening words (the latter were abusive swear words) while responding to a randomly presented dot. Subsequently, all participants were asked to recall as many words as possible during an unexpected recall test. Participants with SAD showed blunted sensory processing followed by a rapid processing of emotional words during early stages (early posterior negativity - EPN). At later stages, all participants showed enhanced processing of negative (physically and socially threatening) compared to neutral and positive words (N400). Moreover, at later processing stages alpha activity was increased specifically for negative words in participants with SAD but not in healthy controls. Recall of emotional words for all subjects was best for socially threatening words, followed by negative and positive words irrespective of social anxiety. The present findings indicate that SAD is associated with abnormalities in emotional word processing characterised by early hypervigilance to emotional cues followed by cognitive avoidance at later processing stages. Most importantly, the specificity of these attentional biases seems to change as a function of time with a general emotional bias at early and a more specific bias at later processing stages.
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
Finger, Jonas D; Tafforeau, Jean; Gisle, Lydia; Oja, Leila; Ziese, Thomas; Thelen, Juergen; Mensink, Gert B M; Lange, Cornelia
2015-01-01
A domain-specific physical activity questionnaire (EHIS-PAQ) was developed in the framework of the second wave of the European Health Interview Survey (EHIS). This article presents the EHIS-PAQ and describes its development and evaluation processes. Research institutes from Belgium, Estonia and Germany participated in the Improvement of the EHIS (ImpEHIS) Grant project issued by Eurostat. The instrument development process comprised a non-systematic literature review and a systematic HIS/HES database search for physical activity survey questions. The developed EHIS-PAQ proposal was reviewed by survey experts. Cognitive testing of the EHIS-PAQ was conducted in Estonia and Germany. The EHIS-PAQ was further tested in a pilot survey in Belgium, Estonia and Germany in different modes of data collection, face-to-face paper and pencil interview (PAPI) and computer assisted telephone interview (CATI). The EHIS-PAQ is a rather pragmatic tool aiming to evaluate how far the population is physically active in specific public health relevant settings. It assesses work-related, transport-related and leisure-time physical activity in a typical week. Cognitive testing revealed that the EHIS-PAQ worked as intended. The pilot testing showed the feasibility of using the EHIS-PAQ in an international health interview survey setting in Europe. It will be implemented in all 28 European Union Member States via European Union implementing regulation in the period between 2013 and 2015. This will be a first opportunity to get comparable data on domain-specific physical activity in all 28 EU MS and to publish indicators at the EU level. The EHIS-PAQ is a short, domain-specific PA questionnaire based on PA questions which have been used in large-scale health interview surveys before. It was designed by considering the respondents' perspective in answering PA questions.
D'Andrade, Roy G; Romney, A Kimball
2003-05-13
This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.
Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex
ERIC Educational Resources Information Center
Lacey, Simon; Stilla, Randall; Sathian, K.
2012-01-01
Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…
Mechanics Simulations in Second Life
ERIC Educational Resources Information Center
Black, Kelly
2010-01-01
This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…
WE-D-204-01: Site-Specific Clinical Rotation: Into the Minds of the Radiation Oncologists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, K.
2016-06-15
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
Climate change and coastal environmental risk perceptions in Florida.
Carlton, Stuart J; Jacobson, Susan K
2013-11-30
Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cold comfort at the Magh Mela: social identity processes and physical hardship.
Pandey, Kavita; Stevenson, Clifford; Shankar, Shail; Hopkins, Nicholas P; Reicher, Stephen D
2014-12-01
Humans inhabit environments that are both social and physical, and in this article we investigate if and how social identity processes shape the experience and negotiation of physically demanding environmental conditions. Specifically, we consider how severe cold can be interpreted and experienced in relation to group members' social identity. Our data comprise ethnographic observation and semi-structured interviews with pilgrims attending a month-long winter Hindu religious festival that is characterized by near-freezing conditions. The analysis explores (1) how pilgrims appraised the cold and how these appraisals were shaped by their identity as pilgrims; (2) how shared identity with other pilgrims led to forms of mutual support that made it easier to cope with the cold. Our findings therefore extend theorizing on social identity processes to highlight their relevance to physical as well as social conditions. © 2013 The British Psychological Society.
Zumeta, Larraitz N; Oriol, Xavier; Telletxea, Saioa; Amutio, Alberto; Basabe, Nekane
2015-01-01
This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE). A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Specifically, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study highlights the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed.
Collective Efficacy in Sports and Physical Activities: Perceived Emotional Synchrony and Shared Flow
Zumeta, Larraitz N.; Oriol, Xavier; Telletxea, Saioa; Amutio, Alberto; Basabe, Nekane
2016-01-01
This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE). A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Specifically, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study highlights the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed. PMID:26779077
ERIC Educational Resources Information Center
Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan
2011-01-01
Comparisons of word and picture processing using event-related potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical…
Biology meets physics: Reductionism and multi-scale modeling of morphogenesis.
Green, Sara; Batterman, Robert
2017-02-01
A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the "tyranny of scales" problem presents a challenge to reductive explanations in both physics and biology. The problem refers to the scale-dependency of physical and biological behaviors that forces researchers to combine different models relying on different scale-specific mathematical strategies and boundary conditions. Analyzing the ways in which different models are combined in multi-scale modeling also has implications for the relation between physics and biology. Contrary to the assumption that physical science approaches provide reductive explanations in biology, we exemplify how inputs from physics often reveal the importance of macro-scale models and explanations. We illustrate this through an examination of the role of biomechanical modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Becoming a Physicist: How Identities and Practices Shape Physics Trajectories
NASA Astrophysics Data System (ADS)
Quan, Gina M.
This dissertation studies the relationships and processes which shape students' participation within the discipline of physics. Studying this early disciplinary participation gives insight to how students are supported in or pushed out of physics, which is an important step in cultivating a diverse set of physics students. This research occurs within two learning environments that we co-developed: a physics camp for high school girls and a seminar for undergraduate physics majors to get started in physics research. Using situated learning theory, we conceptualized physics learning to be intertwined with participation in physics practices and identity development. This theoretical perspective draws our attention to relationships between students and the physics community. Specifically, we study how students come to engage in the practices of the community and who they are within the physics community. We find that students' interactions with faculty and peers impact the extent to which students engage in authentic physics practices. These interactions also impact the extent to which students develop identities as physicists. We present implications of these findings for the design of physics learning spaces. Understanding this process of how students become members of the physics community will provide valuable insights into fostering a diverse set of successful trajectories in physics.
Coherence and specificity of information-processing biases in depression and social phobia.
Gotlib, Ian H; Kasch, Karen L; Traill, Saskia; Joormann, Jutta; Arnow, Bruce A; Johnson, Sheri L
2004-08-01
Research has not resolved whether depression is associated with a distinct information-processing bias, whether the content of the information-processing bias in depression is specific to themes of loss and sadness, or whether biases are consistent across the tasks most commonly used to assess attention and memory processing. In the present study, participants diagnosed with major depression, social phobia, or no Axis I disorder, completed several information-processing tasks assessing attention and memory for sad, socially threatening, physically threatening, and positive stimuli. As predicted, depressed participants exhibited specific biases for stimuli connoting sadness; social phobic participants did not evidence such specificity for threat stimuli. It is important to note that the different measures of bias in memory and attention were not systematically intercorrelated. Implications for the study of cognitive bias in depression, and for cognitive theory more broadly, are discussed.
The situation specificity of youth responses to peer provocation.
Dirks, Melanie A; Treat, Teresa A; Weersing, V Robin
2007-01-01
Previous studies have identified peer provocation as a challenging class of situations for youth. The work presented here builds on previous methods of assessing peer provocation by (a) increasing the contextual detail of the vignettes; (b) developing a reliable, descriptive coding system of the range of youth responses to physical, verbal, and relational provocation; and (c) assessing the relevance of these situations for a sample (N = 76) of ethnically diverse, economically disadvantaged youth ages 12 to 14. The vignettes were used to examine the situation specificity of youth responses to provocation. Situation and identity of aggressor were both predictors of youth responses. For example, participants "matched" physical aggression to physical provocation. These findings are consistent with previous studies demonstrating the situation specificity of social information processing, even within the relatively homogeneous category of peer provocations.
Preparticipation screening - the sports physical therapy perspective.
Sanders, Barbara; Blackburn, Turner A; Boucher, Brenda
2013-04-01
The sports physical therapist (SPT) is uniquely qualified to participate in the provision of preparticipation physical examinations (PPE). The PPE is recommended prior to athletic participation and required by many jurisdictions. There is little research to support the process and components; however, a number of professional organizations have recommendations that direct the PPE process. This clinical commentary highlights the role of the sports physical therapist and current evidence related to the preparticipation physical examination process. Data sources were limited to include professional positions and peer reviewed publications from 1988 through January 2013. Preparticipation physicals should be useful, comprehensive, and cost effective for the athlete and the health care team. Additional research is indicated in many of the areas of the PPE. The SPT is a valuable member of the health care team and can be a primary facilitator of the PPE in concert with the physician, athletic trainer, athletic organization administrators, and others. Well-designed and inclusive PPEs can be provided to meet the major objectives of identification of athletes at risk. Controversy continues over the extent of the cardiac screening component as well as other sport or athlete specific components. 5.
Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J
2016-11-15
The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
WE-D-204-02: Errors and Process Improvements in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontenla, D.
2016-06-15
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
Swisher, Laura Lee; Hiller, Peggy
2010-05-01
In June 2009, the House of Delegates (HOD) of the American Physical Therapy Association (APTA) passed a major revision of the APTA Code of Ethics for physical therapists and the Standards of Ethical Conduct for the Physical Therapist Assistant. The revised documents will be effective July 1, 2010. The purposes of this article are: (1) to provide a historical, professional, and theoretical context for this important revision; (2) to describe the 4-year revision process; (3) to examine major features of the documents; and (4) to discuss the significance of the revisions from the perspective of the maturation of physical therapy as a doctoring profession. PROCESS OF REVISION: The process for revision is delineated within the context of history and the Bylaws of APTA. FORMAT, STRUCTURE, AND CONTENT OF REVISED CORE ETHICS DOCUMENTS: The revised documents represent a significant change in format, level of detail, and scope of application. Previous APTA Codes of Ethics and Standards of Ethical Conduct for the Physical Therapist Assistant have delineated very broad general principles, with specific obligations spelled out in the Ethics and Judicial Committee's Guide for Professional Conduct and Guide for Conduct of the Physical Therapist Assistant. In contrast to the current documents, the revised documents address all 5 roles of the physical therapist, delineate ethical obligations in organizational and business contexts, and align with the tenets of Vision 2020. The significance of this revision is discussed within historical parameters, the implications for physical therapists and physical therapist assistants, the maturation of the profession, societal accountability and moral community, potential regulatory implications, and the inclusive and deliberative process of moral dialogue by which changes were developed, revised, and approved.
Plasma physics of extreme astrophysical environments.
Uzdensky, Dmitri A; Rightley, Shane
2014-03-01
Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.
Gender Approach at Physical Culture Lessons at the Second Stage of Basic High Education
ERIC Educational Resources Information Center
Vorotilkin?, Irina M.; Anokhina, Olga V.; Galitsyn, Sergey V.; Byankina, Larisa V.; Chiligin, Dmitriy V.
2016-01-01
Gender approach in education is a specific impact on the development of boys and girls by the set of factors of education and training process. The objective of this research is the reasoning of applying gender approach at physical culture lessons and creating comfortable environment taking into account the psychophysiological differences of the…
ERIC Educational Resources Information Center
Wickrama, K. A. S.; Elder, Glen H.; Abraham, W. Todd
2007-01-01
Context and Purpose: This study's objectives are to: investigate potential additive and multiplicative influences of rurality and race/ethnicity on chronic physical illness in a nationally representative sample of youth; and examine intra-Latino processes using a Latino sub-sample. Specifically, we examine how rurality and individual psychosocial…
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
Physical methods for genetic transformation of fungi and yeast
NASA Astrophysics Data System (ADS)
Rivera, Ana Leonor; Magaña-Ortíz, Denis; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2014-06-01
The production of transgenic fungi is a routine process. Currently, it is possible to insert genes from other fungi, viruses, bacteria and even animals, albeit with low efficiency, into the genomes of a number of fungal species. Genetic transformation requires the penetration of the transgene through the fungal cell wall, a process that can be facilitated by biological or physical methods. Novel methodologies for the efficient introduction of specific genes and stronger promoters are needed to increase production levels. A possible solution to this problem is the recently discovered shock-wave-mediated transformation. The objective of this article is to review the state of the art of the physical methods used for genetic fungi transformation and to describe some of the basic physics and molecular biology behind them.
NASA Astrophysics Data System (ADS)
Collins, Tonya Monique Nicki
Two Professional Learning Communities of physics teachers from different high schools voluntarily participated in Lesson Study as a means of professional development. The five teacher-participants and one participant-researcher partook of two Lesson Study cycles, each of which focused on student physics misconceptions. The Lesson Study resulted in two topics of physics: projectiles and gravitation. The researcher aimed to determine what happens to secondary physics teachers who undergo Lesson Study through this phenomenological case study. Specifically, (1) What is the process of Lesson Study with secondary physics teachers? and (2) What are the teacher-reported outcomes of Lesson Study with secondary physics teachers? Overall, Lesson Study provided an avenue for secondary physics teachers to conduct inquiry on their students in an attempt to better understand student thinking and learning. As a result, teachers collaborated to learn how to better meet the needs of their students and self-reported growth in many areas of teaching and teacher knowledge. The study resulted in twelve hypotheses to be tested in later research centering on idealizing the process of Lesson Study and maximizing secondary physics teacher growth.
“A Waste of Time”: Hispanic Women's Attitudes toward Physical Activity
Im, Eun-Ok; Lee, Bokim; Hwang, Hyenam; Yoo, Kyung Hee; Chee, Wonshik; Stuifbergen, Alexa; Walker, Lorraine; Brown, Adama; McPeek, Chelsea; Miro, Michelle; Chee, Eunice
2010-01-01
Despite a lack of studies on Hispanic midlife women's physical activity, the existing studies have indicated that Hispanics' ethnic-specific attitudes toward physical activity contributed to their lack of physical activity. However, little is still clearly known about Hispanic midlife women's attitudes toward physical activity. The purpose of this study was to explore Hispanic midlife women's attitudes toward physical activity using a feminist perspective. The study was a 6-month qualitative online forum among 23 Hispanic women who were recruited through Internet communities/groups. The data were collected using 17 online forum topics on attitudes toward physical activity and ethnic-specific contexts. The data were analyzed using thematic analysis. Three major themes emerged from the data analysis process: (a) “family first, no time for myself,” (b) “little exercise, but naturally healthy,” and (c) “dad died of heart attack.” Although some of the women perceived the importance of physical activity due to their family history of chronic diseases, the study participants thought that physical activity would be a waste of time in their busy daily schedules. These findings provided directions for future health care practice and research to increase physical activity among Hispanic midlife women. PMID:20981637
Visual Links: Discovery in Art and Science.
ERIC Educational Resources Information Center
Dake, Dennis M.
Some specific aspects of the process of discovery are explored as they are experienced in the visual arts and the physical sciences. Both fields use the same visual/brain processing system, and both disciplines share an imaginative and productive interest in the disciplined use of imagistic thinking. Many productive interactions between visual…
Myths and Concerns Re: The Marathon.
ERIC Educational Resources Information Center
Betz, Robert, L.
The marathon is a specific form of the psycho-process cluster which has its own identifiable characteristics, the basic one being intensity. The primary objective in structuring the marathon is to intensify physical and emotional contact in order to precipitate, encourage, and accelerate the process of behavior change. Myths which have evolved…
Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States
2017-12-09
I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns
NASA Astrophysics Data System (ADS)
Gao, Li; Balakrishnan, Sreenath; He, Weikai; Yan, Zhen; Müller, Rolf
2011-11-01
A large number of mammals, including humans, have intricate outer ear shapes that diffract incoming sound in a direction- and frequency-specific manner. Through this physical process, the outer ear shapes encode sound-source information into the sensory signals from each ear. Our results show that horseshoe bats could dynamically control these diffraction processes through fast nonrigid ear deformations. The bats’ ear shapes can alter between extreme configurations in about 100 ms and thereby change their acoustic properties in ways that would suit different acoustic sensing tasks.
Violation of the 2nd Law of Thermodynamics in the Quantum Microworld
NASA Astrophysics Data System (ADS)
Čápek, V.; Frege, O.
2002-05-01
For one open quantum system recently reported to work as a perpetuum mobile of the second kind, basic equations providing basis for discussion of physics beyond the system activity are rederived in an appreciably simpler manner. The equations become exact in one specific scaling limit corresponding to the physical regime where internal processes (relaxations) in the system are commensurable or even slower than relaxation processes induced by bath. In the high-temperature (i.e. classical) limit, the system ceases to work, i.e., validity of the second law is reestablished.
The Process of Physical Fitness Standards Development
2000-12-01
218 Appendix A Physical Fitness and Specific Health Outcomes 223 Overweight and Obesity ...in the state of Military fitness may have occurred in the United States during the Spanish-American War, when several obese US. Army generals were...Research Center. The 1985 National Institutes of Health (NIH) defini- tion of obesity has been used as an upper limit for males, with a conversion
ERIC Educational Resources Information Center
Milroy, Jeffrey J.; Orsini, Muhsin Michael; D'Abundo, Michelle Lee; Sidman, Cara Lynn; Venezia, Diana
2015-01-01
Problem: A large number of American adults do not meet national physical activity (PA) guidelines for aerobic PA and muscle strengthening. Similarly, many American college students, specifically females do not engage in regular PA. Self Determination Theory can provide a basis for investigating motivational processes of PA. The purpose of this…
ERIC Educational Resources Information Center
Bucks County Public Schools, Doylestown, PA.
The Gross Motor Performance Screening Test was designed to aid the classroom teacher in obtaining specific information about the child's physical abilities. The test includes items which have been found to measure the various factors of physical fitness. It also includes items to measure skills important to the child and adult. Included also are…
Computer model for economic study of unbleached kraft paperboard production
Peter J. Ince
1984-01-01
Unbleached kraft paperboard is produced from wood fiber in an industrial papermaking process. A highly specific and detailed model of the process is presented. The model is also presented as a working computer program. A user of the computer program will provide data on physical parameters of the process and on prices of material inputs and outputs. The program is then...
Ablation dynamics - from absorption to heat accumulation/ultra-fast laser matter interaction
NASA Astrophysics Data System (ADS)
Kramer, Thorsten; Remund, Stefan; Jäggi, Beat; Schmid, Marc; Neuenschwander, Beat
2018-05-01
Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10-100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.
Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources
NASA Astrophysics Data System (ADS)
Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.
2017-09-01
We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction. We have developed a methodology for synthesizing physics-based broadband ground motion that incorporates the effects of realistic earthquake rupture along specific faults and the actual geology between the source and site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundle, John B.; Klein, William
We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.
Medical physics education from the view of the possible structural changes.
Ferencova, E; Kukurova, E
2001-01-01
Teaching subject physics at the university level represents a specific didactic transformation of the scientific field--physics. The determination of the content, extent, used methods, mutual relation to other subjects of curriculum as well as to the entrance knowledge of students are the most important parts of pedagogical activities in the educational process. Based on own experiences, successes and mistakes in teaching so-called medical physics the authors discuss didactic procedures which should support the interest and creativity of students. Some changes in the structure of physics education are recommended. The usefulness of the international collaboration in the framework of projects such as TEMPUS, ERASMUS is also remembered.
NASA Technical Reports Server (NTRS)
Suess, Steven
2006-01-01
As spacecraft observations of the heliosphere have moved from exploration into studies of physical processes, we are learning about the linkages that exist between different parts of the system. The past fifteen years have led to new ideas for how the heliospheric magnetic field connects back to the Sun and to how that connection plays a role in the origin of the solar wind. A growing understanding these connections, in turn, has led to the ability to use composition, ionization state, the microscopic state of the in situ plasma, and energetic particles as tools to further analyze the linkages and the underlying physical processes. Many missions have contributed to these investigations of the heliosphere as an integrated system. Two of the most important are Ulysses and SOHO, because of the types of measurements they make, their specific orbits, and how they have worked to complement each other. I will review and summarize the status of knowledge about these linkages, with emphasis on results from the Ulysses and SOHO missions. Some of the topics will be the global heliosphere at sunspot maximum and minimum, the physics and morphology of coronal holes, the origin(s) of slow wind, SOHO-Ulysses quadrature observations, mysteries in the propagation of energetic particles, and the physics of eruptive events and their associated current sheets. These specific topics are selected because they point towards the investigations that will be carried out with Solar Orbiter (SO) and the opportunity will be used to illustrate how SO will uniquely contribute to our knowledge of the underlying physical processes.
The southern plains LTAR watershed research program
Patrick Starks; Jean L. Steiner
2016-01-01
Water connects physical, biological, chemical, ecological, and economic forces across the landscape. While hydrologic processes and scientific investigations related to sustainable agricultural systems are based on universal principles, research to understand processes and evaluate management practices is often site-specific in order to achieve a critical mass of...
Method for simulating discontinuous physical systems
Baty, Roy S.; Vaughn, Mark R.
2001-01-01
The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.
Investigation of model-based physical design restrictions (Invited Paper)
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl
2005-05-01
As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.
Relative Role of Horizontal and Vertical Processes in Arctic Amplification
NASA Astrophysics Data System (ADS)
Kim, K. Y.
2017-12-01
The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.
Tsai, Chin-Chung
2006-01-01
Many educational psychologists believe that students' beliefs about the nature of knowledge, called epistemological beliefs, play an essential role in their learning process. Educators also stress the importance of helping students develop a better understanding of the nature of knowledge. The tentative and creative nature of science is often highlighted by contemporary science educators. However, few previous studies have investigated students' views of more specific knowledge domains, such as biology and physics. Consequently, this study developed a questionnaire to assess students' views specifically about the tentative and creative nature of biology and physics. From a survey of 428 Taiwanese high school adolescents, this study found that although students showed an understanding of the tentative and creative nature of biology and physics, they expressed stronger agreement as to the tentativeness of biology than that of physics. In addition, male students tended to agree more than did females that physics had tentative and creative features and that biology had tentative features. Also, students with more years of science education tended to show more agreement regarding the creative nature of physics and biology than those with fewer years.
Hunter, MaryCarol R; Askarinejad, Ali
2015-01-01
It is well-established that the experience of nature produces an array of positive benefits to mental well-being. Much less is known about the specific attributes of green space which produce these effects. In the absence of translational research that links theory with application, it is challenging to design urban green space for its greatest restorative potential. This translational research provides a method for identifying which specific physical attributes of an environmental setting are most likely to influence preference and restoration responses. Attribute identification was based on a triangulation process invoking environmental psychology and aesthetics theories, principles of design founded in mathematics and aesthetics, and empirical research on the role of specific physical attributes of the environment in preference or restoration responses. From this integration emerged a list of physical attributes defining aspects of spatial structure and environmental content found to be most relevant to the perceptions involved with preference and restoration. The physical attribute list offers a starting point for deciphering which scene stimuli dominate or collaborate in preference and restoration responses. To support this, functional definitions and metrics-efficient methods for attribute quantification are presented. Use of these research products and the process for defining place-based metrics can provide (a) greater control in the selection and interpretation of the scenes/images used in tests of preference and restoration and (b) an expanded evidence base for well-being designers of the built environment.
Hunter, MaryCarol R.; Askarinejad, Ali
2015-01-01
It is well-established that the experience of nature produces an array of positive benefits to mental well-being. Much less is known about the specific attributes of green space which produce these effects. In the absence of translational research that links theory with application, it is challenging to design urban green space for its greatest restorative potential. This translational research provides a method for identifying which specific physical attributes of an environmental setting are most likely to influence preference and restoration responses. Attribute identification was based on a triangulation process invoking environmental psychology and aesthetics theories, principles of design founded in mathematics and aesthetics, and empirical research on the role of specific physical attributes of the environment in preference or restoration responses. From this integration emerged a list of physical attributes defining aspects of spatial structure and environmental content found to be most relevant to the perceptions involved with preference and restoration. The physical attribute list offers a starting point for deciphering which scene stimuli dominate or collaborate in preference and restoration responses. To support this, functional definitions and metrics—efficient methods for attribute quantification are presented. Use of these research products and the process for defining place-based metrics can provide (a) greater control in the selection and interpretation of the scenes/images used in tests of preference and restoration and (b) an expanded evidence base for well-being designers of the built environment. PMID:26347691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Robert
2006-03-29
I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way inmore » which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.« less
NASA Astrophysics Data System (ADS)
Westlander, Meghan Joanne
Interactive engagement environments are critical to students' conceptual learning gains, and often the instructor is ultimately responsible for the creation of that environment in the classroom. When those instructors are graduate teaching assistants (GTAs), one of the primary ways in which they can promote interactive engagement is through their interactions with students. Much of the prior research on physics GTA-student interactions focuses on GTA training programs (e.g. Ezrailson (2004); Smith, Ward, and Rosenshein (1977)) or on GTAs' specific actions and beliefs (e.g. West, Paul, Webb, and Potter (2013); Goertzen (2010); Spike and Finkelstein (2012a)). Research on students' ideas and behaviors within and surrounding those interactions is limited but important to obtaining a more complete understanding of how GTAs promote an interactive environment. In order to begin understanding this area, I developed the Issues Framework to examine how GTA-student interactions are situated in students' processes during physics problem solving activities. Using grounded theory, the Issues Framework emerged from an analysis of the relationships between GTA-student interactions and the students procedures and expressions of physics content in and surrounding those interactions. This study is focused on introducing the Issues Framework and the insight it can provide into GTA-student interactions and students' processes. The framework is general in nature and has a visually friendly design making it a useful tool for consolidating complex data and quickly pattern-matching important pieces of a complex process. Four different categories of Issues emerged spanning the problem solving process: (1) Getting Started, (2) Solution Approach, (3) Unit Conversions, and (4) Other. The framework allowed for identification of the specific contents of the Issues in each category as well as revealing the common stories of students' processes and how the interactions were situated in those processes in each category. Through the stories, the Issues Framework revealed processes in which students often focused narrowly on procedures with the physics content expressed through their procedures and only sometimes through conceptual discussions. Interactions with the GTA affected changes in students' processes, typically leading students to correct their procedures. The interactions often focused narrowly on procedures as well but introduced conceptual discussions more often than students did surrounding the interactions. Comparing stories across GTAs instead of across categories revealed one GTA who, more often than other GTAs, used conceptual discussion and encouraged students' participation in the interactions. The Issues Framework still needs continued refinement and testing. However, it represents a significant step toward understanding GTA-student interactions from the perspective of students' processes in physics problem solving.
Physics-based interactive volume manipulation for sharing surgical process.
Nakao, Megumi; Minato, Kotaro
2010-05-01
This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.
Bevans, Katherine B; Fitzpatrick, Leslie-Anne; Sanchez, Betty M; Riley, Anne W; Forrest, Christopher
2010-12-01
This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical activity during PE. The proportion of class time devoted to management was evaluated as a potential mediator of the relations between resource availability and student activity levels. Data for this cross-sectional study were collected from interviews conducted with 46 physical educators and the systematic observation of 184 PE sessions in 34 schools. Regression analyses were conducted to test for the main effects of resource availability and the mediating role of class management. Students who attended schools with a low student-to-physical educator ratio had more PE time and engaged in higher levels of physical activity during class time. Access to adequate PE equipment and facilities was positively associated with student activity levels. The availability of a greater number of physical educators per student was found to impact student activity levels by reducing the amount of session time devoted to class management. The identification of structure and process predictors of student activity levels in PE will support the allocation of resources and encourage instructional practices that best support increased student activity levels in the most cost-effective way possible. Implications for PE policies and programs are discussed. © 2010, American School Health Association.
Klein, Elise; Moeller, Korbinian; Kiechl-Kohlendorfer, Ursula; Kremser, Christian; Starke, Marc; Cohen Kadosh, Roi; Pupp-Peglow, Ulrike; Schocke, Michael; Kaufmann, Liane
2014-01-01
This study examined the neural correlates of intentional and automatic number processing (indexed by number comparison and physical Stroop task, respectively) in 6- and 7-year-old children born prematurely. Behavioral results revealed significant numerical distance and size congruity effects. Imaging results disclosed (1) largely overlapping fronto-parietal activation for intentional and automatic number processing, (2) a frontal to parietal shift of activation upon considering the risk factors gestational age and birth weight, and (3) a task-specific link between math proficiency and functional magnetic resonance imaging (fMRI) signal within distinct regions of the parietal lobes—indicating commonalities but also specificities of intentional and automatic number processing. PMID:25090014
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
ActiveWV: a systematic approach to developing a physical activity plan for West Virginia.
Elliott, Eloise; Jones, Emily; Bulger, Sean
2014-03-01
Modeled after the National Physical Activity Plan (NPAP), ActiveWV 2015: The West Virginia Physical Activity Plan was developed to provide strategic direction for physical activity promotion within the state. The purpose of this manuscript is to describe the systematic approach taken in developing ActiveWV. Plan development began with establishing capacity and leadership among key stakeholders representing all societal sectors. A multiphase, statewide decision-making process allowed for input across sectors and geographic regions. The process results identified five priority areas that served as the conceptual framework for ActiveWV. Sector teams, comprised of key organization stakeholders across the eight sectors, finalized the sector-specific strategies and tactics using the NPAP evidence-based recommendations, results from a formalized strategic process, and the teams' expertise and experience. ActiveWV was officially released on January 19, 2012 at the State Capitol in Charleston, West Virginia. Community events throughout the state surrounded the release and celebrated West Virginia Physical Activity Day. Ongoing implementation and dissemination efforts are underway at state and local levels. As the NPAP calls for states and communities to develop plans that meet the needs of their particular context, other states may find the lessons learned from West Virginia helpful in the development process.
NASA Astrophysics Data System (ADS)
Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.
2015-12-01
The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.
WE-D-204-00: Session in Memory of Franca Kuchnir: Excellence in Medical Physics Residency Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
TU-C-218-01: Effective Medical Imaging Physics Education.
Sprawls, P
2012-06-01
A practical and applied knowledge of physics and the associated technology is required for the clinically effective and safe use of the various medical imaging modalities. This is needed by all involved in the imaging process, including radiologists, especially residents in training, technologists, and physicists who provide consultation on optimum and safe procedures and as educators for the other imaging professionals. This area of education is undergoing considerable change and evolution for three reasons: 1. Increasing capabilities and complexity of medical imaging technology and procedures, 2.Expanding scope and availability of educational resources, especially on the internet, and 3. A significant increase in our knowledge of the mental learning process and the design of learning activities to optimize effectiveness and efficiency, especially for clinically applied physics. This course will address those three issues by providing guidance on establishing appropriate clinically focused learning outcomes, a review of the brain function for enhancing clinically applied physics, and the design and delivery of effective learning activities beginning with the classroom and continuing through learning physics during the clinical practice of radiology. Characteristics of each type of learning activity will be considered with respect to effectiveness and efficiency in achieving appropriate learning outcomes. A variety of available resources will be identified and demonstrated for use in the different phases of learning process. A major focus is on enhancing the role of the medical physicist in clinical radiology both as a resource and educator with contemporary technology being the tool, but not the teacher. 1. Develop physics learning objectives that will support effective and safe medical imaging procedures. 2. Understand specific brain functions that are involved in learning and applying physics. 3. Describe the characteristics and development of mental knowledge structures for applied clinical physics. 4. List the established levels of learning and associate each with specific functions that can be performed. 5. Analyze the different types of learning activities (classroom, individual study, clinical, etc.) with respect to effectiveness and efficiency. 6. Design and Provide a comprehensive physics education program with each activity optimized with respect to outcomes and available resources. © 2012 American Association of Physicists in Medicine.
Freight data architecture business process, logical data model, and physical data model.
DOT National Transportation Integrated Search
2014-09-01
This document summarizes the study teams efforts to establish data-sharing partnerships : and relay the lessons learned. In addition, it provides information on a prototype freight data : architecture and supporting description and specifications ...
2018-04-30
quality assurance, parts, materials, processes, and domain-specific considerations such as radiation effects in space missions which are all part of MA...Bulletin, 138(2), p.211. Katz, R. and Allen, T.J. (1982). Investigating the Not Invented Here (NIH) syndrome : A look at the performance, tenure, and...actual modularity of a cyber-physical system is particularly acute . As Lee [2008] points out, cyber-physical systems have always been held to a higher
Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.
2015-05-15
Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
A Scientific Workflow System for Satellite Data Processing with Real-Time Monitoring
NASA Astrophysics Data System (ADS)
Nguyen, Minh Duc
2018-02-01
This paper provides a case study on satellite data processing, storage, and distribution in the space weather domain by introducing the Satellite Data Downloading System (SDDS). The approach proposed in this paper was evaluated through real-world scenarios and addresses the challenges related to the specific field. Although SDDS is used for satellite data processing, it can potentially be adapted to a wide range of data processing scenarios in other fields of physics.
The Impact of Physical and Ergonomic Hazards on Poultry Abattoir Processing Workers: A Review.
Harmse, Johannes L; Engelbrecht, Jacobus C; Bekker, Johan L
2016-02-06
The poultry abattoir industry continues to grow and contribute significantly to the gross domestic product in many countries. The industry expects working shifts of eight to eleven hours, during which workers are exposed to occupational hazards which include physical hazards ranging from noise, vibration, exposure to cold and ergonomic stress from manual, repetitive tasks that require force. A PubMed, Medline and Science Direct online database search, using specific keywords was conducted and the results confirmed that physical and ergonomic hazards impact on abattoir processing workers health, with harm not only to workers' health but also as an economic burden due to the loss of their livelihoods and the need for treatment and compensation in the industry. This review endeavours to highlight the contribution poultry processing plays in the development of physical agents and ergonomic stress related occupational diseases in poultry abattoir processing workers. The impact includes noise-induced hearing loss, increased blood pressure, menstrual and work related upper limb disorders. These are summarised as a quick reference guide for poultry abattoir owners, abattoir workers, poultry associations, occupational hygienists and medical practitioners to assist in the safer management of occupational health in poultry abattoirs.
The Impact of Physical and Ergonomic Hazards on Poultry Abattoir Processing Workers: A Review
Harmse, Johannes L.; Engelbrecht, Jacobus C.; Bekker, Johan L.
2016-01-01
The poultry abattoir industry continues to grow and contribute significantly to the gross domestic product in many countries. The industry expects working shifts of eight to eleven hours, during which workers are exposed to occupational hazards which include physical hazards ranging from noise, vibration, exposure to cold and ergonomic stress from manual, repetitive tasks that require force. A PubMed, Medline and Science Direct online database search, using specific keywords was conducted and the results confirmed that physical and ergonomic hazards impact on abattoir processing workers health, with harm not only to workers’ health but also as an economic burden due to the loss of their livelihoods and the need for treatment and compensation in the industry. This review endeavours to highlight the contribution poultry processing plays in the development of physical agents and ergonomic stress related occupational diseases in poultry abattoir processing workers. The impact includes noise-induced hearing loss, increased blood pressure, menstrual and work related upper limb disorders. These are summarised as a quick reference guide for poultry abattoir owners, abattoir workers, poultry associations, occupational hygienists and medical practitioners to assist in the safer management of occupational health in poultry abattoirs. PMID:26861374
Levels of processing and picture memory: the physical superiority effect.
Intraub, H; Nicklos, S
1985-04-01
Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.
PREPARTICIPATION SCREENING – THE SPORTS PHYSICAL THERAPY PERSPECTIVE
Blackburn, Turner A.; Boucher, Brenda
2013-01-01
Background and Purpose: The sports physical therapist (SPT) is uniquely qualified to participate in the provision of preparticipation physical examinations (PPE). The PPE is recommended prior to athletic participation and required by many jurisdictions. There is little research to support the process and components; however, a number of professional organizations have recommendations that direct the PPE process. Description of Topic and Related Evidence: This clinical commentary highlights the role of the sports physical therapist and current evidence related to the preparticipation physical examination process. Data sources were limited to include professional positions and peer reviewed publications from 1988 through January 2013. Relation to Clinical Practice: Preparticipation physicals should be useful, comprehensive, and cost effective for the athlete and the health care team. Additional research is indicated in many of the areas of the PPE. The SPT is a valuable member of the health care team and can be a primary facilitator of the PPE in concert with the physician, athletic trainer, athletic organization administrators, and others. Well‐designed and inclusive PPEs can be provided to meet the major objectives of identification of athletes at risk. Controversy continues over the extent of the cardiac screening component as well as other sport or athlete specific components. Level of Evidence: 5 PMID:23593556
Epistasis in protein evolution
Starr, Tyler N.
2016-01-01
Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806
Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code
NASA Astrophysics Data System (ADS)
Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.
2015-08-01
MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.
Content Specificity of Expectancy Beliefs and Task Values in Elementary Physical Education
Chen, Ang; Martin, Robert; Ennis, Catherine D.; Sun, Haichun
2015-01-01
The curriculum may superimpose a content-specific context that mediates motivation (Bong, 2001). This study examined content specificity of the expectancy-value motivation in elementary school physical education. Students’ expectancy beliefs and perceived task values from a cardiorespiratory fitness unit, a muscular fitness unit, and a traditional skill/game unit were analyzed using constant comparison coding procedures, multivariate analysis of variance, χ2, and correlation analyses. There was no difference in the intrinsic interest value among the three content conditions. Expectancy belief, attainment, and utility values were significantly higher for the cardiorespiratory fitness curriculum. Correlations differentiated among the expectancy-value components of the content conditions, providing further evidence of content specificity in the expectancy-value motivation process. The findings suggest that expectancy beliefs and task values should be incorporated in the theoretical platform for curriculum development based on the learning outcomes that can be specified with enhanced motivation effect. PMID:18664044
Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels
, biodiesel is a mono-alkyl ester, which has different physical properties and hence different fuel specifications (ASTM D6751 and EN 14214). The two fuels are also produced through very different processes. While
75 FR 2109 - Notice of Availability of Final Contracting Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... the management, maintenance, interpretation, certification, and dissemination of bathymetric... to the Omnibus Public Land Management Act of 2009 (Pub. L. 111-11), specifically the Ocean and... the acquisition, processing, and management of physical, biological, geological, chemical, and...
Space processing applications payload equipment study. Volume 2A: Experiment requirements
NASA Technical Reports Server (NTRS)
Smith, A. G.; Anderson, W. T., Jr.
1974-01-01
An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.
NASA Astrophysics Data System (ADS)
Nelms, April Wagnon
This dissertation used qualitative methodologies, specifically phenomenological research, to investigate what contributes to the development of pedagogical content knowledge (PCK) of physics and physical science teachers who participate in a content-specific continuous professional development program. There were five participants in this study. The researcher conducted participant observations and interviews, rated participants degree of reformed teaching practices using the
Spacelab 3 vapor crystal growth experiment
NASA Technical Reports Server (NTRS)
Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.
1987-01-01
The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.
Fuel quality-processing study. Volume 2: Literature survey
NASA Technical Reports Server (NTRS)
Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.
1981-01-01
The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.
WE-D-204-04: Learning the Ropes: Clinical Immersion in the First Month of Residency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, S.
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, W.
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
Low-Temperature Plasma Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun; Meyyappan, M.
2004-01-01
A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.
The MINERVA Software Development Process
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.
2017-01-01
This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.
NASA Astrophysics Data System (ADS)
Hansson, Lena; Leden, Lotta
2016-09-01
In the science education research field there is a large body of literature on the ‘nature of science’ (NOS). NOS captures issues about what characterizes the research process as well as the scientific knowledge. Here we, in line with a broad body of literature, use a wide definition of NOS including also e.g. socio-cultural aspects. It is argued that NOS issues, for a number of reasons, should be included in the teaching of science/physics. Research shows that NOS should be taught explicitly. There are plenty of suggestions on specific and separate NOS activities, but the necessity of discussing NOS issues in connection to specific science/physics content and to laboratory work, is also highlighted. In this article we draw on this body of literature on NOS and science teaching, and discuss how classroom situations in secondary physics classes could be turned into NOS-learning situations. The discussed situations have been suggested by secondary teachers, during in-service teacher training, as situations from every-day physics teaching, from which NOS could be highlighted.
Objectively-Measured Physical Activity and Cognitive Functioning in Breast Cancer Survivors
Marinac, Catherine R.; Godbole, Suneeta; Kerr, Jacqueline; Natarajan, Loki; Patterson, Ruth E.; Hartman, Sheri J.
2015-01-01
Purpose To explore the relationship between objectively measured physical activity and cognitive functioning in breast cancer survivors. Methods Participants were 136 postmenopausal breast cancer survivors. Cognitive functioning was assessed using a comprehensive computerized neuropsychological test. 7-day physical activity was assessed using hip-worn accelerometers. Linear regression models examined associations of minutes per day of physical activity at various intensities on individual cognitive functioning domains. The partially adjusted model controlled for primary confounders (model 1), and subsequent adjustments were made for chemotherapy history (model 2), and BMI (model 3). Interaction and stratified models examined BMI as an effect modifier. Results Moderate-to-vigorous physical activity (MVPA) was associated with Information Processing Speed. Specifically, ten minutes of MVPA was associated with a 1.35-point higher score (out of 100) on the Information Processing Speed domain in the partially adjusted model, and a 1.29-point higher score when chemotherapy was added to the model (both p<.05). There was a significant BMI x MVPA interaction (p=.051). In models stratified by BMI (<25 vs. ≥25 kg/m2), the favorable association between MVPA and Information Processing Speed was stronger in the subsample of overweight and obese women (p<.05), but not statistically significant in the leaner subsample. Light-intensity physical activity was not significantly associated with any of the measured domains of cognitive function. Conclusions MVPA may have favorable effects on Information Processing Speed in breast cancer survivors, particularly among overweight or obese women. Implications for Cancer Survivors Interventions targeting increased physical activity may enhance aspects of cognitive function among breast cancer survivors. PMID:25304986
Modeling Patient-Specific Deformable Mitral Valves.
Ginty, Olivia; Moore, John; Peters, Terry; Bainbridge, Daniel
2018-06-01
Medical imaging has advanced enormously over the last few decades, revolutionizing patient diagnostics and care. At the same time, additive manufacturing has emerged as a means of reproducing physical shapes and models previously not possible. In combination, they have given rise to 3-dimensional (3D) modeling, an entirely new technology for physicians. In an era in which 3D imaging has become a standard for aiding in the diagnosis and treatment of cardiac disease, this visualization now can be taken further by bringing the patient's anatomy into physical reality as a model. The authors describe the generalized process of creating a model of cardiac anatomy from patient images and their experience creating patient-specific dynamic mitral valve models. This involves a combination of image processing software and 3D printing technology. In this article, the complexity of 3D modeling is described and the decision-making process for cardiac anesthesiologists is summarized. The management of cardiac disease has been altered with the emergence of 3D echocardiography, and 3D modeling represents the next paradigm shift. Copyright © 2017 Elsevier Inc. All rights reserved.
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2016-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition. PMID:26779057
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2015-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition.
NASA Astrophysics Data System (ADS)
Vertenten, Kristin
2002-01-01
Finding a way to encourage first year students to use deep processing strategies was the aim of this research. The need for an adequate method became clear after using the Inventory of Learning Styles (ILS) of Vermunt: almost half of the first year students turned out to have an undirected or a reproduction-directed learning style. A possible intervention is process-oriented instruction. In this type of instruction learning strategies are taught in coherence with domain specific knowledge. The emphasis is on a gradual transfer from a strongly instruction-guided regulation of the learning process towards a student-regulation. By promoting congruence and constructive frictions between instruction and learning strategies, students are challenged to improve their learning strategies. These general features of process-oriented instruction were refined by Vermunt (1992) in twelve general and specific principles. Literature was studied in which researchers reported about their experiences with interventions aimed at teaching physics knowledge, physics strategies and/or learning and thinking strategies. It became obvious that several successful interventions stressed four principles: (1) the student must experience (constructive) f&barbelow;rictions, including cognitive conflicts; (2) he must be encouraged to ṟeflect on his experiences (thinking about them and analysing them); (3) the instruction must e&barbelow;xplicate and demonstrate the necessary knowledge and strategies; and (4) the student must be given the opportunity to practice (ḏoing) with the learned knowledge and strategies. These four FRED-principles are useful for teaching both general and domain specific knowledge and strategies. They show similarities with the four stages in the learning cycle of Kolb (1984). Moreover, other elements of process-oriented instruction are also depicted by the learning cycle, which, when used in process-oriented instruction, has to start with experiencing (constructive) frictions. The gradual shift of the regulation of the learning process can also be translated to the learning cycle. This can be accomplished by giving a new meaning to the radius of the circle which must represent the growing self-regulation of the learning process. This transforms the learning cycle into a learning spiral. The four FRED-principles were used to develop a learning environment for the first year physics problem-solving classes. After working in this learning environment during the first semester, students began using deep processing strategies in a self-regulated manner. After the second semester the reproduction-directed and undirected learning style were vanished or strongly diminished. These effects were not found in a traditional learning environment. The experimental group also obtained better study results. Working in the developed learning environment did not heighten the study load. (Abstract shortened by UMI.)
Thermal stress, human performance, and physical employment standards.
Cheung, Stephen S; Lee, Jason K W; Oksa, Juha
2016-06-01
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Ghimpusan, Marieta; Nechifor, Gheorghe; Nechifor, Aurelia-Cristina; Dima, Stefan-Ovidiu; Passeri, Piero
2017-12-01
The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH 4 + , NO 2 - , NO 3 - ) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scattering of laser light - more than just smoke and mirrors
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Love, Stephen; Cahalan, Robert
2004-01-01
A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
15 CFR 200.103 - Consulting and advisory services.
Code of Federal Regulations, 2013 CFR
2013-01-01
...., details of design and construction, operational aspects, unusual or extreme conditions, methods of statistical control of the measurement process, automated acquisition of laboratory data, and data reduction... group seminars on the precision measurement of specific types of physical quantities, offering the...
15 CFR 200.103 - Consulting and advisory services.
Code of Federal Regulations, 2011 CFR
2011-01-01
...., details of design and construction, operational aspects, unusual or extreme conditions, methods of statistical control of the measurement process, automated acquisition of laboratory data, and data reduction... group seminars on the precision measurement of specific types of physical quantities, offering the...
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.
Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera
2017-11-20
This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.
NASA Astrophysics Data System (ADS)
Taer, E.; Susanti, Y.; Awitdrus, Sugianto, Taslim, R.; Setiadi, R. N.; Bahri, S.; Agustino, Dewi, P.; Kurniasih, B.
2018-02-01
The effect of CO2 activation on the synthesis of activated carbon monolith from banana stem waste has been studied. Physical characteristics such as density, degree of crystallinity, surface morphology and elemental content has been analyzed, supporting the finding of an excellent electrochemical properties for the supercapacitor. The synthesis of activated carbon electrode began with pre-carbonization process at temperature of 250°C for 2.5 h. Then the process was continued by chemical activation using KOH as activating agent with a concentration of 0.4 M. The pellets were formed with 8 ton hydrolic pressure. All the samples were carbonized at a temperature of 600°C, followed by physical activation using CO2 gas at a various temperatures ranging from 800°C, 850°C, 900°C and 950°C for 2 h. The carbon content was increased with increasing temperature and the optimum temperature was 900°C. The specific capacitance depends on the activation temperature with the highest specific capacitance of 104.2 F/g at the activation temperature of 900°C.
A Novel Numerical Method for Fuzzy Boundary Value Problems
NASA Astrophysics Data System (ADS)
Can, E.; Bayrak, M. A.; Hicdurmaz
2016-05-01
In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.
Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems
NASA Technical Reports Server (NTRS)
Bujorianu, Marius C.; Bujorianu, Manuela L.
2009-01-01
In this paper, we sketch a framework for interdisciplinary modeling of space systems, by proposing a holistic view. We consider different system dimensions and their interaction. Specifically, we study the interactions between computation, physics, communication, uncertainty and autonomy. The most comprehensive computational paradigm that supports a holistic perspective on autonomous space systems is given by cyber-physical systems. For these, the state of art consists of collaborating multi-engineering efforts that prompt for an adequate formal foundation. To achieve this, we propose a leveraging of the traditional content of formal modeling by a co-engineering process.
Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea
NASA Astrophysics Data System (ADS)
Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo
1999-02-01
A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.
NASA Astrophysics Data System (ADS)
Luce, C. H.; Buffington, J. M.; Rieman, B. E.; Dunham, J. B.; McKean, J. A.; Thurow, R. F.; Gutierrez-Teira, B.; Rosenberger, A. E.
2005-05-01
Conservation and restoration of freshwater stream and river habitats are important goals for land management and natural resources research. Several examples of research have emerged showing that many species are adapted to temporary habitat disruptions, but that these adaptations are sensitive to the spatial grain and extent of disturbance as well as to its duration. When viewed from this perspective, questions of timing, spatial pattern, and relevant scales emerge as critical issues. In contrast, much regulation, management, and research remains tied to pollutant loading paradigms that are insensitive to either time or space scales. It is becoming clear that research is needed to examine questions and hypotheses about how physical processes affect ecological processes. Two overarching questions concisely frame the scientific issues: 1) How do we quantify physical watershed processes in a way that is meaningful to biological and ecological processes, and 2) how does the answer to that question vary with changing spatial and temporal scales? A joint understanding of scaling characteristics of physical process and the plasticity of aquatic species will be needed to accomplish this research; hence a strong need exists for integrative and collaborative development. Considering conservation biology problems in this fashion can lead to creative and non-obvious solutions because the integrated system has important non-linearities and feedbacks related to a biological system that has responded to substantial natural variability in the past. We propose that research beginning with ecological theories and principles followed with a structured examination of each physical process as related to the specific ecological theories is a strong approach to developing the necessary science, and such an approach may form a basis for development of scaling theories of hydrologic and geomorphic process. We illustrate the approach with several examples.
Research as a guide for developing curricula on wave behavior at boundaries
NASA Astrophysics Data System (ADS)
Kryjevskaia, Mila; Stetzer, Mackenzie; Heron, Paula; McDermott, Lillian
2007-03-01
The Physics Education Group at the University of Washington has been developing research-based instructional materials on mechanical waves and physical optics.* As a part of this ongoing process, we continue to assess and refine existing tutorials. In particular, we are focusing on tutorials designed to help students apply boundary conditions to the propagation and refraction of periodic waves. Pretest and post-test results are being used to inform curriculum modifications and to assess the effectiveness of the revised materials. Specific examples of persistent student difficulties will be presented. * Tutorials in Introductory Physics, L.C. McDermott, P.S. Shaffer and the Physics Education Group at the University of Washington, Prentice Hall (2002)
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Francis, Claire E; Longmuir, Patricia E; Boyer, Charles; Andersen, Lars Bo; Barnes, Joel D; Boiarskaia, Elena; Cairney, John; Faigenbaum, Avery D; Faulkner, Guy; Hands, Beth P; Hay, John A; Janssen, Ian; Katzmarzyk, Peter T; Kemper, Han C; Knudson, Duane; Lloyd, Meghann; McKenzie, Thomas L; Olds, Tim S; Sacheck, Jennifer M; Shephard, Roy J; Zhu, Weimo; Tremblay, Mark S
2016-02-01
The Canadian Assessment of Physical Literacy (CAPL) was conceptualized as a tool to monitor children's physical literacy. The original model (fitness, activity behavior, knowledge, motor skill) required revision and relative weights for calculating/interpreting scores were required. Nineteen childhood physical activity/fitness experts completed a 3-round Delphi process. Round 1 was open-ended questions. Subsequent rounds rated statements using a 5-point Likert scale. Recommendations were sought regarding protocol inclusion, relative importance within composite scores and score interpretation. Delphi participant consensus was achieved for 64% (47/73) of statement topics, including a revised conceptual model, specific assessment protocols, the importance of longitudinal tracking, and the relative importance of individual protocols and composite scores. Divergent opinions remained regarding the inclusion of sleep time, assessment/ scoring of the obstacle course assessment of motor skill, and the need for an overall physical literacy classification. The revised CAPL model (overlapping domains of physical competence, motivation, and knowledge, encompassed by daily behavior) is appropriate for monitoring the physical literacy of children aged 8 to 12 years. Objectively measured domains (daily behavior, physical competence) have higher relative importance. The interpretation of CAPL results should be reevaluated as more data become available.
Fetal growth restriction promotes physical inactivity and obesity in female mice
USDA-ARS?s Scientific Manuscript database
Environmental exposures during critical periods of prenatal and early postnatal life affect the development of mammalian body weight regulatory mechanisms, influencing lifelong risk of obesity. The specific biological processes that mediate the persistence of such effects, however, remain poorly und...
Scientific computations section monthly report, November 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckner, M.R.
1993-12-30
This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.
Physical examination of the hand.
Kenney, Raymond J; Hammert, Warren C
2014-11-01
Examination of the hand is an essential piece of a hand surgeon's skill set. This current concepts review presents a systematic process of performing a comprehensive physical examination of the hand including vascular, sensory, and motor assessments. Evaluations focused on specific hand diseases and injuries are also discussed. This information can be useful for any health care provider treating patients with hand conditions. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu
2014-09-01
Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temporomandibular disorders. Part 2: conservative management
Shaffer, Stephen M; Brismée, Jean-Michel; Sizer, Phillip S; Courtney, Carol A
2014-01-01
Appropriate management of temporomandibular disorders (TMD) requires an understanding of the underlying dysfunction associated with the temporomandibular joint (TMJ) and surrounding structures. A comprehensive examination process, as described in part 1 of this series, can reveal underlying clinical findings that assist in the delivery of comprehensive physical therapy services for patients with TMD. Part 2 of this series focuses on management strategies for TMD. Physical therapy is the preferred conservative management approach for TMD. Physical therapists are professionally well-positioned to step into the void and provide clinical services for patients with TMD. Clinicians should utilize examination findings to design rehabilitation programs that focus on addressing patient-specific impairments. Potentially appropriate plan of care components include joint and soft tissue mobilization, trigger point dry needling, friction massage, therapeutic exercise, patient education, modalities, and outside referral. Management options should address both symptom reduction and oral function. Satisfactory results can often be achieved when management focuses on patient-specific clinical variables. PMID:24976744
Using SysML for MBSE analysis of the LSST system
NASA Astrophysics Data System (ADS)
Claver, Charles F.; Dubois-Felsmann, Gregory; Delgado, Francisco; Hascall, Pat; Marshall, Stuart; Nordby, Martin; Schalk, Terry; Schumacher, German; Sebag, Jacques
2010-07-01
The Large Synoptic Survey Telescope is a complex hardware - software system of systems, making up a highly automated observatory in the form of an 8.4m wide-field telescope, a 3.2 billion pixel camera, and a peta-scale data processing and archiving system. As a project, the LSST is using model based systems engineering (MBSE) methodology for developing the overall system architecture coded with the Systems Modeling Language (SysML). With SysML we use a recursive process to establish three-fold relationships between requirements, logical & physical structural component definitions, and overall behavior (activities and sequences) at successively deeper levels of abstraction and detail. Using this process we have analyzed and refined the LSST system design, ensuring the consistency and completeness of the full set of requirements and their match to associated system structure and behavior. As the recursion process proceeds to deeper levels we derive more detailed requirements and specifications, and ensure their traceability. We also expose, define, and specify critical system interfaces, physical and information flows, and clarify the logic and control flows governing system behavior. The resulting integrated model database is used to generate documentation and specifications and will evolve to support activities from construction through final integration, test, and commissioning, serving as a living representation of the LSST as designed and built. We discuss the methodology and present several examples of its application to specific systems engineering challenges in the LSST design.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
Hoenicke, Dirk
2014-12-02
Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.
Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette
2009-01-01
To describe clinical training models, delineate clinical competencies, and outline a clinical decision-making algorithm for neonatal physical therapy. In these updated practice guidelines, advanced clinical training models, including precepted practicum and residency or fellowship training, are presented to guide practitioners in organizing mentored, competency-based preparation for neonatal care. Clinical competencies in neonatal physical therapy are outlined with advanced clinical proficiencies and knowledge areas specific to each role. An algorithm for decision making on examination, evaluation, intervention, and re-examination processes provides a framework for clinical reasoning. Because of advanced-level competency requirements and the continuous examination, evaluation, and modification of procedures during each patient contact, the intensive care unit is a restricted practice area for physical therapist assistants, physical therapist generalists, and physical therapy students. Accountable, ethical physical therapy for neonates requires advanced, competency-based training with a preceptor in the pediatric subspecialty of neonatology.
NASA Astrophysics Data System (ADS)
Due, Karin
2014-06-01
This article describes a study which explored the social interaction and the reproduction and challenge of gendered discourses in small group discussions in physics. Data for the study consisted of video recordings of eight upper secondary school groups solving physics problems and 15 audiotaped individual interviews with participating students. The analysis was based on gender theory viewing gender both as a process and a discourse. Specifically discursive psychology analysis was used to examine how students position themselves and their peers within discourses of physics and gender. The results of the study reveal how images of physics and of "skilled physics student" were constructed in the context of the interviews. These discourses were reconstructed in the students' discussions and their social interactions within groups. Traditional gendered positions were reconstructed, for example with boys positioned as more competent in physics than girls. These positions were however also resisted and challenged.
Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zöller, G.
2012-04-01
As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).
The Optimizer Topology Characteristics in Seismic Hazards
NASA Astrophysics Data System (ADS)
Sengor, T.
2015-12-01
The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.
The role of physiology in the development of golf performance.
Smith, Mark F
2010-08-01
The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.
Revenäs, Åsa; Opava, Christina H; Martin, Cathrin; Demmelmaier, Ingrid; Keller, Christina; Åsenlöf, Pernilla
2015-02-09
Long-term adherence to physical activity recommendations remains challenging for most individuals with rheumatoid arthritis (RA) despite evidence for its health benefits. The aim of this study was to provide basic data on system requirement specifications for a Web-based and mobile app to self-manage physical activity. More specifically, we explored the target user group, features of the future app, and correlations between the system requirements and the established behavior change techniques (BCTs). We used a participatory action research design. Qualitative data were collected using multiple methods in four workshops. Participants were 5 individuals with RA, a clinical physiotherapist, an officer from the Swedish Rheumatism Association, a Web designer, and 2 physiotherapy researchers. A taxonomy was used to determine the degree of correlation between the system requirements and established BCTs. Participants agreed that the future Web-based and mobile app should be based on two major components important for maintaining physical activity: (1) a calendar feature for goal setting, planning, and recording of physical activity performance and progress, and (2) a small community feature for positive feedback and support from peers. All system requirements correlated with established BCTs, which were coded as 24 different BCTs. To our knowledge, this study is the first to involve individuals with RA as co-designers, in collaboration with clinicians, researchers, and Web designers, to produce basic data to generate system requirement specifications for an eHealth service. The system requirements correlated to the BCTs, making specifications of content and future evaluation of effectiveness possible.
Actigraphy features for predicting mobility disability in older adults
USDA-ARS?s Scientific Manuscript database
Actigraphy has attracted much attention for assessing physical activity in the past decade. Many algorithms have been developed to automate the analysis process, but none has targeted a general model to discover related features for detecting or predicting mobility function, or more specifically, mo...
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Patient-reported physical activity questionnaires: A systematic review of content and format
2012-01-01
Background Many patients with chronic illness are limited in their physical activities. This systematic review evaluates the content and format of patient-reported outcome (PRO) questionnaires that measure physical activity in elderly and chronically ill populations. Methods Questionnaires were identified by a systematic literature search of electronic databases (Medline, Embase, PsychINFO & CINAHL), hand searches (reference sections and PROQOLID database) and expert input. A qualitative analysis was conducted to assess the content and format of the questionnaires and a Venn diagram was produced to illustrate this. Each stage of the review process was conducted by at least two independent reviewers. Results 104 questionnaires fulfilled our criteria. From these, 182 physical activity domains and 1965 items were extracted. Initial qualitative analysis of the domains found 11 categories. Further synthesis of the domains found 4 broad categories: 'physical activity related to general activities and mobility', 'physical activity related to activities of daily living', 'physical activity related to work, social or leisure time activities', and '(disease-specific) symptoms related to physical activity'. The Venn diagram showed that no questionnaires covered all 4 categories and that the '(disease-specific) symptoms related to physical activity' category was often not combined with the other categories. Conclusions A large number of questionnaires with a broad range of physical activity content were identified. Although the content could be broadly organised, there was no consensus on the content and format of physical activity PRO questionnaires in elderly and chronically ill populations. Nevertheless, this systematic review will help investigators to select a physical activity PRO questionnaire that best serves their research question and context. PMID:22414164
Feynman-Kac equations for reaction and diffusion processes
NASA Astrophysics Data System (ADS)
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
Ciarrocchi, Esther; Belcari, Nicola
2017-12-01
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
GET: A generic electronics system for TPCs and nuclear physics instrumentation
NASA Astrophysics Data System (ADS)
Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.
2018-04-01
General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.
Emergence of Coding and its Specificity as a Physico-Informatic Problem
NASA Astrophysics Data System (ADS)
Wills, Peter R.; Nieselt, Kay; McCaskill, John S.
2015-06-01
We explore the origin-of-life consequences of the view that biological systems are demarcated from inanimate matter by their possession of referential information, which is processed computationally to control choices of specific physico-chemical events. Cells are cybernetic: they use genetic information in processes of communication and control, subjecting physical events to a system of integrated governance. The genetic code is the most obvious example of how cells use information computationally, but the historical origin of the usefulness of molecular information is not well understood. Genetic coding made information useful because it imposed a modular metric on the evolutionary search and thereby offered a general solution to the problem of finding catalysts of any specificity. We use the term "quasispecies symmetry breaking" to describe the iterated process of self-organisation whereby the alphabets of distinguishable codons and amino acids increased, step by step.
NASA Astrophysics Data System (ADS)
Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.
2018-02-01
The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.
Motor Imagery in Asperger Syndrome: Testing Action Simulation by the Hand Laterality Task
Conson, Massimiliano; Mazzarella, Elisabetta; Frolli, Alessandro; Esposito, Dalila; Marino, Nicoletta; Trojano, Luigi; Massagli, Angelo; Gison, Giovanna; Aprea, Nellantonio; Grossi, Dario
2013-01-01
Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms. PMID:23894683
Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.
2014-01-01
Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition. PMID:23907543
Chauhan, Preeti; Reppucci, N Dickon
2009-03-01
The current study extended previous research with adults and boys to girls in the juvenile justice system (N = 122; M = 16.7; SD = 1.3). Using a longitudinal research design, neighborhood disadvantage and exposure to violence (i.e., physical abuse by parents, physical abuse by peers, and witnessing violence) were assessed during incarceration. These risk factors were used to predict violent and delinquent behavior post-release. Furthermore, race specific pathways were examined to determine if the impact of these risk factors varied among Black (n = 69) and White girls (n = 53). Results indicated that Black girls were more likely than White girls to live in disadvantaged neighborhoods, but both reported similar levels of exposure to violence and self-report of antisocial behavior. Physical abuse by parents, time at risk, and age were related to violent behavior, while witnessing violence and time at risk were related to delinquent behavior. Multiple group analyses indicated the existence of race specific pathways. Specifically, physical abuse by parents was related to violent behavior for White girls while witnessing violence was related to violent and delinquent behaviors for Black girls. Results suggest that contextual processes play an important role in predicting antisocial behavior for Black girls.
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.)
Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu
2015-01-01
The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188
Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).
Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu
2015-01-01
The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut.
Sensors, Volume 4, Thermal Sensors
NASA Astrophysics Data System (ADS)
Scholz, Jorg; Ricolfi, Teresio
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.
Zhang, Jidong; Verma, Rakesh; Park, Tae-Ju; Wong, Hetty; Curran, Tom; Nihalani, Deepak; Holzman, Lawrence B.
2014-01-01
Activation of the slit diaphragm protein Nephrin induces actin cytoskeletal remodeling resulting in lamellipodia formation in podocytes in vitro in a phosphatidylinositol-3 kinase, focal adhesion kinase, Cas, and Crk1/2-dependent fashion. In mice, podocyte-specific deletion of Crk1/2 prevents or attenuates foot process effacement in two models of podocyte injury. This suggests that cellular mechanisms governing lamellipodial protrusion in vitro are similar to those in vivo during foot process effacement. Since Crk1/2 null mice develop and aged normally, we tested whether the Crk1/2 paralog, CrkL, functionally complements Crk1/2 in a podocyte-specific context. Podocyte-specific CrkL null mice, like podocyte-specific Crk1/2 null mice, developed and aged normally but were protected from protamine sulfate-induced foot process effacement. Simultaneous podocyte-specific deletion of Crk1/2 and CrkL resulted in albuminuria detected by six weeks post-partum and associated with altered podocyte process architecture. Nephrin-induced lamellipodia formation in podocytes in vitro was CrkL-dependent. CrkL formed a heterooligomer with Crk2 and, like Crk2, was recruited to tyrosine phosphorylated Nephrin. Thus, Crk1/2 and CrkL are physically-linked, functionally complement each other during podocyte foot process spreading, and together are required for developing typical foot process architecture. PMID:24499776
THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING
This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Andújar-Montoya, María Dolores
2017-01-01
The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way. PMID:28737693
Andújar-Montoya, María Dolores; Marcos-Jorquera, Diego; García-Botella, Francisco Manuel; Gilart-Iglesias, Virgilio
2017-07-22
The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way.
The place of physical activity in the WHO Global Strategy on Diet and Physical Activity.
Bauman, Adrian; Craig, Cora L
2005-08-24
In an effort to reduce the global burden of non-communicable disease, the World Health Organization released a Global Strategy for Diet and Physical Activity in May 2004. This commentary reports on the development of the strategy and its importance specifically for physical activity-related work of NGOs and researchers interested in increasing global physical activity participation. Sparked by its work on global efforts to target non-communicable disease prevention in 2000, the World Health Organization commissioned a global strategy on diet and physical activity. The physical activity interest followed efforts that had led to the initial global "Move for Health Day" in 2002. WHO assembled a reference group for the global strategy, and a regional consultation process with countries was undertaken. Underpinning the responses was the need for more physical activity advocacy; partnerships outside of health including urban planning; development of national activity guidelines; and monitoring of the implementation of the strategy. The consultation process was an important mechanism to confirm the importance and elevate the profile of physical activity within the global strategy. It is suggested that separate implementation strategies for diet and physical activity may be needed to work with partner agencies in disparate sectors (e.g. urban planning for physical activity, agriculture for diet). International professional societies are well situated to make an important contribution to global public health by advocating for the importance of physical activity among risk factors; developing international measures of physical activity and global impacts of inactivity; and developing a global research and intervention agenda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This study summarizes environmental and socioeconomic information related to the Florida Panhandle Outer Continental Shelf (OCS). It contains a conceptual model of active processes and identification of information gaps that will be useful in the design of future environmental studies in the geographic area. The annotated bibliography for this study is printer in six volumes, each pertaining to a specific topic. They are as follows: Appendix A--Physical Oceanography; Appendix B--Meteorology; Appendix C--Geology; Appendix D--Chemistry; Appendix E--Biology; and Appendix F--Socioeconomics. This volume contains bibliographic references pertaining to physical oceanography.
Selective attention to facial emotion in physically abused children.
Pollak, Seth D; Tolley-Schell, Stephanie A
2003-08-01
The ability to allocate attention to emotional cues in the environment is an important feature of adaptive self-regulation. Existing data suggest that physically abused children overattend to angry expressions, but the attentional mechanisms underlying such behavior are unknown. The authors tested 8-11-year-old physically abused children to determine whether they displayed specific information-processing problems in a selective attention paradigm using emotional faces as cues. Physically abused children demonstrated delayed disengagement when angry faces served as invalid cues. Abused children also demonstrated increased attentional benefits on valid angry trials. Results are discussed in terms of the influence of early adverse experience on children's selective attention to threat-related signals as a mechanism in the development of psychopathology.
[Beginning of the institutionalization of physical therapy in a Swiss canton: 1928-1945].
Hasler, Véronique
2013-01-01
The institutionalization of physical therapy in Switzerland took place in the inter-war period. This article aims to relate the initiation of this process in the Canton of Vaud, as a specific example that will nevertheless be compared with the Swiss and international contexts. This story occurs around three major events between 1928 and 1945: the massage becomes a regulated profession, followed by the emergence of a professional association and a specialized school. The intention is first to identify the social actors, then the interests, issues, and interactions that have contributed to model the modern physical therapy. Finally, the techniques used by the masseurs--the first professional physical therapists--and their working environment are evoked.
Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide
2017-02-01
Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.
Mathews, Louise B; Moodie, Marj M; Simmons, Annie M; Swinburn, Boyd A
2010-07-30
Evidence on interventions for preventing unhealthy weight gain in adolescents is urgently needed. The aim of this paper is to describe the process evaluation for a three-year (2005-2008) project conducted in five secondary schools in the East Geelong/Bellarine region of Victoria, Australia. The project, 'It's Your Move!' aimed to reduce unhealthy weight gain by promoting healthy eating patterns, regular physical activity, healthy body weight, and body size perception amongst youth; and improve the capacity of families, schools, and community organisations to sustain the promotion of healthy eating and physical activity in the region. The project was supported by Deakin University (training and evaluation), a Reference Committee (strategic direction, budgetary approval and monitoring) and a Project Management Committee (project delivery). A workshop of students, teachers and other stakeholders formulated a 10-point action plan, which was then translated into strategies and initiatives specific to each school by the School Project Officers (staff members released from teaching duties one day per week) and trained Student Ambassadors. Baseline surveys informed intervention development. Process data were collected on all intervention activities and these were collated and enumerated, where possible, into a set of mutually exclusive tables to demonstrate the types of strategies and the dose, frequency and reach of intervention activities. The action plan included three guiding objectives, four on nutrition, two on physical activity and one on body image. The process evaluation data showed that a mix of intervention strategies were implemented, including social marketing, one-off events, lunch time and curriculum programs, improvements in infrastructure, and healthy school food policies. The majority of the interventions were implemented in schools and focused on capacity building and healthy eating strategies as physical activity practices were seen by the teachers as already meeting students' needs. While substantial health-promoting activities were conducted (especially related to healthy eating), there remain further opportunities for secondary schools to use a whole-of-school approach through the school curriculum, environment, policies and ethos to improve healthy eating, physical activity and healthy body perceptions in youth. To achieve this, significant, sustained leadership will be required within the education sector generally and within schools specifically.
Mobile, Collaborative Situated Knowledge Creation for Urban Planning
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639
Mobile, collaborative situated knowledge creation for urban planning.
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.
Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant
NASA Astrophysics Data System (ADS)
Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati
2016-11-01
The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.
NASA Astrophysics Data System (ADS)
Bucy, Brandon R.
While much of physics education research (PER) has traditionally been conducted in introductory undergraduate courses, researchers have begun to study student understanding of physics concepts at the upper-level. In this dissertation, we describe investigations conducted in advanced undergraduate thermodynamics courses. We present and discuss results pertaining to student understanding of two topics: entropy and the role of mixed second-order partial derivatives in thermodynamics. Our investigations into student understanding of entropy consisted of an analysis of written student responses to researcher-designed diagnostic questions. Data gathered in clinical interviews is employed to illustrate and extend results gathered from written responses. The question sets provided students with several ideal gas processes, and asked students to determine and compare the entropy changes of these processes. We administered the question sets to students from six distinct populations, including students enrolled in classical thermodynamics, statistical mechanics, thermal physics, physical chemistry, and chemical engineering courses, as well as a sample of physics graduate students. Data was gathered both before and after instruction in several samples. Several noteworthy features of student reasoning are identified and discussed. These features include student ideas about entropy prior to instruction, as well as specific difficulties and other aspects of student reasoning evident after instruction. As an example, students from various populations tended to emphasize either the thermodynamic or the statistical definition of entropy. Both approaches present students with a unique set of benefits as well as challenges. We additionally studied student understanding of partial derivatives in a thermodynamics context. We identified specific difficulties related to the mixed second partial derivatives of a thermodynamic state function, based on an analysis of student responses to homework and exam problems. Students tended to set these partial derivatives identically equal to zero. Students also displayed difficulties in relating the physical description of a material property to a corresponding mathematical statement involving partial derivatives. We describe the development of a guided-inquiry tutorial activity designed to address these specific difficulties. This tutorial focused on the graphical interpretation of partial derivatives. Preliminary results suggest that the tutorial was effective in addressing several student difficulties related to partial derivatives.
Information thermodynamics of near-equilibrium computation
NASA Astrophysics Data System (ADS)
Prokopenko, Mikhail; Einav, Itai
2015-06-01
In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.
Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans
NASA Astrophysics Data System (ADS)
Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj
2016-06-01
This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.
Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics
NASA Astrophysics Data System (ADS)
Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.
2015-04-01
Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise-undergraduate students of chemistry and Ph.D. students in physical chemistry-identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed. Third contribution to special issue entitled: Conceptual metaphor and embodied cognition in science learning
Martin, Michelle Y.; Person, Sharina; Kratt, Polly; Prayor-Patterson, Heather; Kim, Young; Salas, Maribel; Pisu, Maria
2011-01-01
Objective While self-efficacy plays an important role in physical activity, relatively little research has examined this construct in minorities. This study identified theoretical correlates associated with self-efficacy amongst insufficiently active, hypertensive Black women. Methods Correlates of self-efficacy to: (1) overcoming barriers to physical activity; (2) making time for activity; and (3) “sticking with” physical activity were studied. Results Sixty-one women (M = 50.48 ± 4.2 years) participated. We accounted for 32% of the variance in confidence in overcoming barriers. Women confident in overcoming barriers reported less worry about physical activity. The TTM processes of change were also in the model: consciousness raising, environmental reevaluation, counter conditioning, and self liberation. We accounted for 16% of the variance in “making time” self-efficacy. An aversiveness barrier (e.g., physical activity is boring, physical activity is hard work) was the dominant variable in the model. Confidence to ‘stick with’ physical activity was associated with self-reevaluation (i.e., reflection on how personal values correspond to behavior). Social support and competing demands were not associated with self-efficacy. Conclusions Consistent with Social Cognitive Theory, results suggest that self-efficacy is behavior specific and each measure likely provides unique information. Practice Implications Interventions should be tailored to address specific self-efficacy types. PMID:18395395
Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors
NASA Astrophysics Data System (ADS)
Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.
2018-02-01
The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... integration of systems, technologies, programs, equipment, supporting processes, and implementing procedures...-in-depth methodologies to minimize the potential for an insider to adversely affect, either directly... protection of digital computer and communication systems and networks. (ii) Site-specific conditions that...
A New Perspective on Surface Weather Maps
ERIC Educational Resources Information Center
Meyer, Steve
2006-01-01
A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…
40 CFR Figure E-1 to Subpart E of... - Designation Testing Checklist
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Field Sampling Procedure (§ 53.30, .31, .34) Design Specification Tests Filter (L-6) Range of... Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II... Process or of Documented Evidence: Performance, Design or Application Spec. Corresponding to Sections of...
40 CFR Figure E-1 to Subpart E of... - Designation Testing Checklist
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Field Sampling Procedure (§ 53.30, .31, .34) Design Specification Tests Filter (L-6) Range of... Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II... Process or of Documented Evidence: Performance, Design or Application Spec. Corresponding to Sections of...
40 CFR Figure E-1 to Subpart E of... - Designation Testing Checklist
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Field Sampling Procedure (§ 53.30, .31, .34) Design Specification Tests Filter ( L-6) Range of... Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II... Process or of Documented Evidence: Performance, Design or Application Spec. Corresponding to Sections of...
36 CFR 219.7 - New plan development or plan revision.
Code of Federal Regulations, 2013 CFR
2013-07-01
... importance of various physical, biological, social, cultural, and historic resources on the plan area (§ 219... desired condition is a description of specific social, economic, and/or ecological characteristics of the... intent, other than desired conditions, usually related to process or interaction with the public. Goals...
36 CFR 219.7 - New plan development or plan revision.
Code of Federal Regulations, 2014 CFR
2014-07-01
... importance of various physical, biological, social, cultural, and historic resources on the plan area (§ 219... desired condition is a description of specific social, economic, and/or ecological characteristics of the... intent, other than desired conditions, usually related to process or interaction with the public. Goals...
36 CFR 219.7 - New plan development or plan revision.
Code of Federal Regulations, 2012 CFR
2012-07-01
... importance of various physical, biological, social, cultural, and historic resources on the plan area (§ 219... desired condition is a description of specific social, economic, and/or ecological characteristics of the... intent, other than desired conditions, usually related to process or interaction with the public. Goals...
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
21 CFR 600.11 - Physical establishment, equipment, animals, and care.
Code of Federal Regulations, 2013 CFR
2013-04-01
... of 170 °C maintained for 2 hours with dry heat. Processing and storage containers, filters, filling... “Caution: microbial spores. See directions for storage, use and disposition.”, and (v) the container of... or product dedicated items from the manufacturing area. Environmental monitoring specific for the...
Computerized Adaptive Testing System Design: Preliminary Design Considerations.
ERIC Educational Resources Information Center
Croll, Paul R.
A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…
Mouelhi Guizani, S; Tenenbaum, G; Bouzaouach, I; Ben Kheder, A; Feki, Y; Bouaziz, M
2006-06-01
Skillful performance in combat and racquet sports consists of proficient technique accompanied with efficient information-processing while engaged in moderate to high physical effort. This study examined information processing and decision-making using simple reaction time (SRT) and choice reaction time (CRT) paradigms in athletes of combat sports and racquet ball games while undergoing incrementally increasing physical effort ranging from low to high intensities. Forty national level experienced athletics in the sports of tennis, table tennis, fencing, and boxing were selected for this study. Each subject performed both simple (SRT) and four-choice reaction time (4-CRT) tasks at rest, and while pedaling on a cycle ergometer at 20%, 40%, 60%, and 80% of their own maximal aerobic power (Pmax). RM MANCOVA revealed significant sport-type by physical load interaction effect mainly on CRT. Least significant difference (LSD) posthoc contrasts indicated that fencers and tennis players process information faster with incrementally increasing workload, while different patterns were obtained for boxers and table-tennis players. The error rate remained stable for each sport type over all conditions. Between-sport differences in SRT and CRT among the athletes were also noted. Findings provide evidence that the 4-CRT is a task that more closely corresponds to the original task athletes are familiar with and utilize in their practices and competitions. However, additional tests that mimic the real world experiences of each sport must be developed and used to capture the nature of information processing and response-selection in specific sports.
NASA Astrophysics Data System (ADS)
Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.
2015-12-01
Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.
Nuclear Proximity of Mtr4 with RNA exosome restricts DNA mutational asymmetry
Lim, Junghyun; Giri, Pankaj Kumar; Kazadi, David; Laffleur, Brice; Zhang, Wanwei; Grinstein, Veronika; Pefanis, Evangelos; Brown, Lewis M.; Ladewig, Erik; Martin, Ophélie; Chen, Yuling; Rabadan, Raul; Boyer, François; Rothschild, Gerson; Cogné, Michel; Pinaud, Eric; Deng, Haiteng; Basu, Uttiya
2017-01-01
SUMMARY The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and Senataxin) with the noncoding RNA processing function of RNA exosome determine the strand specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development. PMID:28431250
May, Stephen; Withers, Sarah; Reeve, Sarah; Greasley, Alison
2010-01-01
The aim of this study was to explore the clinical reasoning process used by novice physical therapists in specific patient problems. Nine physical therapists in the UK with limited experience of managing musculoskeletal problems were included. Semi-structured interviews were conducted on how novice physical therapists would assess and manage a patient with a shoulder problem; interviews were transcribed and analyzed using framework analysis. To be included as a final theme at least 50% of participants had to mention that theme. A large number of items (n = 93) were excluded as fewer than 50% of participants referred to each item. Included items related to seven main themes: history (16), physical exam (13), investigations (1), diagnostic reasoning (1), clinical reasoning process (diagnostic pathway) (3), clinical reasoning process (management pathway) (5) and treatment options (1). Items mostly related to information gathering, although there was some use of hypothetico-deductive clinical reasoning there appeared to be limited understanding of the clinical implications of data gathered, and clinical reasoning through use of pattern recognition was minimal. Major weaknesses were apparent in the clinical reasoning skills of these novice therapists compared to previous reports of expert clinical reasoning, indicating areas for development in the education of student and junior physical therapists. PMID:21655390
Fetal growth restriction promotes physical inactivity and obesity in female mice.
Baker, M S; Li, G; Kohorst, J J; Waterland, R A
2015-01-01
Environmental exposures during critical periods of prenatal and early postnatal life affect the development of mammalian body weight regulatory mechanisms, influencing lifelong risk of obesity. The specific biological processes that mediate the persistence of such effects, however, remain poorly understood. The objectives of this study were to determine the developmental timing and physiological basis of the obesity-promoting effect previously reported in offspring of obese agouti viable yellow (A(vy)/a) mothers. Newborn offspring of obese A(vy)/a and lean (a/a) mothers were cross-fostered shortly after birth to study separately the effects of in utero or suckling period exposure to A(vy)/a dams. Body composition, food intake, physical activity and energy expenditure were measured in offspring shortly after weaning and in adulthood. Offspring of obese A(vy)/a dams paradoxically experienced fetal growth restriction, which was followed by adult-onset obesity specifically in females. Our main analyses focused on wild-type (a/a) offspring, because a subset of adult A(vy)/a offspring contracted a kidney disease resembling diabetic nephropathy. Detailed physiological characterization demonstrated that, both shortly after weaning and in adulthood, female wild-type mice born to A(vy)/a mothers are not hyperphagic but have reduced physical activity and energy expenditure. No such coordinated changes were detected in male offspring. Mediational regression analysis of our longitudinal data supported a causal pathway in which fetal growth restriction persistently reduces physical activity, leading to adult obesity. Our data are consistent with several recent human epidemiological studies showing female-specific effects of perinatal nutritional restriction on later obesity, and provide the novel mechanistic insight that this may occur via permanent and sex-specific changes in one's inherent propensity for physical activity.
NASA Astrophysics Data System (ADS)
Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa
2007-04-01
The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)
NASA Astrophysics Data System (ADS)
Al-Bachir, Mahfouz
2015-01-01
The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.
Klinker, Charlotte Demant; Schipperijn, Jasper; Kerr, Jacqueline; Ersbøll, Annette Kjær; Troelsen, Jens
2014-01-01
Introduction: Being outdoors has a positive influence on health among children. Evidence in this area is limited and many studies have used self-reported measures. Objective context-specific assessment of physical activity patterns and correlates, such as outdoor time, may progress this field. Aims: To employ novel objective measures to assess age and gender differences in context-specific outdoor weekday behavior patterns among school-children [outdoor time and outdoor moderate to vigorous physical activity (MVPA)] and to investigate associations between context-specific outdoor time and MVPA. Methods: A total of 170 children had at least one weekday of 9 h combined accelerometer and global positioning system data and were included in the analyses. The data were processed using the personal activity and location measurement system (PALMS) and a purpose-built PostgreSQL database resulting in context-specific measures for outdoor time, outdoor MVPA, and overall daily MVPA. In addition, 4 domains (leisure, school, transport, and home) and 11 subdomains (e.g., urban green space and sports facilities) were created and assessed. Multilevel analyses provided results on age and gender differences and the association between outdoor time and MVPA. Results: Girls compared to boys had fewer outdoor minutes (p < 0.05), spent a smaller proportion of their overall daily time outdoors (p < 0.05), had fewer outdoor MVPA minutes during the day (p < 0.001) and in 11 contexts. Children compared to adolescents had more outdoor minutes (p < 0.05). During school and within recess, children compared to adolescents had more outdoor MVPA (p < 0.001) and outdoor time (p < 0.001). A 1-h increase in outdoor time was associated with 9.9 more minutes of MVPA (p < 0.001). Conclusion: A new methodology to assess the context-specific outdoor time and physical activity patterns has been developed and can be expanded to other populations. Different context-specific patterns were found for gender and age, suggesting different strategies may be needed to promote physical activity. PMID:24653983
NASA Astrophysics Data System (ADS)
Taer, Erman; Taslim, Rika
2018-02-01
The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.
Using budget-friendly methods to analyze sport specific movements
NASA Astrophysics Data System (ADS)
Jackson, Lindsay; Williams, Sarah; Ferrara, Davon
2015-03-01
When breaking down the physics behind sport specific movements, athletes, usually professional, are often assessed in multimillion-dollar laboratories and facilities. Budget-friendly methods, such as video analysis using low-cost cameras, iPhone sensors, or inexpensive force sensors can make this process more accessible to amateur athletes, which in-turn can give insight into injury mechanisms. Here we present a comparison of two methods of determining the forces experienced by a cheerleader during co-education stunting and soccer goalies while side-diving. For the cheerleader, accelerometer measurements were taken by an iPhone 5 and compared to video analysis. The measurements done on the soccer players were taken using FlexiForce force sensors and again compared to video analysis. While these budget-friendly methods could use some refining, they show promise for producing usable measurements for possibly increasing our understanding of injury in amateur players. Furthermore, low-cost physics experiments with sports can foster an active learning environment for students with minimum physics and mathematical background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goriely, S.; Bauswein, A.; Janka, H.-T.
About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularlymore » in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.« less
Low power signal processing electronics for wearable medical devices.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.
Pejchar, Přemysl; Martinec, Jan
2015-01-01
The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Specialized minimal PDFs for optimized LHC calculations.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Rojo, Juan
2016-01-01
We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes.
Physical Heterogeneity and Aquatic Community Function in ...
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.
Physics of windblown particles
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Leach, Rodman; Marshall, John R.; White, Bruce; Iversen, James D.; Nickling, William G.; Gillette, Dale; Sorensen, Michael
1987-01-01
A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program.
Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C
2017-07-01
This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Re-engineering the process of medical imaging physics and technology education and training.
Sprawls, Perry
2005-09-01
The extensive availability of digital technology provides an opportunity for enhancing both the effectiveness and efficiency of virtually all functions in the process of medical imaging physics and technology education and training. This includes degree granting academic programs within institutions and a wide spectrum of continuing education lifelong learning activities. Full achievement of the advantages of technology-enhanced education (e-learning, etc.) requires an analysis of specific educational activities with respect to desired outcomes and learning objectives. This is followed by the development of strategies and resources that are based on established educational principles. The impact of contemporary technology comes from its ability to place learners into enriched learning environments. The full advantage of a re-engineered and implemented educational process involves changing attitudes and functions of learning facilitators (teachers) and resource allocation and sharing both within and among institutions.
CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincelin, U.; Commerçon, B.; Wakelam, V.
The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical modelmore » with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.« less
A new physically-based windblown dust emission ...
Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based
Conditioning of carbonaceous material prior to physical beneficiation
Warzinski, Robert P.; Ruether, John A.
1987-01-01
A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.
Numerical simulation of rock fragmentation during cutting by conical picks under confining pressure
NASA Astrophysics Data System (ADS)
Li, Xuefeng; Wang, Shibo; Ge, Shirong; Malekian, Reza; Li, Zhixiong
2017-12-01
In this article, the effect of confining pressure on rock fragmentation process during cutting was investigated by numerical simulation with a discrete element method (DEM). Four kinds of sandstones with different physical properties were simulated in the rock cutting models under different confining pressures. The rock fragmentation process, the cutting force, and the specific energy under different confining pressures were analyzed. With the increase in confining pressure and rock strength, the vertical propagation of cracks was restrained. Rock samples were compacted and strengthened by confining pressure resulting in the increase of the cutting force. The specific energy of rock cutting linearly increased with the increase of the confining pressure ratio.
Beauty and the beast: Psychobiologic and evolutionary perspectives on body dysmorphic disorder.
Stein, Dan J; Carey, Paul D; Warwick, James
2006-06-01
Body dysmorphic disorder (BDD) is characterized by preoccupation with a defect in appearance. Concepts of beauty play a particularly crucial role in humans' mental and social life, and may have specific psychobiologic and evolutionary underpinnings. In particular, there is a growing literature on the neurocircuitry underpinning the body schema, body image and facial expression processing, and aesthetic and symmetry judgments. Speculatively, disruptions in cognitive-affective processes relevant to judgements about physical beauty lead to BDD.
NASA Astrophysics Data System (ADS)
Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.
2018-01-01
The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.
A review on pesticide removal through different processes.
Marican, Adolfo; Durán-Lara, Esteban F
2018-01-01
The main organic pollutants worldwide are pesticides, persistent chemicals that are of concern owing to their prevalence in various ecosystems. In nature, pesticide remainders are subjected to the chemical, physical, and biochemical degradation process, but because of its elevated stability and some cases water solubility, the pesticide residues persist in the ecosystem. The removal of pesticides has been performed through several techniques classified under biological, chemical, physical, and physicochemical process of remediation from different types of matrices, such as water and soil. This review provides a description of older and newer techniques and materials developed to remove specific pesticides according to previous classification, which range from bioremediation with microorganisms, clay, activated carbon, and polymer materials to chemical treatment based on oxidation processes. Some types of pesticides that have been removed successfully to large and small scale include, organophosphorus, carbamates, organochlorines, chlorophenols, and synthetic pyrethroids, among others. The most important characteristics, advantages, and disadvantages of techniques and materials for removing pesticides are described in this work.
Deahn M. Donner; Christine A. Ribic; Albert J. Beck; Dale Higgins; Dan Eklund; Susan Reinecke
2015-01-01
Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions...
Work Stressors, Health and Sense of Coherence in UK Academic Employees
ERIC Educational Resources Information Center
Kinman, Gail
2008-01-01
This cross-sectional study examined relationships between job-specific stressors and psychological and physical health symptoms in academic employees working in UK universities. The study also tests the main and moderating role played by sense of coherence (SOC: Antonovsky, 1987 in work stress process). SOC is described as a generalised resistance…
Developing Principles of Physical Education Teacher Education Practice through Self-Study
ERIC Educational Resources Information Center
Fletcher, Tim
2016-01-01
Background: The articulation of specific principles of teacher education practice allows teacher educators to make explicit the beliefs, values, and actions that shape their practice. Engaging in processes to articulate the principles that guide practice is beneficial not only for teacher educators and their colleagues but also for students. There…
USDA-ARS?s Scientific Manuscript database
Biochar supplements to degraded soils have the potential to improve crop yield and soil quality. We hypothesize that the biochar chemical production process can be tailored to form designer biochars that have specific chemical characteristics matched to selective chemical and/or physical issues of a...
REVIEW ARTICLE: How do biomolecular systems speed up and regulate rates?
NASA Astrophysics Data System (ADS)
Zhou, Huan-Xiang
2005-09-01
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.
Autonomous perception and decision making in cyber-physical systems
NASA Astrophysics Data System (ADS)
Sarkar, Soumik
2011-07-01
The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.
[Neural basis of self-face recognition: social aspects].
Sugiura, Motoaki
2012-07-01
Considering the importance of the face in social survival and evidence from evolutionary psychology of visual self-recognition, it is reasonable that we expect neural mechanisms for higher social-cognitive processes to underlie self-face recognition. A decade of neuroimaging studies so far has, however, not provided an encouraging finding in this respect. Self-face specific activation has typically been reported in the areas for sensory-motor integration in the right lateral cortices. This observation appears to reflect the physical nature of the self-face which representation is developed via the detection of contingency between one's own action and sensory feedback. We have recently revealed that the medial prefrontal cortex, implicated in socially nuanced self-referential process, is activated during self-face recognition under a rich social context where multiple other faces are available for reference. The posterior cingulate cortex has also exhibited this activation modulation, and in the separate experiment showed a response to attractively manipulated self-face suggesting its relevance to positive self-value. Furthermore, the regions in the right lateral cortices typically showing self-face-specific activation have responded also to the face of one's close friend under the rich social context. This observation is potentially explained by the fact that the contingency detection for physical self-recognition also plays a role in physical social interaction, which characterizes the representation of personally familiar people. These findings demonstrate that neuroscientific exploration reveals multiple facets of the relationship between self-face recognition and social-cognitive process, and that technically the manipulation of social context is key to its success.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
A study of iron mineral transformation to reduce red mud tailings.
Li, L Y
2001-01-01
This study examines the effects of iron mineral transformation in an aluminum extraction process on the settling behavior, and the physical and chemical properties of the resulting red mud slurry that must be disposed of. By producing a red mud with a higher solid content, the total volume of mud slurry will also be reduced for a given alumina production rate and more caustic soda will be recovered. The settling behavior and the mineralogical, physical, and physico-chemical properties of one bauxite and three red muds processed under varying conditions were analyzed based on examination of the iron mineral transformations. The properties of red muds derived from the same bauxite can differ markedly due to variations in operating conditions of the Bayer process, such as temperature and the addition of a reducing agent. The settling of red mud can be improved by converting goethite into hematite and/or magnetite to produce a mud of larger particle size, smaller specific surface area, and larger specific gravity, characteristics which reduce the total volume of mud slurry to be disposed of and which allow for less potential contamination from caustic soda. This study also found that the by-product--Bayer sodalite--has the high exchange capacity for Na+ that might contribute to the long-term environmental problems.
Specificity of autonomic arousal to anxiety in children with autism spectrum disorder.
Chiu, Tabitha A; Anagnostou, Evdokia; Brian, Jessica; Chau, Tom; Kushki, Azadeh
2016-04-01
Anxiety is one of the most concerning comorbidities in autism spectrum disorder (ASD) due to its high prevalence, negative impact on physical and psychological well-being, and interaction with core deficits of ASD. Current assessment and treatment of anxiety, which rely on the observation of behavior and self-reports, are often ineffective as ASD is associated with deficits in communication and diminished introspective ability. In this light, autonomic nervous system (ANS) activity has been suggested as a marker of physiological arousal associated with anxiety. However, physiological arousal measured by ANS indices also occurs with other cognitive and emotional processes, and it is unclear whether anxiety-related arousal can be differentiated from that related to other cognitive processes. To address this gap, we investigated the use of linear and nonlinear classification techniques for differentiating anxiety-related arousal from arousal due to three cognitive processes (attention, inhibitory control, and social cognition) and physical activity based on electrocardiography signal features. Our results indicate that over 80% classification accuracy can be achieved, suggesting that ANS response can be used as a specific marker of anxiety-related arousal in a subgroup of children with ASD who demonstrate an increase in heart rate in response to anxiogenic stimuli. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture
NASA Astrophysics Data System (ADS)
Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin
2017-10-01
SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.
Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire
2016-05-17
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.
Gottschalk, Julia; Skinner, Luke C.; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L.; Waelbroeck, Claire
2016-01-01
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes. PMID:27187527
HELIOGate, a Portal for the Heliophysics Community
NASA Astrophysics Data System (ADS)
Pierantoni; Gabriele; Carley, Eoin
2014-10-01
Heliophysics is the branch of physics that investigates the interactions between the Sun and the other bodies of the solar system. Heliophysicists rely on data collected from numerous sources scattered across the Solar System. The data collected from these sources is processed to extract metadata and the metadata extracted in this fashion is then used to build indexes of features and events called catalogues. Heliophysicists also develop conceptual and mathematical models of the phenomena and the environment of the Solar System. More specifically, they investigate the physical characteristics of the phenomena and they simulate how they propagate throughout the Solar System with mathematical and physical abstractions called propagation models. HELIOGate aims at addressing the need to combine and orchestrate existing web services in a flexible and easily configurable fashion to tackle different scientific questions. HELIOGate also offers a tool capable of connecting to size! able computation and storage infrastructures to execute data processing codes that are needed to calibrate raw data and to extract metadata.
Barman, Rahul; Jain, Atul K.
2016-03-28
Here, we used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0–3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 10 6 km 2 (from 2.9 to 12.3—without and with these processes, respectively)more » and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of ~0.5°C) differed by up to 2.3 × 10 6 km 2, with minimal contribution of up to 0.7 × 10 6 km 2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0–3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (~0–1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.« less
NASA Astrophysics Data System (ADS)
Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.
2015-12-01
Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.
Forecasting in the presence of expectations
NASA Astrophysics Data System (ADS)
Allen, R.; Zivin, J. G.; Shrader, J.
2016-05-01
Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.
Gordon, Rebecca; Bloxham, Saul
2016-01-01
Back pain is a major health issue in Western countries and 60%–80% of adults are likely to experience low back pain. This paper explores the impact of back pain on society and the role of physical activity for treatment of non-specific low back pain. A review of the literature was carried out using the databases SPORTDiscuss, Medline and Google Scholar. A general exercise programme that combines muscular strength, flexibility and aerobic fitness is beneficial for rehabilitation of non-specific chronic low back pain. Increasing core muscular strength can assist in supporting the lumbar spine. Improving the flexibility of the muscle-tendons and ligaments in the back increases the range of motion and assists with the patient’s functional movement. Aerobic exercise increases the blood flow and nutrients to the soft tissues in the back, improving the healing process and reducing stiffness that can result in back pain. PMID:27417610
NASA Astrophysics Data System (ADS)
Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.
2018-03-01
Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.
Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins
NASA Astrophysics Data System (ADS)
Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter
2017-10-01
Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.
Benefits of physical exercise training on cognition and quality of life in frail older adults.
Langlois, Francis; Vu, Thien Tuong Minh; Chassé, Kathleen; Dupuis, Gilles; Kergoat, Marie-Jeanne; Bherer, Louis
2013-05-01
Frailty is a state of vulnerability associated with increased risks of fall, hospitalization, cognitive deficits, and psychological distress. Studies with healthy senior suggest that physical exercise can help improve cognition and quality of life. Whether frail older adults can show such benefits remains to be documented. A total of 83 participants aged 61-89 years were assigned to an exercise-training group (3 times a week for 12 weeks) or a control group (waiting list). Frailty was determined by a complete geriatric examination using specific criteria. Pre- and post-test measures assessed physical capacity, cognitive performance, and quality of life. Compared with controls, the intervention group showed significant improvement in physical capacity (functional capacities and physical endurance), cognitive performance (executive functions, processing speed, and working memory), and quality of life (global quality of life, leisure activities, physical capacity, social/family relationships, and physical health). Benefits were overall equivalent between frail and nonfrail participants. Physical exercise training leads to improved cognitive functioning and psychological well-being in frail older adults.
Characterizing the Mineralogy of Potential Lunar Landing Sites
NASA Technical Reports Server (NTRS)
Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack;
2006-01-01
Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
Skjaerven, Liv Helvik; Kristoffersen, Kjell; Gard, Gunvor
2010-10-01
In recent years, physical therapists have paid greater attention to body awareness. Clinicians have witnessed the benefits of supporting their patients' learning of movement awareness through the promotion of their movement quality. The aim of this study was to investigate how physical therapist experts promote movement quality in their usual clinical settings. A phenomenological research design that included a sampling strategy was devised. Using specific criteria, 6 lead physical therapists nominated a group of physical therapist experts from the fields of neurology, primary health care, and mental health. Fifteen informants, 5 from each field, agreed to participate. In-depth interviews were conducted with a semistructured interview guide. The informants were invited to simply describe what they had experienced to be successful therapeutic processes for promoting movement quality. Each interview was audiotaped and transcribed. The data analysis was based on a multistep model. Three main themes emerged from the data. First, the physical therapists' embodied presence and movement awareness served as a precondition and an orientation for practice. Embodied presence is a bodily felt sense, a form of personal knowing that evokes understanding and fosters meaning. Second, creating a platform for promoting movement quality revealed implementation of psychological attitudes. Third, action strategies for promoting movement quality suggested a movement awareness learning cycle and components for clinical use. This study demonstrated specific attitudes and skills used by physical therapist experts to promote movement quality in their clinical practice. These results may serve as a therapeutic framework for promoting movement quality in clinical physical therapy, although further research is needed.
CMS Physics Technical Design Report, Volume II: Physics Performance
NASA Astrophysics Data System (ADS)
CMS Collaboration
2007-06-01
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider (LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking—through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start-up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb -1 or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb -1 to 30 fb -1 . The Standard Model processes include QCD, B -physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z 0 boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2 6 describe examples of full analyses, with photons, electrons, muons, jets, missing E T , B-mesons and τ's, and for quarkonia in heavy ion collisions. Chapters 7 15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Physics students' approaches to learning and cognitive processes in solving physics problems
NASA Astrophysics Data System (ADS)
Bouchard, Josee
This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.
Wilpart, Katarina; Törnblom, Hans; Svedlund, Jan; Tack, Jan F; Simrén, Magnus; Van Oudenhove, Lukas
2017-10-01
Coping resources and processes are altered in patients with irritable bowel syndrome (IBS). We investigated the relationship between coping resources and gastrointestinal (GI) and extraintestinal symptom severity in patients with IBS and potential mediators of this relationship. We performed a cross-sectional study of 216 patients with IBS attending a secondary/tertiary care specialized outpatient center in Sweden from 2003 through 2007. We collected data on coping resources, levels of anxiety (general and GI specific), depressive symptoms, levels of GI symptoms, and extraintestinal somatic symptoms (somatization) by administering validated self-report questionnaires. General Linear Models were used to assess associations and mediation. GI symptoms: low levels of physical coping resources (practice of activities that are beneficial for health; P = .0016), high levels of general anxiety symptoms (P = .033), and GI-specific anxiety symptoms (P < .0001), but not depressive symptoms (P = .89), were independently associated with GI symptom levels (R 2 = 0.31). Anxiety and GI-specific anxiety partially mediated the effect of physical coping. Somatization: low levels of physical coping resources (P = .003), high levels of anxiety (P = .0147), depressive (P = .0005), and GI-specific anxiety symptoms (P = .06) were associated with somatization levels (R 2 = 0.35). Levels of general and GI-specific anxiety and depressive symptoms partially mediated this physical coping effect. The effect of psychological coping resources (including optimism, social support, and accepting/expressing emotions) on somatization levels was not significant (P = .98), but was fully mediated by levels of anxiety and depressive symptoms, and partially by levels of GI-specific anxiety symptoms. In a cross-sectional study of patients with IBS in Sweden, we found associations of levels of coping resources with GI and extraintestinal symptom severity; these associations were mediated by levels of anxiety and depressive symptoms. Although confirmation in longitudinal studies is needed, this identifies coping as a potential psychological treatment target in IBS. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
Utilizing Social Media and Blogging to Teach Science Communication
NASA Astrophysics Data System (ADS)
Keesee, A. M.
2012-12-01
The National Science Foundation presented the Science: Becoming the Messenger Workshop at my university in Fall 2011. Following the workshop, I started a blog (http://plasma.physics.wvu.edu/), Facebook page (WVU Plasma Physics), and Twitter feed (@WVUPlasma) to promote the West Virginia University Plasma Physics Research Groups. Faculty, postdocs, and graduate students in plasma physics are assigned the task of writing a blog post on a rotating basis as one of three elements for our monthly Journal Club. Our Facebook page and Twitter feed are used to announce new blog posts and accomplishments by group members. We have found this process to be a good way for students to learn to describe their research to people outside of their field of expertise. Details on establishing and maintaining these resources and specific examples will be presented. Follow me @plasmaphysmom.
NASA Technical Reports Server (NTRS)
Tompkins, F. G.
1984-01-01
The Office of Management and Budget (OMB) Circular A-71, transmittal Memorandum No. 1, requires that each agency establish a management control process to assure that appropriate administrative, physical and technical safeguards are incorporated into all new computer applications. In addition to security specifications, the management control process should assure that the safeguards are adequate for the application. The security activities that should be integral to the system development process are examined. The software quality assurance process to assure that adequate and appropriate controls are incorporated into sensitive applications is also examined. Security for software packages is also discussed.
A case study of the influences of audience and purpose on the composing processes of an engineer
NASA Technical Reports Server (NTRS)
Stalnaker, B. J.
1981-01-01
The design and preliminary findings of a study of composing processes (on the job) of engineers, managers, and scientists is presented. The influences of audience and purpose on the composing process of engineers was of concern; specifically, the cognitive processes, physical behaviors, and factors that influence the evoluton of a piece of writing. An overview of the study, related literature, outlines of research design, and preliminary findings from a case study of engineers are given. It is suggested that teaching be adapted to help students learn to represent rhetorical problems to guide composing for effective writing.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.
2010-12-01
Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.
2011-01-01
Background Dutch construction workers are offered periodic health examinations. This care can be improved by tailoring this workers health surveillance (WHS) to the demands of the job and adjust the preventive actions to the specific health risks of a worker in a particular job. To improve the quality of the WHS for construction workers and stimulate relevant job-specific preventive actions by the occupational physician, we have developed a job-specific WHS. The job-specific WHS consists of modules assessing both physical and psychological requirements. The selected measurement instruments chosen, are based on their appropriateness to measure the workers' capacity and health requirements. They include a questionnaire and biometrical tests, and physical performance tests that measure physical functional capabilities. Furthermore, our job-specific WHS provides occupational physicians with a protocol to increase the worker-behavioural effectiveness of their counselling and to stimulate job-specific preventive actions. The objective of this paper is to describe and clarify our study to evaluate the behavioural effects of this job-specific WHS on workers and occupational physicians. Methods/Design The ongoing study of bricklayers and supervisors is a nonrandomised trial to compare the outcome of an intervention (job-specific WHS) group (n = 206) with that of a control (WHS) group (n = 206). The study includes a three-month follow-up. The primary outcome measure is the proportion of participants who have undertaken one or more of the preventive actions advised by their occupational physician in the three months after attending the WHS. A process evaluation will be carried out to determine context, reach, dose delivered, dose received, fidelity, and satisfaction. The present study is in accordance with the TREND Statement. Discussion This study will allow an evaluation of the behaviour of both the workers and occupational physician regarding the preventive actions undertaken by them within the scope of a job-specific WHS. Trial registration NTR3012 PMID:21958019
Verloigne, Maite; Cardon, Greet; De Craemer, Marieke; D'Haese, Sara; De Bourdeaudhuij, Ilse
2016-01-01
The prevalence of physical activity among lower educated adolescent girls is low, suggesting it is important to have insights into the complex processes that may underlie their physical activity levels. Therefore, this study aimed to examine the mediating effects of self-efficacy, perceived benefits and barriers on the associations between peer and parental variables and physical activity among lower educated adolescent girls. In total, 226 girls (mean age 16.0±1.0 years; 53% technical education; 47% vocational education) from a convenience sample of 6 secondary schools in Flanders, Belgium, completed a questionnaire on their total physical activity level and related peer and parental variables (i.e. modeling of physical activity, co-participation in physical activities and encouragement to be active) and personal variables (i.e. self-efficacy to be active, and specific perceived benefits of physical activity and specific barriers to be active). Mediating effects were tested using MacKinnon's product-of-coefficients test based on multilevel linear regression analyses. Higher peer and parental modeling, co-participation and encouragement were significantly related to a higher physical activity level among adolescent girls (p<0.05). Self-efficacy, the perceived benefits of having fun, being around friends or meeting new people, and not being bored and the perceived barrier of not liking physical activity mediated several associations between peer and parental variables and girls' physical activity, with some of the mediated proportions exceeding 60%. This study contributed to a better understanding of the complexity of how parental and peer factors work together with personal factors to influence the physical activity levels of adolescent girls with a lower educational level. Interventions should involve both peers and parents, as they may influence girls' physical activity both directly and indirectly through the internalisation of several personal variables, such as self-efficacy to be active and the perceived benefit of having fun.
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-06-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-01-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370
Pragmatic information in biology and physics.
Roederer, Juan G
2016-03-13
I will show how an objective definition of the concept of information and the consideration of recent results about information processing in the human brain help clarify some fundamental aspects of physics and biology. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: (i) interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; and (ii) interactions between complex bodies which cannot be expressed as a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the link between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept; it plays no active role in the purely physical domain-it only does so when a living organism intervenes. The consequences for physics (including foundations of quantum mechanics) and biology (including brain function) will be discussed. This will include speculations about three fundamental transitions, from the quantum to the classical domain, from natural inanimate to living systems, and from subhuman to human brain information-processing operations, introduced here in their direct connection with the concept of pragmatic information. © 2016 The Author(s).
Welmer, Anna-Karin; Rizzuto, Debora; Laukka, Erika J; Johnell, Kristina; Fratiglioni, Laura
2017-05-01
We aimed to quantify the independent effect of cognitive and physical deficits on the risk of injurious falls, to verify whether this risk is modified by global cognitive impairment, and to explore whether risk varies by follow-up time. Data on 2,495 participants (≥60 years) from the population-based Swedish National Study on Aging and Care in Kungsholmen (SNAC-K) study were analyzed using flexible parametric survival models. Two cognitive domains (processing speed and executive function) were assessed with standard tests. Physical function tests included balance (one-leg-stands), walking speed, chair stands, and grip strength. Global cognition was assessed using the Mini-Mental State Examination. A total of 167 people experienced an injurious fall over 3 years of follow-up, 310 over 5 years, and 571 over 10 years. Each standard deviation worse balance, slower walking speed, and longer chair stand time increased the risk of injurious falls over 3 years by 43%, 38%, and 23%, respectively (p < .05). Each standard deviation worse processing speed and executive function was significantly associated with 10% increased risk of injurious falls over 10 years (p < .05). In stratified analyses, deficits in physical functioning were associated with injurious falls only in people with cognitive impairment, whereas deficits in processing speed and executive function were associated with injurious falls only in people without cognitive impairment. Deficits in specific cognitive domains, such as processing speed and executive function, appear to predict injurious falls in the long term. Deficits in physical function predict falls in the short term, especially in people with global cognitive impairment. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Galati, Alexia
2009-01-01
Speakers routinely adjust their behavior upon assessing the information they share in common with their conversational partners, but there remains controversy over when and how these adjustments happen. In this dissertation I address two debates regarding partner-specific adjustments: (a) whether they recruit the language processing system in a…
Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone
2008-01-01
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...
The combustion of sound and rotten coarse woody debris: a review
Joshua C. Hyde; Alistair M.S. Smith; Roger D. Ottmar; Ernesto C. Alvarado; Penelope Morgan
2011-01-01
Coarse woody debris serves many functions in forest ecosystem processes and has important implications for fire management as it affects air quality, soil heating and carbon budgets when it combusts. There is relatively little research evaluating the physical properties relating to the combustion of this coarse woody debris with even less specifically addressing...
Electronic processing and control system with programmable hardware
NASA Technical Reports Server (NTRS)
Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)
1998-01-01
A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.
Strunk, Anneliese; Wilson, G Heather
2003-01-01
The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…
Associations of specific phobia and its subtypes with physical diseases: an adult community study.
Witthauer, Cornelia; Ajdacic-Gross, Vladeta; Meyer, Andrea Hans; Vollenweider, Peter; Waeber, Gerard; Preisig, Martin; Lieb, Roselind
2016-05-21
Specific phobia is the most prevalent anxiety disorder in the community and is associated with substantial impairment. Comorbidity with physical diseases is assumed and has important implications for etiology, treatment, or prevention of the comorbid conditions. However, due to methodological issues data are limited and subtypes of specific phobia have not been investigated yet. We examined the association of specific phobia and its subtypes with physical diseases in a representative community sample with physician-diagnosed physical diseases and diagnostic criteria of specific phobia. Data of the German Mental Health Survey from 4181 subjects aged 18-65 years were used. Specific phobia was diagnosed using M-CIDI/DIA-X interview; physical diseases were assessed through a self-report questionnaire and a medical interview. Logistic regression analyses adjusted for sex were calculated. Specific phobia was associated with cardiac diseases, gastrointestinal diseases, respiratory diseases, arthritic conditions, migraine, and thyroid diseases (odds ratios between 1.49 and 2.53). Among the subtypes, different patterns of associations with physical diseases were established. The findings were partially replicated in the Swiss PsyCoLaus Study. Our analyses show that subjects with specific phobia have an increased probability for specific physical diseases. From these analyses etiological mechanisms of specific phobia and physical disease can be deduced. As subtypes differed in their patterns of associations with physical diseases, different etiological mechanisms may play a role. The findings are highly relevant for public health in terms of prevention and therapy of the comorbid conditions.
Simulating industrial plasma reactors - A fresh perspective
NASA Astrophysics Data System (ADS)
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
Flavour physics and the Large Hadron Collider beauty experiment.
Gibson, Valerie
2012-02-28
An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.
Endophysical Models Based on Empirical Data
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
2005-10-01
Any proposed endophysical models need to acknowledge a number of subjective correlates that have been well established in such objectively quantifiable experimental contexts as anomalous human/machine interactions and remote perception information acquisition. Most notable of these factors are conscious and unconscious intention; gender disparities; serial position effects; intrinsic uncertainties; elusive replicability; and emotional resonance between the participants and the devices, process, and tasks. Perhaps even more pertinent are the insensitivities of the anomalous effects to spatial and temporal separations of the participants from the physical targets. Inclusion of subjective coordinates in the models, and exclusion of physical distance and time, raise formidable issues of specification, quantification, and dynamical formulation from both the physical and psychological perspectives. A few primitive examples of possible approaches are presented.
Scherf, K. Suzanne; Behrmann, Marlene; Dahl, Ronald E.
2015-01-01
Adolescence is a time of dramatic physical, cognitive, emotional, and social changes as well as a time for the development of many social-emotional problems. These characteristics raise compelling questions about accompanying neural changes that are unique to this period of development. Here, we propose that studying adolescent-specific changes in face processing and its underlying neural circuitry provides an ideal model for addressing these questions. We also use this model to formulate new hypotheses. Specifically, pubertal hormones are likely to increase motivation to master new peer-oriented developmental tasks, which will in turn, instigate the emergence of new social/affective components of face processing. We also predict that pubertal hormones have a fundamental impact on the reorganization of neural circuitry supporting face processing and propose, in particular, that, the functional connectivity, or temporal synchrony, between regions of the face-processing network will change with the emergence of these new components of face processing in adolescence. Finally, we show how this approach will help reveal why adolescence may be a period of vulnerability in brain development and suggest how it could lead to prevention and intervention strategies that facilitate more adaptive functional interactions between regions within the broader social information processing network. PMID:22483070
Cycling the hot CNO: a teaching methodology
NASA Astrophysics Data System (ADS)
Frost-Schenk, J. W.; Diget, C. Aa; Bentley, M. A.; Tuff, A.
2018-03-01
An interactive activity to teach the hot Carbon, Nitrogen and Oxygen (HCNO) cycle is proposed. Justification for why the HCNO cycle is important is included via an example of x-ray bursts. The activity allows teaching and demonstration of half-life, nuclear isotopes, nuclear reactions, protons and α-particles, and catalytic processes. Whilst the process example is specific to astrophysics it may be used to teach more broadly about catalytic processes. This practical is designed for use with 10-20 participants, with the intention that the exercise will convey nuclear physics principles in a fun and interactive manner.
NASA Technical Reports Server (NTRS)
Irwin, Daniel E.
2004-01-01
The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.
Farholm, Anders; Sørensen, Marit; Halvari, Hallgeir
2017-12-01
There has been increasing interest for investigating the role of motivation in physical activity among people with severe mental illness (SMI). Autonomous motivation has been suggested to have a potentially important role in adoption and maintenance of physical activity. However, the knowledge about factors that facilitate autonomous motivation among people with SMI is scarce. The aim of this study was to examine factors associated with motivation for physical activity as well as the relationships between motivation, physical activity and health-related quality of life in individuals with SMI that were currently physically active. A cross-sectional design was used, and 88 participants were recruited from a public health network promoting physical activity for people with SMI. They answered a questionnaire package consisting of scales measuring psychological need support - psychological need satisfaction - and motivation for physical activity, physical activity and health-related quality of life. The majority of participants reported to be in regular physical activity. Associations between variables were tested according to the self-determination theory process model. Structural equation modelling yielded good fit of the process model to the data. Specifically, a need-supportive environment was positively associated with psychological need satisfaction, while psychological need satisfaction was positively associated with autonomous motivation and mental health-related quality of life, and negatively associated with controlled motivation and amotivation. Physical activity was positively associated with autonomous motivation and physical health-related quality of life, and negatively associated with amotivation. This study indicates that individuals with SMI can be regularly physically active when provided with suitable opportunities. Furthermore, the present results suggest that it is vital for health-care practitioners to emphasise creating a need-supportive environment when organising physical activity because such an environment is associated with both increased autonomous motivation for physical activity and mental health-related quality of life. © 2016 Nordic College of Caring Science.
Matsuda, Yoshi-Taka; Fujimura, Tomomi; Katahira, Kentaro; Okada, Masato; Ueno, Kenichi; Cheng, Kang; Okanoya, Kazuo
2013-01-01
Our understanding of facial emotion perception has been dominated by two seemingly opposing theories: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura etal., 2012). The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA) increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear) processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner. PMID:24133426
The multifunctional nuclear pore complex: a platform for controlling gene expression
Ptak, Christopher; Aitchison, John D.; Wozniak, Richard W.
2014-01-01
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes. PMID:24657998
A novel bread making process using salt-stressed Baker's yeast.
Yeh, Lien-Te; Charles, Albert Linton; Ho, Chi-Tang; Huang, Tzou-Chi
2009-01-01
By adjusting the mixing order of ingredients in traditional formula, an innovative bread making process was developed. The effect of salt-stressed Baker's yeast on bread dough of different sugar levels was investigated. Baker's yeast was stressed in 7% salt solution then mixed into dough, which was then evaluated for fermentation time, dough fermentation producing gas, dough expansion, bread specific volumes, and sensory and physical properties. The results of this study indicated that salt-stressed Baker's yeast shortened fermentation time in 16% and 24% sugar dough. Forty minutes of salt stress produced significant amount of gas and increased bread specific volumes. The bread was softer and significantly improved sensory properties for aroma, taste, and overall acceptability were obtained.
Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping
2015-01-01
Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.
Reconstitution of the Hepatic Asialoglycoprotein Receptor with Phospholipid Vesicles
NASA Astrophysics Data System (ADS)
Klausner, Richard D.; Bridges, Kenneth; Tsunoo, Hajime; Blumenthal, Robert; Weinstein, John N.; Ashwell, Gilbert
1980-09-01
A solubilized detergent-free preparation of the hepatic binding protein specific for asialoglycoproteins associates spontaneously with small unilamellar lipid vesicles. This process is independent of the phase transition of the lipid and effectively restores the specific binding activity of the receptor protein. The insensitivity of the resulting lipid-protein complex to ionic strength provides evidence for a hydrophobic interaction. There is a perturbation of the lipid phase transition concomitant with addition of the protein. Circular dichroism studies indicate that the protein undergoes a conformational change on association with lipid. Binding of specific ligand produces further physical changes in the receptor as indicated by alterations in the tryptophan fluorescence quenching pattern.
LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins.
Marchis, Daniela; Altomare, Alessandra; Gili, Marilena; Ostorero, Federica; Khadjavi, Amina; Corona, Cristiano; Ru, Giuseppe; Cappelletti, Benedetta; Gianelli, Silvia; Amadeo, Francesca; Rumio, Cristiano; Carini, Marina; Aldini, Giancarlo; Casalone, Cristina
2017-12-06
An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.
The Interactive Approach in the Teaching of Mathematical Methods in Physics
NASA Astrophysics Data System (ADS)
Vassileva, Radost I.
2007-04-01
Traditional pedagogical practice is mainly directed towards the implementation of obligatory syllabuses, transfer of knowledge, formation of skills and habits in students. It is authoritative and imperative in its essence. Modern educational tendencies impose the promotion of a pedagogical process which is oriented towards the individual. The young person should enjoy a new atmosphere - creative, interesting, meaningful, and it should be based on self-cognition and the life-long emotional and intellectual development of the individual. The article discusses certain opportunities for the realization of interactive pedagogical communication within the framework of a specific university subject studied by physics majors.
NASA Astrophysics Data System (ADS)
Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.
2017-12-01
Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.
NASA Astrophysics Data System (ADS)
Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.
2017-08-01
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.
Goal Development Practices of Physical Therapists Working in Educational Environments.
Wynarczuk, Kimberly D; Chiarello, Lisa A; Gohrband, Catherine L
2017-11-01
The aims of this study were to (1) describe the practices that school-based physical therapists use in developing student goals, and (2) identify facilitators and barriers to development of goals that are specific to participation in the context of the school setting. 46 school-based physical therapists who participated in a previous study on school-based physical therapy practice (PT COUNTS) completed a questionnaire on goal development. Frequencies and cross tabulations were generated for quantitative data. Open-ended questions were analyzed using an iterative qualitative analysis process. A majority of therapists reported that they frequently develop goals collaboratively with other educational team members. Input from teachers, related services personnel, and parents has the most influence on goal development. Qualitative analysis identified five themes that influence development of participation-based goals: (1) school-based philosophy and practice; (2) the educational environment, settings, and routines; (3) student strengths, needs, and personal characteristics; (4) support from and collaboration with members of the educational team; and (5) therapist practice and motivation. Goal development is a complex process that involves multiple members of the educational team and is influenced by many different aspects of practice, the school environment, and student characteristics.
Maguire-Jack, Kathryn; Font, Sarah A
2017-08-01
Families are impacted by a variety of risk and protective factors for maltreatment at multiple levels of the social ecology. Individual- and neighborhood-level poverty has consistently been shown to be associated with higher risk for child abuse and neglect. The current study sought to understand the ways in which individual- and neighborhood-level risk and protective factors affect physical child abuse and child neglect and whether these factors differed for families based on their individual poverty status. Specifically, we used a three-level hierarchical linear model (families nested within census tracts and nested within cities) to estimate the relationships between physical child abuse and child neglect and neighborhood structural factors, neighborhood processes, and individual characteristics. We compared these relationships between lower and higher income families in a sample of approximately 3,000 families from 50 cities in the State of California. We found that neighborhood-level disadvantage was especially detrimental for families in poverty and that neighborhood-level protective processes (social) were not associated with physical child abuse and child neglect for impoverished families, but that they had a protective effect for higher income families.
Optimization of the ANFIS using a genetic algorithm for physical work rate classification.
Habibi, Ehsanollah; Salehi, Mina; Yadegarfar, Ghasem; Taheri, Ali
2018-03-13
Recently, a new method was proposed for physical work rate classification based on an adaptive neuro-fuzzy inference system (ANFIS). This study aims to present a genetic algorithm (GA)-optimized ANFIS model for a highly accurate classification of physical work rate. Thirty healthy men participated in this study. Directly measured heart rate and oxygen consumption of the participants in the laboratory were used for training the ANFIS classifier model in MATLAB version 8.0.0 using a hybrid algorithm. A similar process was done using the GA as an optimization technique. The accuracy, sensitivity and specificity of the ANFIS classifier model were increased successfully. The mean accuracy of the model was increased from 92.95 to 97.92%. Also, the calculated root mean square error of the model was reduced from 5.4186 to 3.1882. The maximum estimation error of the optimized ANFIS during the network testing process was ± 5%. The GA can be effectively used for ANFIS optimization and leads to an accurate classification of physical work rate. In addition to high accuracy, simple implementation and inter-individual variability consideration are two other advantages of the presented model.
NASA Astrophysics Data System (ADS)
Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.
2016-05-01
Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.
Part of the job: the role of physical work conditions in the nurse turnover process.
Vardaman, James M; Cornell, Paul T; Allen, David G; Gondo, Maria B; Muslin, Ivan S; Mobley, Robin N; Brock, Meagan E; Sigmon, Tracy L
2014-01-01
Retention of nursing staff remains an important issue for health care managers. Turnover research has focused primarily on motivational and social factors as keys to retention, whereas the role of the physical work conditions has received considerably less attention. However, work design theory suggests that physical work conditions may be an important factor in fostering retention among nursing staff. The aim of this study was to integrate work design theory with turnover process models to explore the influence of perceptions of physical work conditions on the development of turnover intentions among nursing staff. Drawing on two samples of registered nurses working in cancer units in metropolitan hospitals in the southeastern United States, this study explores the impact of perceptions of physical work conditions on turnover intentions using ordinary least squares regression. Hypotheses are tested in Study 1 and replicated in Study 2. A measure of perceptions of physical work conditions is also developed and validated using exploratory (Study 1) and confirmatory (Study 2) factor analyses. Perceptions of physical work conditions explain variance in turnover intentions above than that explained by motivational and social factors. Specifically, employee perceptions of noisy work conditions are found to significantly increase turnover intentions, whereas perceptions that work conditions facilitate tasks were found to significantly reduce turnover intentions. Perceptions of temperature and health hazard did not show significant effects. Results suggest that health care managers and scholars should re-examine the role of physical work conditions in the turnover process. Investments in upgrades that facilitate tasks may foster retention better than investments that simply improve employee comfort. Negative perceptions of work conditions may have no impact if they are considered a normal "part of the job," although negative perceptions of conditions that are viewed as under the organization's control may be important in creating a desire to leave.
Going global in physical therapist education: International Service-Learning in US-based programmes.
Pechak, Celia; Thompson, Mary
2011-12-01
Internationalization is expanding its presence in higher education in the United States. Reflecting this trend that includes incorporating global perspectives in the curricula, physical therapist education programmes increasingly offer international opportunities such as International Service-Learning (ISL) to their students. Service-learning, a teaching strategy that integrates community service with structured learning activities, has gained broad acceptance in health professions education including physical therapy, and is therefore the focus of this paper. The specific purposes of this paper were to identify and analyse the commonalities that existed among established ISL programmes within physical therapist education programmes in terms of structures and processes, and to consider its broader implications for physical therapist education. A descriptive, exploratory study was performed using grounded theory. Snowball and purposive, theoretical sampling yielded 14 faculty members with experience in international service, international learning or ISL in physical therapist education programmes. Faculty were interviewed by phone. Interview transcriptions and course documents were analysed applying grounded theory methodology. Data from eight programmes which met the operational definition of established ISL were used to address the purposes of this paper. Five phases of establishing an ISL programme were identified: development, design, implementation, evaluation, and enhancement. Although no single model exists for ISL in physical therapist education; commonalities in structures and processes were identified in each phase. However, attention to service objectives and outcomes is lacking. While analysis revealed that each programme shared commonalities and demonstrated differences in structures and processes compared with the other programmes, the study demonstrated a general lack of focus on formal community outcomes which raises ethical concerns. Future research and dialogue is warranted to explore ethics and good practice in ISL and other global health initiatives in physical therapy. This study may facilitate reflections and creative solutions by individual faculty and the profession. Copyright © 2010 John Wiley & Sons, Ltd.
Challenges of UV light processing of low UVT foods and beverages
NASA Astrophysics Data System (ADS)
Koutchma, Tatiana
2010-08-01
Ultraviolet (UV) technology holds promise as a low cost non-thermal alternative to heat pasteurization of liquid foods and beverages. However, its application for foods is still limited due to low UV transmittance (LUVT). LUVT foods have a diverse range of chemical (pH, Brix, Aw), physical (density and viscosity) and optical properties (absorbance and scattering) that are critical for systems and process designs. The commercially available UV sources tested for foods include low and medium pressure mercury lamps (LPM and MPM), excimer and pulsed lamps (PUV). The LPM and excimer lamps are monochromatic sources whereas emission of MPM and PUV is polychromatic. The optimized design of UV-systems and UV-sources with parameters that match to specific product spectra have a potential to make UV treatments of LUVT foods more effective and will serve its further commercialization. In order to select UV source for specific food application, processing effects on nutritional, quality, sensorial and safety markers have to be evaluated. This paper will review current status of UV technology for food processing along with regulatory requirements. Discussion of approaches and results of measurements of chemico-physical and optical properties of various foods (fresh juices, milk, liquid whey proteins and sweeteners) that are critical for UV process and systems design will follow. Available UV sources did not prove totally effective either resulting in low microbial reduction or UV over-dosing of the product thereby leading to sensory changes. Beam shaping of UV light presents new opportunities to improve dosage uniformity and delivery of UV photons in LUVT foods.
A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors.
Wu, Minglin; Zhang, Sheng; Dong, Yuhan
2016-10-20
In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.
Some physical properties of naturally irradiated fluorite
Berman, Robert
1955-01-01
Five samples of purple fluorite found in association with radioactive, materials, and a synthetic colorless control sample were studied and compared. Before and after heating, observations were made on specific gravity, index of refraction, unit-cell size, breadth of X-ray diffraction lines, and fluorescence. The purple samples became colorless on heating above 175° C. During the process, observations were made on color, thermoluminescence, and differential thermal analysis curves. There were strong correlations between the various physical properties, and it was found possible to arrange the samples in order of increasing difference in their physical properties from the control sample. This order apparently represents increasing structural damage by radiation; if so, it correlates with decreasing specific gravity, increasing index of refraction, broadening of X-ray lines, and increasingly strong exothermic reactions on annealing. The differences between the samples in index of refraction and X-ray pattern are largely eliminated on annealing. Annealing begins at 1750 C; thermoluminescence at lower temperatures is due to electrons escaping from the metastable potential traps, not the destruction of those traps which takes place on annealing.
Preschool physics: Using the invisible property of weight in causal reasoning tasks
Williamson, Rebecca A.; Meltzoff, Andrew N.
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects—an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children’s understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children’s performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult. PMID:29561840
Preschool physics: Using the invisible property of weight in causal reasoning tasks.
Wang, Zhidan; Williamson, Rebecca A; Meltzoff, Andrew N
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects-an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children's understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children's performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult.
A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors
Wu, Minglin; Zhang, Sheng; Dong, Yuhan
2016-01-01
In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects. PMID:27775625
Channelling information flows from observation to decision; or how to increase certainty
NASA Astrophysics Data System (ADS)
Weijs, S. V.
2015-12-01
To make adequate decisions in an uncertain world, information needs to reach the decision problem, to enable overseeing the full consequences of each possible decision.On its way from the physical world to a decision problem, information is transferred through the physical processes that influence the sensor, then through processes that happen in the sensor, through wires or electromagnetic waves. For the last decade, most information becomes digitized at some point. From moment of digitization, information can in principle be transferred losslessly. Information about the physical world is often also stored, sometimes in compressed form, such as physical laws, concepts, or models of specific hydrological systems. It is important to note, however, that all information about a physical system eventually has to originate from observation (although inevitably coloured by some prior assumptions). This colouring makes the compression lossy, but is effectively the only way to make use of similarities in time and space that enable predictions while measuring only a a few macro-states of a complex hydrological system.Adding physical process knowledge to a hydrological model can thus be seen as a convenient way to transfer information from observations from a different time or place, to make predictions about another situation, assuming the same dynamics are at work.The key challenge to achieve more certainty in hydrological prediction can therefore be formulated as a challenge to tap and channel information flows from the environment. For tapping more information flows, new measurement techniques, large scale campaigns, historical data sets, and large sample hydrology and regionalization efforts can bring progress. For channelling the information flows with minimum loss, model calibration, and model formulation techniques should be critically investigated. Some experience from research in a Swiss high alpine catchment are used as an illustration.
Martin, Cathrin; H. Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla
2015-01-01
Background User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. Objective The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). Methods A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. Results The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants’ roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants’ alignment with the agreed goal and task. Conclusions Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants’ perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services. PMID:26381221
Modelling the Impact of Soil Management on Soil Functions
NASA Astrophysics Data System (ADS)
Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.
2017-12-01
Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological activity. Coupling of the observed nonlinear interactions allows for modeling the stability and resilience of soil systems in terms of their essential functions.
Revenäs, Åsa; Martin, Cathrin; H Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla
2015-09-17
User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants' roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants' alignment with the agreed goal and task. Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants' perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services.
Is there an aerosol signature of aqueous processing?
NASA Astrophysics Data System (ADS)
Ervens, B.; Sorooshian, A.
2017-12-01
The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.
Madres para la Salud: design of a theory-based intervention for postpartum Latinas.
Keller, Colleen; Records, Kathie; Ainsworth, Barbara; Belyea, Michael; Permana, Paska; Coonrod, Dean; Vega-López, Sonia; Nagle-Williams, Allison
2011-05-01
Weight gain in young women suggests that childbearing may be an important contributor to the development of obesity in women. Depressive symptoms can interfere with resumption of normal activity levels following childbirth or with the initiation of or adherence to physical activity programs essential for losing pregnancy weight. Depression symptoms may function directly to promote weight gain through a physiologic mechanism. Obesity and its related insulin resistance may contribute to depressed mood physiologically. Although physical activity has well-established beneficial effects on weight management and depression, women tend to under participate in physical activity during childbearing years. Further, the mechanisms underpinning the interplay of overweight, obesity, physical activity, depression, and inflammatory processes are not clearly explained. This report describes the theoretical rationale, design considerations, and cultural relevance for "Madres para la Salud" [Mothers for Health]. Madres para la Salud is a 12 month prospective, randomized controlled trial exploring the effectiveness of a culturally specific intervention using "bouts" of physical activity to effect changes in body fat, systemic and fat tissue inflammation, and postpartum depression symptoms in sedentary postpartum Latinas. The significance and innovation of Madres para la Salud includes use of a theory-driven approach to intervention, specification and cultural relevance of a social support intervention, use of a Promotora model to incorporate cultural approaches, use of objective measures of physical activity in post partum Latinas women, and the examination of biomarkers indicative of cardiovascular risk related to physical activity behaviors in postpartum Latinas. Copyright © 2011 Elsevier Inc. All rights reserved.
Madres para la Salud: Design of a Theory-based Intervention for Postpartum Latinas
Keller, Colleen; Records, Kathie; Ainsworth, Barbara; Belyea, Michael; Permana, Paska; Coonrod, Dean; Vega-López, Sonia; Nagle-Williams, Allison
2011-01-01
Background Weight gain in young women suggests that childbearing may be an important contributor to the development of obesity in women. Depressive symptoms can interfere with resumption of normal activity levels following childbirth or with the initiation of or adherence to physical activity programs essential for losing pregnancy weight. Depression symptoms may function directly to promote weight gain through a physiologic mechanism. Obesity and its related insulin resistance may contribute to depressed mood physiologically. Although physical activity has well-established beneficial effects on weight management and depression, women tend to under participate in physical activity during childbearing years. Further, the mechanisms underpinning the interplay of overweight, obesity, physical activity, depression, and inflammatory processes are not clearly explained. Objectives This report describes the theoretical rationale, design considerations, and cultural relevance for “Madres para la Salud” [Mothers for Health]. Design and Methods Madres para la Salud is a 12 month prospective, randomized controlled trial exploring the effectiveness of a culturally specific intervention using “bouts” of physical activity to effect changes in body fat, systemic and fat tissue inflammation, and postpartum depression symptoms in sedentary postpartum Latinas. Summary The significance and innovation of Madres para la Salud includes use of a theory-driven approach to intervention, specification and cultural relevance of a social support intervention, use of a Promotora model to incorporate cultural approaches, use of objective measures of physical activity in post partum Latinas women, and the examination of biomarkers indicative of cardiovascular risk related to physical activity behaviors in postpartum Latinas. PMID:21238614
Liquid interfacial water and brines in the upper surface of Mars
NASA Astrophysics Data System (ADS)
Moehlmann, Diedrich
2013-04-01
Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.
Bringing Earth Magnetism Research into the High School Physics Classroom
NASA Astrophysics Data System (ADS)
Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.
2015-12-01
We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely misunderstood even after specific instruction, laboratory activities, and research examples. Ongoing work is examining the effectiveness of specific classroom and laboratory activities on student perceptions and misconceptions - which models work best to develop deeper understanding and appreciation of paleomagnetic research.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
NASA Astrophysics Data System (ADS)
Kim, So Yeun; Kim, Bo-Hye
2016-10-01
A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.
Trainable hardware for dynamical computing using error backpropagation through physical media.
Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-24
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Trainable hardware for dynamical computing using error backpropagation through physical media
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Parameter extraction with neural networks
NASA Astrophysics Data System (ADS)
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs with desired characteristics. Using this method, we can extract optimum values for the parameters and determine the process latitude very quickly.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.
2016-10-01
Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in broad sense, of meta-heuristics, and describe free-accessible software frameworks which can be used to make easier the implementation of these algorithms.
Expected values for pedometer-determined physical activity in older populations
2009-01-01
The purpose of this review is to update expected values for pedometer-determined physical activity in free-living healthy older populations. A search of the literature published since 2001 began with a keyword (pedometer, "step counter," "step activity monitor" or "accelerometer AND steps/day") search of PubMed, Cumulative Index to Nursing & Allied Health Literature (CINAHL), SportDiscus, and PsychInfo. An iterative process was then undertaken to abstract and verify studies of pedometer-determined physical activity (captured in terms of steps taken; distance only was not accepted) in free-living adult populations described as ≥ 50 years of age (studies that included samples which spanned this threshold were not included unless they provided at least some appropriately age-stratified data) and not specifically recruited based on any chronic disease or disability. We identified 28 studies representing at least 1,343 males and 3,098 females ranging in age from 50–94 years. Eighteen (or 64%) of the studies clearly identified using a Yamax pedometer model. Monitoring frames ranged from 3 days to 1 year; the modal length of time was 7 days (17 studies, or 61%). Mean pedometer-determined physical activity ranged from 2,015 steps/day to 8,938 steps/day. In those studies reporting such data, consistent patterns emerged: males generally took more steps/day than similarly aged females, steps/day decreased across study-specific age groupings, and BMI-defined normal weight individuals took more steps/day than overweight/obese older adults. The range of 2,000–9,000 steps/day likely reflects the true variability of physical activity behaviors in older populations. More explicit patterns, for example sex- and age-specific relationships, remain to be informed by future research endeavors. PMID:19706192
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, Olga; Zeng, Jing; Novak, Avrey
Purpose: The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. Methods: This study analyzed 522 potentiallymore » severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but “potentially detectable” by the physics review, and (3) events “not detectable” by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Results: Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Conclusions: Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.« less
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy.
Gopan, Olga; Zeng, Jing; Novak, Avrey; Nyflot, Matthew; Ford, Eric
2016-09-01
The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. This study analyzed 522 potentially severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but "potentially detectable" by the physics review, and (3) events "not detectable" by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.
Marmeleira, José; Ferreira, Inês; Melo, Filipe; Godinho, Mário
2012-10-01
The purpose of this study was to examine the associations between hysical activity and driving-related cognitive abilities of older drivers. Thirty-eight female and male drivers ages 61 to 81 years (M = 70.2, SD = 5.0) responded to the International Physical Activity Questionnaire and were assessed on a battery of neuropsychological tests, which included measures of visual attention, executive functioning, mental status, visuospatial ability, and memory. A higher amount of reported physical activity was significantly correlated with better scores on tests of visual processing speed and divided visual attention. Higher amounts of physical activity was significantly associated with a better composite score for visual attention, but its correlation with the composite score for executive functioning was not significant. These findings support the hypothesis that pzhysical activity is associated with preservation of specific driving-related cognitive abilities of older adults.
Brady, Anne O; Straight, Chad R; Evans, Ellen M
2014-07-01
The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.
Soil physics: a Moroccan perspective
NASA Astrophysics Data System (ADS)
Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed
2004-06-01
Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet our conditions. Large, but special, investment is required to promote research programs in soil physics, which consider developments in this discipline and respect Moroccan needs. These programs will be highlighted herein.
NASA Astrophysics Data System (ADS)
Purwins, Hendrik; Herrera, Perfecto; Grachten, Maarten; Hazan, Amaury; Marxer, Ricard; Serra, Xavier
2008-09-01
We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.
NASA Astrophysics Data System (ADS)
Mehta, Pankaj; Lang, Alex H.; Schwab, David J.
2016-03-01
A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.
Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina
2013-01-01
Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308
Identity processing styles and the need for self-esteem in middle-aged and older adults.
Sneed, J R; Whitbourne, S K
2001-01-01
This study was a test of the relationship between self-esteem and the identity processing styles of identity assimilation (i.e., maintaining consistent views of the self), accommodation (i.e., changing the self ), and a balance between consistency seeking and identity change. A community sample of 242 older adults ranging in age from forty to ninety-five (M = 63.31) completed measures of identity processing and self-esteem. Previous research has demonstrated that identity assimilation increases with age in order to maintain self-esteem in the domain of physical and cognitive functioning; this is referred to as the identity assimilation effect (IAE). Based on this research, a similar result was expected in the domain of personality. Although identity assimilation and balance predicted increases in self-esteem, and identity accommodation predicted decreases in self-esteem, as predicted, no interaction effects were observed. The results of this study suggest the IAE may be domain specific to physical and cognitive functioning.
Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003
NASA Astrophysics Data System (ADS)
Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.
2004-12-01
The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.
NASA Astrophysics Data System (ADS)
Esariti, L.; Yuliastuti, N.; Ratih, N. K.
2018-02-01
The research looks for the importance of riverine settlement preservation as one of the efforts to carry out sustainable management of a traditional settlement. East Kalimantan, more specifically riverine settlement in Mentaya River is known as one of the traditional settlements that put river as the central of their livelihood activities. The theory of Rapopport [1] was used to investigate the importance of cultural aspect influence to the settlement process, and to seek for the behavioural and environment relationship in determining the pattern of adaptation process. Mix method approach was conducted by utilizing in depth interviews among 40 respondents within three districts, namely in Baamang, Mentaya Seberang and Mentawa Baru Ketapang subdistrict. The result shows that culture dominantly affect the process of settlement adaptation, especially the aspect of family structure, social network, and kinship. The adaptation pattern is influenced significantly by physical environment, type of physical condition of the houses, economic condition and the degree of heritage preservation motive. It sums up that adaptation process could be effective if the integration of culture, activities and government regulations is performed.
Cooperative Health Occupation Education (Course Outline), Body Structure and Function I: 8009.08.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
GRADES OR AGES: Twelfth grade. SUBJECT MATTER: The human body processes in normal and in certain abnormal conditions. ORGANIZATION AND PHYSICAL APPEARANCE: The document contains a preface, a list of goals, a list of specific block objectives, a bibliography, a course outline for each of the six blocks, and a quinmester posttest. The six blocks are…
ERIC Educational Resources Information Center
Dorn, Lorah D.; Dahl, Ronald E.; Woodward, Hermi Rojahn; Biro, Frank
2006-01-01
This article addresses pragmatic issues regarding the assessment of puberty in research on adolescent health and development. Because pubertal processes have a major effect on physical, psychological, and social development, we posit that the assessment of pubertal status is at least as important as the specification of age for characterizing…
ERIC Educational Resources Information Center
Lopes, J. Bernardino; Costa, Nilza
2007-01-01
Modelling is an inherent process for the construction and use of science concepts that mobilize diverse specific competences. The aims of this work are to put forward a means of evaluating modelling competences that is relevant for physics teaching and science education research and to identify the potentials and constraints in the development of…
Is Children's Naive Knowledge Consistent?: A Comparison of the Concepts of Sound and Heat
ERIC Educational Resources Information Center
Lautrey, Jacques; Mazens, Karine
2004-01-01
The aim of this study was to shed some light on the organization of naive knowledge, and on the process of conceptual change in everyday physics, more specifically regarding the concepts of sound and heat. Eighty-three 8-year-old children were interviewed individually in order to see if they attributed the properties of objects (such as…
ERIC Educational Resources Information Center
Lippke, Sonia; Schwarzer, Ralf; Ziegelmann, Jochen P.; Scholz, Urte; Schuz, Benjamin
2010-01-01
Health education interventions can be tailored toward stages of change. This strategy is based on theories that predict at which stage which variables are indicative of subsequent behavior change processes. For example, planning is regarded as being effective in intenders. However, rather few studies have tested whether matched interventions are…
C.W. Slaughter; J.W. Aldrich
1989-01-01
This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...
Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements
NASA Astrophysics Data System (ADS)
Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.
2017-12-01
Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
Atmospheric stability and complex terrain: comparing measurements and CFD
NASA Astrophysics Data System (ADS)
Koblitz, T.; Bechmann, A.; Berg, J.; Sogachev, A.; Sørensen, N.; Réthoré, P.-E.
2014-12-01
For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art flow solvers. In order to decrease the uncertainty of wind resource assessment, the effect of thermal stratification on the atmospheric boundary layer should be included in such models. The present work focuses on non-neutral atmospheric flow over complex terrain including physical processes like stability and Coriolis force. We examine the influence of these effects on the whole atmospheric boundary layer using the DTU Wind Energy flow solver EllipSys3D. To validate the flow solver, measurements from Benakanahalli hill, a field experiment that took place in India in early 2010, are used. The experiment was specifically designed to address the combined effects of stability and Coriolis force over complex terrain, and provides a dataset to validate flow solvers. Including those effects into EllipSys3D significantly improves the predicted flow field when compared against the measurements.
Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome
Milacic, Marija; Haw, Robin; Rothfels, Karen; Wu, Guanming; Croft, David; Hermjakob, Henning; D’Eustachio, Peter; Stein, Lincoln
2012-01-01
Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics. PMID:24213504
Shukla, Shashi Kant; Pandey, Shubha; Pandey, Siddharth
2018-07-20
Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents. Their ability to create biphasic splitting makes them a promising candidate for liquid-liquid separation processes, such as aqueous biphasic systems and liquid-liquid equilibria. Various aspects of ILs in these separation methods are discussed in view of the origin of physical forces responsible for the biphasic interactions, the effect of structural components, temperature, pressure, pH and additives. The specific advantages of using ILs in aqueous biphasic systems and liquid-liquid equilibria in binary and ternary systems are discussed with a view to defining their future role in separation processes by giving major emphasis on developing non-toxic ILs with physical and solution properties tailored to the needs of specific sample preparation techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
Audigier, Chloé; Mansi, Tommaso; Delingette, Hervé; Rapaka, Saikiran; Passerini, Tiziano; Mihalef, Viorel; Jolly, Marie-Pierre; Pop, Raoul; Diana, Michele; Soler, Luc; Kamen, Ali; Comaniciu, Dorin; Ayache, Nicholas
2017-09-01
We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA). The RFA computation becomes subject specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multimodal, pre- and postoperative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power. To exploit this dataset, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved. This enables an end-to-end preclinical validation framework that considers the available dataset.
Focal Adhesion-Independent Cell Migration.
Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael
2016-10-06
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.
Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus
2008-08-05
A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.
Towards physics of neural processes and behavior
Latash, Mark L.
2016-01-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Lokajíček, Tomáš
2017-04-01
According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.
Digital-image processing and image analysis of glacier ice
Fitzpatrick, Joan J.
2013-01-01
This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.
The Particle Physics Data Grid. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron
2002-08-16
The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services:more » reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.« less
Stadelmann, Stephanie; Grunewald, Madlen; Gibbels, Charlotte; Jaeger, Sonia; Matuschek, Tina; Weis, Steffi; Klein, Annette Maria; Hiemisch, Andreas; von Klitzing, Kai; Döhnert, Mirko
2017-02-01
In this study, we investigated the relation between global and domain-specific self-esteem and psychiatric disorders. A sample of 577 children aged 8-14 years was recruited via psychiatric hospitals and from the general population. Parents were given a diagnostic interview to assess children's psychiatric diagnoses (current/past). Parents and children completed questionnaires on child symptoms. Children completed a questionnaire on global and domain-specific self-esteem (scales: scholastic competence, social acceptance, athletic performance and physical appearance, global self-esteem). Self-esteem of children with current psychiatric disorders was lower than that of healthy controls (η p 2 between 0.01 and 0.08). Concerning scholastic competence, social acceptance and global self-esteem, children with past psychiatric disorders scored also lower than healthy controls. Different current psychiatric disorders showed specific but small effects on dimensions of self-esteem (β between -0.08 and 0.19). Moreover, we found a gender × group interaction, indicating that girls with depressive and adjustment disorders were specifically impaired in their global self-esteem and perception of their physical appearance. Findings might help clinicians to focus on particular domains of self-esteem during the diagnostic process and to define adequate treatment goals.
Bilitchenko, Lesia; Liu, Adam; Cheung, Sherine; Weeding, Emma; Xia, Bing; Leguia, Mariana; Anderson, J Christopher; Densmore, Douglas
2011-04-29
Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.
High-resolution modeling of a marine ecosystem using the FRESCO hydroecological model
NASA Astrophysics Data System (ADS)
Zalesny, V. B.; Tamsalu, R.
2009-02-01
The FRESCO (Finnish Russian Estonian Cooperation) mathematical model describing a marine hydroecosystem is presented. The methodology of the numerical solution is based on the method of multicomponent splitting into physical and biological processes, spatial coordinates, etc. The model is used for the reproduction of physical and biological processes proceeding in the Baltic Sea. Numerical experiments are performed with different spatial resolutions for four marine basins that are enclosed into one another: the Baltic Sea, the Gulf of Finland, the Tallinn-Helsinki water area, and Tallinn Bay. Physical processes are described by the equations of nonhydrostatic dynamics, including the k-ω parametrization of turbulence. Biological processes are described by the three-dimensional equations of an aquatic ecosystem with the use of a size-dependent parametrization of biochemical reactions. The main goal of this study is to illustrate the efficiency of the developed numerical technique and to demonstrate the importance of a high spatial resolution for water basins that have complex bottom topography, such as the Baltic Sea. Detailed information about the atmospheric forcing, bottom topography, and coastline is very important for the description of coastal dynamics and specific features of a marine ecosystem. Experiments show that the spatial inhomogeneity of hydroecosystem fields is caused by the combined effect of upwelling, turbulent mixing, surface-wave breaking, and temperature variations, which affect biochemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarino, Vincenzo, E-mail: vguarino@unina.it; Altobelli, Rosaria; Cirillo, Valentina
A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow tomore » produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.« less
NASA Astrophysics Data System (ADS)
Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi
2015-12-01
A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial's manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell-biomaterial and cell- cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.
2012-01-01
Background An increasingly passive life-style in the Western World has led to a rise in life-style related disorders. This is a major concern for all segments of society. The county council of the municipality of Svendborg in Denmark, created six Sport Schools with increased levels of suitable physical activities, which made it possible to study the health outcomes in these children whilst comparing them to children who attended the ‘normal’ schools of the region using the design of a “natural experiment”. Methods Children from the age of 6 till the age of 10, who accepted to be included in the monitoring process, were surveyed at baseline with questionnaires, physical examinations and physical and biological testing, including DXA scans. The physical examination and testing was repeated during the early stage of the study. Every week over the whole study period, the children will be followed with an automated mobile phone text message (SMS-Track) asking questions on their leisure time sports activities and the presence of any musculoskeletal problems. Children who report any such problems are monitored individually by health care personnel. Data are collected on demography, health habits and attitudes, physical characteristics, physical activity using accelerometers, motor performance, fitness, bone health, life-style disorders, injuries and musculoskeletal problems. Data collection will continue at least once a year until the children reach grade 9. Discussion This project is embedded in a local community, which set up the intervention (The Sport Schools) and thereafter invited researchers to provide documentation and evaluation. Sport schools are well matched with the ‘normal’ schools, making comparisons between these suitable. However, subgroups that would be specifically targeted in lifestyle intervention studies (such as the definitely obese) could be relatively small. Therefore, results specific to minority groups may be diluted. Nonetheless, the many rigorously collected data will make it possible to study, for example, the general effect that different levels of physical activity may have on various health conditions and on proxy measures of life-style conditions. Specifically, it will help answer the question on whether increased physical activity in school has a positive effect on health in children. PMID:22906115
ATLAS Tile Calorimeter time calibration, monitoring and performance
NASA Astrophysics Data System (ADS)
Davidek, T.; ATLAS Collaboration
2017-11-01
The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons is presented.
An Introduction to Data Analysis in Asteroseismology
NASA Astrophysics Data System (ADS)
Campante, Tiago L.
A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.
New atmospheric sensor analysis study
NASA Technical Reports Server (NTRS)
Parker, K. G.
1989-01-01
The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
Potential for the Vishniac instability in ionizing shock waves propagating into cold gases
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Pasley, J.
2018-05-01
The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.
Postmortem Aging of Beef with a Special Reference to the Dry Aging
Khan, Muhammad I.; Jung, Samooel; Nam, Ki Chang; Jo, Cheorun
2016-01-01
Animal muscles are stored for specific period (aging) at refrigerated temperatures, during and after which the living muscles start to convert into meat and thus, attain certain superior properties in the final product. Proteolysis, lipolysis, and oxidation are the major biochemical processes involved during the postmortem aging of meat that affect the tenderness, juiciness, and flavor, as well as sometimes may introduce certain undesirable traits. This review analyzes the role of pre- and post-mortem factors that are important for aging and their effect on the chemical and physical changes in the “dry- and wet-aged meat.” Thus, if the meat processing manufacturers optimize the effects of aging for specific muscles, the palatability, color, and the shelf life of the aged meat products could be significantly enhanced. PMID:27194923
Performance profiling for brachytherapy applications
NASA Astrophysics Data System (ADS)
Choi, Wonqook; Cho, Kihyeon; Yeo, Insung
2018-05-01
In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.
NASA Astrophysics Data System (ADS)
Sturm, Michael; Gems, Bernhard; Fuchs, Sven; Mazzorana, Bruno; Papathoma-Köhle, Maria; Aufleger, Markus
2016-04-01
In European mountain regions, losses due to torrential hazards are still considerable high despite the ongoing debate on an overall increasing or decreasing trend. Recent events in Austria severely revealed that due to technical and economic reasons, an overall protection of settlements in the alpine environment against torrential hazards is not feasible. On the side of the hazard process, events with unpredictable intensities may represent overload scenarios for existent protection structures in the torrent catchments. They bear a particular risk of significant losses in the living space. Although the importance of vulnerability is widely recognised, there is still a research gap concerning its assessment. Currently, potential losses at buildings due to torrential hazards and their comparison with reinstatement costs are determined by the use of empirical functions. Hence, relations of process intensities and the extent of losses, gathered by the analysis of historic hazard events and the information of object-specific restoration values, are used. This approach does not represent a physics-based and integral concept since relevant and often crucial processes, as the intrusion of the fluid-sediment-mixture into elements at risk, are not considered. Based on these findings, our work is targeted at extending these findings and models of present risk research in the context of an integral, more physics-based vulnerability analysis concept. Fluviatile torrential hazard processes and their impacts on the building envelope are experimentally modelled. Material intrusion processes are thereby explicitly considered. Dynamic impacts are gathered quantitatively and spatially distributed by the use of a large set of force transducers. The experimental tests are accomplished with artificial, vertical and skewed plates, including also openings for material intrusion. Further, the impacts on specific buildings within the test site of the work, the fan apex of the Schnannerbach torrent in Tyrol (Austria), are analysed in detail. A couple of buildings are entirely reconstructed within the physical scale model at the scale 1:30. They include basement and first floor and thereby all relevant openings on the building envelopes. The results from experimental modelling represent the data basis for further physics-based vulnerability analysis. Hence, the applied vulnerability analysis concept significantly extends the methods presently used in flood risk assessment. The results of the study are of basic importance for practical application, as they provide extensive information to support hazard zone mapping and management, as well as the planning of local technical protection measures.
Borghese, Michael M; Janssen, Ian
2018-03-22
Children participate in four main types of physical activity: organized sport, active travel, outdoor active play, and curriculum-based physical activity. The objective of this study was to develop a valid approach that can be used to concurrently measure time spent in each of these types of physical activity. Two samples (sample 1: n = 50; sample 2: n = 83) of children aged 10-13 wore an accelerometer and a GPS watch continuously over 7 days. They also completed a log where they recorded the start and end times of organized sport sessions. Sample 1 also completed an outdoor time log where they recorded the times they went outdoors and a description of the outdoor activity. Sample 2 also completed a curriculum log where they recorded times they participated in physical activity (e.g., physical education) during class time. We describe the development of a measurement approach that can be used to concurrently assess the time children spend participating in specific types of physical activity. The approach uses a combination of data from accelerometers, GPS, and activity logs and relies on merging and then processing these data using several manual (e.g., data checks and cleaning) and automated (e.g., algorithms) procedures. In the new measurement approach time spent in organized sport is estimated using the activity log. Time spent in active travel is estimated using an existing algorithm that uses GPS data. Time spent in outdoor active play is estimated using an algorithm (with a sensitivity and specificity of 85%) that was developed using data collected in sample 1 and which uses all of the data sources. Time spent in curriculum-based physical activity is estimated using an algorithm (with a sensitivity of 78% and specificity of 92%) that was developed using data collected in sample 2 and which uses accelerometer data collected during class time. There was evidence of excellent intra- and inter-rater reliability of the estimates for all of these types of physical activity when the manual steps were duplicated. This novel measurement approach can be used to estimate the time that children participate in different types of physical activity.
Why geodiversity matters in valuing nature's stage.
Hjort, Jan; Gordon, John E; Gray, Murray; Hunter, Malcolm L
2015-06-01
Geodiversity--the variability of Earth's surface materials, forms, and physical processes-is an integral part of nature and crucial for sustaining ecosystems and their services. It provides the substrates, landform mosaics, and dynamic physical processes for habitat development and maintenance. By determining the heterogeneity of the physical environment in conjunction with climate interactions, geodiversity has a crucial influence on biodiversity across a wide range of scales. From a literature review, we identified the diverse values of geodiversity; examined examples of the dependencies of biodiversity on geodiversity at a site-specific scale (for geosites <1 km(2) in area); and evaluated various human-induced threats to geosites and geodiversity. We found that geosites are important to biodiversity because they often support rare or unique biota adapted to distinctive environmental conditions or create a diversity of microenvironments that enhance species richness. Conservation of geodiversity in the face of a range of threats is critical both for effective management of nature's stage and for its own particular values. This requires approaches to nature conservation that integrate climate, biodiversity, and geodiversity at all spatial scales. © 2015 Society for Conservation Biology.
T.D.S. spectroscopic databank for spherical tops: DOS version
NASA Astrophysics Data System (ADS)
Tyuterev, V. G.; Babikov, Yu. L.; Tashkun, S. A.; Perevalov, V. I.; Nikitin, A.; Champion, J.-P.; Wenger, C.; Pierre, C.; Pierre, G.; Hilico, J.-C.; Loete, M.
1994-10-01
T.D.S. (Traitement de Donnees Spectroscopiques or Tomsk-Dijon-Spectroscopy project) is a computer package concerned with high resolution spectroscopy of spherical top molecules like CH4, CF4, SiH4, SiF4, SnH4, GeH4, SF6, etc. T.D.S. contains information, fundamental spectroscopic data (energies, transition moments, spectroscopic constants) recovered from comprehensive modeling and simultaneous fitting of experimental spectra, and associated software written in C. The T.D.S. goal is to provide an access to all available information on vibration-rotation molecular states and transitions including various spectroscopic processes (Stark, Raman, etc.) under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for T.D.S. may include: education/training in molecular physics, quantum chemistry, laser physics; spectroscopic applications (analysis, laser spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The reported DOS-version is designed for IBM and compatible personal computers.
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel
2011-04-01
A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Z; Sensakovic, W; Hipp, E
2014-06-15
Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
NASA Astrophysics Data System (ADS)
Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal
2018-01-01
We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.
Peterson, Daniel S; King, Laurie A; Cohen, Rajal G; Horak, Fay B
2016-05-01
People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. © 2016 American Physical Therapy Association.
Stanley, Rebecca M.; Ridley, Kate; Olds, Timothy S.; Dollman, James
2014-01-01
Background The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children’s habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children’s lunchtime and after-school physical activity. Methods Cross-sectional data were collected from 423 South Australian children aged 10.0–13.9 years (200 boys; 223 girls) attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. Results The model of boys’ lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys’ and girls’ after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, “I do an organised sport or activity after-school because it gets you fit”, respectively. Conclusions Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to inform and tailor gender-specific public health messages and interventions for promoting lunchtime and after-school physical activity in children. PMID:24809440
Huan, Huan; Wang, Jinsheng; Zhai, Yuanzheng; Xi, Beidou; Li, Juan; Li, Mingxiao
2016-04-15
It has been proved that groundwater vulnerability assessment is an effective tool for groundwater protection. Nowadays, quantitative assessment methods for specific vulnerability are scarce due to limited cognition of complicated contaminant fate and transport processes in the groundwater system. In this paper, process-based simulation model for specific vulnerability to nitrate using 1D flow and solute transport model in the unsaturated vadose zone is presented for groundwater resource protection. For this case study in Jilin City of northeast China, rate constants of denitrification and nitrification as well as adsorption constants of ammonium and nitrate in the vadose zone were acquired by laboratory experiments. The transfer time at the groundwater table t50 was taken as the specific vulnerability indicator. Finally, overall vulnerability was assessed by establishing the relationship between groundwater net recharge, layer thickness and t50. The results suggested that the most vulnerable regions of Jilin City were mainly distributed in the floodplain of Songhua River and Mangniu River. The least vulnerable areas mostly appear in the second terrace and back of the first terrace. The overall area of low, relatively low and moderate vulnerability accounted for 76% of the study area, suggesting the relatively low possibility of suffering nitrate contamination. In addition, the sensitivity analysis showed that the most sensitive factors of specific vulnerability in the vadose zone included the groundwater net recharge rate, physical properties of soil medium and rate constants of nitrate denitrification. By validating the suitability of the process-based simulation model for specific vulnerability and comparing with index-based method by a group of integrated indicators, more realistic and accurate specific vulnerability mapping could be acquired by the process-based simulation model acquiring. In addition, the advantages, disadvantages, constraint conditions and applying prospects of the quantitative approach for specific vulnerability assessment were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shokri, Ali
2017-04-01
The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.
Scherf, K Suzanne; Behrmann, Marlene; Dahl, Ronald E
2012-04-01
Adolescence is a time of dramatic physical, cognitive, emotional, and social changes as well as a time for the development of many social-emotional problems. These characteristics raise compelling questions about accompanying neural changes that are unique to this period of development. Here, we propose that studying adolescent-specific changes in face processing and its underlying neural circuitry provides an ideal model for addressing these questions. We also use this model to formulate new hypotheses. Specifically, pubertal hormones are likely to increase motivation to master new peer-oriented developmental tasks, which will in turn, instigate the emergence of new social/affective components of face processing. We also predict that pubertal hormones have a fundamental impact on the re-organization of neural circuitry supporting face processing and propose, in particular, that, the functional connectivity, or temporal synchrony, between regions of the face-processing network will change with the emergence of these new components of face processing in adolescence. Finally, we show how this approach will help reveal why adolescence may be a period of vulnerability in brain development and suggest how it could lead to prevention and intervention strategies that facilitate more adaptive functional interactions between regions within the broader social information processing network. Copyright © 2011 Elsevier Ltd. All rights reserved.
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper deals with the fundamentals of PRM from a physiological perspective, looking at the human mechanisms both physical and behavioral which are at the base of PRM physicians' work. After a discussion on the development and evolution of PRM that leads to its unique and specific approach, the mechanisms considered include: - repairing processes (and potential of recovery evaluation): repairing processes are mainly related to the quantity and natural history of diseases and impairments, while potential of recovery is also linked to the individual and environmental factors; PRM physicians work on impairments to favor healing or recovery, and propose rehabilitation if there is a potential of recovery: this is related to the prognostic role of PRM physicians; - learning processes: PRM is the specialty of teaching new physical ways and behavioral approaches to make patients participate at best through improvement of impairments and modification of activities; in this perspective, during repair and rehabilitation processes, PRM physicians and the rehabilitation team are teachers of new motor and behavioral strategies; - compensatory processes (adaptation/habilitation/rehabilitation): PRM physicians teach patients how to adapt to the new (acquired) health condition using compensatory mechanisms based on other body structures/functions, behavioral changes and/or assistive devices (or technical aids) (prosthesis and orthosis); during growth PRM physicians aim at allowing a complete (and compensatory) development of the intact function, not to be impaired by the original disease; compensatory processes are related to activities; - management skills: PRM physicians are managers of people and resources; they manage patients and their caregivers, to teach and allow them to reach the best possible participation, also focusing on maintenance; they lead the team, with the aim to make it function at best for the sake of the patient; finally, they manage resource allocation for the functioning of patients and team; - communication skills: PRM physicians need to develop very good communication skills, so to teach, inform and educate patients and their caregivers: this will allow the proper behavioural changes and also the correct physical compensations.
Aggio, Daniel; Fairclough, Stuart; Knowles, Zoe; Graves, Lee
2016-01-01
Adaptation of physical activity self-report questionnaires is sometimes required to reflect the activity behaviours of diverse populations. The processes used to modify self-report questionnaires though are typically underreported. This two-phased study used a formative approach to investigate the validity and reliability of the Physical Activity Questionnaire for Adolescents (PAQ-A) in English youth. Phase one examined test content and response process validity and subsequently informed a modified version of the PAQ-A. Phase two assessed the validity and reliability of the modified PAQ-A. In phase one, focus groups (n = 5) were conducted with adolescents (n = 20) to investigate test content and response processes of the original PAQ-A. Based on evidence gathered in phase one, a modified version of the questionnaire was administered to participants (n = 169, 14.5 ± 1.7 years) in phase two. Internal consistency and test-retest reliability were assessed using Cronbach's alpha and intra-class correlations, respectively. Spearman correlations were used to assess associations between modified PAQ-A scores and accelerometer-derived physical activity, self-reported fitness and physical activity self-efficacy. Phase one revealed that the original PAQ-A was unrepresentative for English youth and that item comprehension varied. Contextual and population/cultural-specific modifications were made to the PAQ-A for use in the subsequent phase. In phase two, modified PAQ-A scores had acceptable internal consistency (α = 0.72) and test-retest reliability (ICC = 0.78). Modified PAQ-A scores were significantly associated with objectively assessed moderate-to-vigorous physical activity (r = 0.39), total physical activity (r = 0.42), self-reported fitness (r = 0.35), and physical activity self-efficacy (r = 0.32) (p ≤ 0.01). The modified PAQ-A had acceptable internal consistency and test-retest reliability. Modified PAQ-A scores displayed weak-to-moderate correlations with objectively measured physical activity, self-reported fitness, and self-efficacy providing evidence of satisfactory criterion and construct validity, respectively. Further testing with more diverse English samples is recommended to provide a more complete assessment of the tool.
Almasri, Nihad A; An, Mihee; Palisano, Robert J
2017-07-28
Understanding parent perceptions of family-centered care (FCC) is important to improve processes and outcomes of children's services. A systematic review and meta-analysis of research on the Measures of Processes of Care (MPOC-20) were performed to determine the extent parents of children with physical disabilities perceive they received FCC. A comprehensive literature search was conducted using four databases. A total of 129 studies were retrieved; 15 met the criteria for the synthesis. Meta-analysis involving 2,582 mothers and fathers of children with physical disabilities mainly cerebral palsy was conducted for the five scales of the MPOC-20. Aggregated mean ratings varied from 5.0 to 5.5 for Providing Specific Information about the Child; Coordinated and Comprehensive Care; and Respectful and Supportive Care (relational behaviors) and Enabling and Partnership (participatory behaviors) indicating that, on average, parents rated FCC as having been provided to "a fairly great extent." The aggregated mean rating was 4.1 for Providing General Information, indicating FCC was provided "to a moderate extent." Service providers are encouraged to focus on child and family needs for general information. Research is needed to better understand parent perspectives of service provider participatory behaviors which are important for engaging families in intervention processes.
Atmaca, Sinem; Gençöz, Tülin
2016-02-01
The purpose of the current study is to explore the revictimization process between child abuse and neglect (CAN), and intimate partner violence (IPV) based on the schema theory perspective. For this aim, 222 married women recruited in four central cities of Turkey participated in the study. Results indicated that early negative CAN experiences increased the risk of being exposed to later IPV. Specifically, emotional abuse and sexual abuse in the childhood predicted the four subtypes of IPV, which are physical, psychological, and sexual violence, and injury, while physical abuse only associated with physical violence. To explore the mediational role of early maladaptive schemas (EMSs) on this association, first, five schema domains were tested via Parallel Multiple Mediation Model. Results indicated that only Disconnection/Rejection (D/R) schema domains mediated the association between CAN and IPV. Second, to determine the particular mediational roles of each schema, eighteen EMS were tested as mediators, and results showed that Emotional Deprivation Schema and Vulnerability to Harm or Illness Schema mediated the association between CAN and IPV. These findings provided an empirical support for the crucial roles of EMSs on the effect of revictimization process. Clinical implications were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fifty-eighth Christmas Bird Count. 166. Ocean City, Md
Keough, J.R.; Thompson, T.A.; Guntenspergen, G.R.; Wilcox, D.A.
1999-01-01
Gauging the impact of manipulative activities, such as rehabilitation or management, on wetlands requires having a notion of the unmanipulated condition as a reference. An understanding of the reference condition requires knowledge of dominant factors influencing ecosystem processes and biological communities. In this paper, we focus on natural physical factors (conditions and processes) that drive coastal wetland ecosystems of the Laurentian Great Lakes. Great Lakes coastal wetlands develop under conditions of large-lake hydrology and disturbance imposed at a hierarchy of spatial and temporal scales and contain biotic communities adapted to unstable and unpredictable conditions. Coastal wetlands are configured along a continuum of hydrogeomorphic types: open coastal wetlands, drowned river mouth and flooded delta wetlands, and protected wetlands, each developing distinct ecosystem properties and biotic communities. Hydrogeomorphic factors associated with the lake and watershed operate at a hierarchy of scales: a) local and short-term (seiches and ice action), b) watershed / lakewide / annual (seasonal water- level change), and c) larger or year-to-year and longer ( regional and/or greater than one-year). Other physical factors include the unique water quality features of each lake. The aim of this paper is to provide scientists and managers with a framework for considering regional and site-specific geomorphometry and a hierarchy of physical processes in planning management and conservation projects.
Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes
Keough, Janet R.; Thompson, Todd A.; Guntenspergen, Glenn R.; Wilcox, Douglas A.
1999-01-01
Gauging the impact of manipulative activities, such as rehabilitation or management, on wetlands requires having a notion of the unmanipulated condition as a reference. And understanding of the reference condition requires knowledge of dominant factors influencing ecosystem processes and biological communities. In this paper, we focus on natural physical factors (conditions and processes) that drive coastal wetland ecosystems of the Laurentian Great Lakes. Great Lakes coastal wetlands develop under conditions of large-lake hydrology and disturbance imposed at a hiearchy of spatial and temporal scales and contain biotic communities adapted to unstable and unpredictable conditions. Coastal wetlands are configured along a continuum of hydrogeomorphic types: open coastal wetlands, drowned river mouth and flooded delta wetlands, and protected wetlands, each developing distinct ecosystem propertics and biotic communities. Hydrogeomorphic factors associated with the lake and watershed operate at a hierarchy of scales: a) local and short-term (seiches and ice action), b) watershed / lakewide / annual (seasonal water-level change), and c) larger or year-to-year and longer (regional and/or greater than one-year). Other physical factors include the unique water quality features of each lake. The aim of this paper is to provide scientists and managers with a framework for considering regional and site-specific geomorphometry and a hierarchy of physical processes in planning management and conservation projects.
Leman, Steven W
2012-09-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Sabus, Carla; Spake, Ellen
2016-01-01
Background and purpose New ideas, methods, and technologies spread through cultures through typical patterns described by diffusion of innovation (DOI) theory. Professional cultures, including the physical therapy profession, have distinctive features and traditions that determine the adoption of practice innovation. The Consolidated Framework for Implementation Research (CFIR) proposes a framework of innovation implementation specific to health care services. While the CFIR has been applied to medical and nursing practice, it has not been extended to rehabilitation professions. The purpose of this qualitative study was to verify the CFIR factors in outpatient physical therapy practice. Design Through a nomination process of area rehabilitation managers and area directors of clinical education, 2 exemplar, outpatient, privately owned physical therapy clinics were identified as innovation practices. A total of 18 physical therapists (PTs), including 3 owners and a manager, participated in the study. Methods The 2 clinics served as case studies within a qualitative approach of directed content analysis. Data were collected through observation, spontaneous, unstructured questioning, workflow analysis, structured focus group sessions, and artifact analysis including clinical documents. Focus group data were transcribed. All the data were analyzed and coded among 4 investigators. Results Through data analysis and alignment with literature in DOI theory in health care practice, the factors that determine innovation adoption were verified. The phenomena of implementation in PT practice are largely consistent with models of implementation in health care service. Within the outpatient practices studied, patient-centered care and collaborative learning were foundational elements to diffusion of an innovation. Conclusion Innovation in outpatient physical therapy practice can be understood as a social process situated within the culture of the physical therapy professional that follows predictable patterns that strongly align with DOI theory and the CFIR. PMID:29355199
Sabus, Carla; Spake, Ellen
2016-01-01
New ideas, methods, and technologies spread through cultures through typical patterns described by diffusion of innovation (DOI) theory. Professional cultures, including the physical therapy profession, have distinctive features and traditions that determine the adoption of practice innovation. The Consolidated Framework for Implementation Research (CFIR) proposes a framework of innovation implementation specific to health care services. While the CFIR has been applied to medical and nursing practice, it has not been extended to rehabilitation professions. The purpose of this qualitative study was to verify the CFIR factors in outpatient physical therapy practice. Through a nomination process of area rehabilitation managers and area directors of clinical education, 2 exemplar, outpatient, privately owned physical therapy clinics were identified as innovation practices. A total of 18 physical therapists (PTs), including 3 owners and a manager, participated in the study. The 2 clinics served as case studies within a qualitative approach of directed content analysis. Data were collected through observation, spontaneous, unstructured questioning, workflow analysis, structured focus group sessions, and artifact analysis including clinical documents. Focus group data were transcribed. All the data were analyzed and coded among 4 investigators. Through data analysis and alignment with literature in DOI theory in health care practice, the factors that determine innovation adoption were verified. The phenomena of implementation in PT practice are largely consistent with models of implementation in health care service. Within the outpatient practices studied, patient-centered care and collaborative learning were foundational elements to diffusion of an innovation. Innovation in outpatient physical therapy practice can be understood as a social process situated within the culture of the physical therapy professional that follows predictable patterns that strongly align with DOI theory and the CFIR.
NASA Astrophysics Data System (ADS)
Ndukwu, M. C.; Bennamoun, L.; Anozie, O.
2018-05-01
Interest in picralima nitida is growing over the years because of its therapeutic application in human and animal medicine. In many countries the dried seed is compounded and sold as drugs but there is limited information on the process variables associated with its thermal processing. The study therefore, is focused on the evolution of physical properties, heat and mass transfer coefficient, specific heat capacity, energy utilization and quality characteristics of the seed during oven and microwave drying. The goal is to generate data using theoretical and empirical steps for process model development that can be applied in dryer design. The results obtained showed that the coefficient of heat and mass transfer varied from 0.0421-1.326 W/m2 K and 1.49 × 10-7 - 8.47 × 10-6 m/s respectively while the specific heat capacity ranged between 1189 and 2531 J/ kg K. The volume of the seed shrank gradually with a non-linear exponential shape for all drying treatments. The intrinsic particle and bulk densities decreased while the porosity of the seed increased with drying period, indicating an increase in internal voids of the seeds. The energy and specific energy utilized for drying peaked after 14 h, 12 h and 7 h of continuous drying at 50, 60 and 70 °C for oven drying treatment. Effective moisture diffusivities for all treatments ranged from 5.37 × 10-10 - 1.45 × 10-7 m/s2 with activation energy of 27.82 kJ/mol and 20 W/g for oven and microwave respectively. Flavonoide was the least stable at high temperature among the screend compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, A.R.; Lin, Y.; Auciello, O.
1994-07-01
Low-energy (5--15 keV) pulsed ion beam surface analysis comprises several different surface spectroscopies which possess the ability to provide a remarkably wide range of information directly relevant to the growth of single and multicomponent semiconductor, metal and metal-oxide thin films and layered structures. Ion beam methods have not however, been widely used as an [ital in] [ital situ] monitor of thin film growth because existing commercial instrumentation causes excessive film damage, physically conflicts with the deposition equipment, and requires a chamber pressure [similar to]10[sup [minus]7]--10[sup [minus]8] Torr, i.e., much lower than that associated with most deposition processes ([ge]10[sup [minus]4] Torr).more » We have developed time-of-flight ion scattering and recoil spectroscopy (TOF-SARS) as a nondestructive, [ital in] [ital situ], real-time probe of thin film composition and structure which does not physically interfere with the deposition process. Several TOF-SARS implementations are exceptionally surface specific, yet in a properly designed system can yield high-resolution data at ambient pressures well in excess of 10 mTorr (4--6 orders of magnitude higher than conventional surface analytic methods). Because of the exceptional surface specificity of these methods, TOF-SARS is ideally suited as a means of studying ultrathin layers and atomically abrupt interfaces. TOF-SARS instrumentation designed specifically for use as an [ital in] [ital situ], real-time monitor of growth processes for single and multicomponent thin films and layered structures is described here. Representative data are shown for [ital in] [ital situ] analysis of Pb and Zr layers at room temperature and high vacuum, as well as under conditions appropriate to the growth of Pb(Zr[sub [ital x
A Situation-specific Theory of Midlife Women's Attitudes toward Physical Activity (MAPA)
Im, Eun-Ok; Stuifbergen, Alexa K.; Walker, Lorraine
2010-01-01
This paper presents a situation specific theory—the Midlife Women's Attitudes toward Physical Activity (MAPA) theory—that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model, a review of the related literature, and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be easily linked to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. PMID:20113755
ERIC Educational Resources Information Center
Massachusetts School Building Assistance Commission, Boston.
This report suggests that the instructional materials center be flexible for multigroup activities, expansible for future physical growth, and central to the instructional program. Area specifications are given for the following areas: materials research, small groups, cataloging and processing materials, and listening and speaking, and for a dark…
Neutron Physics Division progress report for period ending February 28, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, F.C.
1977-05-01
Summaries are given of research progress in the following areas: (1) measurements of cross sections and related quantities, (2) cross section evaluations and theory, (3) cross section processing, testing, and sensitivity analysis, (4) integral experiments and their analyses, (5) development of methods for shield and reactor analyses, (6) analyses for specific systems or applications, and (7) information analysis and distribution. (SDF)
Birmingham, Wendy
2011-01-01
Background Relationships have been linked to significant physical health outcomes. However, little is known about the more specific processes that might be responsible for such links. Purpose The main aim of this study was to examine a previously unexplored and potentially important form of partner knowledge (i.e., attitude familiarity) on relationship processes and cardiovascular function. Methods In this study, 47 married couples completed an attitude familiarity questionnaire and ambulatory assessments of daily spousal interactions and blood pressure. Results Attitude familiarity was associated with better interpersonal functioning between spouses in daily life (e.g., greater partner responsiveness). Importantly, attitude familiarity was also related to lower overall ambulatory systolic blood pressure and diastolic blood pressure. Conclusions These data suggest that familiarity with a spouse’s attitudes may be an important factor linking relationships to better interpersonal and physical health outcomes. PMID:20878291
Smart Aquarium as Physics Learning Media for Renewable Energy
NASA Astrophysics Data System (ADS)
Desnita, D.; Raihanati, R.; Susanti, D.
2018-04-01
Smart aquarium has been developed as a learning media to visualize Micro Hydro Power Generator (MHPG). Its used aquarium water circulation system and Wind Power Generation (WPG) which generated through a wheel as a source. Its also used to teach about energy changes, circular motion and wheel connection, electromagnetic impact, and AC power circuit. The output power and system efficiency was adjusted through the adjustment of water level and wind speed. Specific targets in this research are: to achieved: (i) develop green aquarium technology that’s suitable to used as a medium of physics learning, (ii) improving quality of process and learning result at a senior high school student. Research method used development research by Borg and Gall, which includes preliminary studies, design, product development, expert validation, and product feasibility test, and vinalisation. The validation test by the expert states that props feasible to use. Limited trials conducted prove that this tool can improve students science process skills.
Profiles in the offending process of nonserial sexual murderers.
Beauregard, Eric; Proulx, Jean
2002-08-01
The aim of this study was to investigate specific pathways in the offending processes of nonserial sexual murderers and to examine possible relationships with different precrime, per-crime, and postcrime factors. Included in this study were 36 offenders who have committed at least one sexual murder against a female victim and they were classified using cluster analysis. Participants using the sadistic pathway planned their offenses and used physical restraints during the offenses. Furthermore, they mutilated and humiliated their victims. Finally, they hid the bodies of the victims. Participants using the anger pathway had not premeditated the homicide. Mutilation, humiliation, and physical restraints were less predominant with these participants than with those using the sadistic pathway. Moreover, these offenders were more likely to leave the bodies at the crime scenes after the killings occurred. These two profiles are compared with empirical studies addressing sexual homicide.
Emotion recognition in fathers and mothers at high-risk for child physical abuse.
Asla, Nagore; de Paúl, Joaquín; Pérez-Albéniz, Alicia
2011-09-01
The present study was designed to determine whether parents at high risk for physical child abuse, in comparison with parents at low risk, show deficits in emotion recognition, as well as to examine the moderator effect of gender and stress on the relationship between risk for physical child abuse and emotion recognition. Based on their scores on the Abuse Scale of the CAP Inventory (Milner, 1986), 64 parents at high risk (24 fathers and 40 mothers) and 80 parents at low risk (40 fathers and 40 mothers) for physical child abuse were selected. The Subtle Expression Training Tool/Micro Expression Training Tool (Ekman, 2004a, 2004b) and the Diagnostic Analysis of Nonverbal Accuracy II (Nowicki & Carton, 1993) were used to assess emotion recognition. As expected, parents at high risk, in contrast to parents at low risk, showed deficits in emotion recognition. However, differences between high- and low-risk participants were observed only for fathers, but not for mothers. Whereas fathers at high risk for physical child abuse made more errors than mothers at high risk, no differences between mothers at low risk and fathers at low risk were found. No interaction between stress, gender, and risk status was observed for errors in emotion recognition. The present findings, if confirmed with physical abusers, could be helpful to further our understanding of deficits in processing information of physically abusive parents and to develop treatment strategies specifically focused on emotion recognition. Moreover, if gender differences can be confirmed, the findings could be helpful to develop specific treatment programs for abusive fathers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exercise is medicine for patients with major depressive disorders: but only if the “pill” is taken!
Gerber, Markus; Holsboer-Trachsler, Edith; Pühse, Uwe; Brand, Serge
2016-01-01
Major depressive disorders (MDDs) are a widespread and burdensome mental illness associated with a high comorbidity with other conditions and a significantly reduced life expectancy compared to the general population. Therefore, targeted actions are needed to improve physical health in people with MDDs, in addition to ongoing efforts to enhance psychological well-being. Meanwhile, the positive effects of exercise training on the treatment of MDDs are well documented, while compelling evidence exists that exercise interventions can improve cardiorespiratory fitness in clinically meaningful ways. On the flipside, the long-term effects of exercise therapy are still not well documented, and recent studies suggest that initial improvements in MDDs dissipate if regular exercise participation is discontinued after the end of interventions. A recent survey among Swiss psychiatric hospitals further shows that all institutions provide some form of physical activity and exercise program. However, only a limited number of patients participate in these programs, mainly because participation is voluntary and no particular efforts are undertaken to engage patients with the lowest physical activity levels. We argue that more systematic efforts are needed to fully exploit the potential of physical activity and exercise programs in psychiatric care. We also emphasize that initiating and maintaining regular physical activity among psychiatric patients is a major challenge because specific dysfunctional cognitive–emotional processes might interfere with their capacity to self-regulate health-related behaviors. Specifically, we claim that behavioral skill training should be used to support patients with MDDs in overcoming barriers to initiating and maintaining physical activity. Moreover, we suggest that the assessment of physical activity and cardiorespiratory fitness should become routine in psychiatric practice. PMID:27540294
The STRATAFORM Project: U.S. Geological Survey geotechnical studies
Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth
2001-01-01
This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts of the project.
LaPier, Tanya Kinney; Shaw, Donald K.
2011-01-01
The processes that occur with normal sternal healing and potential complications related to median sternotomy are of particular interest to physical therapists. The premise of patients following sternal precautions (SP) or specific activity restrictions is the belief that avoiding certain movements will reduce risk of sternal complications. However, current research has identified that many patients remain functionally impaired long after cardiothoracic surgery. It is possible that some SP may contribute to such functional impairments. Currently, SP have several limitations including that they: (1) have no universally accepted definition, (2) are often based on anecdotal/expert opinion or at best supported by indirect evidence, (3) are mostly applied uniformly for all patients without regard to individual differences, and (4) may be overly restrictive and therefore impede ideal recovery. The purpose of this article is to present an overview of current research and commentary on median sternotomy procedures and activity restrictions. We propose that the optimal degree and duration of SP should be based on an individual patient's characteristics (eg, risk factors, comorbidities, previous activity level) that would enable physical activity to be targeted to particular limitations rather than restricting specific functional tasks and physical activity. Such patient-specific SP focusing on function may be more likely to facilitate recovery after median sternotomy and less likely to impede it. PMID:21448343
Crystallization modifiers in lipid systems.
Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter
2015-07-01
Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.
Differential C3NET reveals disease networks of direct physical interactions
2011-01-01
Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411
Clark, Shirley E; Pitt, Robert
2012-12-15
Stormwater treatment is entering a new phase with stormwater management systems being required to meet specific numeric objectives, as opposed to the historic approach of meeting guidance-document-provided percent removal rates. Meeting numeric discharge requirements will require designers to better understand and apply the physical, chemical, and biological processes underpinning these treatment technologies. This critical review paper focuses on the potential unit treatment operations available for stormwater treatment and outlines how to identify the most applicable treatment options based on the needed pollutant removal goals. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Schwan, Karsten
1994-01-01
Atmospheric modeling is a grand challenge problem for several reasons, including its inordinate computational requirements and its generation of large amounts of data concurrent with its use of very large data sets derived from measurement instruments like satellites. In addition, atmospheric models are typically run several times, on new data sets or to reprocess existing data sets, to investigate or reinvestigate specific chemical or physical processes occurring in the earth's atmosphere, to understand model fidelity with respect to observational data, or simply to experiment with specific model parameters or components.
Physical Activity Design Guidelines for School Architecture
Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K.; Breithecker, Dieter; Frerichs, Leah; Huang, Terry
2015-01-01
Increasing children’s physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students’ physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment’s impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards. PMID:26230850
Brown, B M; Peiffer, J J; Martins, R N
2013-08-01
Western countries are experiencing aging populations and increased longevity; thus, the incidence of dementia and Alzheimer's disease (AD) in these countries is projected to soar. In the absence of a therapeutic drug, non-pharmacological preventative approaches are being investigated. One of these approaches is regular participation in physical activity or exercise. This paper reviews studies that have explored the relationship between physical activity and cognitive function, cognitive decline, AD/dementia risk and AD-associated biomarkers and processes. There is now strong evidence that links regular physical activity or exercise to higher cognitive function, decreased cognitive decline and reduced risk of AD or dementia. Nevertheless, these associations require further investigation, more specifically with interventional studies that include long follow-up periods. In particular, relatively little is known about the underlying mechanism(s) of the associations between physical activity and AD neuropathology; clearly this is an area in need of further research, particularly in human populations. Although benefits of physical activity or exercise are clearly recognised, there is a need to clarify how much physical activity provides the greatest benefit and also whether people of different genotypes require tailored exercise regimes.
Physical Activity Design Guidelines for School Architecture.
Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K; Breithecker, Dieter; Frerichs, Leah; Huang, Terry
2015-01-01
Increasing children's physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students' physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment's impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards.
A brittle star-like robot capable of immediately adapting to unexpected physical damage.
Kano, Takeshi; Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio
2017-12-01
A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star-a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
A brittle star-like robot capable of immediately adapting to unexpected physical damage
Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio
2017-01-01
A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250
Lancaster, Graeme I; Febbraio, Mark A
2005-01-01
The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.
Ellingson, Laura D; Hibbing, Paul R; Kim, Youngwon; Frey-Law, Laura A; Saint-Maurice, Pedro F; Welk, Gregory J
2017-06-01
The wrist is increasingly being used as the preferred site for objectively assessing physical activity but the relative accuracy of processing methods for wrist data has not been determined. This study evaluates the validity of four processing methods for wrist-worn ActiGraph (AG) data against energy expenditure (EE) measured using a portable metabolic analyzer (OM; Oxycon mobile) and the Compendium of physical activity. Fifty-one adults (ages 18-40) completed 15 activities ranging from sedentary to vigorous in a laboratory setting while wearing an AG and the OM. Estimates of EE and categorization of activity intensity were obtained from the AG using a linear method based on Hildebrand cutpoints (HLM), a non-linear modification of this method (HNLM), and two methods developed by Staudenmayer based on a Linear Model (SLM) and using random forest (SRF). Estimated EE and classification accuracy were compared to the OM and Compendium using Bland-Altman plots, equivalence testing, mean absolute percent error (MAPE), and Kappa statistics. Overall, classification agreement with the Compendium was similar across methods ranging from a Kappa of 0.46 (HLM) to 0.54 (HNLM). However, specificity and sensitivity varied by method and intensity, ranging from a sensitivity of 0% (HLM for sedentary) to a specificity of ~99% for all methods for vigorous. None of the methods was significantly equivalent to the OM (p > 0.05). Across activities, none of the methods evaluated had a high level of agreement with criterion measures. Additional research is needed to further refine the accuracy of processing wrist-worn accelerometer data.
NASA Technical Reports Server (NTRS)
Knox, James Clinton
2016-01-01
The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.
EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-07-01
The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.
Porter, Katie; Day, Brad
2016-04-01
The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.
Refining and blending of aviation turbine fuels.
White, R D
1999-02-01
Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.
Measurement of talent in team handball: the questionable use of motor and physical tests.
Lidor, Ronnie; Falk, Bareket; Arnon, Michal; Cohen, Yoram; Segal, Gil; Lander, Yael
2005-05-01
Testing for selection is one of the most important fundamentals in any multistep sport program. In most ball games, coaches assess motor, physical, and technical skills on a regular basis in early stages of talent identification and development. However, selection processes are complex, are often unstructured, and lack clear-cut theory-based knowledge. For example, little is known about the relevance of the testing process to the final selection of the young prospects. The purpose of this study was to identify motor, physical, and skill variables that could provide coaches with relevant information in the selection process of young team handball players. In total, 405 players (12-13 years of age at the beginning of the testing period) were recommended by their coaches to undergo a battery of tests prior to selection to the Junior National Team. This number is the sum of all players participating in the different phases of the program. However, not all of them took part in each testing phase. The battery included physical measurements (height and weight), a 4 x 10-m running test, explosive power tests (medicine ball throw and standing long jump), speed tests (a 20-m sprint from a standing position and a 20-m sprint with a flying start), and a slalom dribbling test. Comparisons between those players eventually selected to the Junior National Team 2-3 years later with those not selected demonstrated that only the skill test served as a good indicator. In all other measurements, a wide overlap could be seen between the results of the selected and nonselected players. It is suggested that future studies investigate the usefulness of tests reflecting more specific physical ability and cognitive characteristics.
New tools for investigating student learning in upper-division electrostatics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.
Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.
Ocean Carbon States: Data Mining in Observations and Numerical Simulations Results
NASA Astrophysics Data System (ADS)
Latto, R.; Romanou, A.
2017-12-01
Advanced data mining techniques are rapidly becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from increasingly larger and more complex datasets. This is particularly important in studies of the global carbon cycle, where any lack of understanding of its combined physical and biogeochemical drivers is detrimental to our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major carbon reservoirs. The analysis presented here evaluates the use of cluster analysis as a means of identifying and comparing spatial and temporal patterns extracted from observational and model datasets. As the observational data is organized into various regimes, which we will call "ocean carbon states", we gain insight into the physical and/or biogeochemical processes controlling the ocean carbon cycle as well as how well these processes are simulated by a state-of-the-art climate model. We find that cluster analysis effectively produces realistic, dynamic regimes that can be associated with specific processes at different temporal scales for both observations and the model. In addition, we show how these regimes can be used to illustrate and characterize the model biases in the model air-sea flux of CO2. These biases are attributed to biases in salinity, sea surface temperature, wind speed, and nitrate, which are then used to identify the physical processes that are inaccurately reproduced by the model. In this presentation, we provide a proof-of-concept application using simple datasets, and we expand to more complex ones, using several physical and biogeochemical variable pairs, thus providing considerable insight into the mechanisms and phases of the ocean carbon cycle over different temporal and spatial scales.
Activated carbon electrode from banana-peel waste for supercapacitor applications
NASA Astrophysics Data System (ADS)
Taer, E.; Taslim, R.; Aini, Z.; Hartati, S. D.; Mustika, W. S.
2017-01-01
Seven types of activated carbon electrode (ACM) have been produced from the banana peel waste for supercapacitor application. The difference type of the electrode was synthesized by the various conditions of carbonization and activation. The production of the ACM was begun by the milling process and molded by a solution casting technique. The next step was followed by drying, carbonization and activation process. Physical properties of the ACM were studied by the N2 gas absorption-desorption method to characterize the specific surface area of the sample. On the other side, the electrochemical properties such as specific capacitance (Csp), specific energy (E) and specific power (P) were resulted by calculating the current (I) and voltage (V) data from the cyclic voltammetry testing. Based on the data obtained the surface area of the ACM has a significant relationship with the electrochemical properties. The specific surface area (SBET), Csp, E and P were found the maximum value as high as 581m2 / g, 68 F/g, 0.75 Wh/kg and 31 W/kg, respectively. Further more, this paper were also analyzed the relationship between electrochemical properties of supercapacitor with the degree of crystallization of the ACM.
Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes
Borrego-Pinto, Joana; Somogyi, Kálmán; Karreman, Matthia A.; König, Julia; Müller-Reichert, Thomas; Bettencourt-Dias, Mónica; Gönczy, Pierre; Schwab, Yannick
2016-01-01
Centriole elimination is an essential process that occurs in female meiosis of metazoa to reset centriole number in the zygote at fertilization. How centrioles are eliminated remains poorly understood. Here we visualize the entire elimination process live in starfish oocytes. Using specific fluorescent markers, we demonstrate that the two older, mother centrioles are selectively removed from the oocyte by extrusion into polar bodies. We show that this requires specific positioning of the second meiotic spindle, achieved by dynein-driven transport, and anchorage of the mother centriole to the plasma membrane via mother-specific appendages. In contrast, the single daughter centriole remaining in the egg is eliminated before the first embryonic cleavage. We demonstrate that these distinct elimination mechanisms are necessary because if mother centrioles are artificially retained, they cannot be inactivated, resulting in multipolar zygotic spindles. Thus, our findings reveal a dual mechanism to eliminate centrioles: mothers are physically removed, whereas daughters are eliminated in the cytoplasm, preparing the egg for fertilization. PMID:27002173
Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes.
Borrego-Pinto, Joana; Somogyi, Kálmán; Karreman, Matthia A; König, Julia; Müller-Reichert, Thomas; Bettencourt-Dias, Mónica; Gönczy, Pierre; Schwab, Yannick; Lénárt, Péter
2016-03-28
Centriole elimination is an essential process that occurs in female meiosis of metazoa to reset centriole number in the zygote at fertilization. How centrioles are eliminated remains poorly understood. Here we visualize the entire elimination process live in starfish oocytes. Using specific fluorescent markers, we demonstrate that the two older, mother centrioles are selectively removed from the oocyte by extrusion into polar bodies. We show that this requires specific positioning of the second meiotic spindle, achieved by dynein-driven transport, and anchorage of the mother centriole to the plasma membrane via mother-specific appendages. In contrast, the single daughter centriole remaining in the egg is eliminated before the first embryonic cleavage. We demonstrate that these distinct elimination mechanisms are necessary because if mother centrioles are artificially retained, they cannot be inactivated, resulting in multipolar zygotic spindles. Thus, our findings reveal a dual mechanism to eliminate centrioles: mothers are physically removed, whereas daughters are eliminated in the cytoplasm, preparing the egg for fertilization. © 2016 Borrego-Pinto et al.
Jenkin, Claire R; Eime, Rochelle M; Westerbeek, Hans; O'Sullivan, Grant; van Uffelen, Jannique G Z
2017-12-22
The global population is ageing. As ageing is often associated with a decline in health, there is a need to further develop preventative health measures. Physical activity can positively influence older adults' (aged 50 years and older) health. Previous research on the relationship between physical activity and health for older adults has mainly focused on physical activity in general, and not specific types of exercise. Due to the social nature of sport, it may assist in improving physical, mental and social health for older adults. Sport, as a form of physical activity, has not been widely explored as a physical activity opportunity for older adults. This review concurrently explored two research questions: the determinants and the trends of sport participation for community dwelling older adults. Two parallel systematic searches of nine electronic databases were conducted in December 2015 for the two research questions. English language quantitative and qualitative studies that provided specific results for community dwelling older adults' sport participation were included and a quality ratings assessment was undertaken. There were 10,171 studies initially identified for the first research question and 1992 studies for the second research question. This culminated in 18 and 8 studies respectively that met the inclusion criteria. The most frequently mentioned determinants of participation were health and using sport to negotiate the ageing process. The most frequently mentioned trends of sport participation were the effect of historical sport participation on current participation, and sport participation across the lifespan. The main themes for both research questions had contrasting results, for example, participation in sport could improve health, but poor health was also a limitation of sport participation. This review demonstrates that older adults are a heterogeneous age group, and therefore require different strategies than other age groups to successfully participate in sport. It is recommended that the main findings from this review are incorporated into specific strategies to develop age appropriate sporting opportunities for older adults, so that sport can be presented as a viable physical activity option for this age group.
A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).
Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine
2010-01-01
This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. Copyright 2010 Mosby, Inc. All rights reserved.
Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta
2015-01-01
In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns. PMID:25717313
Stanmore, Emma; Stubbs, Brendon; Vancampfort, Davy; de Bruin, Eling D; Firth, Joseph
2017-07-01
Physically-active video games ('exergames') have recently gained popularity for leisure and entertainment purposes. Using exergames to combine physical activity and cognitively-demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations. We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g=0.436, 95% CI=0.18-0.69, p=0.001). Significant effects still existed when excluding waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p<0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. The findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Hughes, Alicia M; Gordon, Rola; Chalder, Trudie; Hirsch, Colette R; Moss-Morris, Rona
2016-11-01
There is an abundance of research into cognitive processing biases in clinical psychology including the potential for applying cognitive bias modification techniques to assess the causal role of biases in maintaining anxiety and depression. Within the health psychology field, there is burgeoning interest in applying these experimental methods to assess potential cognitive biases in relation to physical health conditions and health-related behaviours. Experimental research in these areas could inform theoretical development by enabling measurement of implicit cognitive processes that may underlie unhelpful illness beliefs and help drive health-related behaviours. However, to date, there has been no systematic approach to adapting existing experimental paradigms for use within physical health research. Many studies fail to report how materials were developed for the population of interest or have used untested materials developed ad hoc. The lack of protocol for developing stimuli specificity has contributed to large heterogeneity in methodologies and findings. In this article, we emphasize the need for standardized methods for stimuli development and replication in experimental work, particularly as it extends beyond its original anxiety and depression scope to other physical conditions. We briefly describe the paradigms commonly used to assess cognitive biases in attention and interpretation and then describe the steps involved in comprehensive/robust stimuli development for attention and interpretation paradigms using illustrative examples from two conditions: chronic fatigue syndrome and breast cancer. This article highlights the value of preforming rigorous stimuli development and provides tools to aid researchers engage in this process. We believe this work is worthwhile to establish a body of high-quality and replicable experimental research within the health psychology literature. Statement of contribution What is already known on this subject? Cognitive biases (e.g., tendencies to attend to negative information and/or interpret ambiguous information in negative ways) have a causal role in maintaining anxiety and depression. There is mixed evidence of cognitive biases in physical health conditions and chronic illness; one reason for this may be the heterogeneous stimuli used to assess attention and interpretation biases in these conditions. What does this study add? Steps for comprehensive/robust stimuli development for attention and interpretation paradigms are presented. Illustrative examples are provided from two conditions: chronic fatigue syndrome and breast cancer. We provide tools to help researchers develop condition-specific materials for experimental studies. © 2016 The British Psychological Society.
Exploration and validation of clusters of physically abused children.
Sabourin Ward, Caryn; Haskett, Mary E
2008-05-01
Cluster analysis was used to enhance understanding of heterogeneity in social adjustment of physically abused children. Ninety-eight physically abused children (ages 5-10) were clustered on the basis of social adjustment, as measured by observed behavior with peers on the school playground and by teacher reports of social behavior. Seventy-seven matched nonabused children served as a comparison sample. Clusters were validated on the basis of observed parental sensitivity, parents' self-reported disciplinary tactics, and children's social information processing operations (i.e., generation of solutions to peer relationship problems and attributions of peer intentions in social situations). Three subgroups of physically abused children emerged from the cluster analysis; clusters were labeled Socially Well Adjusted, Hanging in There, and Social Difficulties. Examination of cluster differences on risk and protective factors provided substantial evidence in support of the external validity of the three-cluster solution. Specifically, clusters differed significantly in attributions of peer intent and in parenting (i.e., sensitivity and harshness of parenting). Clusters also differed in the ways in which they were similar to, or different from, the comparison group of nonabused children. Results supported the contention that there were clinically relevant subgroups of physically abused children with potentially unique treatment needs. Findings also pointed to the relevance of social information processing operations and parenting context in understanding diversity among physically abused children. Pending replication, findings provide support for the importance of considering unique treatment of needs among physically abused children. A singular approach to intervention is unlikely to be effective for these children. For example, some physically abused children might need a more intensive focus on development of prosocial skills in relationships with peers while the prosocial skills of other abused children will be developmentally appropriate. In contrast, most physically abused children might benefit from training in social problem-solving skills. Findings also point to the importance of promoting positive parenting practices in addition to reducing harsh discipline of physically abusive parents.
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Y. Y.; Tiampo, K. F.; Qin, J.; Bauer, M.
2015-12-01
Intensity is one of the most useful measures of earthquake hazard, as it quantifies the strength of shaking produced at a given distance from the epicenter. Today, there are several data sources that could be used to determine intensity level which can be divided into two main categories. The first category is represented by social data sources, in which the intensity values are collected by interviewing people who experienced the earthquake-induced shaking. In this case, specially developed questionnaires can be used in addition to personal observations published on social networks such as Twitter. These observations are assigned to the appropriate intensity level by correlating specific details and descriptions to the Modified Mercalli Scale. The second category of data sources is represented by observations from different physical sensors installed with the specific purpose of obtaining an instrumentally-derived intensity level. These are usually based on a regression of recorded peak acceleration and/or velocity amplitudes. This approach relates the recorded ground motions to the expected felt and damage distribution through empirical relationships. The goal of this work is to implement and evaluate streaming data processing separately and jointly from both social and physical sensors in order to produce near real-time intensity maps and compare and analyze their quality and evolution through 10-minute time intervals immediately following an earthquake. Results are shown for the case study of the M6.0 2014 South Napa, CA earthquake that occurred on August 24, 2014. The using of innovative streaming and pipelining computing paradigms through IBM InfoSphere Streams platform made it possible to read input data in real-time for low-latency computing of combined intensity level and production of combined intensity maps in near-real time. The results compare three types of intensity maps created based on physical, social and combined data sources. Here we correlate the count and density of Tweets with intensity level and show the importance of processing combined data sources at the earliest time stages after earthquake happens. This method can supplement existing approaches of intensity level detection, especially in the regions with high number of Twitter users and low density of seismic networks.
Angular momentum of dwarf galaxies
NASA Astrophysics Data System (ADS)
Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter
2018-05-01
Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.
Scheers, Tineke; Philippaerts, Renaat; Lefevre, Johan
2013-12-01
This study examined the independent and joint associations of overall, intensity-specific and domain-specific physical activity and sedentary behavior with bioelectrical impedance-determined percent body fat. Physical activity was measured in 442 Flemish adults (41.4 ± 9.8 years) using the SenseWear Armband and an electronic diary. Two-way analyses of covariance investigated the interaction of physical activity and sedentary behavior with percent body fat. Multiple linear regression analyses, adjusted for potential confounders, examined the associations of intensity-specific and domain-specific physical activity and sedentary behavior with percent body fat. Results showed a significant main effect for physical activity in both genders and for sedentary behavior in women, but no interaction effects. Light activity was positively (β = 0.41 for men and 0.43 for women) and moderate (β = -0.64 and -0.41), vigorous (β = -0.21 and -0.24) and moderate-to-vigorous physical activity (MVPA) inversely associated with percent body fat, independent of sedentary time. Regarding domain-specific physical activity, significant associations were present for occupation, leisure time and household chores, irrespective of sedentary time. The positive associations between body fat and total and domain-specific sedentary behavior diminished after MVPA was controlled for. MVPA during leisure time, occupation and household chores may be essential to prevent fat gain. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
van Stralen, Maartje M; Kok, Gerjo; de Vries, Hein; Mudde, Aart N; Bolman, Catherine; Lechner, Lilian
2008-12-04
Limited data are available on the development, implementation and evaluation processes of physical activity promotion programmes among older adults. More integrative insights into interventions describing the planned systematic development, implementation and evaluation are needed. The purpose of this study is to give an integrative insight into the development of the Active plus programme applying the six-step Intervention Mapping protocol. The Active plus programme consisted of two theory- and evidence-based tailored physical activity promotion interventions, both comprising three tailored letters delivered over four months and aimed at raising awareness of insufficient physical activity, and stimulating physical activity initiation and maintenance among the over-fifties. The first intervention, the basic tailored intervention, provided tailored letters that intervened on the psychosocial determinants of physical activity. The second intervention, the intervention plus, provided the same tailored information but additionally provided tailored information about physical activity opportunities in the specific environment in which the older adults lived. This environment-based component also provided access to a forum and e-buddy system on a website. A plan for implementation and evaluation is also described. The planned development of the Active plus programme resulted in two theory- and evidence-based tailored physical activity interventions targeted at the over-fifties. Dutch Trial Register NTR 920.
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu
2015-05-01
Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.
Individual differences in drivers' cognitive processing of road safety messages.
Kaye, Sherrie-Anne; White, Melanie J; Lewis, Ioni M
2013-01-01
Using Gray and McNaughton's (2000) revised reinforcement sensitivity theory (r-RST), we examined the influence of personality on processing of words presented in gain-framed and loss-framed anti-speeding messages and how the processing biases associated with personality influenced message acceptance. The r-RST predicts that the nervous system regulates personality and that behaviour is dependent upon the activation of the behavioural activation system (BAS), activated by reward cues and the fight-flight-freeze system (FFFS), activated by punishment cues. According to r-RST, individuals differ in the sensitivities of their BAS and FFFS (i.e., weak to strong), which in turn leads to stable patterns of behaviour in the presence of rewards and punishments, respectively. It was hypothesised that individual differences in personality (i.e., strength of the BAS and the FFFS) would influence the degree of both message processing (as measured by reaction time to previously viewed message words) and message acceptance (measured three ways by perceived message effectiveness, behavioural intentions, and attitudes). Specifically, it was anticipated that, individuals with a stronger BAS would process the words presented in the gain-frame messages faster than those with a weaker BAS and individuals with a stronger FFFS would process the words presented in the loss-frame messages faster than those with a weaker FFFS. Further, it was expected that greater processing (faster reaction times) would be associated with greater acceptance for that message. Driver licence holding students (N=108) were recruited to view one of four anti-speeding messages (i.e., social gain-frame, social loss-frame, physical gain-frame, and physical loss-frame). A computerised lexical decision task assessed participants' subsequent reaction times to message words, as an indicator of the extent of processing of the previously viewed message. Self-report measures assessed personality and the three message acceptance measures. As predicted, the degree of initial processing of the content of the social gain-framed message mediated the relationship between the reward sensitive trait and message effectiveness. Initial processing of the physical loss-framed message partially mediated the relationship between the punishment sensitive trait and both message effectiveness and behavioural intention ratings. These results show that reward sensitivity and punishment sensitivity traits influence cognitive processing of gain-framed and loss-framed message content, respectively, and subsequently, message effectiveness and behavioural intention ratings. Specifically, a range of road safety messages (i.e., gain-frame and loss-frame messages) could be designed which align with the processing biases associated with personality and which would target those individuals who are sensitive to rewards and those who are sensitive to punishments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physical activity as a metabolic stressor.
Coyle, E F
2000-08-01
Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.
NASA Astrophysics Data System (ADS)
Wydra, A.; Maev, R. Gr
2013-11-01
In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.
Wydra, A; Maev, R Gr
2013-11-21
In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.
Bilitchenko, Lesia; Liu, Adam; Cheung, Sherine; Weeding, Emma; Xia, Bing; Leguia, Mariana; Anderson, J. Christopher; Densmore, Douglas
2011-01-01
Background Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. Results We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Conclusions Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly. PMID:21559524
Semantic domain-specific functional integration for action-related vs. abstract concepts.
Ghio, Marta; Tettamanti, Marco
2010-03-01
A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.
Chockalingam, Nachiappan; Thomas, Nigel B; Duval, Lynne
2012-09-01
Participation in sport and exercise training, while aiding in the reintegration and confidence building of wounded service personnel, also has potential to prepare them for elite sport competition. It is this encouragement of the war injured to use sport and recreational physical activity as a means of rehabilitation back into civilian life, which has become the worldwide phenomenon of Paralympic sport. This paper evaluates existing research relating to the incidence of types of war injuries and the use of sport within the rehabilitation process. Literature review. Initial searches were conducted in the electronic databases EBSCOHost, ScienceDirect and Pubmed using the keywords 'veterans' and 'sport' or 'physical activity'. These searches were then supplemented by tracking all key references from the appropriate articles identified. A narrative literature review methodology was employed. Although it is clear from the reported literature that further development of available rehabilitation services is necessary to provide the required level of care for the types of mental and physical injuries and the concept of 'therapeutic recreation' is becoming popular, there is still a need for the development of specific protocols to identify individuals who can participate and excel in a specific sport at an elite level. Drawing on the US military experience it can be argued that sport in the UK and other parts of the world should be more widely recognized as a component of rehabilitation. This is not just for the role that sport can play as a tool for rehabilitation but also for the intrinsic and extrinsic benefits that participation in elite sport can offer.
1982-06-01
libary packages which support machine dependent physical interfaces, interrupt structures or special devices. Thus, programs and libraries written in...obtains real-time data, makes and imple- ments decisions and receives and originates digital messages. The major equipment items which are appropriate...maintenance. g. Provide digital communications access processing. Each microcomputer can be programmed to perform a specific set of functions using prepared
Image-Guided Abdominal Surgery and Therapy Delivery
Galloway, Robert L.; Herrell, S. Duke; Miga, Michael I.
2013-01-01
Image-Guided Surgery has become the standard of care in intracranial neurosurgery providing more exact resections while minimizing damage to healthy tissue. Moving that process to abdominal organs presents additional challenges in the form of image segmentation, image to physical space registration, organ motion and deformation. In this paper, we present methodologies and results for addressing these challenges in two specific organs: the liver and the kidney. PMID:25077012
Muscle as a “Mediator“ of Systemic Metabolism
Baskin, Kedryn K.; Winders, Benjamin R.; Olson, Eric N.
2015-01-01
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis. PMID:25651178
Origin and evolution of planetary atmospheres
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Yung, Y. L.
1980-01-01
The current understanding of the origin and evolution of the atmospheres of solar system objects is reviewed. Physical processes that control this evolution are described in an attempt to develop a set of general principles that can help guide studies of specific objects. Particular emphasis is placed on the planetary and satellite atmospheres of the inner solar system objects; current hypotheses on the origin and evolution of these objects are critically considered.
Satellite temperature monitoring and prediction system
NASA Technical Reports Server (NTRS)
Barnett, U. R.; Martsolf, J. D.; Crosby, F. L.
1980-01-01
The paper describes the Florida Satellite Freeze Forecast System (SFFS) in its current state. All data collection options have been demonstrated, and data collected over a three year period have been stored for future analysis. Presently, specific minimum temperature forecasts are issued routinely from November through March. The procedures for issuing these forecast are discussed. The automated data acquisition and processing system is described, and the physical and statistical models employed are examined.
NASA Astrophysics Data System (ADS)
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2015-04-01
Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Depth-of-processing effects as college students use academic advising Web sites.
Boatright-Horowitz, Su L; Langley, Michelle; Gunnip, Matthew
2009-06-01
This research examined students' cognitive and affective responses to an academic advising Web site. Specifically, we investigated whether exposure to our Web site increased student reports that they would access university Web sites to obtain various types of advising information. A depth-of-processing (DOP) manipulation revealed this effect as students engaged in semantic processing of Web content but not when they engaged in superficial examination of the physical appearance of the same Web site. Students appeared to scan online academic advising materials for information of immediate importance without noticing other information or hyperlinks (e.g., regarding internships and careers). Suggestions are presented for increasing the effectiveness of academic advising Web sites.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
NASA Astrophysics Data System (ADS)
Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.
2018-01-01
At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.
NASA Astrophysics Data System (ADS)
Sarkar, D.; Misra, T. N.
1988-11-01
Compensation behaviour has been found in electrical conduction process in proflavine complexes with nucleic acid bases, guanine, adenine, uracil and thymine. At low dye concentrations these semiconducting complexes follow a three constant compensation equation σ(T){=}σ0'\\exp (E/2kT0)\\exp (-E/2kT), σ0' and T0 being constants for a specific base. The other notations have their usual meaning. Consistent values of these constants have been obtained by different experimental methods of evaluation. These results suggest that compensation effect has a physical origin.
Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy
NASA Astrophysics Data System (ADS)
Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.
2018-06-01
The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.
Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis
NASA Astrophysics Data System (ADS)
Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco
2018-05-01
Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.
Strong Evidence for Stochastic Growth of Langmuir-Like Waves in Earth's Foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1999-01-01
Bursty Langmuir-like waves driven by electron beams in Earth's foreshock have properties which are inconsistent with the standard plasma physics paradigm of uniform exponential growth saturated by nonlinear processes. Here it is demonstrated for a specific period that stochastic growth theory (SGT) quantitatively describes these waves throughout a large fraction of the foreshock. The statistical wave properties are inconsistent with nonlinear processes or self-organized criticality being important. SGT's success in explaining the foreshock waves and type III solar bursts suggests that SGT is widely applicable to wave growth in space, astrophysical, and laboratory plasmas.
Analysis of physical-chemical processes governing SSME internal fluid flows
NASA Technical Reports Server (NTRS)
Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.
1984-01-01
The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.
Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi
2009-08-26
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.
Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi
2009-01-01
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515
Towards physics of neural processes and behavior.
Latash, Mark L
2016-10-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.
EDITORIAL: Sensors based on interfaces
NASA Astrophysics Data System (ADS)
Camassel, Jean; Soukiassian, Patrick G.
2007-12-01
Sensors are specific analog devices that convert a physical quantity, like the temperature or external pressure or concentration of carbon monoxide in a confined atmosphere, into an electrical signal. Considered in this way, every sensor is then a part of the artificial interface, which connects the human world to the world of machines. The other side of the interface is represented by actuators. Most often, after processing the data they are used to convert the out-coming electrical power into counteracting physical action. In the last few years, thanks to inexpensive silicon technology, enormous capability for data processing has been developed and the world of machines has become increasingly invasive. The world of sensors has become increasingly complex too. Applications range from classical measurements of the temperature, vibrations, shocks and acceleration to more recent chemical and bio-sensing technologies. Chemical sensors are used to detect the presence of specific, generally toxic, chemical species. To measure their concentration, one uses some specific property, generally a physical one, like the intensity of infrared absorption bands. Bio-sensors are new, more complex, devices that combine a bio-receptor with a physical transducer. The bio-receptor is a molecule (for instance, an enzyme like glucose oxidase) that can recognize a specific target (glucose molecules in the case of glucose oxidase). The enzyme must be fixed on the transducer and, as a consequence of recognition, the transducer must convert the event into a measurable analytical signal. A common feature of many chemical and bio-sensors is that they require a large surface of interaction with the outside world. For that reason and in order to increase efficiency, either nanoparticles or pores or a combination of both, made from various materials including (but not limited to) porous silicon, are often used as the functional transducer interface. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics describe some recent advances in this field and the very different approaches and/or techniques that can be used for the sensors' implementation. They include the use of molecularly modified metal nanoparticles in or as chemical sensors, especially for high sensitivity hydrogen sensors. Hydrogen sensing can also be achieved by performing galvanic measurements on a thin layer of perovskite oxide covered with platinum. In this case, one mixes an ionic (proton) transport in the oxide with an electronic one in the metal. Another focus is on optical and electrical read-out techniques, like surface-plasmon resonance (SPR), such as for immuno-sensor applications or piezo-electrical and electro-chemical detection. Toward this end, the preparation, structure and application of functional interfacial surfaces are described and discussed. A totally different approach based on the use of Hall effect measurements performed on a granular metal-oxide-semiconductor layer and different experimental solutions is also presented. Finally, optical sensors are addressed through the photonic modulation of surface properties or transmission interferometric absorption sensors. Mixed electrical and optical chemical sensors are also examined.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
Kong, Muwen; Van Houten, Bennett
2017-08-01
Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tactical physical preparation: the case for a movement-based approach.
Kechijian, Doug; Rush, Stephen
2012-01-01
Progressive injury prevention and physical preparation programs are needed in military special operations to optimize mission success and Operator quality of life and longevity. While physical risk is inherent in Special Operations, non-traumatic injuries resulting from overuse, poor biomechanics, and arbitrary exercise selection can be alleviated with proper medical care and patient education. An integrated approach to physical readiness that recognizes the continuity between rehabilitation and performance training is advocated to ensure that physiological adaptations do not come at the expense of orthopedic health or movement proficiency. Movement quality should be regularly evaluated and enforced throughout the training process to minimize preventable injuries and avoid undermining previous rehabilitative care. While fitness and proper movement are not substitutes for Operator specific tasks, they are foundational to many tactically-relevant skills. In light of how much is at stake, sports medicine care in the military, especially special operations, should parallel that which is practiced in professional and collegiate athletics. 2012.
Cusping, transport and variance of solutions to generalized Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Carnaffan, Sean; Kawai, Reiichiro
2017-06-01
We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.
Physical-chemical mechanisms of pattern formation during gastrulation
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Kolomeisky, Anatoly B.; Teimouri, Hamid
2018-03-01
Gastrulation is a fundamental phase during the biological development of most animals when a single layer of identical embryo cells is transformed into a three-layer structure, from which the organs start to develop. Despite a remarkable progress in quantifying the gastrulation processes, molecular mechanisms of these processes remain not well understood. Here we theoretically investigate early spatial patterning in a geometrically confined colony of embryonic stem cells. Using a reaction-diffusion model, a role of Bone-Morphogenetic Protein 4 (BMP4) signaling pathway in gastrulation is specifically analyzed. Our results show that for slow diffusion rates of BMP4 molecules, a new length scale appears, which is independent of the size of the system. This length scale separates the central region of the colony with uniform low concentrations of BMP molecules from the region near the colony edge where the concentration of signaling molecules is elevated. The roles of different components of the signaling pathway are also explained. Theoretical results are consistent with recent in vitro experiments, providing microscopic explanations for some features of early embryonic spatial patterning. Physical-chemical mechanisms of these processes are discussed.
Murrock, Carolyn J.; Madigan, Elizabeth
2013-01-01
Culturally specific dance has the potential to generate health benefits but is seldom used even among studies advocating culturally specific interventions. This study examined the components of self-efficacy and social support as mediators between culturally specific dance and lifestyle physical activity in African American women (N = 126). An experimental design compared intervention and control groups for mediating effects of self-efficacy and social support on lifestyle physical activity. Findings indicated that only outcome expectations and social support from friends mediated effects. Culturally specific dance is a first step in encouraging African American women to become more physically active and improve health outcomes. The implications are that culturally specific dance programs can improve health outcomes by including members of underserved populations. PMID:18763475
Murrock, Carolyn J; Madigan, Elizabeth
2008-01-01
Culturally specific dance has the potential to generate health benefits but is seldom used even among studies advocating culturally specific interventions. This study examined the components of self-efficacy and social support as mediators between culturally specific dance and lifestyle physical activity in African American women (N = 126). An experimental design compared intervention and control groups for mediating effects of self-efficacy and social support on lifestyle physical activity. Findings indicated that only outcome expectations and social support from friends mediated effects. Culturally specific dance is a first step in encouraging African American women to become more physically active and improve health outcomes. The implications are that culturally specific dance programs can improve health outcomes by including members of underserved populations.
Project - based teaching and other methods to make learning more attractive
NASA Astrophysics Data System (ADS)
Švecová, Libuše; Vlková, Iva
2017-01-01
This contribution presents the results of a research carried out at secondary schools in the Moravian-Silesian Region. This research involved a total of 120 pupils and focused on project teaching with the emphasis on pupil inquiry activity and the connection of their knowledge in the fields of physics and biology. To verify pupil inquiry activity, the tasks on the worksheets have been designed specifically to measure physical quantities on the human body by computer-aided measuring processes. To support pupil inquiry activity, group work was selected as the organization method of teaching. Audio recording and pedagogical observations were used as the research tools for assessment and a consequent evaluation of acquired data.
[The Museu da Saúde in Portugal: a physical space, a virtual space].
Oliveira, Inês Cavadas de; Andrade, Helena Rebelo de; Miguel, José Pereira
2015-12-01
Museu da Saúde (Museum of Health) in Portugal, based on the dual concept of a multifaceted physical space and a virtual space, is preparing an inventory of its archive. So far, it has studied five of its collections in greater depth: tuberculosis, urology, psychology, medicine, and malaria. In this article, these collections are presented, and the specificities of developing museological activities within a national laboratory, Instituto Nacional de Saúde Doutor Ricardo Jorge, are also discussed, highlighting the issues of the store rooms and exhibition spaces, the inventory process, and the communication activities, with a view to overcoming the challenges inherent to operating in a non-museological space.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
NASA Astrophysics Data System (ADS)
Lezon, Timothy R.; Banavar, Jayanth R.; Maritan, Amos
2006-01-01
All living organisms rely upon networks of molecular interactions to carry out their vital processes. In order for a molecular system to display the properties of life, its constituent molecules must themselves be endowed with several features: stability, specificity, self-organization, functionality, sensitivity, robustness, diversity and adaptability. We argue that these are the emergent properties of a unique phase of matter, and we demonstrate that proteins, the functional molecules of terrestrial life, are perfectly suited to this phase. We explore, through an understanding of this phase of matter, the physical principles that govern the operation of living matter. Our work has implications for the design of functionally useful nanoscale devices and the ultimate development of physically based artificial life.
Limb deficiency and prosthetic management. 2. Aging with limb loss.
Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R
2006-03-01
This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.
Review of alternative fuels data bases
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1983-01-01
Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.
Simulating effects of microtopography on wetland specific yield and hydroperiod
Summer, David M.; Wang, Xixi
2011-01-01
Specific yield and hydroperiod have proven to be useful parameters in hydrologic analysis of wetlands. Specific yield is a critical parameter to quantitatively relate hydrologic fluxes (e.g., rainfall, evapotranspiration, and runoff) and water level changes. Hydroperiod measures the temporal variability and frequency of land-surface inundation. Conventionally, hydrologic analyses used these concepts without considering the effects of land surface microtopography and assumed a smoothly-varying land surface. However, these microtopographic effects could result in small-scale variations in land surface inundation and water depth above or below the land surface, which in turn affect ecologic and hydrologic processes of wetlands. The objective of this chapter is to develop a physically-based approach for estimating specific yield and hydroperiod that enables the consideration of microtopographic features of wetlands, and to illustrate the approach at sites in the Florida Everglades. The results indicate that the physically-based approach can better capture the variations of specific yield with water level, in particular when the water level falls between the minimum and maximum land surface elevations. The suggested approach for hydroperiod computation predicted that the wetlands might be completely dry or completely wet much less frequently than suggested by the conventional approach neglecting microtopography. One reasonable generalization may be that the hydroperiod approaches presented in this chapter can be a more accurate prediction tool for water resources management to meet the specific hydroperiod threshold as required by a species of plant or animal of interest.
van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B
2010-06-01
Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners' practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine.
Yuan, Xiangyong; Bi, Cuihua; Huang, Xiting
2015-05-01
Out-of-synchrony experiences can easily recalibrate one's subjective simultaneity point in the direction of the experienced asynchrony. Although temporal adjustment of multiple audiovisual stimuli has been recently demonstrated to be spatially specific, perceptual grouping processes that organize separate audiovisual stimuli into distinctive "objects" may play a more important role in forming the basis for subsequent multiple temporal recalibrations. We investigated whether apparent physical differences between audiovisual pairs that make them distinct from each other can independently drive multiple concurrent temporal recalibrations regardless of spatial overlap. Experiment 1 verified that reducing the physical difference between two audiovisual pairs diminishes the multiple temporal recalibrations by exposing observers to two utterances with opposing temporal relationships spoken by one single speaker rather than two distinct speakers at the same location. Experiment 2 found that increasing the physical difference between two stimuli pairs can promote multiple temporal recalibrations by complicating their non-temporal dimensions (e.g., disks composed of two rather than one attribute and tones generated by multiplying two frequencies); however, these recalibration aftereffects were subtle. Experiment 3 further revealed that making the two audiovisual pairs differ in temporal structures (one transient and one gradual) was sufficient to drive concurrent temporal recalibration. These results confirm that the more audiovisual pairs physically differ, especially in temporal profile, the more likely multiple temporal perception adjustments will be content-constrained regardless of spatial overlap. These results indicate that multiple temporal recalibrations are based secondarily on the outcome of perceptual grouping processes.
NASA Astrophysics Data System (ADS)
Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc
2016-04-01
In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.
van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B
2010-01-01
Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners’ practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine. PMID:21655394
NASA Astrophysics Data System (ADS)
Ewing, Tracy S.
The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.
de Vries, Nienke M; Staal, J Bart; Teerenstra, Steven; Adang, Eddy M M; Rikkert, Marcel G M Olde; Nijhuis-van der Sanden, Maria W G
2013-12-17
Older adults can benefit from physical activity in numerous ways. Physical activity is considered to be one of the few ways to influence the level of frailty. Standardized exercise programs do not necessarily lead to more physical activity in daily life, however, and a more personalized approach seems appropriate. The main objective of this study is to investigate whether a focused, problem-oriented coaching intervention ('Coach2Move') delivered by a physiotherapist specializing in geriatrics is more effective for improving physical activity, mobility and health status in community-dwelling older adults than usual physiotherapy care. In addition, cost-effectiveness will be determined. The design of this study is a single-blind randomized controlled trial in thirteen physiotherapy practices. Randomization will take place at the individual patient level. The study population consists of older adults, ≥70 years of age, with decreased physical functioning and mobility and/or a physically inactive lifestyle. The intervention group will receive geriatric physiotherapy according to the Coach2Move strategy. The control group will receive the usual physiotherapy care. Measurements will be performed by research assistants not aware of group assignment. The results will be evaluated on the amount of physical activity (LASA Physical Activity Questionnaire), mobility (modified 'get up and go' test, walking speed and six-minute walking test), quality of life (SF-36), degree of frailty (Evaluative Frailty Index for Physical Activity), fatigue (NRS-fatigue), perceived effect (Global Perceived Effect and Patient Specific Complaints questionnaire) and health care costs. Most studies on the effect of exercise or physical activity consist of standardized programs. In this study, a personalized approach is evaluated within a group of frail older adults, many of whom suffer from multiple and complex diseases and problems. A complicating factor in evaluating a new approach is that it may not be automatically adopted by clinicians. Specific actions are undertaken to optimize implementation of the Coach2Move strategy during the trial. Whether or not these will be sufficient is a matter we will consider subsequently, using quality indicators and process analysis. The Netherlands National Trial Register: NTR3527.
Child–Adult Differences in Using Dual-Task Paradigms to Measure Listening Effort
Charles, Lauren M.; Ricketts, Todd A.
2017-01-01
Purpose The purpose of the project was to investigate the effects modifying the secondary task in a dual-task paradigm to measure objective listening effort. To be specific, the complexity and depth of processing were increased relative to a simple secondary task. Method Three dual-task paradigms were developed for school-age children. The primary task was word recognition. The secondary task was a physical response to a visual probe (simple task), a physical response to a complex probe (increased complexity), or word categorization (increased depth of processing). Sixteen adults (22–32 years, M = 25.4) and 22 children (9–17 years, M = 13.2) were tested using the 3 paradigms in quiet and noise. Results For both groups, manipulations of the secondary task did not affect word recognition performance. For adults, increasing depth of processing increased the calculated effect of noise; however, for children, results with the deep secondary task were the least stable. Conclusions Manipulations of the secondary task differentially affected adults and children. Consistent with previous findings, increased depth of processing enhanced paradigm sensitivity for adults. However, younger participants were more likely to demonstrate the expected effects of noise on listening effort using a secondary task that did not require deep processing. PMID:28346816
I spy with my little eye: cognitive processing of framed physical activity messages.
Bassett-Gunter, Rebecca L; Latimer-Cheung, Amy E; Martin Ginis, Kathleen A; Castelhano, Monica
2014-01-01
The primary purpose was to examine the relative cognitive processing of gain-framed versus loss-framed physical activity messages following exposure to health risk information. Guided by the Extended Parallel Process Model, the secondary purpose was to examine the relation between dwell time, message recall, and message-relevant thoughts, as well as perceived risk, personal relevance, and fear arousal. Baseline measures of perceived risk for inactivity-related disease and health problems were administered to 77 undergraduate students. Participants read population-specific health risk information while wearing a head-mounted eye tracker, which measured dwell time on message content. Perceived risk was then reassessed. Next, participants read PA messages while the eye tracker measured dwell time on message content. Immediately following message exposure, recall, thought-listing, fear arousal, and personal relevance were measured. Dwell time on gain-framed messages was significantly greater than loss-framed messages. However, message recall and thought-listing did not differ by message frame. Dwell time was not significantly related to recall or thought-listing. Consistent with the Extended Parallel Process Model, fear arousal was significantly related to recall, thought-listing, and personal relevance. In conclusion, gain-framed messages may evoke greater dwell time than loss-famed messages. However, dwell time alone may be insufficient for evoking further cognitive processing.
Physical activity in patients with advanced-stage cancer: a systematic review of the literature.
Albrecht, Tara A; Taylor, Ann Gill
2012-06-01
The importance of physical activity for chronic disease prevention and management has become generally well accepted. The number of research interventions and publications examining the benefits of physical activity for patients with cancer has been rising steadily. However, much of that research has focused on the impact of physical activity either prior to or early in the cancer diagnosis, treatment, and survivorship process. Research focusing on the effects of physical activity, specifically for patients with advanced-stage cancer and poorer prognostic outcomes, has been addressed only recently. The purpose of this article is to examine the state of the science for physical activity in the advanced-stage disease subset of the cancer population. Exercise in a variety of intensities and forms, including yoga, walking, biking, and swimming, has many health benefits for people, including those diagnosed with cancer. Research has shown that, for people with cancer (including advanced-stage cancer), exercise can decrease anxiety, stress, and depression while improving levels of pain, fatigue, shortness of breath, constipation, and insomnia. People diagnosed with cancer should discuss with their oncologist safe, easy ways they can incorporate exercise into their daily lives.
Van Dongen, Stefan
2014-01-01
Studies of the process of human mate selection and attractiveness have assumed that selection favours morphological features that correlate with (genetic) quality. Degree of masculinity/femininity and fluctuating asymmetry (FA) may signal (genetic) quality, but what information they harboured and how they relate to fitness is still debated. To study strength of associations between facial masculinity/femininity, facial FA, attractiveness and physical strength in humans. Two-hundred young males and females were studied by measuring facial asymmetry and masculinity on the basis of frontal photographs. Attractiveness was determined on the basis of scores given by an anonymous panel, and physical strength using hand grip strength. Patterns differed markedly between males and females and analysis method used (univariate vs multivariate). Overall, no associations between FA and attractiveness, masculinity and physical strength were found. In females, but not males, masculinity and attractiveness correlated negatively and masculinity and physical strength correlated positively. Further research into the differences between males and females in associations between facial morphology, attractiveness and physical strength is clearly needed. The use of a multivariate approach can increase our understanding of which regions of the face harbour specific information of hormone levels and perhaps behavioural traits.
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
This paper studied the machinability of hybrid CFRP/Ti stack via the numerical approach. To this aim, an original FE model consisting of three fundamental physical constituents, i.e., CFRP phase, interface and Ti phase, was established in the Abaqus Explicit/code to construct the machining behavior of the composite-to-metal alliance. The CFRP phase was modeled as an equivalent homogeneous material (EHM) by considering its anisotropic behavior relative to the fiber orientation (θ) while the Ti alloy phase was assumed to exhibit isotropic and elastic-plastic behavior. The "interface" linking the "CFRP-to-Ti" contact boundary was physically modeled as an intermediate transition region through the concept of cohesive zone (CZ). Different constitutive laws and damage criteria were implemented to simulate the chip separation process of the bi-material system. The key cutting responses including specific cutting energy consumption, induced subsurface damage, and interface delamination were precisely addressed via the comprehensive FE analyses, and several key conclusions were drawn from this study.
Doing accelerator physics using SDDS, UNIX, and EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.; Emery, L.; Sereno, N.
1995-12-31
The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinatemore » the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.« less
The Social Side Effects of Acetaminophen
NASA Astrophysics Data System (ADS)
Mischkowski, Dominik
About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical processes. Finally, public health and legal implications of the social side effects of acetaminophen are discussed.